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Abstract
We propose an automatic parameter selection strategy for the single image super-resolution problem for images corrupted by
blur and additive white Gaussian noise with unknown standard deviation. The proposed approach exploits the structure of
both the down-sampling and the blur operators in the frequency domain and computes the optimal regularisation parameter
as the one optimising a suitably defined residual whiteness measure. Computationally, the proposed strategy relies on the fast
solution of generalised Tikhonov �2–�2 problems as proposed in Zhao et al. (IEEE Trans Image Process 25:3683–3697, 2016).
These problems naturally appear as substeps of the Alternating Direction Method of Multipliers used to solve single image
super-resolution problems with non-quadratic, non-smooth, sparsity-promoting regularisers both in convex and in non-convex
regimes. After detailing the theoretical properties allowing to express the whiteness functional in a compact way, we report an
exhaustive list of numerical experiments proving the effectiveness of the proposed approach for different type of problems,
in comparison with well-known parameter selection strategies such as, e.g., the discrepancy principle.

Keywords Single image super-resolution ·Residualwhiteness principle ·Total variation regularisation ·Sparse regularisation ·
ADMM

1 Introduction

The problem of single image super-resolution (in short, SR)
consists in finding a high-resolution (HR) image starting
from a single low-resolution (LR), blurred and noisy image
measurement. Several applications benefit from the recov-
ery of HR information from LR ones: their non-exhaustive
list range from remote sensing to medical and microscopy
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imaging, where, typically, the SR problem aims to recon-
struct high-quality and fine-detailed images overcoming the
physical limitations imposed by the acquisition setting, such
as, e.g., light diffraction phenomena [14,40].

The SR problem can be formulated in mathematical terms
as follows. Let X ∈ R

Nr×Nc denote the original HR image,
with x = vec(X) ∈ R

N , N = Nr Nc, being its row-wise vec-
torisation. The degradation process describing the mapping
from HR to LR data can be described by the linear model

b=SKx + e , with e realisation of E ∼ N (0n, σ 2In), (1)

where b, e ∈ R
n are the vectorised LR observed image and

additive white Gaussian noise (AWGN) realisation, respec-
tively, both of size nr × nc, with n = nrnc and S ∈ R

n×N

is a binary selection matrix inducing a pixel decimation with
factors dr and dc along the Nr rows and the Nc columns of
the HR image X, respectively—i.e. Nr = nrdr , Nc = ncdc.
Then,K ∈ R

N×N is thematrix representing a space-invariant
blurring operator and E is an n-variate Gaussian-distributed
random vector with zero mean and scalar covariance matrix,
with σ > 0 indicating the (often unknown) noise stan-
dard deviation. In the following, we will use the notation
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In ∈ R
n×n and 0n, 1n ∈ R

n to denote the n × n identity
matrix and the n-dimensional vectors with all zeros and ones,
respectively and set d := drdc, so that N = nd.

Determining x ∈ R
N solving (1) given b ∈ R

n and
the operators S, K is an ill-posed inverse problem. Many
approaches for solving it have been proposed, ranging
from interpolation techniques, see, e.g., [35], sparse rep-
resentation approaches [41], reconstruction-based methods
[5,10,25,38,43] and, recently, approaches based on learning
techniques, see the recent review [42].

In this paper,we consider a reconstruction-based approach
based on suitable regularisation approaches. In particular, we
seek an estimate x∗ of x being the minimiser of a suitable
cost function J : R

N → R+, with R+ denoting the set
of non-negative real numbers, which codifies both a-priori
information on the solution and on the Gaussian noise statis-
tics. A standard approach for doing so consists in considering
the problem:

x∗(μ) ∈ arg min
x∈RN

{
J (x;μ) := μ

2
‖SKx−b‖22+R(x)

}
,

(2)

where R : R
N → R+ is a possibly non-convex and non-

smooth regularisation term, and where the data fidelity term
(1/2)‖SKx−b‖22 encodes theAWGNassumption on e, while
the regularisation parameterμ > 0 balances the action of the
fidelity against regularisation.

The optimal choice ofμ in (2) is in fact crucial for obtain-
ing high-quality reconstructions. Many heuristic approaches
have been proposed for its automatic selection, such as, e.g.,
L-curve [6] and generalised cross-validation (GCV) [13].
Alternatively, several methods exploiting available informa-
tion on the noise corruption have been designed. Among
them, a standard strategy is the Morozov Discrepancy Prin-
ciple (DP)—see [7,16,31] for general problems and [37] for
applications to SR—which can be formulated as follows:

Select μ = μ∗such that ‖r∗(μ∗)‖2 = ‖SKx∗(μ∗) − b‖2
= τ

√
nσ , (3)

where x∗(μ) ∈ R
N solves (2), and r∗(μ) := SKx∗(μ)−b ∈

R
n is defined as the LR residual with τ > 0 denoting the

discrepancy coefficient. When σ is known, τ is set equal
to 1, otherwise a value slightly greater than 1 is typically
chosen so to avoid noise under-estimation. Inmany realworld
applications an accurate estimate of σ is not available, which
often limits the applicability of DP-based strategies.

Alternative strategies overcoming this issue and lever-
aging the noise whiteness property have been used in the
context of image denoising and deconvolution problems (i.e.
where S = IN ). Using the whiteness property of the residual
image—i.e. of the noise—is an effective idea as on the one

hand it does not require to know the noise standard deviation
and on the other it exploits much more information than the
one encoded in the first moments of the noise distribution.
Variational models for image denoising and deblurring con-
taining data fidelity terms or regularisers aimed to explicitly
enforce the residual whiteness property have been proposed;
see, e.g., [2,18,20,21,27]. The good results achieved by
such models demonstrate the potentiality of using the noise
whiteness property. However, these models are strongly non-
convex, with all the associated numerical and computational
difficulties. More classically, whiteness and other statistical
and deterministic properties of the residual have been used as
a-posteriori criteria for evaluating the quality of the restored
image or selecting the regularisation parameter of convex
variational models in image denoising and deblurring; see,
e.g., [1,4,17,29]. In particular, in [1] the authors proposed an
effective parameter selection strategy for variational image
deconvolution based on minimising the residual normalised
auto-correlation. This approach, that has been applied in [1]
as an a posteriori criterion, has then been revisited in [22],
where the authors design ameasure of whiteness of the resid-
ual image r∗(μ) = Kx∗(μ)−b that is regarded as a function
of μ. This strategy, called the residual whiteness principle
(RWP), allows for an automatic estimation of μ and can be
naturally embedded within an iterative ADMM optimisation
scheme and shown to be effective for different choices of
non-quadratic non-smooth regularisersR. In fact, whenever
S = IN and upon the assumption of periodic boundary con-
ditions, models of the form (2) can be easily manipulated
through an ADMM-type scheme where matrix-vector prod-
ucts and matrix inversions can be efficiently computed in the
frequency domain by means of fast discrete Fourier trans-
form solvers, due to the circulant structure of the operatorK
(see [22] for details).

In SR problems, however, due to the presence of the
decimation operator S, the operator A := SK is, typi-
cally, unstructured and, as a consequence, the solution of
(2) becomes more challenging. To motivate this better, let
us consider the special choice R(x) := 1

2‖Lx − v‖22, with
L ∈ R

M×N being a known regularisationmatrix and v ∈ R
M

a given vector. Then, problem (2) takes the form of the gen-
eralised Tikhonov-regularised �2–�2 problem which reads

x∗(μ) = arg min
x∈RN

{
μ

2
‖SKx − b‖22 + 1

2
‖Lx − v‖22

}
, (4)

which has been previously employed, e.g., in [34,41] in the
context of SR problems. The solution of (4) can be computed
by considering the corresponding optimality condition upon
the inversion of unstructured operators, thus requiring in prin-
ciple the use of iterative solvers, such as, e.g., the Conjugate
Gradient algorithm.
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However, for problems like (4) and upon a specific choice
of S, it was shown in [43] that an efficient solution strategy
based on the use of the Woodbury’s formula can be derived.
The resulting algorithm, therein called Fast Super-Resolution
(FSR) algorithm significantly reduces the computational
efforts required by iterative solvers solving (4) as it boils
down the problem to the inversion of diagonal matrices in the
Fourier domain. As far as the parameter selection strategy is
concerned, in [43] a Generalised Cross Validation strategy
[11] is used to select the optimal μ, which is known to be
impractical for large-scale problems, see, e.g., [8]. Note, fur-
thermore, that �2–�2 problems in the form (4) naturally arise
when attempting to solve the more general class of varia-
tional models (2) by means of classical iterative optimisation
solvers such as the ADMM. In this context, such problems
appear to enforce suitable variable splitting and are defined in
terms of appropriate penalty parameters. Here, the FSR algo-
rithm can thus still be used as an efficient solver, similarly as
done, e.g., in [5,24,33,33].
Contribution We propose an automatic parameter selection
strategy for the regularisation parameter μ in (2) which
does not require any prior knowledge on the AWG noise
level and can be applied to general non-smooth and possi-
bly non-convex regularisersR. Our approach is based on the
optimisation of a suitably defined measure of whiteness of
the residual image in the frequency domain. The proposed
approach generalises the results presented in [22] for image
deconvolution problems to the more challenging scenario of
single-image super-resolution problems. At the same time,
it extends the results contained in an earlier conference ver-
sion of this work [26] where only problems in the form (4)
were considered . By designing an ADMM-based optimi-
sation strategy for solving the general problem (2) with an
appropriate variable splitting, the residual whiteness princi-
ple can be applied iteratively along theADMM iterations and
used jointly as part of the solution of the �2–�2 substeps in the
form (4). Several numerical results confirming the effective-
ness of the proposed method in comparison to the standard
Discrepancy Principle for popular image regularisers such as
the Tikhonov and Total Variation are reported. Moreover, to
provide some insights about the extension of such strategy to
non-convex setting, we propose to embed the automatic esti-
mation strategy yielded by the adoption of theRWPwithin an
iterative reweighted �1 scheme for tackling the non-convex
continuous relaxation of the �0 norm [32].

