Supporting Information

to the manuscript:

Balancing Affinity, Selectivity and Cytotoxicity of Hydrazone-based G-Quadruplex Ligands for Activation of Interferon β Gene in Cancer Cells

Simona Marzano ‡\$, Giulia Miglietta ‡#, Rita Morigi ‡#*, Jessica Marinello #, Andrea Arleo #, Monica Procacci #, Alessandra Locatelli #, Alberto Leoni #, Bruno Pagano \$, Antonio Randazzo \$, Jussara Amato \$* and Giovanni Capranico #*.

Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy,

\$ Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy

Corresponding Authors:

* Rita Morigi – Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy; orcid.org/0000-0003-4739-8733; Phone: +39 051 2099725; Email: rita.morigi@unibo.it

* Jussara Amato – Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; orcid.org/0000-0001-6096-3544; Phone: +39 081 678630; Email: jussara.amato@unina.it

* Giovanni Capranico – Department of Pharmacy and Biotechnology, Alma Mater Studiorum -University of Bologna, 40126 Bologna, Italy; orcid.org/0000-0002-8708-6454; Phone: +39 051 2091209; Email: giovanni.capranico@unibo.it

Table of contents

Experimental section

Synthesis of compounds 1-20	p. S3
Methods	p. S4-S13
Scheme S1	p. S3
Table S1	p. S4
References	p. S13

Results

NMR spectrometer characteristics. UHPLC system and conditions	p. S15
¹ H and ¹³ C spectra of compounds 1-20	p. S16-S55
UHPLC traces of compounds 1, 2, 8, 10, 15, 19 and 20	p. S56-S59
Figure S1	p. 60
Figure S2	p. 61
Figure S3	p. 62
Figure S4	p. 63
Figure S5	p. 64
Figure S6	p. 65
Figure S7	p. 66
Figure S8	p. 67
Figure S9	p. 68
Figure S10	p. 69
Figure S11	p. 70
Figure S12	p. 71
Figure S13	p. 72
Figure S14	p. 73
Figure S15	p. 74
Figure S16	p. 75
Table S2	p. 76

Synthesis of compounds 1-20.

The synthesis of the diimidazo[1,2-a:1',2'-c]pyrimidine nucleus (Scheme 1) was accomplished in two steps, thus allowing the introduction of different aromatic systems at positions 2 and 8. As previously reported for compounds 22¹ and 25², the reaction of pyrimidine-2,4-diamine 21 with the appropriate 2-bromo-1-arylethan-1-one led to a first cyclization, involving the nitrogen at position 1 and the amino group at position 2, which allowed to obtain the imidazo[1,2-a]pyrimidin-7-amines 22-25 (Scheme S1, Table S1). The structure of compounds 23 and 24 was confirmed by means of NOE experiments. The irradiation of the pyrimidine proton at position 5 (8.35 ppm in compound 23, 8.37 ppm in compound 24), provided in both cases a NOE correlation with the imidazole proton, at 7.79 ppm or 7.87 ppm respectively. At the same time, the irradiation of the pyrimidine proton at position 6 (6.28 ppm in compound 23, 6.27 ppm in compound 24), showed in both compounds the closeness to the amino group (NOE at 6.89 ppm for compound 23, NOE at 6.85 ppm for compound 24), thus confirming the structures assigned. The second cyclization led to the diimidazo[1,2-a:1',2'c]pyrimidines 26-33, which in turn were submitted to a Vilsmeier reaction to obtain the bis-aldehydes 34-41 (Scheme S1, Table S1). The bis-hydrazones 1-13 were prepared by reaction between the appropriate aldehyde (34-41) and aminoguanidine hydrochloride or 2-hydrazino-2-imidazoline hydrobromide under reflux. To obtain the mono-hydrazones 14-18, the same reaction was carried out by adding very slowly the appropriate hydrazine to a solution of the aldehyde in CH₂Cl₂ and keeping the reaction mixture at room temperature. Under these reaction conditions, only the formyl group at position 9 reacted, as described for FIM¹ and confirmed by a NOE experiment performed on compound 15. Indeed, the irradiation of the CHO at 10.08 ppm provided a NOE correlation with the pyrimidine proton at position 5 (9.10 ppm), thus confirming that the unreacted CHO is at position 3. Finally, the alcohols 19 and 20 were obtained by reduction of the formyl group of FIM or 15, respectively.

Reagents and conditions: (a) appropriate 2-bromo-arylethan-1-one, EtOH, reflux; (b) HCl 2N, reflux, then NH₄OH 15%; (c) Vilsmeier reagent (POCl₃/DMF), CHCl₃, reflux; (d) aminoguanidine hydrochloride or 2-hydrazino-2-imidazoline hydrobromide, EtOH, reflux; (e) aminoguanidine hydrochloride or 2-hydrazino-2-imidazoline hydrobromide, CH₂Cl₂, r.t. (f) NaBH₄, EtOH, reflux.

Scheme S1.

Table S1. Starting compounds.

Methods

Thin layer chromatography was performed on Bakerflex plates (Silica gel IB2-F), the eluent was a mixture of petroleum ether/acetone/methanol in various proportions. The ¹H-NMR and ¹³C-NMR spectra were recorded on a Varian MR 400 MHz (ATB PFG probe); the chemical shift was expressed in δ (ppm) and referenced to the residual peak of the solvent as the internal standard (DMSO-d₆: δ H = 2.50 ppm; δ C = 39.52 ppm and CDCl₃: δ H = 7.26 ppm; δ C = 77.16 ppm). The coupling constant values (*J*) were determined in Hertz (abbreviation: im=imidazole, pym=pyrimidine, th=thiophenyl, ph=phenyl, tol=tolyl, Cl-ph=4-chlorophenyl). High resolution mass spectrometry (HRMS) data were analyzed by flow injection, utilizing electrospray ionization (ESI) on a Waters Xevo G2-XS QTOF instrument in the positive mode. UHPLC–MS analyses were run on a Waters ACQUITY ARC UHPLC/MS system consisting of a QDa mass spectrometer equipped with an ESI interface. Elemental analyses were within ± 0.4% of the theoretical values. UHPLC analysis of compounds 1, 2, 8, 10, 15, 19 and 20 were run on a Waters ACQUITY ARC UHPLC/ system consisting of a 2489

UV/Vis detector. Detected wavelength (λ): 254 nm. The analyses were performed on an XBridge BEH C18 column (10 \times 2.1 mm i.d., particle size 2.5 µm) with a XBridge BEH C18 VanGuard Cartridge precolumn (5 mm \times 2.1 mm i.d., particle size 1.8 µm). The mobile phases were H₂O (0.1% trifluoroacetic acid) (A) and MeOH (0.1% trifuoroacetic acid) (B). Method and gradients used were the following: Linear gradient: 0-3.5 min, 95% A; 3.5 min-4.5 min 30% A - 4.5-7.0 95% A - 5. Flow rate: 0.6 mL/min. Compounds were named relying on the naming algorithm developed by CambridgeSoft Corporation (Perkin Elmer, Milan, Italy) and used in Chem-BioDraw Ultra 14.0 (Perkin Elmer, Milan, Italy). All solvents and reagents, unless otherwise stated, were supplied by Aldrich Chemical Co. Ltd. (Milan, Italy) and were used without further purification. 2,4-Diaminopyrimidine, 2-bromo-1-phenylethan-1-one, 2-bromo-1-(p-tolyl)ethan-1-one, 2-bromo-1-(4chlorophenyl)ethan-1-one, 2-hydrazino-2-imidazoline hydrobromide and aminoguanidine hydrogencarbonate are commercially available. The following compounds were prepared according to the literature: 2-bromo-1-(thiophen-3-yl)ethan-1-one ³, 22¹, 25², 32², 33¹, 40², 41⁴, FIM².

General procedure for the synthesis of the bis-hydrazones 1-13

The appropriate aldehyde (5 mmol) was dissolved in ethanol and treated with two equivalents of aminoguanidine hydrogenearbonat suspended in ethanol and treated with hydrochloridric acid in order to achieve a solution (for compounds 1, 3, 5, 7, 9, 11) or 2-hydrazino-2-imidazoline hydrobromide solubilized in ethanol (to obtain compounds 2, 4, 6, 8, 10, 12, 13). The reaction mixture was refluxed for 15-30 h according to a TLC test and the resulting precipitate was collected by filtration and crystallized from ethanol.

