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Abstract

The basic characteristic of vehicle routing problems with profits (VRPP) is that locations to be visited are
not predetermined. On the contrary, they are selected in pursuit of maximizing the profit collected from
them. Significant research focus has been directed toward profitable routing variants due to the practical
importance of their applications and their interesting structure, which jointly optimizes node selection and
routing decisions. Profitable routing applications arise in the tourism industry aiming to maximize the profit
score of attractions visited within a limited time period. In this paper, a new VRPP is introduced, referred
to as the bus sightseeing problem (BSP). The BSP calls for determining bus tours for transporting differ-
ent groups of tourists with different preferences on touristic attractions. Two interconnected decision levels
have to be jointly tackled: assignment of tourists to buses and routing of buses to the various attractions.
A mixed-integer programming formulation for the BSP is provided and solved by a Benders decomposi-
tion algorithm. For large-scale instances, an iterated local search based metaheuristic algorithm is devel-
oped with some tailored neighborhood operators. The proposed methods are tested on a large family of
test instances, and the obtained computational results demonstrate the effectiveness of the proposed solution
approaches.
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1. Introduction

The typical challenge for a traveler visiting a touristic destination for a limited period of time is to
design a schedule that takes full advantage of the various points of interest (POIs), such as muse-
ums, monuments, art galleries, restaurants, etc. Generally, a tourist can be interested in planning
his/her sightseeing activities strictly based on his/her personal preferences and on the amount of
time and budget available. This problem has been introduced in the literature as the tourist trip
design problem (TTDP). Under the TTDP model, a tourist defines his/her individual preferences
and interests on specific POIs. The solution is a multiperiod set of personalized tours that maximize
the predetermined tourist preference levels. The TTDP can be regarded as a variant of the basic
orienteering problem (OP) (Vansteenwegen et al., 2019b; Ruiz-Meza and Montoya-Torres, 2022).

Alternatively, a tourist can be interested in tours or packages offered by sightseeing or travel com-
panies. The companies generally operate with fixed bus fleets, which are dispatched to a subset of
POIs according to the preferences of the tourists on board, under various operational constraints.
Motivated from the perspective of these companies, other than that of a tourist as in the TTDP,
we introduce the bus sightseeing problem (BSP). Generally speaking, the BSP considers a set of
tourist groups and a set of POIs, and each tourist group is composed of several people with specific
preferences on the POIs. The objective is to (i) assign tourist groups to buses and (ii) determine the
bus tours (POI subset determination and POI visit ordering), to maximize the tourist preferences,
while taking into account the operational constraints, that is, bus capacity and opening hours.
Figure 1 depicts an example of a BSP solution that maximizes the total preference score over all
tourist groups.

In the BSP, two interconnected decision levels have to be jointly tackled: assignment of tourists
to buses and routing of buses to various attractions. This is different from the classical TTDP and
vehicle routing problems with profits (VRPP), in which the profits are associated with locations and
the total collected profit is computed by the sum of the profits of the visited locations. With respect
to the existing literature on VRPP (Section 2), the BSP exhibits a more generalized profit collecting
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Fig 1. A BSP example that maximizes tourist preferences.
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structure. By formally introducing the BSP (Section 3), we show that the BSP generalizes the OP
with time windows (OPTW) and the team OPTW (TOPTW).

The main aim of this paper is to investigate bounding techniques and an exact method for the
BSP. We describe a mathematical formulation for the BSP (Section 4). Based on the formulation,
we derive valid dual bounds by solving the linear programming (LP) relaxation of the formulation.
The dual bounds are further strengthened by a set of valid inequalities. A branch-and-cut (B&C)
approach, which uses the valid inequalities and Benders decomposition techniques, is developed
to solve the problem to optimality (Section 5). Furthermore, an iterated local search (ILS) based
metaheuristic algorithm is developed to efficiently compute primal bounds (Section 6). A key fea-
ture of the proposed ILS algorithm is the use of two mixed-integer programming (MIP) based
moves to search neighborhoods. Finally, we perform extensive computational experiments on a
set of 576 newly constructed benchmark instances to assess the quality of the proposed solution
methods (Section 7). The computational results show that our exact method can optimally solve
test instances with up to 20 POIs and 30 tourist groups. Moreover, the results show that the ILS
produces improved solutions for the instances not solved to optimality by the exact method, and
can effectively compute solutions for larger-scale instances.

2. Related work

The BSP belongs to the class of VRPP (Archetti et al., 2014; Vansteenwegen et al., 2019b) where,
in general, a profit is associated with each location to indicate its attractiveness. However, any BSP
route is associated with a cost, as well as a profit value. Another central feature of the VRPP models,
which distinguishes them from the basic family of routing models, is that location service is optional
and the decision maker is responsible for identifying the location subset to be visited. Variants of
VRPP ranging from single to multivehicle models inspired by practical transportation applications
can be found in the survey paper of Feillet et al. (2005), the more recent review of Archetti et al.
(2014), and the recent book of Vansteenwegen et al. (2019b). To the best of our knowledge, the
BSP model has never been studied before. TOPTW is one of the most closely related problems to
BSP. Thus, in the following we focus on methods proposed for the TOPTW and some interesting
TOPTW applications in the tourism industry.

To the best of our knowledge, no exact approaches have been proposed for solving the TOPTW.
Regarding its special case with a single vehicle (OPTW), an exact algorithm based on bidirectional
dynamic programming is proposed in Righini and Salani (2006). On the other hand, a number of
heuristic techniques have been proposed for both TOPTW and OPTW. A guided local search (LS)
and an ILS metaheuristic were proposed for the TOPTW in Vansteenwegen et al. (2009). Later,
many other metaheuristics have been proposed, such as the hybridized greedy randomized adaptive
search procedure (GRASP) with the evolutionary LS (Labadie et al., 2011), the LP-based variable
neighborhood search (VNS) (Labadie et al., 2012), the iterative framework based on LS procedure
and simulated annealing (SA) (Hu and Lim, 2014), the iterated LS (ILS), and a hybridization of
SA and ILS (Gunawan et al., 2017), to name a few. The reader is referred to Vansteenwegen et al.
(2019b) for a comprehensive review of the benchmark instances and the state-of-the-art solution
techniques of the OPTW and the TOPTW.

We next list some interesting TOPTW applications in the tourism industry.
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Souffriau et al. (2013) introduced the multiconstraint team OP with multiple time windows (MC-
TOP-MTW), where a set of POIs is given, each with a service time, one or more time windows
(TW), and a profit score. The goal is to maximize the sum of the profits collected by a fixed num-
ber of tours. The generated tours are subject to various operational requirements, such as maxi-
mum tour duration constraints and hard TW of POIs. The authors provide a mathematical for-
mulation for the MC-TOP-MTW, and an ILS equipped with a GRASP. The algorithm was tested
on instances involving from 48 to 288 POIs and 1-4 tours. Garcia et al. (2013) introduced the
tourist planning problem that integrates public transportation, as the time-dependent TOPTW
(TD-TOPTW). The problem calls for determining personalized tourist routes in real time. The
authors developed and compared two different heuristic approaches for the TD-TOPTW and re-
ported results for actual data taken from the city of San Sebastian. Malucelli et al. (2015) studied a
problem calling for the optimal design of cycle tourist itineraries. It assumes that the profit of nodes
or edges can be collected several times but with a decreased rate. An integer programming formu-
lation of the problem based on the OP and the multicommodity network design problem models is
described. For a comprehensive overview, the interested reader is referred to the paper of Gavalas
et al. (2014) and to Vansteenwegen et al. (2019b).

3. Problem description

In this section, we formally introduce the BSP and discuss its complexity by showing that the
OPTW and the TOPTPW are special cases of the BSP.

The BSP is defined on a complete digraph G = (V, A) where V' is the vertex set and A is the set
of arcs. The vertex set is composed of vertex 0 and a vertex set P representing the various POIs
of the examined touristic destination, that is, ¥ = {0} U P. Vertex 0 represents a central location,
where vehicle or bus routes originate and terminate. Hereafter, we use the terms vehicle or bus in-
terchangeably.

Each vertex i € P is associated with a hard TW [e;, /;], which defines the earliest and latest time
for the start of a visit at POI i. In addition, a visit time v; is also considered, representing the
time necessary for a POI i visit. Note that if a bus arrives at i before ¢;, tourists must wait until
the opening time e; of this particular POI. In real scenarios, POIs have early opening times so
waiting times at POIs are generally not an issue. Each arc (i,/) € 4, i,/ € V', i # [, is associated
with a travel time 7;;. The travel time 7; can be modified to include the visit time at vertex i, thus
obtaining a modified travel time #;;, that is, t; = v; + 7;. We assume that matrix 7; satisfies the
triangle inequality. At the central location 0, a set K of buses is available. With each bus k € K is
associated a capacity Qy representing the maximum number of people on board. Moreover, vertex
0 is also associated with a TW [ey, [y], representing a common working time period for all buses in
K.

The BSP also considers a set of tourist groups T. Each group j € T consists of ¢; people. In
addition, each group declares how important it is for this group to visit a particular POI in P.
More precisely, with each group j € T and vertex i € P pair, it is associated a nonnegative profit
P ji» which conveys the satisfaction level (hereafter referred to as profit) enjoyed by j by visiting POI
i. If a group j € T is assigned to a bus k& € K, which visits vertex i € P, then the corresponding
profit p;; is enjoyed (collected) by group ;.
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The aim of the BSP is to jointly decide the assignment of groups to buses, and for each of these
buses, design the corresponding route. More precisely, the BSP calls for the group-vehicle assignment
and the routing of vehicles, which maximizes the total profit enjoyed by all groups. The two decision
levels are subject to the following constraints:

(A) Group-vehicle assignment.
(1) Each tourist group must be assigned to exactly one vehicle.
(i1) The total number of people assigned to a vehicle must not exceed the capacity of the vehicle.
(B) Routing of vehicles.
(i) Each vehicle performs at most one route.

(i) Each vehicle route starts from vertex 0, and terminates at vertex 0.

(ii1) Each vehicle visits any POI vertex at most once, whereas a POI vertex may be visited at
most L times with L < |K]. Since a POI can be visited several times by different vehicles,
parameter L sets an upper limit on the number of vehicles that can visit a POI.

(iv) Each vehicle may arrive at a POI within the corresponding TW. If it arrives earlier, it must
wait for the TW opening.

The link between the OPTW/TOPTW and the BSP can be summarized as follows. The OPTW is
defined on a complete digraph G’ = (V', A”), where V' is the vertex set and A4’ is the arc set. Vertex
0 represents the depot. Let p; denote the nonnegative profit associated with i € V'’ (with p, = 0),
and let 7;; be the nonnegative travel time associated with arc (i, /) € A that includes the visit time
at vertex i. In addition, let [e;, /;] be the TW associated with vertex i € V. The OPTW calls for the
determination of a single route that maximizes the total profit collected, by visiting each vertex in
V' \ {0} at most once and within its TW.