2 Notations, Preliminaries and Assumptions

We start by setting the notations and recalling useful results
that will be used in the following discussion. Then, we detail
the adopted assumptions for our derivations.

2.1 Notations and Preliminaries

In the following, for z ∈ C we use z, |z| to indicate the
conjugate and the modulus of z, respectively. We denote by
F,FH ∈ C

N×N the unitary coefficient matrices of the 2D
discrete Fourier transform operator and its inverse, respec-
tively, when applied to vectorised Nr × Nc images, with
FFH = FHF = IN . For any v ∈ R

N and anyA ∈ R
N×N , we

use the notations ṽ = Fv and Ã = FAFH to denote the action
of the 2D Fourier transform operator F on vectors and matri-
ces, respectively. Given a permutation matrix P ∈ R

N×N ,
we denote by v̂ = Pṽ and by Â = PÃPT the action of P on
the Fourier-transformed vector ṽ and matrix Ã, respectively.
We indicate by Ǎ the product Ǎ = PÃHPT , i.e. the action
of P on ÃH . Finally, we denote by Js the s × s matrix of all
ones and by csi the i-th canonical basis vector of R

s .
In the following Lemmas 1–4 we recall two well-known

properties of the Kronecker product ‘⊗’—see, e.g., [12]—as
well as two results that will be useful in the paper.

Lemma 1 Let A1, . . . ,Am, B1, . . . ,Bm, m ≥ 2, be matrices
such that all the products AiBi exist, i = 1, . . . ,m. Then,
there holds:

(A1 ⊗ . . . ⊗ Am)(B1 ⊗ . . . ⊗ Bm)

= (A1B1 ⊗ . . . ⊗ AmBm) . (5)

Lemma 2 Let A,B be square matrices of orders r and s,
respectively. Then:

B ⊗ A = Pr
s (A ⊗ B)

(
Pr
s

)T
,

where Pr
s ∈ R

rs×rs is a special permutation matrix, called
the perfect shuffle matrix for a set of s × r elements, defined
by

Pr
s =

s∑
i=1

(
csi ⊗ Ir ⊗ (csi

)T )
. (6)

Lemma 3 (Woodbury formula) Let A1,A2,A3,A4 be con-
formable matrices with A1 and A3 invertible. Then, the
following inversion formula holds:

(A1 + A2A3A4)
−1

= A−1
1 + A−1

1 A2(A
−1
3 + A4A

−1
1 A2)

−1A4A
−1
1 . (7)

Lemma 4 [36] Let S ∈ R
n×N be the binary selection matrix

introduced. Then:

S̃HS = 1

d
(Jdr ⊗ Inr ) ⊗ (Jdc ⊗ Inc) . (8)
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Fig. 1 Structure of matrix S̃HS in (8), on the left, of permutation matrix P in (9), in the centre, and of permuted matrix P S̃HSPT in (10), on the
right, for Nr = 6, Nc = 12, dr = 2, dc = 3 
⇒ nr = 3, nc = 4. Blue dots indicate positions of non-zero entries and nz denotes the number of
non-zero entries

The non-zero entries of thematrix S̃HS in (8) are all equal
to 1/d and are arranged along replicated patterns, as shown in
Fig. 1(left) for the particular case Nr = 6, Nc = 12, dr = 2,
dc = 3 
⇒ nr = 3, nc = 4. In the following Proposition 1
we prove that there always exists a permutation matrix P , as
the one represented in Fig. 1(centre), capable of shuffling the

rows and columns of S̃HS to get a well-structured, block-
diagonal matrix, as shown in Fig. 1(right).

Proposition 1 Let P ∈ R
N×N be the permutation matrix

defined by

P := Pd
n

(
Idr ⊗ Pnr

dc
⊗ Inc

)
, (9)

with Pd
n , P

nr
dc

perfect shuffle matrices as defined in (6). Then,
there holds

P S̃HSPT = 1

d
(In ⊗ Jd) = 1

d
diag
( n blocks︷ ︸︸ ︷
Jd , . . . , Jd

)
. (10)

Proof First, by setting P := Idr ⊗Pnr
dc

⊗ Inc and based on the
definition (8), we have

P S̃HS = 1

d

(
Idr ⊗Pnr

dc
⊗Inc
) (

Jdr ⊗
(
Inr ⊗Jdc

)⊗Inc
)

(11)

= 1

d

(
Jdr ⊗

(
Pnr
dc

(
Inr ⊗ Jdc

))⊗ Inc
)

, (12)

where in (11) we used the associative property of Kronecker
products and in (12) we applied Lemma 1. Then, starting

from (12), we have

P S̃HSP
T = 1

d

(
Jdr ⊗

(
Pnr
dc

(
Inr ⊗Jdc

))⊗Inc
)

(
Idr ⊗

(
Pnr
dc

)T ⊗ Inc

)
(13)

= 1

d

(
Jdr ⊗

(
Pnr
dc

(
Inr ⊗ Jdc

) (
Pnr
dc

)T)⊗ Inc

)

(14)

= 1

d

(
Jdr ⊗ Jdc ⊗ Inr ⊗ Inc

) = 1

d
(Jd ⊗ In) ,

(15)

where in (13) we used the property of the transposed of a
Kronecker product, in (14) we applied Lemma 1 and in (15)
Lemma 2. Finally, by recalling the definition of matrix P in
(9), namely P = Pd

n P, we have

P S̃HSPT = Pd
n P S̃HS P

T
(
Pd
n

)T = 1

d
Pd
n (Jd⊗In)

(
Pd
n

)T

= 1

d
(In ⊗ Jd) , (16)

where in (16) we again applied Lemma 2. �

2.2 Assumptions

In this section, we detail the class of variational models of
interest by listing the assumptions adopted for the regulari-
sation termR(x) as well as for the decimation matrix S and
the blurring matrix K.

In this paper, we focus on the automatic selection of the
regularisation parameter μ in single image super-resolution
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variational models of the form:

x∗(μ)= arg min
x∈RN

{
J (x;μ)= μ

2
‖SKx−b‖22 +R(x)

}
,

R(x) := G (Lx) . (17)

We refer to L ∈ R
M×N as the regularisation matrix, whereas

the regularisation function G : R
M → R := R ∪ {+∞} is

nonlinear and possibly non-smooth.
The general variational model (17) undergoes the follow-

ing assumptions:

(A1) The blur matrix K ∈ R
N×N , decimation matrix S ∈

R
n×N and regularisation matrix L ∈ R

M×N are such
that null(SK) ∩ null(L) = 0N .

(A2) The regularisation function G : R
M → R is proper,

lower semi-continuous, convex and coercive.
(A3) The blur matrix K represents a 2D discrete convo-

lution operator—which follows from the blur being
space-invariant—and the regularisation matrix L is of
the form:

L =
(
LT
1 , . . . ,LT

s

)T∈ R
sN×N , s ∈ N \ {0},

with L j ∈ R
N×N , j = 1, . . . , s ,

matrices also representing 2D discrete convolution
operators.

(A4) The decimationmatrix S ∈ R
n×N is a binary selection

matrix, such that SSH = In and the operator SH ∈
R

N×n interpolates the decimated image with zeros.
(A5) The regularisation function G is easily proximable,

that is, the proximity operator of G at any t ∈ R
M ,

proxG(t) = arg min
z∈RM

{
G(z) + 1

2
‖t − z‖22

}
,

can be efficiently computed.

Assumptions (A1)–(A2) guarantee the existence—and,
upon suitable assumptions, uniqueness—of solutions of the
considered class of variational super-resolution models (17),
as formally stated in Proposition 2 below, whose proof can
be easily derived from the one of Proposition 2.1 in [22].

Proposition 2 If the assumptions (A1)–(A2) above are ful-
filled, for any fixed μ ∈ R++ the function J ( · ;μ) : R

N →
R in (17) is proper, lower semi-continuous, convex and coer-
cive, hence it admits global minimisers. Furthermore, if
matrix SK has full rank, then the global minimiser is unique.