2,2'-((2-Phenyl-8-(p-tolyl)diimidazo[1,2-a:1',2'-c]pyrimidine-3,9-

diyl)bis(methaneylylidene))bis(hydrazine-1-carboximidamide) dihydrochloride (1)

Yield 75%. ¹H-NMR (DMSO-d₆): 2.38 (3H, s, CH₃), 7.30 (1H, d, J=8.0, pym), 7.31 (2H, d, J=7.6, tol), 7.55 (3H, m, ph), 7.78 (8H, s broad, NH), 7.88 (2H, d, J=7.6, ph), 7.93 (2H, d, J=7.6, tol), 8.64 (1H, s, =CH), 9.30 (1H, d, J=8.0, pym), 9.55 (1H, s, =CH), 12.12 (1H, s, NNH), 12.46 (1H, s, NNH). ¹³C-NMR (DMSO-d₆): 20.99, 103.47, 115.27, 117.83, 128.49, 128.91, 129.08, 129.31, 130.17, 131.73, 138.40, 138.45, 138.57, 139.56, 142.04, 145.73, 146.08, 154.77, 155.18. HRMS (ESI/Q-TOF): *m/z* calculated for $C_{25}H_{24}N_{12}$ [M+H]⁺: 493.2325, found: 493.2320; calculated for [M+2H]⁺⁺: 247.1202, found: 247.1203. Anal. Calcd for $C_{25}H_{24}N_{12}$ ·2HCl (565.47): C, 53.10; H, 4.63; N, 29.72. Found: C, 53.14; H, 4.64; N, 29.70.

3,9-Bis((2-(4,5-dihydro-1H-imidazol-2-yl)hydrazineylidene)methyl)-2-phenyl-8-(p-tolyl)diimidazo[1,2-a:1',2'-c]pyrimidine dihydrobromide (2)

Yield 72%. ¹H-NMR (DMSO-d₆): 2.38 (3H, s, CH₃), 3.73 (4H, s, CH₂), 3.81(4H, s, CH₂), 7.30 (2H, d, J=8.0, tol), 7.35 (1H, d, J=7.6, pym), 7.58 (3H, m, ph), 7.85 (2H, d, J=7.6, ph), 8.03 (2H, d, J=8.0, tol), 8.34 (2H, s, NH), 8.66 (1H, s, =CH), 8.90 (2H, s broad, NH), 9.30 (1H, d, J=7.6, pym), 9.49 (1H, s, =CH), 12.34 (1H, s, NNH), 12.72 (1H, s, NNH). ¹³C-NMR (DMSO-d₆): 21.00, 42.83, 42.94, 103.62, 115.23, 117.40, 128.43, 128.61, 128.97, 129.08, 129.22, 129.46, 129.77, 131.78, 138.43, 139.75, 140.34, 142.08, 145.74, 146.49, 156.98, 157.61. HRMS (ESI/Q-TOF): *m/z* calculated for $C_{29}H_{28}N_{12}$ [M+H]⁺: 545.2638, found: 545.2633; calculated for [M+2H]⁺⁺: 273.1358, found:

273.3807. Anal. Calcd for $C_{29}H_{28}N_{12}$ ·2HBr (706.45): C, 49.31; H, 4.28; N, 23.79. Found: C, 49.28; H, 4.27; N, 23.81.

2,2'-((2-Phenyl-8-(p-tolyl)diimidazo[1,2-a:1',2'-c]pyrimidine-3,9-

diyl)bis(methaneylylidene))bis(hydrazine-1-carboximidamide) dihydrochloride (3)

Yield 75%. ¹H-NMR (DMSO-d₆): 2.40 (3H, s, CH₃), 7.28 (1H, d, J=7.6, pym), 7.35 (2H, d, J=8.0, tol), 7.48 (3H, m, ph), 7.77 (8H, s broad, NH), 7.78 (2H, d, J=8.0, tol), 8.00 (2H, d, J=6.4, ph), 8.63 (1H, s, =CH), 9.28 (1H, d, J=7.6, pym), 9.54 (1H, s, =CH), 12.27 (1H, s, NNH), 12.60 (1H, s, NNH). ¹³C-NMR (DMSO-d₆): 20.93, 103.24, 114.97, 118.08, 127.93, 128.66, 128.85, 128.89, 128.95, 129.42, 129.49, 132.93, 138.27, 138.55, 138.80, 139.42, 142.00, 145.35, 146.16, 154.80, 155.24. HRMS (ESI/Q-TOF): *m/z* calculated for $C_{25}H_{24}N_{12}$ [M+H]⁺: 493.2325, found: 493.2326; calculated for [M+2H]⁺⁺: 247.1201, found: 247.1205. Anal. Calcd for $C_{25}H_{24}N_{12}$ ·CHCl (565.47): C, 53.10; H, 4.63; N, 29.72. Found: C, 53.12; H, 4.63; N, 29.74.

3,9-Bis((2-(4,5-dihydro-1H-imidazol-2-yl)hydrazineylidene)methyl)-2-phenyl-8-(p-tolyl)diimidazo[1,2-a:1',2'-c]pyrimidine dihydrobromide (4)

Yield 65%. ¹H-NMR (DMSO-d₆): 2.43 (3H, s, CH₃), 3.72 (4H, s, CH₂), 3.81(4H, s, CH₂), 7.34 (1H, d, J=7.8, pym), 7.40 (2H, d, J=8.0, tol), 7.49 (3H, m, ph), 7.75 (2H, d, J=8.0, tol), 8.11 (2H, d, J=7.2, ph), 8.28 (2H, s, NH), 8.67 (1H, s, =CH), 8.77 (2H, s broad, NH), 9.29 (1H, d, J=7.8, pym), 9.50 (1H, s, =CH), 12.33 (1H, s, NNH), 12.73 (1H, s, NNH). ¹³C-NMR (DMSO-d₆): 20.81, 42.75, 42.86, 103.44, 114.91, 117.60, 127.90, 128.35, 128.76, 128.86, 128.88, 129.37, 129.40, 132.59, 138.88, 139.59, 139.78, 140.16, 142.06, 145.62, 146.58, 156.96, 157.58. HRMS (ESI/Q-TOF): *m/z* calculated for $C_{29}H_{28}N_{12}$ [M+H]⁺: 545.2638, found: 545.2641; calculated for [M+2H]⁺⁺: 273.1358, found: 273.1366. Anal. Calcd for $C_{29}H_{28}N_{12}$ ·2HBr (706.45): C, 49.31; H, 4.28; N, 23.79. Found: C, 49.29; H, 4.29; N, 23.80.

2,2'-((2,8-di-p-tolyldiimidazo[1,2-a:1',2'-c]pyrimidine-3,9-

diyl)bis(methaneylylidene))bis(hydrazine-1-carboximidamide) dihydrochloride (5)

Yield 78%. ¹H-NMR (DMSO-d₆): 2.38 (3H, s, CH₃), 2.41 (3H, s, CH₃), 7.28 (2H, d, J=8.0, tol), 7.29 (1H, d, J=7.6, pym), 7.37 (2H, d, J=8.0, tol), 7.78 (2H, d, J=8.0, tol), 7.79 (8H, s broad, NH), 7.92 (2H, d, J=8.0, tol), 8.63 (1H, s, =CH), 9.28 (1H, d, J=7.6, pym), 9.53 (1H, s, =CH), 12.20 (1H, s, NNH), 12.53 (1H, s, NNH). ¹³C-NMR (DMSO-d₆): 20.94, 21.02, 103.44, 114.99, 117.82, 128.39, 128.53, 128.95, 129.00, 129.35, 129.52, 130.31, 138.41, 138.54, 138.75, 138.86, 139.59, 142.15, 145.92, 146.31, 154.69, 155.12. HRMS (ESI/Q-TOF): /z calculated for $C_{26}H_{26}N_{12}$ [M+H]⁺: 507.2482, found: 507.2476; calculated for [M+2H]⁺⁺: 254.1280, found: 254.1284. Anal. Calcd for $C_{26}H_{26}N_{12}$ ·HCl (579.49): C, 53.89; H, 4.87; N, 29.01. Found: C, 53.91; H, 4.88; N, 28.99.