Any OPTW instance can be converted into an equivalent BSP instance as follows:

(i) Define graph G = (V, A) by settingV =V, A=A, P=V'\{0}and t; =1;,V(i, 1) € A.
(i1)) Define |[K|=1,Qp=1and L = 1.
(iii) Define |T'| =1, go = 1 and py; = p;, Vi € V' \ {0}.
(iv) Define [e;, ;] = [e;, 1], Vie V.

The TOPTW generalizes the OPTW by calling for the determination of m routes maximizing the
total profit collected. Any TOPTW instance can be converted into an equivalent BSP instance by
generating graph G and the TW as in points (i) and (iv), and the following additional definitions:

(1) |K|l=m, Qr=1,Vk e K,and L = 1; and
() |T|=m,q;=1,VjeT,and p;; =p;,Vje T,VieV'\ {0}

Because the OPTW is N"P-hard, so is the BSP.

3.1. Link between the TTDP and the BSP

In the literature, the term TTDP is used to refer to a general class of problems associated with
the construction of personalized tourist itineraries and no specific problem definition is reported.
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Indeed, as reported by Vansteenwegen et al. (2019a) and Ruiz-Meza and Montoya-Torres (2022),
almost all papers in the TTDP literature use the OP (and other extended variants) to formulate
the TTDP. Moreover, various extensions of the TTDP can also be formulated as the variants of
the TOP, OPTW, or TOPTW. Vansteenwegen et al. (2019a) listed several TTDP variants and Ruiz-
Meza and Montoya-Torres (2022) gave a classification of different variants and solution techniques.
Variants include heterogeneous preferences of tourists, multiple TW, different classes of users, mul-
tiobjective function, to name a few. The reader is referred to Vansteenwegen et al. (2019a) and
Ruiz-Meza and Montoya-Torres (2022) for a comprehensive list of the different variants.

As shown above, as an application of the TTDP, our problem generalizes the TOPTW by intro-
ducing the following two main characteristics:

(i) the vehicle fleet is assumed to be heterogeneous and, most importantly,

(i1) the profits are heterogeneous, that is, under the BSP model, the total profit enjoyed depends on
the group-vertex assignments, whereas for the classical OP/TOP, the total profit depends only
on the vertices visited.

In the literature, TTDP are generally formulated based on OP/TOP/TOPTW mathemati-
cal formulations. However, due to the structure of heterogeneous profits of the BSP, existing
OP/TOP/TOPTW formulations cannot be used directly to solve the problem, and in the next
section we introduce a mathematical formulation for the BSP where additional decision variables
are introduced to model the heterogeneous profits.

From the methodological point of view, to the best of our knowledge, no exact approaches have
been proposed for solving the TOPTW, and existing exact methods for the OP/TOP cannot be
easily extended the BSP due to the above two main characteristics. In this paper, we therefore de-
scribe a new exact method for the problem (see Section 5) and a metaheuristic (see Section 6).
More specifically, the metaheuristic uses an ILS solution framework, widely adopted to effectively
solve TTDP variants. In addition, our heuristic algorithm also relies on the solution of OPTW and
TOPTW instances in the context of MIP-based moves used by the LS algorithm.

4. Mathematical formulation and valid inequalities

This section provides an MIP formulation for the BSP. It also describes properties of the proposed
formulation, together with valid inequalities that can be used to strengthen the dual bounds derived
from the LP-relaxation of the formulation.

4.1. Formulation

A bus route or simply route R = (iy =0, i1, &, ..., i,_1, i, = 0) is defined as a simple circuit in G.
It starts at the bus station 0 at time ¢y and ends at the station no later than /y. In between, it visits
the POI subset represented by vertices V' (R) = {i1, ..., i,_1}. Route R is feasible if the visit start
time t;,, Vi, € V(R) U {i,}, satisfies max{z;_, +¢;,_,i,, €;,} < 7w, < [l;,, where i,_; is the vertex visited
immediately before i, in route R (and 79 = ¢y).
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The proposed BSP formulation uses the following decision variables:

. y’;i: binary variables, equal to 1, if and only if vertex i € P is visited by group j € T using vehicle
keK;
. zﬂ? : binary variables, equal to 1, if and only if group j € T is assigned to vehicle k € K;

« s*: binary variables, equal to 1, if and only if vertex i € V is visited by vehicle k € K;

. xf?,: binary variables, equal to 1 if and only if arc (i, /) € A4 is traversed by vehicle k € K;

« 8 nonnegative continuous variables representing the start time at vertex i € V' visited by vehicle
k € K; if vertex i is not visited by vehicle k, we have 8[’.‘ =0.

We split the BSP constraints into two distinct blocks. The first block handles the assignment
of tourist groups to buses and the POI subset determination (which POIs are going to be visited)
for each vehicle, whereas the second block addresses the routing of buses. Let X denote a set of
vectors y € {0, 1}KIXITIXIPI 'z ¢ 10, 1})KxIT and s € {0, 1}/ K%Vl satisfying the following constraints
(first constraint block):

si<L, VieP la

>

keK

ss>s  ViePkek, (1b)

y’;igsf.‘ng/ﬁi, VieP, jeT kek, (lc)
heT

y§i§z§52y§,, Vie P, je T, Vk e K, (1d)
leP

Wizsi+2 -1, VieP,jeT kek, (le)

quz_]]‘- < O, Vk € K, (1)

jeT

K=1, VvjeT (1g)
keK

Constraints (1a) state that a vertex i € P can be visited at most L times by the vehicles whereas
constraint (1b) impose that slg = 1 if at least one POI is visited by vehicle k. Constraints (1¢c)—(1e)
are linking constraints among the different set of variables. Constraints (1f) guarantee that the
vehicle capacities are not violated. Finally, constraints (1g) force each group j to be assigned to
exactly one vehicle.

Set X; is defined as the set of vectors s € {0, 1}XX1V1 x e {0, 1})K1¥1I "and § € R*™" satisfying
the following constraints (second constraint block):

doxi=sf, VieVikek, (22)
lerf
© 2022 The Authors.

International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies

850807 SUOWIWOD A0 3|dedldde ays Aq peusenob are saolie YO ‘8SN JO SaINJ Joj Ak 8UlUO AB|IAA UO (SUOIPUOD-PUB-SWBI W00 A8 | 1M AlRIq | BuUO//:SdNY) SUOIPUOD pue swie | 8 88S *[£202/50/62] UO ARiqiTauliuo A8|Im ‘Wewnooq 7 HediQ IWesIS Baly Aq 09TET JON/TTTT 0T/I0pAW0D A8 |ImAreIq Ul |uo//:Sdny Wwolj pepeojumod ‘0 ‘S66ESLYT



8 H. Qian et al. / Intl. Trans. in Op. Res. 0 (2022) 1-35
Y xp=sf, VieVkek, (2b)
lel';
Sty — (1 = x)M < 8F, V(i,[) e A, k € K, (2¢)
eisk <8 <Isk,  VieV,keKk, (2d)

where F;“ ={heV:(i,h)eAyand I ={h eV :(h, i) e A} are the sets of successors and pre-
decessors of vertex i € V in G, respectively, and M is a sufficiently large constant, for example,
M =3} eqtu- For a given vertex i and vehicle £ such that s& = 1, the out-degree (2a) and in-
degree (2b) constraints ensure that there will be exactly one arc entering and exactly one arc leaving
vertex i. Constraints (2¢) and (2d) guarantee that the bus routes respect all TW of visited vertices
(POIs and bus station). From a different viewpoint, this second constraint block ensures that feasi-
ble routes exist for a given vector s € {0, 1}/KxIV1,
Based on the above definitions, the BSP is formulated as the following MIP model:

(F)  z(F)=max Y Y > puh (3a)

keK jeT ieP
s.t. (y,z,8) € X, (3b)
(s,Xx,8) € Xa. (3¢c)

The objective function (3a) maximizes the total profit enjoyed by all tourist groups. Constraints
(3b) and (3c) represent the two blocks of constraints described earlier.

Let LF denote the LP-relaxation of formulation F and let z(LF) represent its optimal solution
cost. The following property holds about F and LF.

Proposition 1. In any optimal LF solution (y, z, s, X, §) we have

Vi =min{s}, 2}, Vie P je T.k e K. 4)
Proof. From constraints (1¢) to (1e) we have

max{s; + 25 — 1,0} <y}, <min{s}, 24}, Vie P je T.k e K. (5)

Hence, due to the maximization objective of LF, equations (4) hold. O

The above property indicates that imposing integrality on variables s and z suffices to guarantee
integrality of variables y. Thus, variables y can be relaxed to continuous variables.

4.2. Improving relaxation LF

In this section, we describe valid inequalities that can be used to improve the quality of the dual
bounds obtained from formulation LF. The corresponding separation procedures are then de-
scribed in Section 5.1.
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4.2.1. Capacity constraints
The following valid inequalities for LF ensure that the capacity of a bus cannot be violated at any
vertex visited by the bus.

Proposition 2. The following inequalities are valid for LF :

D4y = Qs Vie Pk ek ©
JjeT

Proof. We have the following two cases:

(i) If sf.‘ = 1, then Z‘/ET q./')’f‘i = Z(/’GT qﬂf‘ = ka{'( = Ok.
(ii) If s* = 0, then djer ‘I_jy/;; =0 < QOst. O

4.2.2. Inequalities from the associated knapsack polytope

We consider cover and lifted cover inequalities based on knapsack constraints (1f) (Crowder et al.,
1983; Nemhauser and Wolsey, 1988). For a given k € K, let the subset of tourist groups C € T be
a cover such that ) jecqj > Ok and let C* be the set of all covers for vehicle k. The following cover
inequalities are valid for LF:

K <|C-1, vCeclkek (7
jeC
Cover inequalities can be lifted by letting ¢™** = max;cc{g;} and T={jeTlT\C: q; = ¢y
Then, the following lifted cover inequality is valid for LF':

Zz_’/‘.§|C|—l, VC eCk keK. (8)

jecuT

4.2.3. Infeasible path elimination constraints

These constraints filter out POI vertex sets that cannot be feasibly visited by a route due to the
TW constraints imposed by the BSP. Let D C P denote an infeasible set of vertices such that there
does not exist any feasible route containing all D vertices and respecting the TW constraints. Let D
include all such infeasible sets. The following inequalities are valid for LF:

> sf<ID|-1, VDeD.keKk )
ieD
These constraints can also be expressed in terms of the y variables, as shown in the following
proposition.
Proposition 3. The following inequalities are valid for LF :
Zzy§f5|D|—1, VDeD,jeT. (10)
ieD keK
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Proof. Letwji =3, x yl]‘.i. Obviously, w;; € {0, 1} in any feasible F solution, i.e., w;; = 1 if group
J visits vertex i, and wj; = 0 otherwise. Since D represents an infeasible set of vertices, then
Y iepWji < |D| — 11is a valid inequality, and therefore (10) hold. O

4.2.4. Symmetry breaking constraints

We also use a set of symmetry breaking inequalities, to avoid equivalent solutions obtained by
interchanging index k. These are useful for instances involving buses of equal capacity, that is,
Ok, = Ok, Yki1,ky € K, ki # k,. Let o be a permutation of the group set 7. We can assume
that A(1) < h(2) < --- < h(|K|), where h(k) =min{j € T : zﬁ(” =1}, k=1,...,|K]| is the small-
est group number (w.r.t. permutation o) of the groups visited by vehicle k (i(k) = oo if vehicle k is
not used). Then the following constraints hold:

1
Zo() = 1,

A= Y s forallkzdkek andiz2ieT, (b

In this way, vehicles with smaller indices are assigned to groups with smaller indices.