Assumptions (A3)–(A4) are crucial for our proposal. In
fact, as it will be detailed in the paper, they allow for the
efficient automatic selection of the regularisation parameter

in the frequency domain based on the RWP. More specifi-
cally, (A3) guarantees that, under the assumption of periodic
boundary conditions, the blurmatrixK and the regularisation
matrices L j , j = 1, . . . , s, are all block-circulant matrices
with circulant blocks, which can be diagonalised by the 2D
discrete Fourier transform, i.e.:

K = FHλF, L j = FH� jF, j ∈ {1, . . . , s},
FHF = FFH = IN , (18)

where λ,� j ∈ C
N×N are diagonal matrices defined by

λ = diag
(
λ̃1, . . . , λ̃n

)
,

� j = diag
(
γ̃ j,1, . . . , γ̃ j,N

)
, j ∈ {1, . . . , s}. (19)

Assumption (A4) allows to apply Lemma 4 and Proposi-
tion 1 which, together with Fourier-diagonalisation formulas
(18)–(19) allow to solve in the frequency domain the linear
systems arising in the proposed iterative solution procedure.
The Fourier representation allows to obtain an explicit form
of thewhitenessmeasure function such that the regularisation
parameter μ can be efficiently updated along the solver iter-
ations based on a simple univariate minimisation problem,
according to the RWP. We remark that assumptions (A3)–
(A4) cannot be relaxed without making the computational
burden of our proposal impractical: even in the case when
the arising linear systems can be solved very efficiently (e.g.
if matrix L is a tall matrix such that LHL has small size and
can be inverted cheaply), if an explicit frequency domain
solution is not available, then the repeated evaluation of the
whiteness measure function becomes impractical.

Assumption (A5) is required to compute efficiently the
solution of all the proximity steps arising in the solution algo-
rithm.

We now briefly discuss how stringent the above assump-
tions are. First, assumption (A4) on S is not stringent at all.
In fact, if the binary selection matrix S is preceded by the
integration of the HR image over the support of each LR
pixel, a pixel blur operator—representing a 2D convolution
operator - can be introduced and incorporated in the original
blur matrix K.

Next, as far as popular regularisation terms satisfying
(A2),(A3),(A5) are concerned, we mention the Tikhonov
(TIK) regulariser, which, in its general form reads G(Lx) =
‖Lx − v‖22 for suitably chosen L and v ∈ R

N reflect-
ing any prior knowledge on the solution. When L = D,
the discrete image gradient, such regulariser is commonly
referred to as discrete Sobolev regularisation and it is typi-
cally adopted when the image of interest is characterised by
smooth regions. Note, that in the following we will consider
only such gradient-choice of the Tikhonov regulariser, hence
we will denote by TIK the discrete Sobolev regularisation
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functional G(Lx) = ‖Dx‖22. Alternatively, under the same
choice for L = D, another common choice for G(Lx) is the
Total Variation (TV) regulariser [30], which is employed for
the reconstruction of piece-wise constant images with sharp
edges, and that admits an Isotropic (TVI) and Anisotropic
(TVA) formulation. They can be expressed in terms of the
regularisation matrix L and of the nonlinear regularisation
function G(t), t = Lx, as follows:

L = D, G(t) = ‖t‖22 ,
[
TIK
]

L = D, G(t) =
N∑
i=1

‖(ti , ti+N )‖2 ,
[
TVI
]

L = D, G(t) =
N∑
i=1

‖(ti , ti+N )‖1 ,
[
TVA
]

where D := (DT
h ,DT

v

)T ∈ R
2N×N with Dh,Dv ∈ R

N×N

finite difference operators discretising the first-order hori-
zontal and vertical partial derivatives.

In presence of images characterised by different local fea-
tures, the global nature of TIK and TV compromises their
performance. As a way to promote regularisation with dif-
ferent strength over the image, in [9] a class of weighted
TV-based regularisers has been proposed; in formula:

L = D, G(t) =
N∑
i=1

αi ‖(ti , ti+N )‖2 , αi ∈ R++,

[
WTV

]

Regardless of its local or global nature, a regularisation term
designed by setting L = D is expected to promote gradi-
ent sparsity. When dealing with sparse-recovery problems,
i.e. problems where the signal itself is assumed to be sparse,
regularisations based, e.g., on the use of the �1 norm are often
considered and possibly combinedwith a space-variant mod-
elling so as to get a Weighted �1 (WL1) regulariser, which
reads:

L = IN , G(t)=
N∑
i=1

wi |ti | , wi ∈ R++,
[
WL1
]

Remark 1 (Non-convex regularisations) Despite our con-
vexity assumption (A2), we will detail in Sect. 6 few
insights on the use of the proposed parameter selection strat-
egy to non-convex regularisers corresponding to continuous
approximations of the �0 pseudo-norm, such as, e.g., the
CEL0 penalty [32]. The iterative strategywe are going to dis-
cuss next does not directly apply to this scenario; nonetheless,
upon the suitable definition of appropriate surrogate convex
functions approximating the original non-convex problems

(by means, for instance, of reweighted �1 algorithms [23]),
its use is still possible.

3 The RWP for Single Image
Super-Resolution

In this section, we recall some key results originally reported
in [26] and concerning the application of the RWP to
Tikhonov-regularised super-resolution least squares prob-
lems of the form (4). In fact, what follows represents the
building block of the iterative procedures introduced in
Sect. 5.

Let us consider the noise realisation e in (1) in its original
nr × nc matrix form:

e = {ei, j
}
(i, j)∈�

, � := {0, . . . , nr − 1}× {0, . . . , nc − 1}.

The sample auto-correlationa : R
nr×nc → R

(2nr−1)×(2nc−1)

of realisation e is

a(e) = {al,m(e)
}
(l,m)∈	

,

	:={−(nr − 1), . . . , nr − 1}× {−(nc− 1), . . . , nc −1},

with each scalar component al,m(e) : R
nr×nc → R given by

al,m(e) = 1

n

(
e 
 e

)
l,m = 1

n

(
e ∗ e′ )

l,m

= 1

n

∑
(i, j)∈�

ei, j ei+l, j+m , (l,m) ∈ 	, (20)

where index pairs (l,m) are commonly called lags, 
 and
∗ denote the 2-D discrete correlation and convolution oper-
ators, respectively, and where e′(i, j) = e(−i,− j). Clearly,
for (20) being defined for all lags (l,m) ∈ 	, the noise real-
isation e must be padded with at least nr − 1 samples in the
vertical direction and nc − 1 samples in the horizontal direc-
tion by assuming periodic boundary conditions, such that 


and ∗ in (20) denote 2-D circular correlation and convolu-
tion, respectively. This allows to consider only lags

(l,m) ∈ 	 := {0, . . . , nr − 1} × {0, . . . , nc − 1}.

If the corruption e in (1) is the realisation of a white Gaus-
sian noise process—as in our case—it is well known that as
n → +∞, the sample auto-correlation al,m(e) satisfies the
following asymptotic property [20]:

lim
n→+∞ al,m(e) =

{
σ 2 for (l,m)=(0, 0)
0 for (l,m) ∈ 	0 := 	 \ {(0, 0)} .

(21)
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We remark that the DP exploits only the information at lag
(0, 0). In fact, according to (3), the standard deviation of the
residual image is required to be equal to the noise standard
deviation σ . Imposing whiteness of the residual image by
constraining its auto-correlation at non-zero lags to be small
is a stronger requirement.

In order to make such whiteness principle independent
of the noise level, we consider the normalised sample auto-
correlation of noise realisation e, namely

ρ(e) = 1

a0,0(e)
a(e) = 1

‖e‖22
(
e 
 e

)
,

where ‖ · ‖2 denotes here the Frobenius norm. It follows
easily from (21) that ρ(e) satisfies the following asymptotic
properties:

lim
n→+∞ ρl,m(e) =

{
1 for (l,m) = (0, 0)
0 for (l,m) ∈ 	0 .

In [22], the authors introduce the following non-negative
scalar measure of whiteness W : R

nr×nc → R+ of noise
realisation e:

W(e) := ‖ρ(e)‖22 = ‖ e 
 e ‖22
‖e‖42

= W̃(ẽ) , (22)

where the last equality comes from Proposition 3 below—
the proof being reported in [22]—with ẽ ∈ C

nr×nc the 2D
discrete Fourier transform of e and W̃ : C

nr×nc → R+ the
function defined in (23).

Proposition 3 Let e ∈ R
nr×nc and ẽ = F e ∈ C

nr×nc . Then,
assuming periodic boundary conditions for e, the function
W defined in (22) satisfies:

W(e)=W̃(ẽ):=
⎛
⎝ ∑

(l,m)∈	

∣∣ẽl,m
∣∣4
⎞
⎠/
⎛
⎝ ∑

(l,m)∈	

∣∣ẽl,m
∣∣2
⎞
⎠

2

.

(23)

By now looking at the considered class of super-resolution
variational models (17), we observe that, as a general rule,
the closer the attained super-resolved image x∗(μ) to the
target HR image x, the closer the associated residual image
r∗(μ) = SKx∗(μ) − b to the white noise realisation e in (1)
and, hence, the whiter the residual image according to the
scalar measure in (22).

This motivates the application of the RWP for automati-
cally selecting the regularisation parameter μ in variational
models of the form (17), which reads:

select μ = μ∗ s.t.

μ∗ ∈ argminμ∈R++
{
W (μ) := W (r∗(μ)

) }
, (24)

where, according to the definition of function W in (22)–
(23), the scalar non-negative cost function W : R++ → R+
in (24), from now on referred to as the residual whiteness
function, takes the following form:

W (μ) = ‖ r∗(μ) 
 r∗(μ) ‖22
‖r∗(μ)‖42

= W̃
(
r̃∗(μ)

)
, (25)

with r̃∗(μ) the 2D discrete Fourier transform of the residual
image and function W̃ defined in (23). In [26], the authors
derived an explicit expression for the super-resolution resid-
ual whiteness functionW (μ) in (25) in the frequency domain
which generalises the one for the restoration-only case (i.e.
the case where S = IN ) reported in [22]. The results of
derivations in [26] are summarised in the following proposi-
tion, whose proof is reported the appendix.