3,9-bis((2-(4,5-dihydro-1H-imidazol-2-yl)hydrazineylidene)methyl)-2,8-di-p-tolyldiimidazo[1,2a:1',2'-c]pyrimidine dihydrobromide (**6**)

Yield 65%. ¹H-NMR (DMSO-d₆): 2.39 (3H, s, CH₃), 2.42 (3H, s, CH₃), 3.72 (4H, s, CH₂), 3.80 (4H, s, CH₂), 7.30 (2H, d, J=8.0, tol), 7.33 (1H, d, J=7.8, pym), 7.40 (2H, d, J=8.0, tol), 7.72 (2H, d, J=8.0, tol), 8.04 (2H, d, J=8.0, tol), 8.27 (2H, s, NH), 8.60 (1H, s, =CH), 8.70 (2H, s broad, NH), 9.27 (1H, d, J=7.8, pym), 9.47 (1H, s, =CH), 12.46 (2H, s broad, NNH). ¹³C-NMR (DMSO-d₆): 20.92, 21.00,

42.81, 42.93, 103.52, 114.97, 117.43, 128.59, 128.95, 128.99, 129.44, 129.51, 129.89, 138.37, 138.96, 139.72, 139.79, 140.34, 142.10, 145.79, 146.56, 157.13, 157.75. HRMS (ESI/Q-TOF): *m/z* calculated for $C_{30}H_{30}N_{12}$ [M+H]⁺: 559.2795, found: 559.2793; calculated for [M+2H]⁺⁺: 280.1436, found: 280.1443. Anal. Calcd for $C_{30}H_{30}N_{12}$ ·2HBr (720.49): C, 49.31; H, 4.28; N, 23.79. Found: C, 49.29; H, 4.29; N, 23.80.

2,2'-((8-(4-chlorophenyl)-2-phenyldiimidazo[1,2-a:1',2'-c]pyrimidine-3,9diyl)bis(methaneylylidene))bis(hydrazine-1-carboximidamide) dihydrochloride (7)

Yield 70%. ¹H-NMR (DMSO-d₆): 7.29 (1H, d, J=7.8, pym), 7.56 (5H, m, ph+Cl-ph), 7.71 (8H, s broad, NH), 7.88 (2H, d, J=7.6, ph), 8.05 (2H, d, J=8.8, Cl-ph), 8.63 (1H, s, =CH), 9.29 (1H, d, J=7.8, pym), 9.57 (1H, s, =CH), 12.32 (2H, s broad, NNH). ¹³C-NMR (DMSO-d₆): 103.51, 115.33, 118.32, 127.95, 128.56, 128.91, 129.07, 131.09, 131.69, 131.90, 133.43, 138.46, 138.53, 139.51, 142.14, 144.26, 146.04, 154.77, 155.19. HRMS (ESI/Q-TOF): *m/z* calculated for $C_{24}H_{21}ClN_{12}$ [M+H]⁺: 513.1779, found: 513.1776; calculated for [M+2H]⁺⁺: 257.0929, found: 257.0931. Anal. Calcd for $C_{24}H_{21}ClN_{12}$ ·2HCl (585.88): C, 49.20; H, 3.96; N, 28.69. Found: C, 49.18; H, 3.97; N, 28.71

8-(4-Chlorophenyl)-3,9-bis((E)-(2-(4,5-dihydro-1H-imidazol-2-yl)hydrazineylidene)methyl)-2-phenyldiimidazo[1,2-a:1',2'-c]pyrimidine dihydrobromide (8)

Yield 78%. ¹H-NMR (DMSO-d₆): 3.74 (4H, s, CH₂), 3.81 (4H, s, CH₂), 7.35 (1H, d, J=7.8, pym), 7.55 (5H, m, ph+Cl-ph), 7.85 (2H, d, J=7.2, ph), 8.17 (2H, d, J=8.4, Cl-ph), 8.37 (2H, s, NH), 8.65 (1H, s, =CH), 8.82 (2H, s broad, NH), 9.30 (1H, d, J=7.8, pym), 9.54 (1H, s, =CH), 12.34 (1H, s, NNH), 12.75 (1H, s, NNH). ¹³C-NMR (DMSO-d₆): 42.82, 42.95, 103.64, 115.28, 117.99, 128.05, 128.56, 128.96, 129.07, 129.24, 131.23, 131.50, 131.74, 133.55, 139.73, 140.23, 142.21, 144.36, 146.49, 157.00, 157.56. HRMS (ESI/Q-TOF): *m/z* calculated for $C_{28}H_{25}ClN_{12}$ [M+H]⁺: 565.2092; calculated for [M+2H]⁺⁺: 283.1085, found: 283.1090. Anal. Calcd for $C_{28}H_{25}ClN_{12}$ ·2HBr (726.87): C, 46.27; H, 3.74; N, 23.12. Found: C, 46.30; H, 3.73; N, 23.11.

2,2'-((8-(4-chlorophenyl)-2-phenyldiimidazo[1,2-a:1',2'-c]pyrimidine-3,9-

diyl)bis(methaneylylidene))bis(hydrazine-1-carboximidamide) dihydrochloride (9)

Yield 70%. ¹H-NMR (DMSO-d₆): 7.30 (1H, d, J=7.6, pym), 7.48 (3H, m, ph), 7.60 (2H, d, J=8.4, Cl-ph), 7.85 (8H, s broad, NH), 7.95 (2H, d, J=8.4, Cl-ph), 8.00 (2H, d, J=6.8, ph), 8.67 (1H, s, =CH), 9.27 (1H, d, J=7.6, pym), 9.57 (1H, s, =CH), 12.22 (1H, s, NNH), 12.64 (1H, s, NNH). ¹³C-NMR (DMSO-d₆): 103.63, 115.54, 118.14, 120.83, 127.94, 128.45, 128.91, 129.38, 130.57, 130.74, 133.02, 133.95, 138.29, 138.33, 139.53, 142.08, 144.51, 145.60, 154.75, 155.18. HRMS (ESI/Q-TOF): *m/z* calculated for $C_{24}H_{21}CIN_{12}$ [M+H]⁺: 513.1779, found: 513.1776; calculated for [M+2H]⁺⁺: 257.0929, found: 257.0930. Anal. Calcd for $C_{24}H_{21}CIN_{12}$ ·2HCl (585.88): C, 49.20; H, 3.96; N, 28.69. Found: C, 49.17; H, 3.95; N, 28.72.

8-(4-Chlorophenyl)-3,9-bis((E)-(2-(4,5-dihydro-1H-imidazol-2-yl)hydrazineylidene)methyl)-2-phenyldiimidazo[1,2-a:1',2'-c]pyrimidine dihydrobromide (10)

Yield 73%. ¹H-NMR (DMSO-d₆): 3.72 (4H, s, CH₂), 3.80 (4H, s, CH₂), 7.34 (1H, d, J=8.0, pym), 7.48 (3H, m, ph), 7.65 (2H, d, J=8.4, Cl-ph), 7.90 (2H, d, J=8.4, Cl-ph), 8.10 (2H, d, J=7.2, ph), 8.32 (2H, s, NH), 8.69 (1H, s, =CH), 8.85 (2H, s broad, NH), 9.28 (1H, d, J=8.0, pym), 9.50 (1H, s, =CH),

12.44 (1H, s, NNH), 12.84 (1H, s, NNH). ¹³C-NMR (DMSO-d₆): 42.82, 42.94, 103.77, 115.48, 117.72, 128.00, 128.46, 128.96, 129.51, 130.61, 130.72, 132.55, 134.07, 139.45, 139.68, 140.09, 142.07, 144.94, 145.60, 156.91, 157.59. HRMS (ESI/Q-TOF): m/z calculated for C₂₈H₂₅ClN₁₂ [M+H]⁺: 565.2092, found: 565.2089; calculated for [M+2H]⁺⁺: 283.1085, found: 283.1087. Anal. Calcd for C₂₈H₂₅ClN₁₂·2HBr (726.87): C, 46.27; H, 3.74; N, 23.12. Found: C, 46.31; H, 3.74; N, 23.10.