5. An exact method for the BSP

MIP formulations such as formulation F are notoriously very hard to solve by means of general
purpose MIP solvers based on B&C approaches. Nevertheless, speedup of some orders of magni-
tude with respect to the best MIP solvers on the market can be achieved using logic-based solution
methods (Hooker, 2000; Codato and Fischetti, 2006; Zhang et al., 2021). In this section, we de-
scribe an exact BSP solution method based on the Benders decomposition, formally developed by
Benders (1962) to efficiently solve MIPs. The Benders decomposition partitions the original prob-
lem into two problems, that is, an integer master problem (M P) and a linear slave problem or
subproblem (SP). The M P is solved for a decision variable subset, whereas the rest of the values
are decided by solving the SP. If the SP is found to be infeasible, new cuts are incorporated in the
M P, which is re-solved in a cyclic framework. Geoffrion (1972) has extended the Benders decom-
position to a larger class of mathematical programming problems. Finally, the works of Hooker
(2000) and Hooker and Ottosson (2003) further extend the Benders strategy by considering more
general subproblems for generating M P cuts. This approach is referred to as a logic-based Benders
decomposition. Later, it was specialized to MIP by Codato and Fischetti (2006) who introduced
the so-called combinatorial Benders cuts.
Following a logic-based Benders approach, the master problem M P can be defined as follows:

(MP)  z(MP)=max Y > > pi (12a)
keK jeT ieP
s.t. (y,z,8) € X]. (12b)
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Algorithm 1. Benders decomposition method

Set UB=ocand LB = —oc0 ; // Initialization
while UB > LB do
Solve problem M P ;
if M P is infeasible then
’ return no feasible BSP solution found;

else
Let (V,%,S) be the optimal M P solution of cost Z;
SetUB = z;

Solve subproblem S P with (¥,%, 8);
if SP is infeasible then
‘ Add the infeasibility cut (13) to problem M P;

else
S P admits a feasible and integer solution (X, §);
Let (¥,%,5,X, d) be the corresponding BSP feasible solution;
Set LB =7;
return BSP optimal solution (¥,%, 5, X, d);

end

end

end

Problem M P is N'P-hard since it reduces to the generalized assignment problem (GAP) (Martello
and Toth, 1990) when variables s are fixed. Given a solution (¥, z, s) of M P, problem SP is a feasi-
bility or separation subproblem calling for the evaluation of (S, X, §) such that (s, x, §) € X>.

For a given M P solution (¥, Z, s), there are two possible outcomes w.r.t. the associated subprob-
lem SP:

(1) Problem SP is infeasible for 5. The following infeasibility cut is added to M P:

YN s+ > a-H=1, (13)

kekK iEP:Ef-(:O keK iEPISJ;:]

to render solution (y, Z, s) infeasible. Indeed, if s =5 the left-hand side of inequality (13) is
equal to 0, hence the inequality cuts off the point (y, Z, s) from the master M P.

(i) Problem SP is feasible for 5. Let (X, §) be the solution of SP. Then, solution (y, Z, §, X, §) is an
optimal BSP solution of total profit equal to 3 ;x> ic7 D icp P jij_]j,.

The proposed solution algorithm is summarized by Algorithm 1.
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Over the course of the algorithm, U B corresponds to a valid dual bound on z(F) whereas at the
end of the algorithm LB = z(F) (we assume z(F') = —oc if there is no feasible solution).

Note that the proposed algorithm terminates with an optimal solution whenever a feasible SP so-
lution is found. In addition, if a feasible BSP solution exists, the algorithm terminates after finitely
many steps. Indeed, since the domain of M P variables (y, z, s) is finite, only finitely many subprob-
lems can be defined (and corresponding Benders infeasibility cuts can be generated), so that the
optimal value is reached after finitely many steps.

5.1. A branch-and-cut implementation

In this section, we propose an alternative method to the exact algorithm described in the previous
section that is generally adopted to solve the Benders reformulation (see Vanderbeck and Wolsey,
2010). The proposed method generates infeasibility cuts into a B&C framework for solving problem
MP.

The algorithm has been built within the CPLEX 12.8.0 framework using the CPLEX callback
functions. Through these functions, the programmer can almost completely customize the general
approach embedded into CPLEX. For example, one can choose the next node to explore in the
enumeration tree, choose the branching variable, or define a problem-dependent branching scheme,
separate and add his own cutting planes, apply his own heuristic methods, etc. For additional details
about the use of the different callback functions, the reader is referred to the documentation of
the CPLEX callable library (IBM CPLEX, 2018). The most important implementation issues are
discussed below.

5.1.1. Infeasibility cuts

To deal with the master problem M P, function LazyConstraintCallback provided by CPLEX is
used to separate the infeasibility cuts and add them to M P. Whenever an integer solution is ob-
tained by solving the LP-relaxation of the master problem at a node, the LazyConstraintCallback
is invoked by CPLEX to examine its feasibility. That is, when the LP solution (y, z, s) of the master
problem M P is integral, the slave problem SP is solved to verify its feasibility (see Section 5.2).
If problem SP is feasible, then a feasible solution of the BSP has been found. Otherwise, the
infeasibility cut associated with solution (y, z, s) is added to the master problem using function
LazyConstraintCallback.

Generally, integer solutions (y, z, s) can only be found at the leaf nodes of the enumeration tree
associated with problem M P. To improve the convergence of the method, we generate infeasibility
cuts also at the nodes where the solution is not necessarily integer. To this end, we use function
UserCutCallback to separate the feasibility cuts and add them to the master problem. Whenever
an LP-relaxation is solved and the node is not pruned, the UserCutCallback is invoked. If s* is
integral for some k € K, the UserCutCallback separates infeasibility cuts by examining whether a
feasible route exists for vehicle k given s*. In this way, the feasibility cuts can be separated early in
the search process and help to strengthen the LP-relaxation of the master problem. Further, addi-
tional infeasibility cuts can be added based on the path elimination inequalities (9) and (10). Indeed,
givenk e K,let D={ie P Ef‘ = 1} be the set of vertices visited by vehicle k. If the subproblem SP
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is infeasible, then D is also an infeasible set of vertices, and the infeasible path elimination inequal-
ities (9) and (10) corresponding to D can be added to problem M P.

5.1.2. Valid inequalities

The set of capacity constraints (6) and symmetric breaking constraints (11) are directly added to
the initial M P at the root node of the enumeration tree. The lifted cover cuts (8) and the infeasible
path elimination cuts (9) and (10) are separated using the UserCutCallback function as described
in the following.

Whenever an LP-relaxation is solved and the node is not pruned, the values of the variables z
and s in the LP solution are used to separate the cuts. To separate violated lifted cover inequalities,
we identify a cover C={j € T : z/]‘i = 1} such that ZjeC q; = O + 1 for some k € K by dynamic
programming (DP) (see Nemhauser and Wolsey, 1988). To separate violated infeasible path elimi-
nation cuts, we solve subproblem SP as shown in Section 5.2.

5.1.3. Branching and node selection strategy

Based on the results of preliminary experiments, we decided to set a higher branching priority on
variables s. As variables y are safely relaxed to continuous according to Proposition 1, only integer
variables s and z are considered as integer variables by CPLEX. Because both the infeasibility cuts
and the primal heuristic rely on the integer values of variables s, the higher branching priority
on variables s can be helpful in improving both dual and primal bounds, especially in the early
exploration of the enumeration tree.

5.1.4. Primal heuristic
With the aim of enhancing the computation of primal solutions during the enumeration tree, we
apply a heuristic algorithm using the HeuristicCallback CPLEX function.

At a generic node of the B&C tree, we first check if the subproblem SP is feasible, that is, variables
s are integral and feasible routes exist for the subproblem SP. Then the primal heuristic tries to
optimally reassign the tourist groups to the vehicles in order to maximize the total profit by solving
the following GAP:

(GAP) max ZZﬁﬁz’j (14)
jeT keK
S.t. q;z; < Ok, €
i <0 Vk € K (15)
JeT
Y A=1 VjerT (16)
keK
z% e {0, 1}, jeT,Vk e K,
he {01} VjeT,VkeK (17)

where ﬁlj‘. =Y ,..p 5 pji is the profit of assigning group j € T to vehicle k € K. Problem GAP re-
quires that the capacity of each vehicle cannot be violated (15) and each group must be assigned to
exactly one vehicle (16). Problem GAP can be conveniently solved using the MIP solver of CPLEX
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using the current solution Z of the master problem as a starting solution, and by initializing the
CPLEX primal bound as the cost of the best BSP solution found so far.

5.2. Solving the subproblem

Problem SP can be decomposed into |K| feasibility subproblems, each one for determining the
TW feasibility of a single bus route. The constraints of each subproblem correspond to the well-
known traveling salesman problem with TW (TSPTW) (Baker, 1983). For each k € K, solving the
subproblem requires to check if a feasible TSPTW solution exists for ¥, where V;, = {i € P : s'f‘ =1}
denotes the set of vertices visited by vehicle k. This is a known NP-complete problem (Savelsbergh,
1985). Obviously, if ¥, = @, the corresponding TSPTW is trivially feasible.

Instead of considering the individual feasibility problems, we tackle each of them by considering
the objective of minimizing the travel time, as for the classical TSPTW. This approach is best suited
for the BSP, since a bus route visiting a set of POIs is obviously preferred over another route visiting
the same POIs, but requiring a longer travel time. For every vehicle k € K such that ¥V # @, we
formulate the problem as the following MIP model:

min > taxh x5 8 e X[ (18)
xke(0,1)11,sker |
(i,h)eA

where sz corresponds to the set of constraints (2d) involving vehicle k. To solve problem (18),
we use the DP-based approach proposed by Baldacci et al. (2012), which has been shown to be
particularly effective for the TSPTW. In the following, we briefly describe the method and the reader
is referred to Baldacci et al. (2012) for additional details.