Proposition 4 Let rH (μ) := Kx(μ) − bH , with bH = SHb,
be the high-resolution residual image and let P ∈ R

N×N be
the permutation matrix defined in (9). Then, we have:

W (μ) =
(

N∑
i=1

wi (μ)4

)
/

(
N∑
i=1

wi (μ)2

)2
,

wi (μ) =
∣∣∣∣∣
d−1∑
�=0

(r̂H (μ))ι+�

∣∣∣∣∣ , (26)

where

r̂H (μ) = Pr̃H (μ) and ι := 1 +
⌊ i − 1

d

⌋
d .

4 RWP for Tikhonov-Regularised SR
Problems

Here, we derive the analytical expression of the whiteness
function W (μ) defined in (26) when addressing Tikhonov-
regularised least squares problems as the one in (4). More
specifically, following the derivations reported in [43], in
Proposition 5 we give an efficiently computable expression
for the solution x∗(μ) of the general �2–�2 variational model.

Proposition 5 Let

λ :=
(
In ⊗ 1Td

)
P� , λH := λHPT (In ⊗ 1d) (27)

and

� =
⎛
⎝

s∑
j=1

�H
j � j + ε

⎞
⎠ , 0 < ε � 1 ,
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with ε guaranteeing the inversion of
∑s

j=1 �H
j � j . The solu-

tion of the Tikhonov-regularised least squares problem can
be expressed as:

x∗(μ) = FH
[
�−μ�λH

(
dI+μλ�λH

)−1
λ�

]

⎛
⎝μλH b̃H+

s∑
j=1

�H
j ṽ j

⎞
⎠ , (28)

where v = (vT1 , . . . , vTs )T .

From (28), we can easily derive the Fourier transform of the
high resolution residual r∗

H (μ) = Kx∗(μ)−b, that takes the
form

r̃∗
H (μ) = λ

[
� − μ�λH

(
dI + μλ�λH

)−1
λ�

]

(
μλH b̃H +

s∑
j=1

�H
j ṽ j

)
− b̃H ,

(29)

Recalling Lemma 1 and the property (10), we prove the fol-
lowing proposition and corollary.

Proposition 6 Let � ∈ R
n×n be a diagonal matrix and con-

sider thematrixλdefined in (27). Then, the following equality
holds:

λH�λ = PT (� ⊗ Id)PλHλ .

Corollary 1 Let �=(dI+ μλ�λH
)−1

. Then, the expression
in (29) turns into

r̃∗
H (μ)= λ

[
�−μ� PT

(
(dI+μλ�λH )−1⊗Id

)
PλHλ�

]

(
μλH b̃H +

s∑
j=1

�H
j ṽ j

)
− b̃H .

Recalling now the action of the permutation matrix P on
vectors, we have that the product r̂∗

H (μ) = Pr̃∗
H (μ) reads

r̂∗
H (μ)=

[
λ̂�−μλ̂�

(
(dI+μλ�λH )−1 ⊗ Id

)
̂λHλ�

]

(
μλ̌b̂H++

s∑
j=1

�̌ j v̂ j

)
−b̂H ,

where the matrix ̂λHλ� = PλHPT (In ⊗ Jd)P39PT acts on
g ∈ R

N as

( ̂λHλ�g)i = ¯̂
λi

d−1∑
�=0

λ̂ι+�

ζι+� + ε
gι+� ,

with ζι+� =
s∑

j=1

|γ̂ j,ι+�|2

Combining altogether, we finally deduce:

Proposition 7 The residual whiteness function for the gen-
eralised Tikhonov least squares problem takes the form

W (μ) =
(

N∑
i=1

∣∣∣∣
νi − �i

1 + ηiμ

∣∣∣∣
4
)/( N∑

i=1

∣∣∣∣
νi − �i

1 + ηiμ

∣∣∣∣
2
)2

, (30)

where the parameters ηi ∈ R+, ρi ∈ C, νi ∈ C are defined
as:

ηi := 1

d

d−1∑
j=0

|λ̂ι+ j |2
ζι+� + ε

, �i :=
d−1∑
�=0

b̂H ,ι+�,

νi :=
d−1∑
�=0

λ̂ι+�

s∑
j=1

¯̂γ j,ι+� ṽ j,ι+�

ζι+� + ε
. (31)

When d = 1, i.e. no decimation is considered and S = IN ,
the expression in (30) reduces to the one derived in [22] for
image restoration problems.

According to the RWP, the optimal μ∗ is selected as the
one minimising the whiteness measure function in (30). The
valueμ∗ can be efficiently detected via grid-search or apply-
ing the Newton-Raphson algorithm to the nonlinear equation
W ′(μ) = 0. Finally, the optimal μ∗ is used for the computa-
tion of the reconstruction x∗(μ∗) based on (28).

Themain steps of the proposed procedure are summarised
in Algorithm 1.

Algorithm 1: Exact RWP approach for image super-
resolution �2-�2 variational models of the form (17)
under assumptions (A1), (A3)

inputs: observed degraded image b ∈ R
n ,

decimation factors dr , dc,

blur and regularisation convolution operators

λ, � j ∈ R
N×N , j ∈ {1, . . . , s},

permutation matrix P ∈ R
N×N ,

output: estimated super-resolved image x∗ ∈ R
N

1. compute: λ=(In ⊗ 1Td )P3, �=(
∑

j �H
j � j + ε)−1

2. select: μ∗ ∈ argminW (μ)

3. compute: x∗(μ∗) by (63)
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5 Iterated RWP for Convex-Regularised SR
Problems

In this section, we present an ADMM-based iterative algo-
rithm for the solution of SR variational models of the general
form (17) under assumptions (A1)–(A5), where the regu-
larisation parameter μ is automatically updated along the
iterations based on the RWP. The approach relies on the
iterative application of the results reported in the previous
section.

First, we employ variable splitting to rewrite our family of
variational models (17) in the following equivalent linearly
constrained form:
{
x∗(μ), t∗(μ)

} ∈ argmin
x,t

{ μ

2
‖SKx − b‖22

+ G(t) } s.t. : t = Lx. (32)

To solve problem (32),we defined the augmentedLagrangian
function,

L(x, t,λ;μ) = μ

2
‖SKx − b‖22 + G(t) − 〈λ , t − Lx 〉

+ β

2
‖ t − Lx ‖22 , (33)

where β > 0 is a scalar penalty parameter and λ ∈ R
M is the

dual variable, i.e. the vector of Lagrange multipliers associ-
ated with the set of M linear constraints in (32). Solving (32)
corresponds to seek for the saddle point(s) of the augmented
Lagrangian function in (33), i.e.:
{
x∗(μ), t∗(μ),λ∗(μ)

} ∈ argmin
x,t

max
λ

L(x, t,λ;μ) . (34)

Upon suitable initialisation, and for any k ≥ 0, the k-
th iteration of the standard ADMM applied to solving the
saddle-point problem (34) with L defined in (33) reads as
follows:

x(k+1) ∈ arg min
x∈Rn

L(x, t(k),λ(k);μ) (35)

= arg min
x∈RN

{
μ/β

2
‖SKx − b‖22

+1

2

∥∥∥Lx − v(k+1)
∥∥∥
2

2

}
(36)

with v(k+1) = t(k) − λ(k)

β
,

t(k+1) ∈ arg min
t∈RM

L(x(k+1), t,λ(k);μ) (37)

= arg min
t∈RM

{
G(t) + β

2

∥∥∥t − q(k+1)
∥∥∥
2

2

}
(38)

with q(k+1) = Lx(k+1) + λ(k)

β
,

λ(k+1) = λ(k) − β
(
t(k+1) − Lx(k+1)

)
. (39)

One can notice that when introducing the additional param-
eter γ := μ/β, the minimisation sub-problem (35) for the
primal variable x has the form of the Tikhonov-regularised
least-squares problem (4). Hence, we adjust the regularisa-
tion parameter μ—i.e. γ—along the ADMM iterations by
applying the RWP to problem (35) as illustrated in Sect. 4.

The complete x-update procedure reads as follows:

v(k+1) = t(k) − λ(k)

β
, (40)

γ (k+1) = arg min
γ∈R+

W (γ ) with W in (30)−(31)

and v = v(k+1), (41)

x(k+1) = FH
[
�−γ (k+1)�λH

(
dI+γ (k+1)λ�λH

)−1
λ�

]

⎛
⎝γ (k+1)λH b̃H+

s∑
j=1

�H
j ṽ j

⎞
⎠ . (42)

Theminimisation sub-problem (37) for the primal variable
t can be written in the form of a proximity operator, namely

t(k+1) ∈ prox 1
β
G

(
q(k+1)

)
, q(k+1) = Lx(k+1) + λ(k)

β
.

(43)

According to assumption (A5), the regularisation functionG
is easily proximable, which means that problem (43) can be
solved efficiently.

We now report the closed-form expression of the proxim-
ity operators for the regularisation terms listed in Sect. 2.2.