2,2'-((2,8-bis(4-chlorophenyl)diimidazo[1,2-a:1',2'-c]pyrimidine-3,9diyl)bis(methaneylvlidene))bis(hydrazine-1-carboximidamide) dihydrochloride (**11**)

Yield 95%. ¹H-NMR (DMSO-d₆): 7.32 (1H, d, J=7.6, pym), 7.54 (2H, d, J=8.4, Cl-ph), 7.62 (2H, d, J=8.4, Cl-ph), 7.82 (8H, s broad, NH), 7.94 (2H, d, J=8.4, Cl-ph), 8.08 (2H, d, J=8.4, Cl-ph), 8.64 (1H, s, =CH), 9.28 (1H, d, J=7.6, pym), 9.57 (1H, s, =CH), 12.00 (1H, s broad, NNH), 12.45 (1H, s broad, NNH). ¹³C-NMR (DMSO-d₆): 103.66, 115.57, 118.35, 127.98, 128.50, 128.91, 130.55, 130.73, 131.07, 131.85, 133.47, 133.95, 138.30, 138.41, 139.49, 142.13, 144.27, 144.48, 154.74, 155.17. HRMS (ESI/Q-TOF): *m/z* calculated for $C_{24}H_{20}Cl_2N_{12}$ [M+H]⁺: 547.1389, found: 547.1387; calculated for [M+2H]⁺⁺: 274.0733, found: 274.0725. Anal. Calcd for $C_{24}H_{20}Cl_2N_{12}$ ·Cl₂N₁₂·CHCl (620.32): C, 46.47; H, 3.57; N, 27.10. Found: C, 46.50; H, 3.57; N, 27.11.

2,8-bis(4-chlorophenyl)-3,9-bis((E)-(2-(4,5-dihydro-1H-imidazol-2-

yl)hydrazineylidene)methyl)diimidazo[1,2-a:1',2'-c]pyrimidine dihydrobromide (12)

Yield 40%. ¹H-NMR (DMSO-d₆): 3.74 (4H, s, CH₂), 3.79 (4H, s, CH₂), 7.28 (1H, d, J=8.0, pym), 7.53 (2H, d, J=8.4, Cl-ph), 7.63 (2H, d, J=8.4, Cl-ph), 7.90 (2H, d, J=8.4, Cl-ph), 8.14 (2H, d, J=8.4, Cl-ph), 8.34 (2H, s, NH), 8.68 (1H, s, =CH), 8.90 (2H, s broad, NH), 9.24 (1H, d, J=8.0, pym), 9.53 (1H, s, =CH), 12.62 (2H, s broad, NNH). ¹³C-NMR (DMSO-d₆): 42.82, 42.97, 103.73, 115.47, 117.98, 128.01, 128.53, 128.92, 130.52, 130.72, 131.17, 131.39, 133.51, 134.04, 139.31, 139.54, 140.04, 142.06, 144.28, 144.82, 156.89, 157.56. HRMS (ESI/Q-TOF): *m/z* calculated for $C_{28}H_{24}Cl_2N_{12}$ [M+H]⁺: 599.1702, found: 599.1713; calculated for [M+2H]⁺⁺: 300.0890, found: 300.0895. Anal. Calcd for $C_{28}H_{24}Cl_2N_{12}$ ·CHBr (761,31): C, 44.18; H, 3.44; N, 22.08. Found: C, 44.21; H, 3.45; N, 22.11.

3,9-bis(((2-(4,5-dihydro-1H-imidazol-2-yl)hydrazineylidene)methyl)-2,8-di(thiophen-3-yl)diimidazo[1,2-a:1',2'-c]pyrimidine dihydrobromide (13)

Yield 33%. ¹H-NMR (DMSO-d₆): 3.78, (4H, s, CH₂), 3.81 (4H, s, CH₂), 7.33 (1H, d, J=8.0, pym), 7.66 (1H, dd, J=5.2, J=2.8, th), 7.71 (1H, d, J=5.2, th), 7.81 (1H, d, J=5.2, th), 7.85 (1H, dd, J=5.2, J=2.8, th), 8.16 (1H, d, J=2.8, th), 8.52 (2H, s, NH), 8.57 (1H, d, J=2.8, th), 8.81 (1H, s, =CH), 8.90 (2H, s broad, NH), 9.25 (1H, d, J=8.0, pym), 9.68 (1H, s, =CH), 12.33 (1H, s broad, NNH), 12.80 (1H, s broad, NNH). ¹³C-NMR (DMSO-d₆): 42.83, 42.99, 103.40, 114.65, 117.23, 125.85, 126.09, 127.21, 127.64, 127.81, 128.47, 128.50, 133.00, 133.74, 139.54, 139.77, 140.89, 141.40, 142.10, 142.15, 156.98, 157.54. HRMS (ESI/Q-TOF): *m/z* calculated for $C_{24}H_{22}N_{12}S_2$ [M+H]⁺: 543.1610, found: 543.1615; calculated for [M+2H]⁺⁺: 272.0844, found: 272.0833. Anal. Calcd for $C_{24}H_{22}N_{12}S_2$ ·2HBr (704.47): C, 40.92; H, 3.43; N, 23.86. Found: C, 40.96; H, 3.44; N, 23.88.

General procedure for the synthesis of the mono-hydrazones 14-18

One equivalent (5 mmol) of aminoguanidine hydrochloride (obtained by treating aminoguanidine hydrogencarbonat, suspended in ethanol, with hydrochloridric acid in order to achieve a solution) or 2-hydrazino-2-imidazoline hydrobromide solubilized in ethanol, was added very slowly (over 48 hours) to the appropriate aldehyde (5 mmol) dissolved in CH_2Cl_2 . Then, the reaction mixture was kept at room temperature for 24-48 h. The solution was concentrated under reduced pressure and the resulting precipitate was collected by filtration and crystallized from ethanol/ethyl ether.

9-((2-(4,5-dihydro-1H-imidazol-2-yl)hydrazineylidene)methyl)-2,8-di-p-tolyldiimidazo[1,2-a:1',2'-c]pyrimidine-3-carbaldehyde hydrobromide (14)

Yield 20%. ¹H-NMR (DMSO-d₆): 2.38 (3H, s, CH₃), 2.43 (3H, s, CH₃), 3.73, (4H, s, CH₂), 7.30 (2H, d, J=8.0, tol), 7.42 (2H, d, J=8.0, tol), 7.50 (1H, d, J=7.8, pym), 7.92 (2H, d, J=8.4, tol), 8.03 (2H, d, J=8.4, tol), 8.36 (2H, s, NH), 9.10 (1H, d, J=7.8, pym), 9.45 (1H, s, =CH), 10.07 (1H, s, CHO), 12.72 (1H, s broad, NNH). ¹³C-NMR (DMSO-d₆): 20.98, 20.99, 42.92, 104.88, 117.61, 120.04, 126.23, 128.27, 128.60, 129.44, 129.50, 129.58, 129.73, 138.48, 140.07, 140.09, 140.51, 142.35, 146.01, 153.01, 157.85, 180.31. HRMS (ESI/Q-TOF): *m/z* calculated for C₂₇H₂₄N₈O [M+H]⁺: 477.2151, found: 477.2150. Anal. Calcd for C₂₇H₂₄N₈O·HBr (557.46): C, 58.17; H, 4.52; N, 20.10. Found: C, 58.21; H, 4.52; N, 20.08.