For a given vehicle k € K, let G = (V, A) be a complete digraph, where V' = ¥, U {p, ¢}, and p
and ¢ are two special vertices. A tour is defined as a path in G starting from vertex p at time e,
visiting each vertex i € ¥, within its TW, and ending at vertex ¢ before ;. The cost of a tour is
equal to the sum of the travel times of the arcs traversed. The TSPTW associated with vehicle k
consists of determining the minimum travel time tour, and can be formulated using DP as follows.
Define a forward path P = (p, iy, ..., ix = 0 (P)) as an elementary path starting from vertex p at
time ey, visiting vertices V(P) = {p, i1, . .., iy} within their TW, and ending at vertex o (P) at time
t(P) with e;p) < t(P) < l,(p). Let Z(S, t,i) be the set of all forward paths visiting the subset of
vertices S C V' and ending at vertex i at time ¢. In addition, let g(S, ¢, i) be the minimum travel time
path in the set H(S, ¢, i). The travel time z(TSPTW) of the optimal TSPTW solution for vehicle &
is as follows:

(TSPTW) = min gV, 1, q). (19)
ey=I=lp

The g(S, ¢, i) values can be evaluated using DP as follows: define the state set .7 = {(S, ¢,7) : VS C
V,Vie S, e; <t <1} Let Q(z, j, i) be the subset of departure times from vertex j to arrive at vertex
i at time ¢, such that e; < ¢t < /;, when j is visited immediately before i. Q(¢, J, i) is defined as follows:
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(1) Q(t, j, l) = {ld tej =< t < min{l_,-, t— t_/',‘}} ift = é;, and (11) Q(t, j, l) = {t — [jl' e = t— t_/[ < l/}
if e, < t < [;. The DP recursion to evaluate g(S, ¢, i) is as follows:

(S, t,i) = min {g(S", 1, ))+t;}, V(S ti0)e., (20)
(St )ew=1(S,1,i)

where WI(S,¢,i) = {(S\ {i}, 7, j) : Vt' € Q(t, j, i), Vj € VN (S\{i})}. The following initializa-
tion is required: g({p}, e,, p) = 0 and g({p}, 7, p) = oo, V¢, ¢, < t < [,. The size of the set .# can
be huge, but effective dominance and fathoming rules are described in Baldacci et al. (2012) to re-
move from . any state (S, ¢, i) that cannot lead to any feasible or optimal solution, thus speeding
up the computation of the optimal TSPTW solution.

6. An iterated local search based metaheuristic

To solve larger BSP instances, we propose an ILS-based metaheuristic algorithm. The algorithm
follows the scheme of ILS algorithms (Baxter, 1981; Lourenco et al., 2019) and employs two diver-
sification mechanisms for shaking the incumbent solutions, followed by a LocalSearch procedure
that improves the modified solution. In particular, the applied diversification mechanisms system-
atically change the neighborhood, in a manner similar to the VNS (Mladenovi¢ and Hansen, 1997;
Hansen et al., 2019), which has been effectively applied on vehicle routing problems (see, e.g., Wei
et al., 2014, 2015).

Let S denote a feasible BSP solution and f(S) = M - p(S) — r(S) where p(S) is the total profit
collected by S, r(S) is the total travel time required by the solution S and M is a very large positive
value. The structure of the proposed ILS algorithm is provided in Algorithm 2.

The proposed method starts by constructing an initial solution S, which is improved by the
following iterative procedure: Method Shake applies one of the two proposed diversification mech-
anisms (according to argument /), to produce the modified solution S’. Then, S’ is improved by
the proposed LocalSearch method, which employs classical routing and packing LS operators.
In addition, it is equipped with MIP-based operators that are used when locally optimal solutions
with respect to the classical operators are encountered. Let S” denote the improved solution pro-
duced by the LocalSearch method. If f(S”) > f(S), the incumbent solution is set to S” and the
diversification mechanism to be applied on the next iteration is set to 1 (4 «— 1). Otherwise, the
method continues by switching the diversification operator for the next iteration. The proposed
ILS framework is terminated when a total CPU time 7, is completed, or when 1,,,,, consecutive
nonimproving iterations are performed. In the following paragraphs, the various components of
Algorithm 2 are described.

6.1. Initial solution

The construction of a feasible BSP solution requires decisions on two levels: (i) assignment of
tourist groups to buses and (ii) POI selection and optimal routing for the buses.
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Algorithm 2. ILS for the BSP

Construct an initial solution 5
h < 1;// neighborhood index
1 < 0;// number of non-improving iterations
while (CPU time < 1,,,.) and (i < 1,,,,,) do
S’ < Shake(i, h, S);
S” < LocalSearch(5’);
// neighborhood change
if f(S”) > f(S) then
S < S"”;// make a move
h <+ 1;// change to the first neighborhood
14— 0;
else
h <+ h+1;// change to next neighborhood
if h > h,,,., then
h <+ 1;// revert to the first neighborhood
end
141+ 1;
end

end
return S;

We use a simple heuristic algorithm to generate an initial solution with the aim of quickly com-
puting a feasible solution as a starting point for the ILS. The heuristic performs two main steps:
(1) assigning of tourist groups to buses by disregarding the profit values and (ii) determining bus
routes and the POIs to be visited by also taking into account the profit values. The two steps are as
follows:

(1) Due to the difficulty of obtaining a feasible assignment in some instances with limited buses,
the proposed construction heuristic starts off by assigning tourist groups to buses, thus when
this assignment is decided no routing decisions have been made. As a result, the profit objective
is not taken into account and the algorithm constructs feasible tourist assignments to buses
with respect to the bus capacity constraints, by applying the best-fit decreasing (BFD) heuristic
for this 1D bin packing problem. As a safeguard, if BFD fails to produce a feasible assignment
due to tight capacity constraints, the GAP models (14)—(17) are solved to optimality by CPLEX
with unit profit values.

(i) Once the tourist groups have been assigned to buses, the constructive method determines a
feasible route for each bus. For bus k € K, the profit of each vertex i € P is computed as
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=X jem, Pji» Where Tj © T denotes set of tourist groups assigned to bus k. The bus-vertex

pairs (k, i),k € K, i € T, are sorted in descending profit p"lf . Then, the construction algorithm
iteratively selects the bus—vertex pair (k, i) with the highest profit, to insert vertex i into the
route traveled by bus k. An insertion is made, if the POI TW and the maximal POI visit con-
straints are satisfied. If for a POI i multiple feasible positions exist within the route traveled by
bus &, vertex i is inserted in the position yielding the minimal travel time increase.

It is worth noting that alternative rules are possible to assign POIs to buses and that, in our
experience, the quality of the initial solution is not a key factor for the algorithmic performance.
Moreover, regarding the importance of handling the profits, our packing and MIP-based moves
described in the following are indeed aimed at improving the groups to POI assignments.

6.2. Diversification operators

The proposed algorithm employs two diversification operators, which as previously mentioned are
invoked by method Shake. Both operators apply drastic solution modifications, to drive the search
away from local optima encountered. The strength of this behavior is controlled by parameter «,
which after tuning experiments was set to

@ = max{5, min{0.05 x i, 0.6} x (|T| + [P])}, 1)

where i is the number of consecutive nonimproving iterations currently recorded. The role of pa-
rameter « is twofold: (a) it strengthens the diversification effect of both operators when the algo-
rithm consistently fails to identify new improved solutions and (b) it eliminates excessive diversifi-
cation that would drive the search to extremely poor quality solution regions.

In the following, the two diversification operators are described:

* RandomMoves operator randomly performs a sequence of packing or routing moves presented
in Section 6.3. To perform each of these moves, one of the seven move types is randomly selected
with all move types sharing the same selection probability. Then a move defined by the selected
operator is randomly applied, if it respects the model constraints.

* Destroy&Repair operator removes tourist groups and vertices randomly from the solution. It then
reconstructs this partial solution by first reinserting the removed tourist groups to buses. These
insertions are iteratively performed: At each iteration, the profit of assigning every removed group
jtoevery busk € K is 13’;. If an assignment violates the bus capacity constraints, the associated

profit is set to —oo. A regret value rv; = ﬁlj‘f‘ — F* is then evaluated for every unassigned tourist
group j, where k; and k, denote the buses “offering” the highest and second highest profit for
group j, respectively. The method identifies the tourist group maximizing the regret value and
assigns it to the bus maximizing the aforementioned profit value. Once all tourist groups have
been reassigned to buses, POI vertices are inserted into the solution via the mechanism of POI
vertex insertion described for the initial solution construction method (Section 6.1).
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6.3. Local search

In the BSP, two interconnected decision levels must be jointly tackled: assignment of tourists to
buses and routing of buses to the various attractions. With the aim of improving a BSP solution
based on both decisions, the LS procedure in the ILS uses various packing moves to optimize the
assignment of tourists to the POIs, and routing moves to improve the routes.

The LS procedure first employs two basic types of moves: (i) packing moves that modify the
assignments of tourist groups to buses and (ii) routing moves that modify the bus routes. If the
basic move types fail to identify an improving solution, two rich MIP-based moves are applied.
If the MIP-based moves succeed in improving the incumbent solution, the method continues by
reapplying the basic moves in a cyclic framework. On the contrary, if the MIP-based moves fail to
generate an improving solution, the LocalSearch method terminates by returning the locally opti-
mal solution with respect to the basic operators, as well as the MIP-based moves. In the following,
all employed LS operators are described.

6.3.1. Packing moves

By fixing the bus routes of a given BSP solution, BSP reduces to a GAP model that calls for the
optimal assignment of tourists to buses. The following moves deal with these assignments. Note
that they are only applied if they produce improving and feasible BSP solutions.

* Group relocation moves relocate a tourist group from the bus currently assigned to, to another
bus.

* Group swap moves swap the buses offering service to a tourist group pair. Obviously, the group
swap moves involve only tourist groups that are assigned to different buses (in the incumbent BSP
solution).

Figure 2 shows an illustrative example of packing moves based on the BSP instance given in Fig. 1.

6.3.2. Routing moves

By fixing the tourist groups to bus assignments of a given BSP solution, BSP reduces to a TOPTW
variant, where the profit collection depends on the bus routes. In contrast to the basic TOPTW ver-
sion, each vertex can be visited multiple times limited by L under the BSP model. The LS operators
used for applying routing modifications to a BSP solution are based on the ones given by Hu and
Lim (2014) for the TOPTW and are presented in the following. As already stated for the packing
moves, they are applied only if they produce feasible and improving BSP solutions.