For what concerns the case of the TV andWTV regularis-
ers, the associated2N -variate proximity operators associated
to the splitting performed are both separable into N inde-
pendent bivariate proximity operators. In particular, after
introducing the N vectors t̆ (k+1)

i , q̆ (k+1)
i ∈ R

2 defined by

t̆ (k+1)
i :=

(
t (k+1)
i , t (k+1)

i+N

)
, q̆ (k+1)

i

:=
(
q(k+1)
i , q(k+1)

i+N

)
, i ∈ {1, . . . , N }, (44)

the proximity operators admit the following closed-form
expressions:

t̆ (k+1)
i = max

(
1 − 1

β
∥∥q̆ (k+1)

i

∥∥
2

, 0

)
q̆ (k+1)
i ,

i ∈ {1, . . . , N }, [TVI ]

t̆ (k+1)
i = max

(
1 − 1

β
∥∥q̆ (k+1)

i

∥∥
1

, 0

)
q̆ (k+1)
i ,

i ∈ {1, . . . , N }, [TVA ]

123



108 Journal of Mathematical Imaging and Vision (2023) 65:99–123

t̆ (k+1)
i = max

(
1 − α

(k)
i

β
∥∥q̆ (k+1)

i

∥∥
2

, 0

)
q̆ (k+1)
i ,

i ∈ {1, . . . , N }, [WTV ] (45)

where α
(k)
i denote the spatial weights of theWTV regulariser

(45).
Finally, the proximity operator for theWL1 regularisation

term reads:

ti = sign(qi )max

(
0, |qi | − wi

β

)
, i = 1, . . . , N . [WL1]

(46)

Algorithm 2: IRWP-ADMMapproach for single-image
SR variational models of the form (17) under assump-
tions (A1)-(A5)

inputs: observed degraded image b ∈ R
n ,

decimation factors dr , dc

blur and regularisation convolution operators λ,

� j ∈ R
N×N , j ∈ {1, . . . , s}

regularisation weights wi , i ∈ {1, . . . , N }[
only for WL1

]

output: estimated super-resolved image x∗ ∈ R
N

1. initialise: compute x(0) by TIK-L2, then t(0) = Lx(0)

2. for k = 0, 1, 2, . . . until convergence do:

3. · compute γ (k+1) = μ(k+1)/β by (40)-(41)

4. · compute x(k+1) by (42)

5. · compute α(k+1) by (13) in [9][
only for WTV

]

6. · compute t(k+1) by solving (43)[
(44), (45), (46) for TV, WTV, WL1

]

7. · compute λ(k+1) by (39)

8. end for

9. x∗ = x(k+1)

In Algorithm 2 we outline the main computational steps
of the proposed approach, which we refer to as Iterative
RWP-ADMM, in short IRWP-ADMM. As initial guess of
the IRWP-ADMM, we select x(0) to be the solution of the
TIK-L2 model in (4) with L = D and v the null vector
(i.e. by using Sobolev regularisation), and the regularisation
parameter μ(0) computed by applying the exact RWP out-
lined in Sect. 4, i.e. by minimising (30). In the context of
image restoration [22], this choice has already been proven
to facilitate and speed up the convergence of the employed
iterative scheme.

Convergence of two-blocks ADMM applied to the solu-
tion of convex optimisation problems of the form (17) with
fixed parameters is well-established (see, e.g., [3]). One can
thus exploit such standard result for convergence of Algo-
rithm 2 by simply setting fixed values of the parameters
(regularisation parameter μ and, possibly, spatial weights of
the WTV and WL1 regularisers) starting from a given itera-
tion. In the numerical tests shown in Sect. 7, we observed that
the parameters typically stabilise after 400/500 iterations of
the IRWP-ADMM.

6 An Extension of IRWP for SR Problems
with Nonconvex Regularisers

In this section we show an example of how IRWP can be
applied to nonconvex regularisation problems that do not
satisfy assumption (A2) on the convexity of the nonlinear
function G.

In several sparse-recovery problems, such as, e.g., variable
selection, biological image super-resolution one typically
would like to consider relaxations of the �0-norm tighter than
the �1 so as to improve the sparsity-promoting behaviour.
Among the many approaches proposed, we consider here the
CEL0 penalty term considered in [32] which, combined with
a non-negativity constraint yields the following optimisation
problem

x∗(μ) ∈ argminx∈R
N+

{
JCEL0(x;μ,A)

:= �CEL0(x;μ,A) + μ

2
‖Ax − b‖22

}
, (47)

with

A = SK, �CEL0(x;μ,A) =
N∑
i=1

φCEL0(xi ;μ, ‖ai‖2) ,

where ai ∈ R
N denotes the i-th column of matrix A and the

(parametric) penalty function �CEL0 : R → R+ reads

φCEL0(xi ;μ, ‖ai‖2)= 1 − μ ‖ai‖22
2(

|xi | −
√
2/μ

‖ai‖2

)2
χ[0,

√
2/μ/‖ai‖2] (|xi |) . (48)

Notice that, in agreement with our convention by which the
desired parameter μ is the one multiplying the fidelity term,
in (47)–(48) we divided [32] by its regularisation parameter
λ and set μ := 1/λ.

In [15], problem (47) is solved by means of the itera-
tive reweighted �1 (IRL1) algorithm [23], which belongs to
the class of so-calledMajorise-Minimise (MM) optimisation
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approaches (see, e.g., [19]). More precisely, at any iteration
h > 0 of the IRL1 scheme, one minimises a convex majo-
rant of the non-convex cost function JCEL0 which is tangent
to JCEL0 at the current iterate x(h). Themajorising variational
model can be defined as a convex weighted L1-L2 (WL1-L2)
model so that, upon suitable initialisation x(0) the h-th itera-
tion of the IRL1 algorithm applied to solving (47) reads (see
[15]):

w
(h)
i = μ

(√
2

μ
‖ai‖2 − ‖ai‖22 |x (h)

i |
)

χ[0,
√
2/μ/‖ai‖2](|x

(h)
i |) , (49)

x(h+1) = arg min
x∈RN

{
N∑
i=1

w
(h)
i (μ)|xi | + μ

2
‖Ax − b‖22

}
,

(50)

where the weights wi (μ) are the generalised derivatives of
φCEL0 computed at x(h). The minimisation problem in (50)
can be addressed, e.g., by ADMM—see (35)–(39)—with
L = IN . The sub-problem with respect to t reduces to com-
pute the proximity operator of function

G(t) =
N∑
i=1

(
w

(h)
i |ti | + ιR+(ti )

)
,

whose closed-form expression comes easily from (46) and
reads

ti = max

(
0, |qi | − wi

β

)
, i = 1, . . . , N . (51)

In this setting, the RWP can again be heuristically applied
so as to automatically update μ along the outer iterations of
the iterative scheme (49) and (50). At the ADMM iteration
k = 0 of the general outer iteration h, μ(h) is updated by
applying the residual whiteness principle to problem (35).
Then, the weights w

(h)
i are computed by (49) with μ = μ(h)

and x(h) current iterate. The regularisation parameter and
the weights are kept fixed along the ADMM iterations and
updated at the beginning of the following outer iteration.

The proposed procedure, to which we refer as IRWP-
IRL1, is outlined in Algorithm 3.

7 Computed Examples

In this section, we evaluate the performance of the pro-
posed RWP-based procedure for the automatic selection of
the regularisation parameter μ in denoising, deblurring and
super-resolution variational models of the form (17). More
specifically, we consider first the TV-L2 which is particularly

Algorithm 3: IRWP-IRL1 approach for image super-
resolution variational models of the form (47)

inputs: observed degraded image b ∈ R
n ,

decimation factors dr , dc

blur and regularisation convolution operators

λ, � j ∈ R
N×N , j ∈ {1, . . . , s}

output: estimated restored image x∗ ∈ R
N

1. initialise: compute x(0) and t(0) = x(0)

by IRWP-ADMM for L1-L2

2. for h = 0, 1, 2, . . . until convergence do:

3. · compute γ (h) = μ(h)/β by (40)-(41)

4. · compute weights w
(h)
i = w

(h)
i (μ(h), x(h)) by (49)

5. for k = 1, 2, . . . until convergence do:

6. · compute x(h+1,k+1) by (42)

7. · compute t(h+1,k+1) by solving (51)

8. · compute λ(h+1,k+1) by (39)

9. end for

10. end for

11. x∗ = x(k+1)

suitable for the reconstruction of piece-wise constant images,
such as, e.g., QR-codes; then, we focus our attention on the
reconstruction of natural images for which the more flexible
WTV-L2 is employed. For the first two sets of numerical tests,
we also perform the TIK-L2 variational model with L = D.
Finally, we compare the L1-L2 and the CEL0-L2 variational
models for the problem of super-resolution microscopy of
phantom images representing biological samples.

Inwhat follows, the output restorations obtained bymeans
of the proposedRWP-based strategywill be denoted byx∗

REG,
with REG ∈ {TIK,TV,WTV,L1,CEL0} denoting the reg-
ularisation term employed in the solved variational model.
Note that when REG = TIK the exact RWP-based approach
described in Sect. 4 is used, while for REG = TV, WTV, L1

and REG=CEL0 the IRWP-ADMM and IRWP-IRL1 iter-
ative methods detailed in Algorithms 2 and 3 are used,
respectively.

The proposed RWP-based approach is compared with the
DP parameter selection strategy, defined by criterion (3) with
τ = 1 and knownvalueσ of the true noise standard deviation.