2-((3-formyl-2,8-diphenyldiimidazo[1,2-a:1',2'-c]pyrimidin-9-yl)methylene)hydrazine-1-carboximidamide hydrochloride (15)

Yield 22%. ¹H-NMR (DMSO-d₆): 7.50 (4H, m, ph+pym), 7.52 (4H, s broad, NH), 7.60 (3H, m, ph), 8.01 (2H, m, ph), 8.06 (2H, m, ph), 9.10 (1H, d, J=7.6, pym), 9.54 (1H, s, =CH), 10.09 (1H, s, CHO), 12.47 (1H, s broad, NNH). ¹³C-NMR (DMSO-d₆): 105.07, 118.34, 120.20, 126.20, 127.96, 128.95, 129.01, 129.42, 129.67, 130.15, 130.98, 133.03, 138.13, 140.48, 142.40, 146.04, 152.74, 155.14, 180.43. HRMS (ESI/Q-TOF): *m/z* calculated for $C_{23}H_{18}N_8O$ [M+H]⁺: 423.1682, found: 423.1679. Anal. Calcd for $C_{23}H_{18}N_8O$ -HCl (458.91): C, 60.20; H, 4.17; N, 24.42. Found: C, 60.18; H, 4.17; N, 24.43.

(E)-2-((3-formyl-2, 8-di(thiophen-3-yl)diimidazo[1, 2-a: 1', 2'-c]pyrimidin-9-yl)methylene)hydrazine-1-carboximidamide hydrochloride (16)

Yield 20%. ¹H-NMR (DMSO-d₆): 7.47 (1H, d, J=7.6, pym), 7.65 (1H, m, th), 7.66 (4H, s broad, NH), 7.77 (1H, d, J=5.2, th), 7.81 (1H, m, th), 7.90 (1H, d, J=4.4, th), 8.47 (1H, d, J=1.6, th), 8.54 (1H, s, th), 9.08 (1H, d, J=7.6, pym), 9.65 (1H, s, =CH), 10.26 (1H, s, CHO), 12.52 (1H, s broad, NNH). ¹³C-NMR (DMSO-d₆): 104.68, 117.72, 119.63, 125.81, 126.34, 127.09, 127.65, 128.18, 128.43, 128.52, 132.37, 133.84, 138.97, 140.56, 141.54, 142.35, 147.83, 155.09, 179.86. HRMS (ESI/Q-TOF): *m/z* calculated for $C_{19}H_{14}N_8OS_2$ [M+H]⁺: 435.0810, found: 435.0807. Anal. Calcd for $C_{19}H_{14}N_8OS_2$ ·HCl (470.95): C, 48.46; H, 3.21; N, 23.79. Found: C, 48.50; H, 3.22; N, 23.81.

2-((3-formyl-8-phenyl-2-(p-tolyl)diimidazo[1,2-a:1',2'-c]pyrimidin-9-yl)methylene)hydrazine-1-carboximidamide hydrochloride (17)

Yield 23%. ¹H-NMR (DMSO-d₆): 2.42 (3H, s, CH₃), 7.40 (1H, d, J=7.6, pym), 7.50 (5H, m, ph+tol), 7.51 (4H, s broad, NH), 7.95 (2H, d, J=8.0, tol), 8.00 (2H, d, J=6.8, ph), 9.10 (1H, d, J=7.6, pym),

9.52 (1H, s, =CH), 10.07 (1H, s, CHO), 12.35 (1H, s broad, NNH). ¹³C-NMR (DMSO-d₆): 20.97, 104.93, 118.38, 120.02, 126.20, 127.96, 128.21, 128.93, 129.41, 129.55, 129.59, 133.09, 138.13, 140.06, 140.50, 142.42, 146.02, 152.93, 155.16, 180.34. HRMS (ESI/Q-TOF): *m/z* calculated for $C_{24}H_{20}N_8O$ [M+H]⁺: 437.1838, found: 437.1845. Anal. Calcd for $C_{24}H_{20}N_8O$ ·HCl (472.94): C, 60.95; H, 4.48; N, 23.69. Found: C, 61.00; H, 4.47; N, 23.70.

2-((3-formyl-2,8-di-p-tolyldiimidazo[1,2-a:1',2'-c]pyrimidin-9-yl)methylene)hydrazine-1-carboximidamide hydrochloride (**18**)

Yield 25%. ¹H-NMR (DMSO-d₆): 2.35 (3H, s, CH₃), 2.39 (3H, s, CH₃), 7.31 (2H, d, J=8.0, tol), 7.41 (2H, d, J=8.0, tol), 7.46 (4H, s boad, NH), 7.48 (1H, d, J=7.8, pym), 7.92 (2H, d, J=8.0, tol), 7.94 (2H, d, J=8.0, tol), 9.10 (1H, d, J=7.8, pym), 9.51 (1H, s, =CH), 10.08 (1H, s, CHO), 12.32 (1H, s broad, NNH). ¹³C-NMR (DMSO-d₆): 20.98, 21.00, 104.91, 118.26, 119.99, 126.07, 128.23, 128.51, 129.33, 129.55, 129.60, 130.24, 138.06, 138.46, 140.05, 140.53, 142.31, 146.01, 152.95, 155.38, 180.31. HRMS (ESI/Q-TOF): *m/z* calculated for $C_{25}H_{22}N_8O$ [M+H]⁺: 451.1995, found: 451.1992. Anal. Calcd for $C_{25}H_{22}N_8O$ -HCl (486.96): C, 61.66; H, 4.76; N, 23.01. Found: C, 61.70; H, 4.77; N, 22.99.

General procedure for the synthesis of the alcohols 19-20

The appropriate mono-hydrazone (**FIM** or **15**, 5 mmol) was treated with NaBH₄ (15 mmol) in methanol 20 mL. The reaction mixture was refluxed for 25 h. After cooling, the precipitate was filtered, suspended in ethanol and treated with HBr 48% to achieve the hydrobromide of compound **19**, or with HCl 36% to achieve the hydrochloride of compound **20**. The crude compounds were crystallized from ethanol/ethyl ether.

(9-((2-(4,5-dihydro-1H-imidazol-2-yl)hydrazineylidene)methyl)-2,8-diphenyldiimidazo[1,2-a:1',2'-c]pyrimidin-3-yl)methanol hydrobromide (19)

Yield 45%. ¹H-NMR (DMSO-d₆): 3.71 (4H, s, CH₂), 4.91 (2H, d, J=4.0, <u>CH₂</u>OH), 5.63 (1H, t, J=4.0, OH), 7.35 (1H, d, J=7.6, pym), 7.48 (6H, m, ph), 7.90 (2H, d, J=7.6, ph), 8.12 (2H, d, J=7.6, ph), 8.22 (2H, s broad, NH), 8.39 (1H, d, J=7.6, pym), 9.56 (1H, s, =CH), 12.69 (1H, s broad, NNH). ¹³C-NMR (DMSO-d₆): 42.89, 51.82, 102.49, 117.80, 121.69, 125.41, 127.86, 127.92, 128.66, 129.41, 132.95, 133.07, 137.12, 137.96, 140.38, 142.00, 145.06, 158.04. HRMS (ESI/Q-TOF): *m/z* calculated for $C_{25}H_{22}N_8O$ [M+H]⁺: 451.1995, found: 451.1996. Anal. Calcd for $C_{25}H_{22}N_8O$ ·HBr (531.42): C, 56.50; H, 4.36; N, 21.09. Found: C, 56.48; H, 4.36; N, 21.07.

2-((3-(hydroxymethyl)-2,8-diphenyldiimidazo[1,2-a:1',2'-c]pyrimidin-9-yl)methylene)hydrazine-1-carboximidamide hydrochloride (**20**)

Yield 40%. ¹H-NMR (DMSO-d₆): 4.78 (1H, s broad, OH), 4.91 (2H, s, CH₂), 7.34 (1H, d, J=7.6, pym), 7.48 (6H, m, ph), 7.55 (4H, s broad, NH), 7.94 (2H, d, J=7.2, ph), 8.01 (2H, d, J=6.8, ph), 8.45 (1H, d, J=7.6, pym), 9.62 (1H, s, =CH), 12.50 (1H, s, NNH). ¹³C-NMR (DMSO-d₆): 51.77, 102.23, 118.09, 121.72, 125.69, 127.87, 127.92, 128.68, 128.80, 129.41, 132.97, 133.11, 136.98, 137.99, 138.52, 141.91, 144.84, 155.22. HRMS (ESI/Q-TOF): m/z calculated for C₂₃H₂₀N₈O [M+H]⁺:

425.1838, found: 425.1839. Anal. Calcd for $C_{23}H_{20}N_8$ O·HCl (460.93): C, 59.93; H, 4.59; N, 24.31. Found: C, 59.89; H, 4.59; N, 24.32.