* Vertex insertion moves insert a POI vertex into a bus route. Obviously, the inserted POI must not
be already present in the bus route involved.

o Vertex exchange moves replace a POI vertex visited by a bus with another POI. First, the removed
POI vertex is taken out of the bus route, and then the new POI is inserted into the route position
yielding the minimal travel time increase.

o Vertex relocation moves relocate a POI vertex visited by a bus to another position in the same bus
or to another bus.
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Fig 2. An example of packing moves.

» Vertex swap moves swap the visit positions for a pair of POI vertices. This modification can be
applied within a single bus or between a bus pair.

2-opt moves replace a pair of arcs from the solution. If both arcs involved belong to the same bus
route, this is done by reversing the route segment, lying between the replaced arcs. Otherwise, each
of the two bus routes involved in the move are split in their beginning and terminating parts. The
beginning part of the first route is connected to the terminating part of the second and vice versa.
Note that the last three operators are widely used for routing problems and detailed descriptions
are given in Zachariadis and Kiranoudis (2011).

The moves defined by the seven presented basic move types are evaluated in a random order. The
proposed algorithm applies the first improving move which leads to a feasible BSP solution. Note
that as explained earlier an improving solution either increases the solution profit or reduces the
total travel time if the profit is not modified.

6.3.3. MIP-based moves

If no improving solution can be identified by the above-presented basic LS operators, or in other
words when the incumbent solution is locally optimal with respect to the basic operators, two MIP-
based moves are performed. Inherently, these moves can directly apply wider solution modifications
compared to the basic operators.
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As illustrated below, the MIP-based moves are executed with a specific time limit, and they are
applied only if no improving solution can be identified by the basic LS operators. Therefore, packing
moves are also important to improve the solution. In addition, the MIP-based moves use a starting
point for the MIP solver as the incumbent solution and the incumbent lower bound for pruning,
hence the packing moves can reduce the computational effort of the MIP solver.

The first MIP-based move solves GAP models (14)—(17), by fixing all bus routes to their current
state. For a given vehicle k € K, the profit of serving group j € T is computed as ﬁ’]”f =D icp, Djis
where P, C P is the set vertices visited by bus k. The GAP model is solved by CPLEX setting a run
time limit of 10 seconds. If a feasible and improved solution is obtained, the LS procedure resumes
to the basic moves. Otherwise, the following second MIP-based move is executed.

The second MIP-based move optimizes bus routes, by fixing tourist group assignments to their
current state. If the maximal number of POI visits L does not exceed the number of buses in use,
the problem can be decomposed into a set of OPTW models, one for each vehicle. For vehicle
k € K currently carrying the tourist group set 7; € T, the profit collected when visiting POl i € P
sph=% jen, Pji- Then, the OPTW associated with vehicle & is formulated as follows:

OPTW(k) max Y st 22)
ieP

st sfefo, 1), Vie P, (23)

sk, x*, 85) € Xo. (24)

The OPTW models are solved by a variant of the B&C implementation of the Benders
decomposition method described in Section 5.1, which uses the infeasibility cuts and the
LazyConstraintCallback function. To separate the infeasibility cuts, the subproblem is solved
as described in Section 5.2.

On the contrary, if the number of buses in use exceeds the maximal number of POI visits L, we
solve a TOPTW variant formulated as follows:

(TOPTW) max Y Y jish (25)
keK ieP
st Y sf<L  VieP (26)
keK
s e 0,1}, i€P (27)
(s, X,8) € Xo. (28)

The TOPTW is also solved by a variant of the B&C implementation of the Benders decomposition
method (Section 5.1).

The OPTW model for each vehicle, as well as the TOPTW model are both NP-hard problems,
which are difficult to be solved to optimality within short computational times. To embed the
MIP-based moves that repeatedly solve the aforementioned problems through the search process,
CPLEX solver was used with a CPU time bound of 10 seconds. This bound is proved sufficient
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in improving the incumbent solution, as described in the computational experiments. In addition,
to speed up the TOPTW moves, the profit of the incumbent solution (to be improved by the MIP-
based moves) was used as the primal bound to prune unpromising branches in the BranchCallback
function of CPLEX.

The application of MIP-based moves requires repetitively solving the relevant GAP, OPTW, and
TOPTW models. To improve the efficiency of the proposed metaheuristic, it is essential to avoid any
duplicate solver calls for the same model instance. To achieve this, the algorithm keeps track of the
individual model instances that have been solved and filters out any unnecessary solver calls. This
is done by caching the profit vectors that uniquely define a specific instance of the three models,
when this instance is solved for the first time.

As already stated, if the MIP-based moves manage to produce a feasible and improving solution,
the LS procedure resumes with the application of the basic moves, in a cyclic manner. Otherwise,
the LS procedure is terminated.

7. Computational experiments

This section reports computational experiments performed with the proposed Benders decompo-
sition and ILS algorithms on newly generated BSP benchmark instances of diverse characteristics.
We present extensive experimental analysis with three main aims. First, we evaluate the perfor-
mance of our algorithms. Second, we conduct experiments to measure the contribution of each
main component of the algorithms. Finally, we evaluate the impact of different profit patterns on
the obtained solutions.

Both methods were coded in C++ and executed on a single core of an Intel(R) Core(TM) CPU
17-6700 processor clocked at 3.40 GHz. To solve the various MIP problems, IBM ILOG CPLEX
12.8.0 (IBM CPLEX, 2018) was used. Both the newly introduced BSP benchmark instances and
detailed computational results are available at http://www.computational-logistics.org/orlib/bsp.

7.1. Benchmark instances

As mentioned in the introduction, the BSP is a new VRPP variant, and no benchmark instances are
available in the literature. Moreover, our problem is also motivated by practical TTDPs, but no real-
world BSP data are available. Therefore, we generate a new set of instances based on our experience
on related practical applications and on the existing literature (Vansteenwegen et al., 2019b). In
particular, we focus on the definition of the profit values to analyze the impact of different profit
patterns. Toward this aim, different configurations of the graph, tourist groups, profit values, and
bus fleet, were used, as described in the following.

Four distinct sets of POI locations were considered to represent four distinct graphs. The sizes
of these sets are 10, 20, 30 and 40. Each graph is generated by randomly generating the depot
and POIs coordinates in the Euclidean plane. The travel time matrix [7;/] is generated by setting
1y = |d;; +0.5], where d;; is the Euclidean distance between vertex i/ and j. For each of these four
graphs, two TW configurations were considered: the first one corresponds to four-hour tours and
the second one to eight-hour tours. Specifically, for the bus station TW, ¢y = 0 and /y are set to
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Table 1
Configurations of tourist groups and bus fleet
Number of tourists groups Vehicle type (VT) Number of buses x Capacity
30 1 4 x 30 people
(90 people) 2 2 x 60 people
3 4 x 30 people and 1 x 60 people
60 1 6 x 30 people
(180 people) 2 3 x 60 people
3 3 x 30 people and 2 x 60 people

the maximum duration of a complete bus tour (240 minutes or 480 minutes). The TWs and ser-
vice times of POIs were randomly generated. Thus, in total eight different network configurations
were generated. Given a network, the following information is defined in order to construct a com-
plete BSP benchmark instance: tourist groups, bus fleet, and profit table. In terms of the groups,
two tourist group sizes were used: 30 groups and 60 groups. The number of people within each
group was generated randomly so that the 30-group problems involve 90 people and the 60-group
problems involve 180 people. Values ¢; are integers in the interval [1,5]. Regarding the bus fleet,
we have used three different configurations for the tourist group sizes considered. These configura-
tions are reported in Table 1. Thus, in total 48 test problems without considering the profit table
were generated.

A profit table [p;;] defines the profit enjoyed by tourist group j € T visiting POI i € P. Three
different profit tables were generated for each graph and tourist group pair. The rationale was to
capture cases of random, dissimilar, and similar preferences of tourists among the POIs of a touris-
tic destination. These three profit tables are called PT, PT-D, PT-S, respectively.

* PT (uniform profits): In this matrix, about 30% of the profit values are set to 0 and the rest of the
profit values have been uniformly set into a predefined interval. Then, the various profit values are
normalized, so that ) ., p;; = 100,V € T. This is to ensure that all tourist groups are equally
considered in terms of their POIs preference.

* PT-D (dissimilar profits): For each j € T, i € P pair, the profit enjoyed by tourist group j when
visiting POl i is set to p;; = sin(6(j) + ¢(i)), where ¢(i) = 2in /|P|and 0(j) = 2jn /|T|. If p;; < 0,
then we set p;; = 0. Again, the final profit matrix is obtained by normalizing the various p;; > 0
values, so that the total profit enjoyed by each group over all POIs is equal to 100. Using this
strategy, contrasting POI preferences are promoted among tourist groups.

* PT-S (similar profits): For the first tourist group j = 0, we randomly generate uniformly dis-
tributed profit values. Given the first row of the profit matrix, the profit values for the rest of the
rows p;;,0 < j < |T'|,0 < i < |P| are uniformly distributed within a symmetric interval around
poi. Finally, the resulting profits are normalized, as earlier described. This class of profit matrices
reflects tourists with similar POI preferences.

For each of the 48 test cases, 3 profit matrices are generated as per the abovementioned classes,
resulting in a total of 144 instances. Finally, the maximum allowed visits per POI L takes values
from {1, 3, 5, 400}, where L. = 400 means that no restrictions are imposed on the number of visits
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of each POI. Thus, in total 576 (i.e., 144 x 4) complete BSP test instances were generated and solved
by the proposed methodologies.

7.2. Results of the proposed Benders decomposition method

Our exact method based on Algorithm 1, called BDM, has been implemented using the B&C so-
lution framework provided by ILOG CPLEX. BDM adds the different valid inequalities, capacity
constraints (6), lifted cover cuts (8), infeasible path elimination constraints (9) and (10), by means
of the UserCutCallback function of CPLEX. Further, BDM also invokes a primal heuristic us-
ing the HeuristicCallback function. To analyze the effectiveness of the different components of
BDM, we compare the following variants by computational tests.

* BDM-1: only capacity constraints (6) and function HeuristicCallback (HEU) are used, that is,
UserCutCallback is not used and thus neither lifted cover cuts nor infeasible path elimination
constraints are separated, but HeuristicCallback is enabled.

* BDM-2: only capacity constraints (6), lifted cover cuts (8), and HEU are used, that is, only lifted
cover inequalities are separated in the UserCutCallback, and also HeuristicCallback is used.
No infeasible path elimination constraints are separated.

* BDM-3: only capacity constraints (6), lifted cover cuts (8), and infeasible path elimination con-
straints (9) are used, that is, both lifted cover cuts and infeasible path elimination constraints are
separated in the UserCutCallback, but HeuristicCallback is not used.