With the proposed numerical tests we aim to:

– prove that the RWP is capable of selecting optimal μ∗
values returning high quality results in variational image
super-resolution;

– prove that the proposed IRWP-ADMMapproach is capa-
ble of automatically selecting such optimal μ∗ values in
a robust (and efficient) manner for non-quadratic super-
resolution variational models.
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The latter point will be confirmed by showing that the iter-
ative IRWP-ADMM/IRWP-IRL1 strategies and the RWP
applied a posteriori behave similarly.

For all the variational models considered in the experi-
ments, there is a one-to-one relationship between the value
of the regularisation parameter μ and the standard deviation
of the associated residual image r∗(μ) = SKx∗(μ) − b.
Hence, in all the reported results where μ represents the
independent variable, we will substitute the μ-values with
the corresponding τ ∗(μ)-values defined, according to (3), as
the ratio between the residual image standard deviation and
the true noise standard deviation σ , in formula

τ ∗(μ) := ‖SKx∗(μ) − b‖2√
nσ

. (52)

In the first two set of examples, the quality of the restora-
tions x∗ computed for different values of τ ∗ with respect to
the original uncorrupted image xwill be assessed bymeans of
three scalar measures, namely the Structural Similarity Index
(SSIM) [39], and the Peak-Signal-to-Noise-Ratio (PSNR)
and the Improved-Signal-to-Noise Ratio (ISNR), defined by

PSNR = 20 log10(
√
N max(x, x∗))

‖x − x∗‖2 ,

ISNR = 20 log10
‖x − xBIC‖2
‖x − x∗‖2

respectively, with max(x, x∗) representing the largest
component-wise value of x and x∗, while xBIC denotes the
bicubic interpolation of b. In the third example, we select as
measure of quality the Jaccard index Jδ ∈ [0, 1], which is
the ratio between correct detections up to some tolerance δ

and the sum of correct detections, false negatives and false
positives. In particular, we consider three different values of
δ ∈ {0, 2, 4}.

7.1 IRWP-ADMM for TV Regularisation

We start testing the IRWP-ADMM on the TV-L2 model for
the reconstruction of the test image qrcode (256×256 pix-
els) with pixel values between 0 and 1.

First, the original image has been corrupted by Gaussian
blur, generated by the MATLAB routine fspecial with
parameters band=13 and sigma=3. The action of the deci-
mation matrix S has been synthesised by applying a uniform
blur with a dr × dc kernel, with dr = dc = 4, and then
selecting the rows and the columns of the blurred image
according to the decimation factors dc, dr . Finally, the blurred
and decimated image has been further corrupted by AWGN
with standard deviation σ = 0.1. The original image and the
acquired data are shown in Fig. 3a, b, respectively.

Due to the strongly anisotropic nature of the geomet-
ric image contents, we employ both the isotropic and the
anisotropic version of TV as image regularisers.

The black solid curves in Fig. 2a, d represent the resid-
ual whiteness functions W (μ) as defined in (30), with μ

replaced by τ ∗(μ) defined in (52), for the TVI-L2 and TVA-
L2 models. They have been computed by solving the models
for a fine grid of different μ-values, and then calculating for
each μ-value the two associated τ ∗(μ) andW (μ) quantities.
Note that independently from the selected regulariser,W has
a global minimiser over the considered domain. The opti-
mal value τ ∗ = τ ∗(μ∗) according to the proposed RWP is
depicted by the vertical solid magenta lines, while the verti-
cal dashed black lines correspond to τ = 1 corresponding to
the standard value of classical DP.

The ISNR and SSIM curves for different values of τ are
plotted in Fig. 2b, c, where the vertical lines have the same
meaning as in the first column figures. Note that the RWP
tends to select a value for τ that maximises the ISNR rather
than the SSIM.

We are also interested in verifying that the proposed
IRWP-ADMM scheme outlined in Algorithm 2 succeeds in
automatically selecting such optimal τ ∗ in a robust and effi-
cientway.To this purpose, the output τ̄ of the iterative scheme
is indicated with a dashed green line in Fig. 2a–d. The blue
and red markers in Fig. 2b, c represent the final ISNR and
SSIM values, respectively, of the image reconstructed via
IRWP-ADMM. We observe that the algorithm returns a τ̄

which is close to τ ∗ detected a posteriori.
The image reconstructed by bicubic interpolation, the ini-

tial guess computed by the TIK-L2 models and the output
reconstructions obtained with the TVI-L2 and the TVA-L2

variational models solved by the IRWP-ADMM approach in
Algorithm 2 are shown in Fig. 3. We note that the bicubic
interpolation in Fig. 3c performs very poorly. The TVI-L2

reconstruction preserves image edges; however, as observ-
able in Fig. 3e, the rounding of corners, which is a typical
drawback of isotropic TV regularisation, affects the qual-
ity of the final reconstruction. The anisotropic TV returns a
high quality reconstruction—shown in Fig. 3f—as it natu-
rally drives the regularisation along the true horizontal and
the vertical edge directions.

Quantitative assessment in terms of PSNR, ISNR and
SSIM values are reported in Table 1 where values corre-
sponding to the reconstructions in Fig. 3 are reported to the
right part.

As a second example, we consider the test image
geometric (320×320) corrupted by the same blur, dec-
imation factors and AWGN as the ones considered for the
test image qrcode. The original image and the observed
data are shown in Fig. 5a, b. In this case, we only perform
the isotropic version of TV, to which we are going to refer as
TV.
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Fig. 2 Results for test image qrcode, Fig. 3. First column: whiteness measure functions for the TVI-L2 and the TVA-L2 variational models.
Second column: ISNR/SSIM values for different values of τ s

Table 1 PSNR, ISNR and SSIM
values achieved by the bicubic
interpolation and the considered
variational models for which the
proposed RWP-based procedure
has been adopted

band=9, sigma=2, σ = 0.05 band=13, sigma=3, σ = 0.1

PSNR ISNR SSIM PSNR ISNR SSIM

qrcode

x∗
BIC 14.1919 – 0.4334 12.4708 – 0.3129

x∗
TIK 14.9034 0.7115 0.4458 13.5492 1.0784 0.3720

x∗
TVI 18.3906 4.1987 0.7705 14.9433 2.4724 0.6123

x∗
TVA 19.5895 5.3976 0.8100 15.4972 3.0264 0.6475

geometric

x∗
BIC 16.8617 – 0.3687 14.8191 – 0.2292

x∗
TIK 16.7718 −0.0900 0.2696 15.5181 0.6990 0.2834

x∗
TV 20.4136 3.5519 0.7664 17.0677 2.2486 0.5861
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Fig. 3 Original test image qrcode (256×256) (a), observed image b (64×64) (b), reconstruction via bicubic interpolation (c), and reconstructions
obtained by applying the RWP-based procedure to the TIK-L2 (d), the TVI-L2 (e) and the TVA-L2 (f) variational models

Fig. 4 Test image geometric. Whiteness measure function for the TV-L2 model (first column) and ISNR/SSIM values for different τ s (second
column)

The residual whiteness function and the ISNR and SSIM
curves for the TV-L2 model are shown in Fig. 4a, b, respec-
tively. Also in this case, the W function exhibits a global
minimiser over the considered domain for τ and the τ

selected by RWP and IRWP are very close to each other and
return high-quality reconstructions in terms of ISNR/SSIM
metrics. We also notice that the τ values selected by RWP

and IRWP are in this case very close to the one selected by
DP, the only difference being that RWP-based approaches do
not require prior knowledge of the noise standard deviation.

The quality indices of the restorations computed via the
IRWP-ADMM approach are reported in Table 1, while the
corresponding reconstructions images are shown in Fig. 5.
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Fig. 5 Original test image geometric (320 × 320) (a), observed image b (80 × 80) (b), reconstruction via bicubic interpolation (c), and
reconstructions obtained by applying the RWP-based procedure to the TIK-L2 (d) and the TV-L2 (e) variational models

Fig. 6 Convergence plots for the IRWP-ADMM approach outlined in Algorithm 2 applied to restoring the test image geometric via the TV-L2
variational model

For this second example, we also show the behaviour of
the regularisation parameter μ, of the ISNR and of the SSIM
along the iterations of the IRWP-ADDM for the TV-L2 vari-
ational model - see Fig. 6a–c, respectively.

Finally, for the two test imagesqrcode andgeometric,
we report in Table 1 the PSNR/ISNR/SSIM achieved by the
bicubic interpolation and the considered variational models
when applying a less severe noise degradation to the original
images (left side of the table).

7.2 IRWP-ADMM forWTV Regularisation

We are now testing the IRWP-ADMM for the WTV-L2

variational model employed for the reconstruction of nat-
ural images. First, we consider the test images church
(480 × 320) and monarch (512 × 512) both corrupted by
Gaussian blur with band=13 and sigma = 3, decimated
with factors dc = dr = 2 and further degradated by an
AWGN with σ = 0.1. The original uncorrupted images are
shown in Figs. 8a and 9a, while the acquired data are shown
in Figs. 8b and 9b, respectively.We show the behaviour of the
residual whiteness measure for the two test images in the first
column of Fig. 7. Notice that, as already highlighted in [22],
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Fig. 7 Whiteness measure functions for the WTV-L2 variational model (first column) and ISNR/SSIM values for different τ s (second column) for
the test image church (top row) and the test image monarch (bottom row)

the adoption of a more flexible regularisation term yields
that the ISNR and the SSIM achieve their maximum value at
approximately the same τ . In both cases, the IRWP-ADMM
for the solution of the WTV-L2 returns a τ ∗(μ) very close
to the one selected by the RWP; moreover, the ISNR/SSIM
values corresponding to the output τ ∗s are close to the opti-
mal ones and, in any case, larger than the one achieved by
means of the DP.