General procedure for the synthesis of compounds 23, 24

2,4-Diaminopyrimidine **21** (10 mmol) was dissolved in 40 mL of acetone and treated with the appropriate 2-bromo-1-(phenyl)ethan-1-one (15 mmol). The reaction mixture was refluxed for 4 h. The resulting precipitate was collected by filtration and treated with HCl 2N 200 mL under reflux for 3 h. Before complete cooling, the solution was cautiously basified by dropwise addition of 15% NH_4OH . The resulting precipitate was collected by filtration and crystallized from ethanol.

2-(p-tolyl)imidazo[1,2-a]pyrimidin-7-amine (23)

Yield 93%. ¹H-NMR (DMSO-d₆): 2.31 (3H, s, CH₃), 6.28 (1H, d, J= 7.2, pym), 6.89 (2H, s, NH₂), 7.20 (2H, d, J=8.2, tol), 7.71 (2H, d, J=8.2, tol), 7.79 (1H, s, im), 8.35 (1H, d, J= 7.2, pym). ¹³C-NMR (DMSO-d₆): 20.83, 100.22, 105.11, 124.94, 129.11, 130.97, 134.50, 136.41, 140.91, 148.99, 158.36. ESI MS (m/z): calculated for C₁₃H₁₂N₄ [M+H]⁺: 225.11, found 225.31.

2-(4-Chlorophenyl)imidazo[1,2-a]pyrimidin-7-amine (24)

Yield 97%. ¹H-NMR (DMSO-d₆): 6.28 (1H, d, J=7.4, pym), 6.86 (2H, s, NH₂), 7.43 (2H, d, J=8.4, Cl-ph), 7.85 (2H, d, J=8.4, Cl-ph), 7.87 (1H, s, im), 8.36 (1H, d, J=7.4, pym). ¹³C-NMR (DMSO-d₆): 100.27, 105.91, 126.61, 128.49, 131.27, 133.35, 134.49, 140.59, 149.43, 158.27. ESI MS (m/z): calculated for $C_{12}H_9ClN_4$ [M+H]⁺: 245.06, found 245.12.

General procedure for the synthesis of compounds 26-31

The appropriate imidazopyrimidine (**22-25**, 10 mmol) was dissolved in 40 mL of ethanol and treated with the proper 2-bromo-1-(phenyl)ethan-1-one (15 mmol). The reaction mixture was refluxed for 6-12 h according to a TLC test. The resulting precipitate was collected by filtration and treated with HCl 2N 100 mL under reflux for 3 h. Before complete cooling, the solution was cautiously basified by dropwise addition of 15% NH₄OH. The resulting precipitate was collected by filtration and crystallized from ethanol.

2-Phenyl-8-(p-tolyl)diimidazo[1,2-a:1',2'-c]pyrimidine (26)

Yield 18%.¹H-NMR (DMSO-d₆): 2.34 (3H, s, CH₃), 7.19 (1H, d, J= 7.8, pym), 7.25 (2H, d, J=8.2, tol), 7.33 (1H, t, J=7.4, ph), 7.47 (2H, t, J=7.4, ph), 7.93 (2H, d, J=7.4, ph), 7.96 (2H, d, J=8.2, tol), 8.24 (1H, s, im), 8.29 (1H, d, J= 7.8, pym), 8.66 (1H, s, im). ¹³C-NMR (DMSO-d₆): 20.87, 102.73, 107.01, 109.89, 125.01, 125.09, 125.49, 127.57, 128.78, 129.28, 130.36, 133.07, 137.09, 137.30, 139.82, 141.48, 144.34. ESI MS (m/z): calculated for $C_{21}H_{16}N_4$ [M+H]⁺: 325.15, found 325.23.

8-Phenyl-2-(p-tolyl)diimidazo[1,2-a:1',2'-c]pyrimidine (27)

Yield 22%. ¹H-NMR (DMSO-d₆): 2.34 (3H, s, CH₃), 7.19 (1H, d, J= 7.4, pym), 7.27 (2H, d, J=8,2, tol), 7.33 (1H, t, J=7.6, ph), 7.45 (2H, t, J=7.6, ph), 7.82 (2H, d, J=8.2, tol), 8.08 (2H, d, J=7.6, ph), 8.18 (1H, s, im), 8.28 (1H, d, J= 7.4, pym), 8.73 (1H, s, im). ¹³C-NMR (DMSO-d₆): 20.85, 102.61,

107.49, 109.38, 124.96, 125.20, 125.53, 127.77, 128.70, 129.34, 130.29, 133.14, 136.87, 137.18, 139.95, 141.58, 144.17. ESI MS (m/z): calculated for $C_{21}H_{16}N_4$ [M+H]⁺: 325.15, found 325.23.

2,8-Di-p-tolyldiimidazo[1,2-a:1',2'-c]pyrimidine (28)

Yield 20%. ¹H-NMR (DMSO-d₆): 2.34 (6H, s, 2xCH₃), 7.17 (1H, d, J=7.8, pym), 7.26 (2H, d, J=8.0, tol), 7.27 (2H, d, J=8.0, tol), 7.82 (2H, d, J=8.0, tol), 7.96 (2H, d, J=8.0, tol), 8.17 (1H, s, im), 8.27 (1H, d, J= 7.8, pym), 8.66 (1H, s, im). ¹³C-NMR (DMSO-d₆): 20.85, 20.87, 102.58, 106.97, 109.34, 124.96, 125.07, 125.48, 129.28, 129.35, 130.31, 130.39, 136.86, 137.08, 137.20, 139.94, 141.47, 144.31. ESI MS (m/z): calculated for $C_{22}H_{18}N_4$ [M+H]⁺: 339.16, found 339.33.

8-(4-Chlorophenyl)-2-phenyldiimidazo[1,2-a:1',2'-c]pyrimidine (29)

Yield 15%. ¹H-NMR (DMSO-d₆): 7.20 (1H, d, J=7.8, pym), 7.33 (1H, t, J=7.4, ph), 7.35 (2H, t, J=7.4, ph), 7.50 (2H, d, J=8.4, Cl-ph), 7.93 (2H, d, J=7.4, ph), 8.10 (2H, d, J=8.4, Cl-ph), 8,25 (1H, s, im), 8.31 (1H, d, J=7.8, pym), 8.81 (1H, s, im). ¹³C-NMR (DMSO-d₆): 102.70, 108.06, 110.00, 125.00, 125.46, 127.23, 127.60, 128.73, 128.79, 132.08, 132.20, 133.02, 137.23, 139.86, 141.69, 142.99. ESI MS (m/z): calculated for $C_{20}H_{13}CIN_4$ [M+H]⁺: 345.09, found 345.23.

2-(4-Chlorophenyl)-8-phenyldiimidazo[1,2-a:1',2'-c]pyrimidine (30)

Yield 18%. ¹H-NMR (DMSO-d₆): 7.22 (1H, d, J=7.6, pym), 7.34 (1H, t, J=7.6, ph), 7.47 (2H, t, J=7.6, ph), 7.54 (2H, d, J=8.8, Cl-ph), 7.95 (2H, d, J=8.8, Cl-ph), 8.08 (2H, d, J=7.6, ph), 8.29 (1H, s, im), 8.30 (1H, d, J=7.6, pym), 8.74 (1H, s, im). ¹³C-NMR (DMSO-d₆): 102.93, 107.57, 110.40, 125.22, 125.53, 126.68, 127.80, 128.70, 128.82, 131.93, 132.00, 133.08, 137.37, 138.65, 141.57, 144.24. ESI MS (m/z): calculated for $C_{20}H_{13}CIN_4$ [M+H]⁺: 345.09, found 345.23.