* BDM: complete version of the exact method, where capacity constraints (6), lifted cover cuts
(8), infeasible path elimination constraints (9) and (10), and HEU are used, that is, both lifted
cover cuts and infeasible path elimination constraints are separated in the UserCutCallback and
HeuristicCallback is used.

The four implementations are tested on instances with 30 tourist groups and up to 20 POIs. A
time limit of 7200 seconds was imposed on each run. Further, in our experiments, all CPLEX cuts
are switched on.

Table 2 shows the results of versions BDM-1, BDM-2, and BDM, whereas Table 3 reports
the results of BDM-3 and BDM. In these tables, each row gives the results on eight instances
corresponding to two networks graphs and four values of parameter L. Each test set is identified
by three columns |P|, VT, and PT, which represent the number of POIs, the type of bus fleet (see
Table 1), and profit matrix, respectively. In both tables, the percentage gap between the obtained
primal LB and dual bound U B is evaluated as Gap = 100.0 x “2-L2. Columns #opt, g(%), #node,
t (seconds) under each algorithm version indicate the number of instances solved to optimality,
the average percentage gap, the average number of nodes explored by the BC algorithm, and
the average computing time in CPU seconds computed over the instances solved to optimality,
respectively.

The results reported in Table 2 show the effectiveness of the valid inequalities. Indeed, using the
lifted cover inequalities, BDM-2 is able to obtain two more optimal solutions compared to the
BDM-1 version, whereas the average gap of the dual bound is also improved. For the instances
solved to optimality by both BDM-1 and BDM-2 versions, BDM-2 significantly reduces the
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Table 2
Performance analysis on lifted cover cuts and infeasible path elimination constraints of BDM with | 7’| = 30

BDM-1 BDM-2 BDM

[Pl VT PT #opt g(%) #node t (seconds) #opt g(%) #node t (seconds) #opt g(%) #node t (seconds)

10 1 PT-D 8 0.00 7220.4 21.5 8 0.00 5530.1 19.3 8 0.00 4129.3 24.0
PT-S 2 5.56 413,866.6 5424.9 2 5.51 388,157.1 5412.4 5 1.85  96,351.5 2748.3

PT 2 5.81 437,362.6 5414.6 2 5.13 309,814.6 5414.0 5 1.28 178,248.3 2938.0

2 PT-D 8 0.00 342.4 0.7 8 0.00 269.0 0.6 8 0.00 217.6 1.0
PT-S 5 3.67 345,679.4 27458 5 3.66 405,371.1 2706.1 8 0.00 576.5 4.7

PT 8 0.00 26,460.1 144.3 8 0.00 2796.1 6.4 8 0.00 638.4 2.9

3 PT-D 8 0.00 1725.4 4.4 8 0.00 1194.4 4.0 8 0.00 890.5 4.7
PT-S 5 4.69 287,819.0 2715.4 5 4.75 296,680.4 2721.9 8 0.00 85959 104.3

PT 2 5.67 413,819.4 5401.3 3 4.54 346,244.1 5062.5 8 0.00 12,382.1 71.2

20 1 PT-D 0 36.28 222,598.3 7200.3 0 37.11 214,690.6 7200.4 0 30.97 155,677.3 7200.2
PT-S 0 41.04 266,417.6 7200.2 0 40.97 233,475.9 7200.2 0 32.67 87,307.3 7200.2

PT 0 49.20 274,042.5 7200.2 0 48.61 214,220.3 7200.3 0 45.81 136,807.0 7200.2

2 PT-D 4 22.90 299,132.8 3605.5 4 2272 250,837.3 3605.7 4 17.58  69,901.5 3610.2
PT-S 0 33.43 357,732.8 7200.1 0 31.97 304,740.4 7200.1 4 14.14  54,157.6 3626.7

PT 4 28.60 229,439.0 3696.0 4 27.10 180,092.9 3635.4 4 21.47 103,456.0 3628.4

3 PT-D 4 25.70 234,984.6 4587.3 4 23.11 197,284.0 4180.8 4 1595 122,127.3 4709.5
PT-S 0 38.04 328,218.9 7200.2 0 33.90 267,429.8 7200.2 2 1521 113,111.9 6151.3

PT 0 40.04 361,030.0 7200.3 1 38.21 318,780.9 7021.7 1 30.52 163,867.0 6675.5

All 60 18.92 250,438.4 2813.5 62 18.18 218,756.0 3060.8 85 12.64  72,691.3 2286.7

number of nodes explored. The results obtained by the complete BDM version shows that the two
sets of infeasible path elimination cuts (9) and (10) are also effective. Indeed, BDM is able to solve
23 more test instances to optimality compared to BDM-2. Moreover, the average percentage gap
is reduced by 5.54%, and the average number of nodes is also reduced by 66.8%. It is worth noting
that all CPLEX cuts were used in all the different BDM versions and, in particular, in version
BDM-1. Hence, the addition of the new cuts (8), (9), and (10) in the other BDM versions also
achieves improvements with respect to the CPLEX cuts.

The results reported in Table 3 indicate that the use of HeuristicCallback is effective in im-
proving the primal bounds, and the overall performance of BDM. With the use of the heuristic
callback, BDM outperforms BDM-3, both on the number of instances solved to optimality and on
the quality of the final bounds. The main advantage of using the heuristic callback is that BDM is
capable of identifying good primal bounds at the early stages of the enumeration tree exploration.

Tables 2 and 3 show that the effectiveness of the exact method owes to the proposed valid in-
equalities and the primal heuristic, which are helpful in improving the upper and lower bounds, re-
spectively.

Table 4 reports detailed results of the BDM version on instances with up to 20 POIs. The fol-
lowing columns are reported in the table: the number of instances of the corresponding group of
instances (#inst ), number of instances solved to optimality (#opt), the average percentage gap at the
root node of the enumeration tree (g,,,; (%)), the final average percentage gap (g (%)), the aver-
age computing time (¢ (seconds)), the average time spent for the lazy constraint callback (7.,), the
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Table 3
Performance analysis on heuristic callback of BDM with |T'| = 30
BDM-3 BDM
|P| VT PT #opt 2(%) #node t (seconds) #opt g(%) #node t (seconds)
10 1 PT-D 8 0.00 12902.9 50.3 8 0.00 4129.3 24.0
PT-S 5 2.45 126,216.0 2757.6 5 1.85 96,351.5 2748.3
PT 5 2.46 198,124.6 2979.0 5 1.28 178,248.3 2938.0
2 PT-D 8 0.00 427.0 0.9 8 0.00 217.6 1.0
PT-S 8 0.00 712.9 4.2 8 0.00 576.5 4.7
PT 8 0.00 1753.4 4.1 8 0.00 638.4 2.9
3 PT-D 8 0.00 1982.1 6.9 8 0.00 890.5 4.7
PT-S 8 0.00 7814.9 79.0 8 0.00 8595.9 104.3
PT 5 1.69 358,385.3 2713.4 8 0.00 12,382.1 71.2
20 1 PT-D 0 33.52 171,660.4 7200.2 0 30.97 155,677.3 7200.2
PT-S 0 33.03 96,923.0 7200.2 0 32.67 87,307.3 7200.2
PT 0 47.45 149,452.1 7200.2 0 45.81 136,807.0 7200.2
2 PT-D 4 19.31 82,959.1 3606.4 4 17.58 69,901.5 3610.2
PT-S 4 15.58 52,458.6 3625.9 4 14.14 54,157.6 3626.7
PT 4 23.08 95,087.4 3628.0 4 21.47 103,456.0 3628.4
3 PT-D 1 25.32 196,756.0 6361.0 4 15.95 122,127.3 4709.5
PT-S 2 22.27 116,714.0 5917.3 2 15.21 113,111.9 6151.3
PT 1 32.51 197,168.0 6755.4 1 30.52 163,867.0 6675.5
All 79 14.37 103,749.9 2566.0 85 12.64 72,691.3 2286.7

average time spent for separating lifted cover cuts (z..,), the average time spent for separating infea-
sible path elimination constraints (z,), the average time for the heuristic callback function (#;), the
average time spent for solving the TSPTW subproblems (¢7sp7w), and the average number of lifted
cover cuts and infeasible path elimination constraints identified (#cover and #IPEC, respectively).
All computing times are given in seconds.

The results of Table 4 indicate that the BSP is a challenging VRP with profits, and that the gen-
erated set of benchmark instances represent difficult BSP test cases. Indeed, the average percentage
gap at the root node is about 70%. However, the final average gap obtained by BDM is significantly
reduced to about 16%, demonstrating the effectiveness of the proposed method. Regarding the dif-
ferent valid inequalities, the table shows that several lifted cover cuts and infeasible path elimination
constraints are identified. Their use is effective not only at the root node but also during the enu-
meration tree. However, the corresponding separation times are relevant as shown by columns 7.,ye;
and ¢,. BDM computes optimal solutions for 135 of 288 instances. The CPU time results show that
both the heuristic and the TSPTW subproblems can be efficiently solved.