The image reconstructed via bicubic interpolation, the ini-
tial guess computed by the TIK-L2 model coupled with the
RWPand the final reconstructions obtained by employing the
IRWP-ADMM for the WTV-L2 model are shown in Figs. 8
and 9 for the test image church and monarch, respec-
tively.

Moreover, for the test image church, we also report in
Fig. 10 the convergence plots of the regularisation parameter
μ, the ISNR and the SSIM along the iterations of the IRWP-
ADMM.

Finally, the PSNR/ISNR/SSIM values achieved for the
reconstructions shown in Figs. 8 and 9 and for the ones
obtained considering a less severe corruption level are
reported in Table 2.

7.3 IRWP-IRL1 for CEL0 Regularisation

In this last example, we consider the problem of molecule
localisation starting from a downsampled, blurred and noisy
microscopy image. In the test image molecules shown in
Fig. 12a, the samples are represented by sparse point sources.
The original image has been corrupted by Gaussian blur with
parameters band=13 and sigma=3, then decimated with
factors dc = dr = 2, and finally degradated by adding an
AWGN realisation with σ equal to the 2% of the noiseless
signal. The acquired image is shown in Fig. 12b.

In Fig. 11, we show the behaviour of the residual white-
nessmeasure (left) and of the Jaccard index J4 (right). Also in
this example, theW function exhibits a global minimiser and
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Fig. 8 Original test image monarch (520 × 520) (a), observed image b (260 × 260) (b), reconstruction via bicubc interpolation (c) and recon-
structions obtained by applying the RWP-based procedure to the TIK-L2 (d), and the WTV-L2 (e) variational models

Fig. 9 Original test imagechurch (480×320) (a), observed imageb (240×160) (b), reconstruction via bicubc interpolation (c) and reconstructions
obtained by applying the RWP-based procedure to the TIK-L2 (d), and the WTV-L2 (e) variational models
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Fig. 10 Convergence plots for the proposed IRWP-ADMM approach outlined in Algorithm 2 applied to restoring the test image church via the
WTV-L2 variational model

Table 2 PSNR, ISNR and SSIM
values achieved by the bicubic
interpolation and the considered
variational models for which the
proposed RWP-based procedure
has been adopted

band=9, sigma=2, σ = 0.05 band=13, sigma=3, σ = 0.1

PSNR ISNR SSIM PSNR ISNR SSIM

church

xBIC 22.8363 – 0.4378 19.1949 – 0.1988

xTIK 23.7592 0.9229 0.6739 21.6448 2.4499 0.6565

xWTV 26.4215 3.5851 0.8592 23.3450 4.1501 0.7979

monarch

xBIC 21.9537 – 0.5008 18.3283 – 0.2397

xTIK 22.8309 0.8772 0.7321 20.4384 2.1101 0.6686

xWTV 24.4333 2.4797 0.8231 21.2729 2.9446 0.7399

the τ ∗ values selected by RWP and IRWP are very close and
slightly larger than τ ∗ = 1 corresponding to DP. Unlike the
previously considered quality measures, the Jaccard index
does not present a smooth behaviour, as it measures the pre-
cision of the molecules localisation rather than some global
visual properties such as the ISNR and the SSIM. How-
ever, the J4 value selected by the IRWP-IRL1 is closer to
the achieved maximum when compared to the DP.

The output reconstruction is shown in Fig. 12, together
with the initialisation for the IRWP-IRL1 algorithm com-
puted by employing the IRWP-ADMM for solving the L1-L2

variational model.
A few more insights about the performance of the pro-

posed approach are given in Table 3, where we report the
Jaccard indices Jδ , δ ∈ {0, 2, 4}, for the reconstruction
obtained by the IRWP-ADMM for the L1-L2 model and by
the IRWP-IRL1 for the CEL0 model (right). In the Table,
we also show the Jaccard indices achieved when applying a
lower degradation level (left).

We conclude by showing, for the most severe corruption,
the behaviour of the regularisation parameter μ and of the
Jaccard indices along the outer iterations of Algorithm 3.
One can observe that, although the monitored quantities do
not exhibit a smooth nor a monotonic behaviour (as a fur-
ther consequence of the definition of Jd ), they stabilise thus
reflecting the empirical convergence of the scheme (Fig. 13).

8 Conclusions

We proposed an automatic selection strategy for the regu-
larisation parameter of single image super-resolution vari-
ational models based on the Residual Whiteness Principle
applied along the iterations of anADMM-based optimisation
scheme. Such approach proved to be successfully applicable
to several scenarios of highly degradated images bymeans of
a large family of convex variationalmodels, amongwhichwe
performed the TIK-L2, the TV-L2 and the WTV-L2 model.
Moreover, we generalised the proposed approach so as to
effectively deal with a specific class of non-convex varia-
tional models, i.e. the ones admitting a convex majorant.
In particular, we focused on the case of the CEL0 func-
tional whoseminimisation is carried out by the IRL1 strategy
coupled with the proposed automatic estimation approach.
When compared to standard parameter estimation techniques
such as the Discrepancy Principle, our method has been
shown to outperform and to be more applicable as it does
not require any prior knowledge on the noise variance. The
empirical results on the convergence of the nested iterative
schemes employed reflect the robustness of our method. A
more detailed theoretical study on this matter is left for future
research.
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Fig. 11 Whiteness measure functions for the IRWP-IRL1 (first column) and values of J4 for different τ s (second column) for the test image
molecules

Fig. 12 Original test image
molecules (256 × 256) (a),
observed image b (128 × 128)
(b), and reconstructions
obtained by applying the
RWP-based procedure to the
L1-L2 (c) and the CEL0-L2 (d)
variational models

Table 3 Jaccard indices
achieved by the L1-L2 and the
CEL0-L2 variational models, for
which the proposed RWP-based
procedure has been adopted

band=9, sigma=2, %σ = 1 band=13, sigma=3, %σ = 2

J0 J2 J4 J0 J2 J4

xCEL0 0.9951 0.9951 0.9951 0.3042 0.7832 0.8072

xL1 0.6126 0.6126 0.6126 0.2451 0.2957 0.2957
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Fig. 13 Convergence plots for
the proposed IRWP-IRL1
approach outlined in
Algorithm 3 applied to restoring
the test image molecules via
the CEL0-L2 variational model
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A Proofs of the Results

Proof of Proposition 4 Recalling that SSH = In , the LR
residual r∗(μ) can be equivalently rewritten as

r∗(μ) = SKx∗(μ) − b = SKx∗(μ) − SSHb = Sr∗
H (μ) ,

(53)

where r∗
H (μ) = Kx∗(μ)−bH is the HR residual with bH =

SHb the zero-interpolated,HRobservation.Thedenominator
in (25) can be thus expressed as follows

∥∥r∗(μ)
∥∥4
2 = ∥∥Sr∗

H (μ)
∥∥4
2 =
∥∥∥SHSr∗

H (μ)

∥∥∥
4

2

=
∥∥∥FH (FSHSFH )Fr∗

H (μ)

∥∥∥
4

2
(54)

=
∥∥∥FH S̃HSr̃∗

H (μ)

∥∥∥
4

2
=
∥∥∥S̃HSr̃∗

H (μ)

∥∥∥
4

2
, (55)

where, in (54), the first equality comes from (53), the second
from recalling that SH interpolates Sr∗

H (μ)with zeros giving
null contribution to the norm, the third from FHF = IN ,
and where the last equality in (55) follows from Parseval’s
theorem. Then, recalling that PTP = IN and ‖Pz‖2 = ‖z‖2
for any permutation matrix P ∈ R

N×N and any vector z ∈
C

N , based on Proposition 1, the expression in (55) can be
equivalently rewritten as

∥∥r∗(μ)
∥∥4
2 =
∥∥∥
(
PS̃HSPT

)
Pr̃∗

H (μ)

∥∥∥
4

2

= 1

d4
∥∥(In ⊗ Jd) r̂∗

H (μ)
∥∥4
2 ,
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where

(
(In ⊗ Jd) r̂∗

H (μ)
)
i =

d−1∑
j=0

(
r̂∗
H (μ)

)
ι+ j ,

with ι := 1 +
⌊ i − 1

d

⌋
d ,

for every i = 1, . . . N . The denominator in (25) can be thus
expressed as

‖r∗(μ)‖42 = 1

d4

⎛
⎜⎝

N∑
i=1

∣∣∣∣∣∣
d−1∑
j=0

(
r̂∗
H (μ)

)
ι+ j

∣∣∣∣∣∣

2
⎞
⎟⎠

2

.

Let us now consider the numerator of the function W (μ)

in (25), which, based on the definitions of auto-correlation
given in (20) and of SH , reads

‖r∗(μ)
r∗(μ)‖22 = ‖Sr∗
H (μ)
Sr∗

H (μ)‖22
= ‖SHSr∗

H (μ)
SHSr∗
H (μ)‖22 .