2,8-Bis(4-chlorophenyl)diimidazo[1,2-a:1',2'-c]pyrimidine (31)

Yield 22%. ¹H-NMR (DMSO-d₆): 7.20 (1H, d, J=7.6, pym), 7.50 (2H, d, J=8.4, Cl-ph), 7.53 (2H, d, J=8.4, Cl-ph), 7.94 (2H, d, J=8.4, Cl-ph), 8.09 (2H, d, J=8.4, Cl-ph), 8.28 (1H, s, im), 8.30 (1H, d, J=7.6, pym), 8.80 (1H, s, im). ¹³C-NMR (DMSO-d₆): 102.87, 108.08, 110.45, 125.44, 126.67, 127.21, 128.72, 128.83, 131.95, 132.03, 132.22, 137.31, 138.68, 141.67, 143.02. ESI MS (m/z): calculated for $C_{20}H_{12}Cl_2N_4$ [M+H]⁺: 379.05, found 379.24.

General procedure for the synthesis of the aldehydes 34-39

The Vilsmeier reagent was prepared at 0-5°C by dropping POCl₃ (54 mmol) into a stirred solution of DMF (65 mmol) in CHCl₃ (5 mL). The appropriate starting compound (**26-31**, 5 mmol) was suspended in CHCl₃ (20 mL). The mixture thus obtained was dropped into the Vilsmeier reagent while maintaining stirring and cooling. The reaction mixture was kept for 3 h at room temperature and under reflux for 20-40 h (according to a TLC test). Chloroform was removed under reduced pressure, the resulting oil was poured onto ice and the precipitate thus obtained was collected by filtration. The crude aldehydes were crystallized from ethanol.

2-Phenyl-8-(p-tolyl)diimidazo[1,2-a:1',2'-c]pyrimidine-3,9-dicarbaldehyde (34)

Yield 90%. ¹H-NMR (CDCl₃): 2.44 (3H, s, CH₃), 7.32 (2H, d, J=8.0, tol), 7.36 (1H, d, J=7.2, pym), 7.58 (3H, m, ph), 7.88 (2H, m, ph), 8.15 (2H, d, J=8.0, tol), 9.34 (1H, d, J=7.2, pym), 10.15 (1H, s, CHO), 11.51 (1H, s, CHO). ¹³C-NMR (CDCl₃): 21.73, 105.09, 120.72, 124.17, 127.88, 128.93, 129.12, 129.33, 129.87, 130.01, 130.83, 130.97, 140.58, 140.94, 143.80, 153.22, 155.36, 180.37, 181.42. ESI MS (m/z): calculated for $C_{23}H_{16}N_4O_2$ [M+H]⁺: 381.14, found 381.34.

8-Phenyl-2-(p-tolyl)diimidazo[1,2-a:1',2'-c]pyrimidine-3,9-dicarbaldehyde (35)

Yield 92%. ¹H-NMR (CDCl₃): 2.48 (3H, s, CH₃), 7.36 (1H, d, J=7.6, pym), 7.39 (2H, d, J=8.0, tol), 7.52 (3H, m, ph), 7.78 (2H, d, J=8.0, tol), 8.23 (2H, m, ph), 9.35 (1H, d, J=7.6, pym), 10.15 (1H, s, CHO), 11.53 (1H, s, CHO). ¹³C-NMR (CDCl₃): 21.65, 104.92, 120.57, 124.33, 128.04, 128.12, 128.39, 129.79, 130.08, 130.11, 130.59, 131.80, 140.55, 141.41, 143.82, 152.99, 155.59, 180.42, 181.51. ESI MS (m/z): calculated for $C_{23}H_{16}N_4O_2$ [M+H]⁺: 381.14, found 381.34.

2,8-Di-p-tolyldiimidazo[1,2-a:1',2'-c]pyrimidine-3,9-dicarbaldehyde (36)

Yield 95%. ¹H-NMR (CDCl₃): 2.44 (3H, s, CH₃), 2.47 (3H, s, CH₃), 7.32 (2H, d, J=8.0, tol), 7.36 (1H, d, J=7.8, pym), 7.37 (2H, d, J=8.0, tol), 7.77 (2H, d, J=8.0, tol), 8.15 (2H, d, J=8.0, tol), 9.33 (1H, d, J=7.8, pym), 10.14 (1H, s, CHO), 11.51 (1H, s, CHO). ¹³C-NMR (CDCl₃): 21.65, 21.74, 104.91, 120.54, 124.17, 127.96, 128.16, 128.98, 129.13, 129.78, 130.03, 130.07, 140.59, 140.93, 141.37, 143.84, 153.22, 156.59, 180.39, 181.52. ESI MS (m/z): calculated for $C_{24}H_{18}N_4O_2$ [M+H]⁺: 395.15, found 395.34.

8-(4-Chlorophenyl)-2-phenyldiimidazo[1,2-a:1',2'-c]pyrimidine-3,9-dicarbaldehyde (37)

Yield 88%. ¹H-NMR (CDCl₃): 7.35 (1H, d, J=7.8, pym), 7.47 (2H, d, J=8.4, Cl-ph), 7.59 (3H, m, ph), 7.88 (2H, m, ph), 8.24 (2H, d, J=8.4, Cl-ph), 9.35 (1H, d, J=7.8, pym), 10.15 (1H, s, CHO), 11.52 (1H, s, CHO). ¹³C-NMR (CDCl₃): 105.06, 120.78, 124.41, 128.13, 128.64, 129.37, 129.88, 130.27, 130.88, 130.92, 131.46, 136.70, 140.47, 143.79, 151.73, 155.38, 180.44, 181.56. ESI MS (m/z): calculated for $C_{22}H_{13}CIN_4O_2$ [M+H]⁺: 401.08, found 401.24.

2-(4-Chlorophenyl)-8-phenyldiimidazo[1,2-a:1',2'-c]pyrimidine-3,9-dicarbaldehyde (38)

Yield 93%. ¹H-NMR (CDCl₃):7.38 (1H, d, J=7.6, pym), 7.52 (3H, m, ph), 7.56 (2H, d, J=8.2, Cl-ph), 7.83 (2H, d, J=8.2, Cl-ph), 8.23 (2H, m, ph), 9.33 (1H, d, J=7.6, pym), 10.13 (1H, s, CHO), 11.48 (1H, s, CHO). ¹³C-NMR (CDCl₃): 105.36, 120.79, 124.33, 127.87, 128.41, 129.41, 129.68, 130.10, 130.64, 131.00, 131.74, 137.36, 140.58, 143.78, 153.22, 153.97, 179.89, 181.30. ESI MS (m/z): calculated for $C_{22}H_{13}CIN_4O_2$ [M+H]⁺: 401.08, found 401.24.

2,8-Bis(4-chlorophenyl)diimidazo[1,2-a:1',2'-c]pyrimidine-3,9-dicarbaldehyde (39)

Yield 90%. ¹H-NMR (CDCl₃-d₆): 7.38 (1H, d, J=8.0, pym), 7.49 (2H, d, J=8.4, Cl-ph), 7.57 (2H, d, J=8.4, Cl-ph), 7.83 (2H, d, J=8.4, Cl-ph), 8.25 (2H, d, J=8.4, Cl-ph), 9.35 (1H, d, J=8.0, pym), 10.14 (1H, s, CHO), 11.51 (1H, s, CHO). ¹³C-NMR (CDCl₃): 105.30, 120.78, 124.37, 128.06, 128.68, 129.06, 129.72, 130.99, 131.48, 136.77, 137.87, 137.91, 140.52, 143.79, 153.90, 155.48, 179.92, 181.44. ESI MS (m/z): calculated for $C_{22}H_{12}Cl_2N_4O_2$ [M+H]⁺: 435.04, found 435.15.

¹H and ¹³C NMR spectra are reported below.