Table 5 gives an overview of the results of Table 4 as a function of the profit tables and the ve-
hicle types. The table reports the total number of instances solved to optimality (#opt) and the
average of the final gaps computed (g(%)) for each main parameter. The overview shows that
the profit tables based on the uniform profits (variant PT) are more challenging for our method,
as testified by the number of instances solved to optimality (37 over 96 instances) and the final
average percentage gap equal to 21.5%. Regarding the different vehicle types, the table shows
that instances with lower vehicle capacities (capacity equal to 30 people) are more difficult than
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Table 4
Detailed result of BDM on small-sized instances
P |T| VT PT  #inst #opt oo (%) g (%) #node t (seconds) sy feover 1p Lspw tn  #Hcover #IPEC
10 30 1 PT-D 38 8 64.33 0.00 4129.3 24.0 0.1 53 28 03 0.2 86.3 675.1
PT-S 8 5 62.58 1.85 96,351.5 2748.3 4.5 2584 306.5 8.6 3.4 5840.5 69,025.1
PT 8 5 5534 1.28 178,248.3 2938.0 2.3 348.8 3457 108 7.2 5137.5 85,107.1
2 PT-D 38 8 43.40 0.00 217.6 1.0 0.1 0.3 0.2 0.1 0.0 3.6 52.0
PT-S 8 8 55.56 0.00 576.5 4.7 0.1 1.1 0.6 02 0.0 30.6 280.0
PT 8 8 48.25 0.00 638.4 2.9 0.1 1.0 0.5 02 0.0 22.5 223.0
3 PT-D 8 8 54.54 0.00 890.5 4.7 0.1 1.2 0.6 0.2 0.1 30.8 167.9
PT-S 8 8 39.02 0.00 8595.9 104.3 0.8 16.0 149 0.8 0.3 9443 5074.3
PT 8 8 52.29 0.00 12,382.1 71.2 0.5 19.1 134 0.8 0.5 3153 5179.0
10 60 1 PT-D 8 4 70.02 426 81,592.1 4325.6 0.5 535.1 487.5 34 9.5 5204.6 19,841.5
PT-S 8 2 56.60 5.65 50,479.0 5534.1 2.2 4133 4463 3.5 53 4957.8 15,555.1
PT 8 1 69.06 12.72 90,724.9 6635.6 1.2 663.0 589.0 4.0 9.4 42919 22,546.6
2 PT-D 8 8 64.23 0.00 734.6 132 02 29 1.4 02 0.1 53.5 178.4
PT-S 8 8 59.99 0.00 830.6 29.5 0.1 3.0 1.4 0.1 02 53.6 154.3
PT 8 8 60.87 0.00 13,268.8 234.6 04 539 41.5 0.8 0.7 466.1 5518.8
3 PT-D 8 8 67.12 0.00 53,164.4 1462.9 0.5202.2 73.1 1.0 53 11250 42153
PT-S 8 4 61.38 1.02 66,585.8 4437.1 1.9 3504 3542 3.8 8.4 3133.0 17,465.3
PT 8 2 66.76 7.88 99,069.3 5478.4 2.0 673.7 6454 54127 1743.5 35,203.1
20 30 1 PT-D 8 0 83.56 30.97 155,677.3 7200.2 13.4 563.7 1079.1 134.8 11.9 3663.5 90,567.9
PT-S 8 0 8798 32.67 87,307.3 7200.2 12.6 365.9 791.0 116.0 7.5 2383.5 66,002.3
PT 8 0 9248  45.81 136,807.0 7200.2 9.1 579.9 11039 122.5 11.3 2237.4 10,9731.6
2 PT-D 38 4 79.17 17.58 69,901.5 3610.2 266.4 639.0 1308.4 430.9 3.1 4243.8 30,1860.3
PT-S 8 4 7993 14.14 54,157.6 3626.7 141.4 515.6 1025.5 326.1 5.5 8986.4 21,7381.5
PT 8 4 8320 21.47 103,456.0 3628.4 57.6 689.1 971.0 252.2 3.4 11,968.0 26,9260.4
3 PT-D 38 4 80.07 1595 122,127.3 4709.5 23.1 4429 832.6 147.3 6.0 3833.4 121,056.3
PT-S 8 2 80.25 1521 113,111.9 6151.3 18.5 342.8 621.1 107.4 6.8 37134 86,029.0
PT 8 1 85.77  30.52 163,867.0 6675.5 16.3 513.5 766.7 119.0 12.3 4480.1 113,779.4
20 60 1 PT-D 8 0 81.54 39.11 40,514.3 7200.4 3.8 545.6 720.6 264 5.7 11009 11,518.1
PT-S 8 0 87.54 53.07 22,171.0 7200.4 19.6 358.2 5859 17.0 5.6 1583.1 8825.9
PT 8 0 88.94 50.65 31,441.5 7200.4 8.1 500.8 927.8 31.4 50 980.4 15,196.5
2 PT-D 8 4 82.10 19.77 84,886.9 6073.3 16.4 746.9 1348.8 117.6 3.9 3842.0 74,393.5
PT-S 8 1 84.50 28.13 65,872.3 6659.3 12.4 528.3 8709 59.9 48 1777.0 43,563.0
PT 8 0 88.31 39.19 96,351.4 7200.3 11.6 878.0 1278.7 77.5 11.4 15354 73,268.9
3 PT-D 8 0 84.17 3427 54,532.0 7200.3 4.8 597.7 613.5 283 14.0 1193.7 14,331.5
PT-S 8 0 81.36 46.55 34,710.0 7200.3 18.3 418.3 519.4 19.7 11.6 1021.8 10,680.8
PT 8 0 86.49 48.72 47,700.3 7200.3 14.7 5453 6169 219 11.8 721.3 14,776.3
All 288 135 71.05 16.55 62,740.8 2933.2 19.2 366.2 534.6 62.0 5.5 2614.5 54,585.0
Table 5
Results overview on the small-sized instances
Profit tables #opt 2(%) Vehicle types #opt 2(%)
PT 37/96 21.5 25/96 23.2
PT-D 56/96 13.5 65/96 11.7
PT-S 42/96 16.5 45/96 16.7
© 2022 The Authors.
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instances involving larger vehicles (with capacity up to 60 people), as also testified by the final
average percentage gaps.

7.3. Results of the ILS algorithm

This section reports on the computational experiments performed with the use of the proposed
ILS metaheuristic. The packing and routing moves (see Section 6.3) are standard solution mod-
ification mechanisms that have proven to be effective for BSP-related problems. Using the afore-
mentioned moves as the basis for comparisons, we perform computational experiments to as-
sess the effectiveness of the MIP-based moves. We consider the following versions of the ILS
algorithm.

» ILS-1: the basic implementation of the ILS using only packing and routing moves (without MIP-
based moves);

* ILS-2: version ILS-1 equipped with GAP moves;

 ILS-3: version ILS-1 equipped with OPTW/TOPTW moves;

 ILS: the complete version of the ILS, equipped with all move types.

The four ILS versions were tested on instances with 20 POIs, 60 tourist groups and a maximum
bus tour duration of four hours. Each run was terminated after the completion of 600 CPU sec-
onds, or 200 nonimproving iterations, that is, parameters 7, and I, are set equal to 600 and 200
in Algorithm 2, respectively (the values of the parameters were identified as results of preliminary
experiments, which were conducted to identify good parameter settings). The obtained results are
provided in Table 6. Each row corresponds to a single benchmark instance. For sake of the ex-
position, we name a benchmark instance as xP-yT-zTW-tVT-IMV-mat represents a BSP test case
that involves x POls, y tourist groups, z € {4, 8} maximum tour duration, ¢ € {1, 2, 3} the vehicle
type, / € {1, 3, 5, 00} maximum visits per POI (L), and mat type of profit matrix. Column Profit
reports the best solution value and column ¢ (seconds) reports the computing time in seconds. For
ILS-2, ILS-3, and ILS, column impr (%) reports the solution improvement percentage with respect
to ILS-1 solution.

For the complete version ILS, column 7y, t0piw» and 5, provides the computational time re-
quired for solving the OPTW, TOPTW, and GAP models (MIP-based moves), respectively.

In terms of the solution profit, it is evident that the incorporation of the MIP-moves leads to
significant solution improvements. Incorporating the GAP moves (ILS-2) in the basic scheme
(ILS-1) improves the solution quality obtained for 22 of the 36 test cases, with an average im-
provement of 0.24%. The required CPU times are significantly increased, however the heuristic
remains very fast (about four CPU seconds, on average). The solution improvement effect is
stronger for the OPTW/TOPTW moves (ILS-3). Compared to the basic scheme (ILS-1), the
OPTW/TOPTW moves manage to improve 32 of the 36 solutions, whereas the average improve-
ment is about 3.2%. However, the CPU times required for solving the OPTW and TOPTW models
increase the average total run time to about 226 seconds. The complete algorithm version (ILS)
outperforms all three other versions, regarding the profit objective for all 36 benchmark instances,
with an average total run time of about 202 seconds. This is lower than the ILS-3 version, since
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Table 7
Analysis on the optimization-based moves: relocation, 2-opt, and packing moves
ILS-1-a ILS-1-b ILS-1-c ILS-4

™ PT g(%) (%) g(%) (%) g(%) (%) (%) (%)
4TW PT —0.28 16.6 0.48 32 18.77 45.0 —0.11 20.9
PT-D 1.12 14.2 0.36 —0.3 35.14 33.5 0.11 37.8
PT-S 0.69 24.5 —0.50 0.6 6.65 38.3 —0.07 23.2
8TW PT 1.74 12.8 2.33 5.3 14.06 28.0 —0.08 5.1
PT-D 1.51 -8.1 0.68 —12.9 35.71 33.1 0.07 27.6
PT-S 1.99 4.5 1.02 0.7 5.36 20.3 —0.04 2.7
1.28 10.7 0.86 —0.5 21.63 32.8 —0.01 12.1

in the complete version half of the MIP-based moves correspond to the solution of the easier
GAP model.

To further verify the effectiveness of the ILS moves, we also considered the following versions of
the basic implementation ILS-1 (see also Section 6.3.1):

» ILS-1-a: without group relocation moves;
» ILS-1-b: without the option of reversing a route segment in the 2-opt moves;
* ILS-1-c: without the packing moves (group relocation and group swap).

To verify the impact of the packing moves on algorithm ILS, we also considered an additional
version of the algorithm, denoted as IL.S-4, which is obtained by disabling the packing moves.

For these experiments, we considered the instances with |P| = 20 and |T| = 60. In particular,
we analyze the results obtained by grouping the instances based on the type of TW constraints,
that is, four-hour tours (named 4TW) and eight-hour tours (8TW), for a total of 36 x 2 =72
instances.

The results obtained are summarized in Table 7. For each version of implementations and
group of instances (type of TW and profit matrices “PT”), the table shows the average per-
centage gaps of the different versions with respect to the basic version ILS-1, that is, g(%) =
100 x (z(ILS-1) — z(ILS-1-x))/z(ILS-1), x € {a, b, ¢}, where z(ILS-1) and z(ILS-1-x) are the total
sum of the profits of the instances in the group for ILS-1 and ILS-1-x, respectively. For version ILS-
4, column g(%) gives the average gaps of algorithms ILS and ILS-4. For all the algorithm versions
considered, columns #(%) report the average percentage gap of computing times. The last line of
the table reports the average gaps computed over the different group of instances. In the table, be-
cause of the maximization objective, a gap g(%) greater than zero indicates that the corresponding
version shows worse average performance with respect to the reference version. Conversely, regard-
ing columns #(%), a gap greater than zero indicates that the corresponding version has improved
average performance with respect to the reference version.

The results obtained can be summarized as follows:

* The results of version ILS-1-c shows that the packing moves greatly play a key role in improving
the quality of the solutions of the basic version ILS-1 and that the additional computational
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times is worth it. The moves are particularly useful for profit matrices PT-D showing dissimilar
preferences of tourists among the POIs, a case close to the practice.

* The comparison between ILS-1-a and ILS-1-c shows that the main source of the improvements
of ILS-1-c can be attributed to the group swap moves. Regarding the group relocation moves,
because the size of a group ranges in [1, 5] which is relatively small compared to the vehicle
capacity (30 and 60), this type of move could be useful being the group sizes small. Indeed, the
group relocation moves are useful if some buses have some empty seats in a BSP solution, that is,
if Y jex Ok > X jer q;- For example, as shown in Table 1, for the instances with 30 groups, the
total number of available seats is a bit larger than the number of people.