By applying again the Parseval’s theorem and the convo-
lution theorem, we get

‖r∗(μ)
r∗(μ)‖22 = ‖F
(
(SHSr∗

H (μ))
(SHSr∗
H (μ))

)
‖22

= ‖F(SHSr∗
H (μ)) � F(SHSr∗

H (μ)‖22
= ‖F(SHS)FHFr∗

H (μ)

� F(SHS)FHFr∗
H (μ)‖22 , (56)

where� denotes the Hadamardmatrix product operator. The
expression in (56) is manipulated by applying Lemma 4 and
the permutation in (10), so as to give

‖r∗(μ)
r∗(μ)‖22 = 1

d4

N∑
i=1

∣∣∣∣∣∣
d−1∑
j=0

(
r̂∗
H (μ)

)
ι+ j

∣∣∣∣∣∣

4

. (57)

Finally, plugging (57) and (55) into (25), we get the following
form for the whiteness measureW (μ) for a super-resolution
problem

W (μ) =
(

N∑
i=1

|wi (μ)|4
)

/

(
N∑
i=1

|wi (μ)|2
)2

,

wi (μ) =
d−1∑
j=0

(r̂H (μ))ι+ j . (58)

�

Proof of Proposition 5 We impose a first-order optimality
condition on the cost function in (4) with respect to x, thus
getting:

x∗(μ) = (μ(SK)H (SK) + LHL)−1(μ(SK)Hb + LHv) ,

which can be manipulated in terms of F and FH to deduce

x∗(μ) = (μFHFKHFHFSHSFHFKFHF

+ FHFLTLFHF)−1(μKHSHb + LHv)

= (μFHλH (FSHSFH )λF + FH
s∑

j=1

�H
j � jF)−1

(μKHSHb + LHv) , (59)

with λ, � j defined in (19). From Proposition 1 we have that
FSHSFH = PT (In ⊗ Jd)P, hence (59) becomes:

x∗(μ) =
⎛
⎝μ

d
FHλHPT (In ⊗ Jd)P3F + FH

s∑
j=1

�H
j � jF

⎞
⎠

−1

⎛
⎝μKHSHb +

s∑
j=1

LH
j v j

⎞
⎠

=FH

⎛
⎝μ

d
λHPT (In ⊗ Jd)P3 +

s∑
j=1

�H
j � j

⎞
⎠

−1

F

⎛
⎝μKHFHFSHb +

s∑
j=1

LH
j F

HFv j

⎞
⎠

=FH

⎛
⎝μ

d
λHPT (In ⊗ Jd)P3 +

s∑
j=1

�H
j � j

⎞
⎠

−1

⎛
⎝μλH b̃H +

s∑
j=1

�H
j ṽ j

⎞
⎠ , (60)

where v = (vT1 , . . . , vTs )T , and b̃H = FbH = FSHb con-
tains d replication of b̃—see, e.g., [28]. We now introduce
the following operators

λ :=
(
In ⊗ 1Td

)
P� λH := λHPT (In ⊗ 1d) (61)
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where 1d ∈ R
d is a vector of ones. In compact form, equation

(60) reads:

x∗(μ) = FH

⎛
⎝μ

d
λHλ +

s∑
j=1

�H
j � j

⎞
⎠

−1

⎛
⎝μλH b̃H +

s∑
j=1

�H
j ṽ j

⎞
⎠ . (62)

Proceeding as in [43], we can now apply the Woodbury for-
mula (7) and perform few manipulations, so as to obtain that
the expression in (62) becomes:

x∗(μ) = FH
[
� − μ�λH

(
dI + μλ�λH

)−1
λ�

]

⎛
⎝μλH b̃H +

s∑
j=1

�H
j ṽ j

⎞
⎠ , (63)

where � =
(∑s

j=1 �H
j � j + ε

)−1
and the parameter 0 <

ε � 1 guarantees the inversion of
∑s

j=1 �H
j � j . �

Proof of Proposition 6 Recalling property (5) inLemma1,we
get the following chain of equalities

λH�λ =λHPT (In ⊗ 1d)�(In ⊗ 1Td )P3

=λHPT (In ⊗ 1d)(� ⊗ 1Td )P3

=λHPT (In� ⊗ 1d1Td )P3 = λHPT (�In ⊗ Jd)P3

=λHPT (�In ⊗ IdJd)P3 = λHPT (� ⊗ Id)

(In ⊗ Jd)P3

=λHPT (� ⊗ Id)PPT (In ⊗ Jd)P3,

where the sparse block-diagonal matrix PT (� ⊗ Id)P ∈
R

N×N commutes with λH , so that λHPT (� ⊗ Id)P =
PT (� ⊗ Id)PλH . Recalling (61), this yields:

λH�λ = PT (� ⊗ Id)PλHλ ,

which completes the proof. �

Proof of Corollary 1 We first notice that

λ�λH = (In ⊗ 1Td ) ̂���H (In ⊗ 1d) , (64)

is diagonal as ̂���H = P393HPT is. The matrix in (64)
can thus be written as

λ�λH = diag(ω1, . . . , ωn), ωi =
d−1∑
�=0

|λ̂ι+�|2
ζι+� + ε

,

with ζι+� =
s∑

j=1

|γ̂ j,ι+�|2 .

Hence, since � is the inverse of the sum of two diagonal
matrices, it is diagonal so we can apply Proposition 6 and
deduce the thesis. �

Proof of Proposition 7 We start writing the explicit expres-
sion of the action of P on the Fourier transform of the high
resolution residual image:

r̂∗
H (μ) =μ̂��λ̌b̂H + �̂�

s∑
j=1

�̌ j v̂ j

− μ2̂��
[
(dI + μλ�λH )−1 ⊗ Id

]
̂λHλ�λ̌b̂H

−μ̂��
[
(dI + μλ�λH )−1 ⊗ Id

]
̂λHλ�

s∑
j=1

�̌ j v̂ j − b̂H ,

whence we can explicitly compute the expression for each
component i = 1, . . . , n:

(
r̂∗
H (μ)

)
i =μ

[
|λ̂i |2
ζi + ε

b̂H ,i

]
+

λ̂i

s∑
j=1

¯̂γ j,i v̂ j,i

ζi + ε

− μ2

⎡
⎢⎢⎢⎢⎢⎣

|λ̂i |2
ζi + ε

d−1∑
�=0

|λ̂ι+�|2 b̂H ,ι+n

ζι+� + ε

d + μ

d−1∑
�=0

|λ̂ι+�|2
ζi + ε

⎤
⎥⎥⎥⎥⎥⎦

− μ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

|λ̂i |2
ζi + ε

d−1∑
�=0

λ̂ι+�

s∑
j=1

¯̂γ j,ι+� v̂ j,ι+�

ζι+� + ε

d + μ

d−1∑
�=0

|λ̂ι+�|2
ζι+� + ε

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− b̂H ,i .
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By easy manipulations, we get:

(
r̂∗
H (μ)

)
i =μ

[
|λ̂i |2
ζi + ε

b̂H ,i

]
+

λ̂i

s∑
j=1

¯̂γ j,i v̂ j,i

ζi + ε

−
[
μ2

d−1∑
�=0

|λ̂ι+�|2 b̂H ,ι+n

ζι+� + ε

+ μ

d−1∑
�=0

λ̂ι+�

s∑
j=1

¯̂γ j,ι+�v̂ j,ι+�

ζι+� + ε

⎤
⎥⎥⎥⎥⎥⎦

|λ̂i |2
ζi + ε

⎛
⎝d + μ

d−1∑
j=0

|λ̂ι+ j |2
ζι+� + ε

⎞
⎠

−1

− b̂H ,i .

We can thus deduce the following expression of the terms in
formula (58):

d−1∑
�=0

(r̂∗
H (μ))ι+� = 1

d + μ

d−1∑
�=0

|λ̂ι+ j |2
ζι+� + ε

[
μ

(
d
d−1∑
�=0

|λ̂ι+ j |2
ζι+� + ε

b̂H ,ι+ j

−
d−1∑
�=0

b̂H ,ι+�

d−1∑
�=0

|λ̂ι+�|2
ζι+� + ε

)
+ d

(d−1∑
�=0

λ̂ι+�

∑
j

¯̂γ j,ι+� v̂ j,ι+�

ζι+� + ε

−
d−1∑
�=0

b̂H ,ι+�

)]
.

(65)

In light of its replicating structure, we observe that the action
of the permutation P on b̃H will cluster the identical entries,
so that the b̂H ,ι+ j can be written as the mean of the set of d
values {b̂H ,ι, . . . , b̂H ,ι+d−1}. This allows to simplify formula
(65) as the difference in the first bracket vanishes. By now
setting

ηi := 1

d

d−1∑
�=0

|λ̂ι+ j |2
ζι+� + ε

, �i :=
d−1∑
j=0

b̂H ,ι+ j ,

νi :=
d−1∑
�=0

λ̂ι+�

s∑
j=1

¯̂γ j,ι+� ṽ j,ι+�

ζι+� + ε
,

which can all be computed beforehand. Plugging (65) into
(58) we finally get

W (μ) =
(

N∑
i=1

∣∣∣∣
νi − �i

1 + ηiμ

∣∣∣∣
4
)/( N∑

i=1

∣∣∣∣
νi − �i

1 + ηiμ

∣∣∣∣
2
)2

.

This proves the proposition. �
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