REFERENCES

- Andreani, A.; Granaiola, M.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M.; Giorgi, G.; Salvini, L. Cancer fighting cancer: synthesis of the new heterocyclic system diimidazo-[1,2-a:1,2-c]pyrimidine. *Arkivoc Part XI* 2002, 32-38.
- (2) Amato, J.; Morigi, R.; Pagano, B.; Pagano, A.; Ohnmacht, S.; De Magis, A.; Tiang, Y.-P. Y. P.; Capranico, G.; Locatelli, A.; Graziadio, A.; Leoni, A.; Rambaldi, M.; Novellino, E.; Neidle, S.; Randazzo, A. Toward the Development of Specific G-Quadruplex Binders: Synthesis, Biophysical, and Biological Studies of New Hydrazone Derivatives. J. Med. Chem. 2016, 59 (12), 5706–5720. https://doi.org/10.1021/acs.jmedchem.6b00129.
- (3) Kipnis, F.; Soloway, H.; Ornfelt, J. 2-Acyloxyacetylthiophenes. J. Am. Chem. Soc. 1949, 71, 10-11.
- (4) Andreani, A.; Granaiola, M.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M.; Giorgi, G.; Garaliene, V. Potential Antitumor Agents. 34.(1) Synthesis and Antitumor Activity of Guanylhydrazones from Imidazo[2,1-b]Thiazoles and from Diimidazo[1,2-a:1,2-c]Pyrimidine. *Anticancer Res.* 2004, 24, 203–212.

NMR spectrometer characteristics

The ¹H-NMR and ¹³C-NMR spectra were recorded on a Varian MR 400 MHz (ATB PFG probe); the acquisition software was Vnmrj 3.2A; field strength used: 400 MHz ¹H, 100 MHz ¹³C; the chemical shifts were expressed in δ (ppm) and referenced to the residual peak of the solvent as the internal standard (DMSO-d₆: δ H = 2.50 ppm; δ C = 39.52 ppm and CDCl₃: δ H = 7.26 ppm; δ C = 77.16 ppm). Data are reported below for the indicated compound.

UHPLC system and conditions

UHPLC analysis were run on a Waters ACQUITY ARC UHPLC/ system consisting of a 2489 UV/Vis detector. Detected wavelength (λ): 254 nm. The analyses were performed on an XBridge BEH C18 column (10 × 2.1 mm i.d., particle size 2.5 µm) with a XBridge BEH C18 VanGuard Cartridge precolumn (5 mm × 2.1 mm i.d., particle size 1.8 µm). The mobile phases were H₂O (0.1% trifluoroacetic acid) (A) and MeOH (0.1% trifluoroacetic acid) (B). Method and gradients used were the following: Linear gradient: 0–3.5 min, 95% A; 3.5 min-4.5 min 30% A – 4.5-7.0 95% A - 5. Flow rate: 0.6 mL/min. UHPLC traces of compounds 1, 2, 8, 10, 15, 19 and 20 are reported from page S56.

12.723

					S1
12.336	9.494 9.310 9.291	8.659 8.341 8.341 8.043 8.023 8.023 7.865 7.865 7.602 7.554 7.554 7.554 7.554 7.554 7.554 7.554 7.554 7.554 7.554 7.559	4.195	3.807 3.730	2.504 2.500 2.495 2.382

S18

157.61 156.98	146.49 145.74 142.08 140.34 139.75 138.43	$\begin{array}{c} 131.78\\ 129.46\\ 129.08\\ 128.97\\ 128.97\\ 115.23\\ 115.23\end{array}$
\sim	$\searrow \searrow // // // // // // // // // // // // $	1

MM

243 247	
ு எ	9.278

12.602

12.266

8.633

S20

139.42

139.5

138.5

120

128

S21

UHPLC traces of compounds 1, 2, 8, 10, 15, 19 and 20.

S56

S58

Figure S1. CD spectra of (A) *c-kit1*, (B) *c-kit2*, (C) *c-myc*, (D) *tel*₂₆, and (E) *hairpin* in 5 mM KH₂PO₄ aqueous buffer (pH 7.0) containing 20 mM KCl at 20 °C.

260 280 Wavelength (nm)

300

320

240

Figure S2. CD spectra of *c-kit1* in the absence (black lines) and presence (red lines) of 2 molar equiv of compounds 1–20, recorded at 20 and 100 °C (solid and dashed lines, respectively).

Figure S3. CD spectra of *c-kit2* in the absence (black lines) and presence (red lines) of 2 molar equiv of compounds 1–20, recorded at 20 and 100 °C (solid and dashed lines, respectively).

Figure S4. CD spectra of *c-myc* in the absence (black lines) and presence (red lines) of 2 molar equiv of compounds 1–20, recorded at 20 and 100 $^{\circ}$ C (solid and dashed lines, respectively).

Figure S5. CD spectra of tel_{26} in the absence (black lines) and presence (red lines) of 2 molar equiv of compounds 1–20, recorded at 20 and 100 °C (solid and dashed lines, respectively).

Figure S6. CD spectra of *hairpin* in the absence (black lines) and presence (red lines) of 2 molar equiv of compounds 1–20, recorded at 20 and 100 °C (solid and dashed lines, respectively).

Figure S7. Normalized CD melting curves of *c-kit1* in the absence (black lines) and presence (red lines) of 2 molar equiv of compounds 1–20 recorded at 1 °C/min heating rate.

Figure S8. Normalized CD melting curves of *c-kit2* in the absence (black lines) and presence (red lines) of 2 molar equiv of compounds 1-20 recorded at 1 °C/min heating rate. Due to the exceptional ligand-induced thermal stabilization of G-quadruplex observed for compounds 1, 3, 5, 7, 9, and 11 (the melting processes are not completed even at 100 °C), the corresponding melting curves were normalized by dividing only by the maximum.

Figure S9. Normalized CD melting curves of *c-myc* in the absence (black lines) and presence (red lines) of 2 molar equiv of compounds **1–20** recorded at 1 °C/min heating rate.

Figure S10. Normalized CD melting curves of tel_{26} in the absence (black lines) and presence (red lines) of 2 molar equiv of compounds 1–20 recorded at 1 °C/min heating rate.

Figure S11. Normalized CD melting curves of *hairpin* in the absence (black lines) and presence (red lines) of 2 molar equiv of compounds **1–20** recorded at 1 °C/min heating rate.

Figure S12. Fluorescence emission spectra (left of each panel) acquired at 15 and 90 °C (solid and dashed lines, respectively), and normalized FRET melting curves recorded at 0.2 °C/min (right of each panel) for *F-c-kit1-T* oligonucleotide (0.2 μ M) in the absence (black lines) and presence (red

lines) of (A) 1, (B) 2, (C) 8, (D) 10, (E) 15, (F) 19, and (G) 20 (0.4 μ M). Experiments in the presence of compounds were also performed by adding large excesses of *hairpin* duplex competitor, i.e., 15 and 50 molar equiv with respect to G-quadruplex (yellow and green lines, respectively).

G

В

D

Figure S13. Dose–response curves from fluorescent intercalator displacement (G4-FID) assay for *c*-*kit1*, *c*-*kit2*, and *c*-*myc* G-quadruplexes with compounds (A) **1**, (B) **2**, (C) **8**, (D) **10**, (E) **15**, (F) **19**, and (G) **20**.

Figure S14. MST experiments for the interaction of (A) **1**, (B) **2**, (C) **8**, (D) **10**, (E) **15**, (F) **19**, and (G) **20** with *Cy5.5-c-kit1 G4*. (Left) Time traces recorded by adding increasing concentrations of compound to the labeled DNA G4 and (right) the corresponding binding curves.

Figure S15. MST experiments for the interaction of (A) **1**, (B) **2**, (C) **8**, (D) **10**, (E) **15**, (F) **19**, and (G) **20** with *Cy5.5-c-kit2 G4*. (Left) Time traces recorded by adding increasing concentrations of compound to the labeled DNA G4 and (right) the corresponding binding curves.

С

D

Figure S16. MST experiments for the interaction of (A) 1, (B) 2, (C) 8, (D) 10, (E) 15, (F) 19, and (G) 20 with Cy5.5-c-myc G4. (Left) Time traces recorded by adding increasing concentrations of

compound to the labeled DNA G4 and (right) the corresponding binding curves. In the case of compound 2 (B) we were unable to obtain a reliable binding curve.

Table S2

Compound	MRC5
FG	n.d.
1	47.58 ± 14.65
2	>200
8	23.22 ± 6.92
FIM	3.55 ± 0.83
15	2.29 ± 0.56
19	5.62 ± 0.93
20	24.52 ± 10.06
PDS	3.16 ± 0.29

Cytotoxic potency of selected hydrazones derivatives in human MRC5 normal fibroblast line.