* The analysis of version ILS-1-b shows that removing the reversing of a route segment produces
on average worse solutions as shown by the average gap equal to about 1%. This is particularly
true for the instances with eight-hour tours (§TW) showing weaker TW constraints than the 4TW
group of instances.

* The results of version ILS-4 indicate that ILS-4 produces on average slightly improved solutions
than ILS, at a slightly lower average computing time. However, it is worth noting that on the
profit matrices of type PT-D, ILS-4 obtains on average worse results than ILS, thus showing the
importance of using the packing moves for profit matrices of type PT-D.

Table 8 reports a comparison between the exact method BDM and the ILS algorithm on the set
of instances involving up to 20 POIs and 30 groups. For sake of the comparison, five ILS executions
were made, each using a different seed value for the various random decisions. Each row of Table 8
corresponds to a set of eight benchmark instances (four L values and two bus tour duration limits).
Average values over the eight instances are given as follows: Column Profit reports the average total
profits and column ¢ (seconds) provides the average CPU time in seconds. Since ILS was run five
times for each test set, columns Best profit, Avg profit, Best impr (%), and Avg impr (%) provide
the total profit of the best solutions found (over the five runs), the average profit value (over the
five runs), the percentage of profit improvement of the best ILS solutions with respect to the BDM
solutions, the percentage of profit improvement of the average ILS solutions (over the five runs)
with respect to the BDM solutions.

The obtained results demonstrate that the proposed ILS method is effective for the BSP model.
For the instances with just 10 POIs (the majority of which were optimally solved by BDM) ILS
matched or improved the obtained BDM solutions. ILS improves BDM solution objectives for 8
of 18 test sets and the average improvement is about 0.09%. In addition, ILS appears to be sig-
nificantly faster than BDM. For the instances of 20 POIs, ILS superiority is particularly striking.
Indeed, ILS outperforms BDM both in terms of solution profit and computing times. Overall, the
ILS computed slightly worse solutions only for two instances. The average solution profit increase
managed by the ILS method compared to the BDM is about 6.53% over all the test instances
considered in Table 8.

Finally, Table 9 provides the results obtained by applying the proposed ILS method on larger
BSP instances, involving up to 40 POIs and 60 groups, where again 5 ILS executions were
made in order to attest its effectiveness over repeated runs. The same instance grouping and
columns as in Table 8 are used. The results reported serve as a basis for future algorithmic
comparisons.
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Table 8
Comparison results on small-sized instances
BDM ILS
|P| |T| VT PT Profit t (seconds) Best profit  Avg profit  Best impr (%)  Avg impr (%)  t (seconds)
10 30 1 PT-D 18,078 24.0 18,078 18,078 0.00 0.00 1.5
PT-S 13,559 27483 13,565 13,565 0.04 0.04 3.5
PT 14,736 2938.0 14,755 14,748.6 0.13 0.09 44
2 PT-D 16,801 1.0 16,801 16,801 0.00 0.00 0.7
PT-S 14,308 4.7 14,308 14,307.4 0.00 0.00 1.3
PT 14,701 2.9 14,701 14,698.6 0.00 —0.02 1.2
3 PT-D 18,024 4.7 18,028 18,028 0.02 0.02 1.1
PT-S 14,398 104.3 14,398 14,398 0.00 0.00 23
PT 15,189 71.2 15,189 15,172 0.00 —0.11 2.7
100 60 1 PT-D 34,097 4325.6 34,120 34,120 0.07 0.07 5.3
PT-S 27,061  5534.1 27,108 27,102.2 0.17 0.15 12.7
PT 28,312 6635.6 28,643 28,585.2 1.17 0.96 11.7
2 PT-D 35,580 13.2 35,580 35,580 0.00 0.00 1.4
PT-S 30,508 29.5 30,508 30,421.6 0.00 —0.28 2.6
PT 29,758 234.6 29,758 29,724 0.00 —0.11 3.2
3 PT-D 35923 14629 35,908 35,848.2  —0.04 —0.21 4.5
PT-S 30,225  4437.1 30,227 30,226.8 0.01 0.01 8.0
PT 30,228  5478.4 30,287 30,196.8 0.20 —0.10 7.2
200 30 1 PT-D 11,023 7200.2 12,227 12,190 10.92 10.59 27.8
PT-S 9712 7200.2 9842 9820 1.34 1.11 388.6
PT 8425  7200.2 9047 8975.8 7.38 6.54 238.5
2 PT-D 9776 3610.2 10,188 10,150.2 4.21 3.83 244.9
PT-S 10,102 3626.7 10,262 10,206.8 1.58 1.04 340.6
PT 8235 36284 8554 8425.2 3.87 2.31 307.6
3 PT-D 10,947 4709.5 11,666 11,664.8 6.57 6.56 133.2
PT-S 10,229  6151.3 10,298 10,257.2 0.67 0.28 353.2
PT 8461  6675.5 8885 8805.4 5.01 4.07 295.9
20 60 1 PT-D 17,622 7200.4 24,220 24,185.4  37.44 37.25 116.8
PT-S 11,473 7200.4 14,635 14,490 27.56 26.30 4539
PT 15,452 7200.4 16,893 16,700.4 9.33 8.08 352.4
2 PT-D 20,844 6073.3 23,253 23,253 11.56 11.56 202.2
PT-S 14,780  6659.3 15,744 15,642.8 6.52 5.84 430.4
PT 15,721  7200.3 16,872 16,554.2 7.32 5.30 440.9
3 PT-D 15,700  7200.3 24,891 24,776.6  58.54 57.81 58.4
PT-S 9672 7200.3 15,669 15,612.4  62.00 61.42 436.9
PT 11,095 7200.3 17,486 17,244.6  57.60 55.43 365.1
All 640,755  2933.2 682,594 680,556.2 6.53 6.21 146.2

Both BDM and ILS algorithms could be useful in supporting the decision-making in a sight-
seeing or travel company. As mentioned above, the BSP deals with a tactical problem faced
by a company that wants to plan its bus tours and activities in anticipation. The designed bus
routes can be part of sightseeing packages which are offered directly to tourists or sell to travel
agencies as a proposal for touristic packages. According to the performance of BDM and ILS, the
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Table 9

ILS results on instances with up to 40 POIs and 60 groups

H. Qian et al. / Intl. Trans. in Op. Res. 0 (2022) 1-35

|P| |T| VT PT Best profit  Avg profit t (seconds) |P| |T| VT PT Best profit  Avg profit t (seconds)
30 30 1VT PT-D 11,014 10,863.6  87.6 40 30 1VT PT-D 7759 7559.2  101.6
PT-S 8113 8016.8 475.1 PT-S 5326 5216.4 282.3
PT 8066 7851.4 3074 PT 5661 55234 214.1
2VT PT-D 9536 9372.8 338.8 2VT PT-D 6789 6560.2 214.1
PT-S 8357 8211.6  554.6 PT-S 5385 5253.4 4164
PT 7749 7622 481.7 PT 5503 5370 378.0
3VT PT-D 10,656 10,552 196.6 3VT PT-D 7524 72924 1169
PT-S 8364 8280.2  509.0 PT-S 5442 5373.8  389.9
PT 8101 7957.6 4344 PT 5710 5638.6 274.8
30 60 I1VT PT-D 22,041 21,759.6  194.9 40 60 1VT PT-D 15,616 15,314.2  212.0
PT-S 15,955 15,674 471.4 PT-S 10,483 10,346.4  382.7
PT 15,482 15,185.4  328.0 PT 10,380 10,160.8  316.8
2VT PT-D 21,214 21,105.2  507.6 2VT PT-D 14731 14274.2  346.3
PT-S 17,742 17,474.6  600.9 PT-S 11,400 11,0952 590.2
PT 15,783 15,376.8  584.6 PT 10,377 10,075.8  573.0
3VvT PT-D 22,357 22,236.2  290.9 3VT PT-D 15,610 15,297.8  257.3
PT-S 17,503 17,275.6  547.7 PT-S 11,381 11,173.2  504.8
PT 16,091 15,756.4  490.9 PT 10,673 10,399.6 4229

computational times can be compatible with the operational requirements. For small-sized in-
stances, BDM can find optimal solutions within a limited amount of computing time. For larger
instances, the ILS is also applicable and its computing time can be tailored depending on the
operational requirements. Also, in some situation where last-minute requests are encountered or
some requirements are changed, a new solution can be efficiently obtained by performing local
changes to an existing plan.

8. Conclusions and future research

In this paper, a new VRPP is introduced, called the BSP. The BSP calls for the determination of bus
routes that maximize the collected profit enjoyed by tourists on board. To do so, decisions for two
levels have to be jointly made: assignment of tourists to bus routes, routing of bus routes to POIs
offered by the touristic destination considered. The BSP model generalizes the known challenging
VRPP, such as the team OP with TW. In particular, it can be viewed as a generalization of the
TTDP by considering multiple tours and different tourist preferences on the POI locations.

The paper proposes a BSP mathematical formulation. Based on this formulation, an exact logic-
based Benders decomposition methodology is designed and presented. In addition, a metaheuristic
algorithm based on an ILS framework is proposed, equipped with move types which solve MIP
subproblems. The exact and heuristic algorithms are extensively assessed on a set of 576 newly con-
structed BSP benchmark instances. These test instances have been constructed to represent chal-
lenging BSP instances of diverse characteristics regarding several aspects of the problem, such as
the size of POI and tourist group sets, composition of the bus fleet, duration of the sightseeing tours
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and preferences of tourists to POIs. Several experiments aimed at testing the effectiveness of the var-
ious algorithmic components are performed and reported. The obtained results demonstrate that
BSP instances with up to 20 POIs and 30 tourist groups can be consistently solved to optimality by
the proposed exact method. In addition, high-quality solutions can be obtained by the proposed
metaheuristic algorithm for instances involving up to 20 POIs and 60 groups and instances with up
to 40 POIs and 60 tourist groups were solved by the metaheuristic algorithm.

We see two main topics for future research. First, we aim to investigate alternative mathematical
formulations, from which deriving new dual bounds. In particular, we want to investigate set
partitioning like formulations strengthened by adding valid inequalities and corresponding dual
bounds computed in a column generation fashion. It is worth noting that, due to the structure
of the BSP objective function, the classical set-partitioning formulation adopted to solve several
variants of the vehicle routing problem (including problems with profits) cannot be used directly
to model the BSP. Moreover, as pointed out also by Gavalas et al. (2014), TTDPs might have ad-
ditional, complex operational requirements and constraints, such as accessibility features of sites,
each bus can perform multiple routes during its working period, multiple TW, mandatory POIs
preferences, to name a few. Hence, further work will be needed to investigate how these additional
requirements can be embedded into our solution approaches. Furthermore, to further test the
solution algorithms, future work will also focus on collecting data from real-world applications of
the BSP.
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