
25 November 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Cacchiani V.,  Contreras-Bolton C.,  Escobar-Falcon L.M.,  Toth P. (2023). A matheuristic algorithm for the
pollution and energy minimization traveling salesman problems. INTERNATIONAL TRANSACTIONS IN
OPERATIONAL RESEARCH, 30, 655-687 [10.1111/itor.12991].

Published Version:

A matheuristic algorithm for the pollution and energy minimization traveling salesman problems

Published:
DOI: http://doi.org/10.1111/itor.12991

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/897298 since: 2024-02-23

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1111/itor.12991
https://hdl.handle.net/11585/897298


Intl. Trans. in Op. Res. xx (2021) 1–33

A Matheuristic Algorithm for the Pollution and Energy
Minimization Traveling Salesman Problems

Valentina Cacchiania, Carlos Contreras-Boltonb, Luis Miguel Escobar-Falcónc and Paolo
Totha,∗

aDEI, University of Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy
bDepartamento de Ingenierı́a Industrial, Universidad de Concepción, Edmundo Larenas 219, Concepción 4070409, Chile

cProgram of Systems Engineering, Universidad Libre, Belmonte Av. Las Américas, Pereira 660001, Colombia
E-mail: valentina.cacchiani@unibo.it [V. Cacchiani]; carlos.contreras.b@udec.cl [C. Contreras-Bolton];

luism.escobarf@unilibre.edu.co [L.M. Escobar-Falcón]; paolo.toth@unibo.it [P. Toth]

Received DD MMMM YYYY; received in revised form DD MMMM YYYY; accepted DD MMMM YYYY

Abstract

The Pollution Traveling Salesman Problem (PTSP) and the Energy Minimization Traveling Salesman Problem
(EMTSP) generalize the well-known Asymmetric Traveling Salesman Problem by including environmental issues
and the goal of reducing carbon emissions. Both problems call for determining a Hamiltonian tour that, in the
PTSP, minimizes a function of fuel consumption and driver cost (where the fuel consumption depends on the dis-
tance travelled, the vehicle speed and the vehicle load), while, in the EMTSP, minimizes a function depending on
the vehicle load and the traveled distances. For both the PTSP and the EMTSP, we propose a matheuristic algo-
rithm, that uses the solution of the Linear Programming (LP) relaxation of a Mixed Integer Linear Programming
(MILP) model for the considered problem to determine good initial feasible solutions, applies a multi-operator
genetic algorithm to improve these solutions, and refines the best solution found through an Iterated Local Search
procedure. In order to evaluate the performance of the proposed matheuristics, we compare them with exact and
heuristic algorithms from the literature on benchmark instances of both problems.

Keywords: Pollution Traveling Salesman Problem; Energy Minimization Traveling Salesman Problem; Matheuristic algorithm;
Linear Programming relaxation

1. Introduction

We study two generalizations of the Asymmetric Traveling Salesman Problem (ATSP), both focusing
on environmental issues: given a set of customers to be visited by a vehicle, the goal is to reduce its
impact on the environment. The Pollution Traveling Salesman Problem (PTSP) was recently introduced

∗Author to whom all correspondence should be addressed (e-mail: paolo.toth@unibo.it).

1



in Cacchiani et al. (2018): it requires to determine a Hamiltonian tour minimizing pollution, i.e., fuel
consumption (dependent on vehicle speed and load), but also accounting for driver costs. The Energy
Minimization Traveling Salesman Problem (EMTSP) was newly introduced in Wang et al. (2020): it
requires to find a Hamiltonian tour minimizing energy: the latter is measured as the sum, over all arcs,
of the products between distance and vehicle load (including curb weight).

In recent years, many works about routing problems with the goal of reducing pollution and energy
consumption have appeared in the literature (see, e.g., the three surveys by Demir et al. (2014), Bektaş
et al. (2019), and Moghdani et al. (2020)). Solution approaches, proposed in the latest years, include
heuristic algorithms (see, e.g., Andelmin and Bartolini (2019)), matheuristic methods (see, e.g., Mac-
rina et al. (2019)), exact approaches (see, e.g., Andelmin and Bartolini (2017), Bruglieri et al. (2019a),
Bruglieri et al. (2019b), Yu et al. (2019)). These methods studied problems characterized by the goal
of reducing emissions and by real-life constraints: for example, the use of alternative fuel vehicles, het-
erogeneous fleet, time-windows, partial battery recharging. In the next sections, we focus our literature
overview only on the most relevant works for our study: we review works on the Pollution Routing Prob-
lem (PRP) and on the Energy Minimization Vehicle Routing Problem (EMVRP), in addition to those on
the PTSP and on the EMTSP.

1.1. Literature overview on PRP and PTSP

The PRP is a generalization of the Vehicle Routing Problem (VRP) aiming at minimizing distance,
greenhouse emissions, fuel, travel times and costs. It was introduced in Bektaş and Laporte (2011), and
extended in Demir et al. (2012) to allow for low travel speeds. The PTSP corresponds to the single
vehicle version of the PRP as modelled in Demir et al. (2012).

Bektaş and Laporte (2011) proposed a MILP model for the PRP: the objective function requires to
minimize fuel consumption, that depends on vehicle speeds and loads, and driver costs. In this model,
they discretized the speed, i.e., a set of speed levels was considered for each arc. They performed an anal-
ysis to evaluate the effects of various elements, such as time windows, demand variation, vehicle types
and number of vehicles. On the contrary, Fukasawa et al. (2016b) considered the speed as a continuous
decision variable within an interval. They proposed two mixed-integer convex optimization models. Be-
side these exact methods, the majority of the solution methods for the PRP are heuristic or metaheuristic
algorithms. Demir et al. (2012) proposed an Adaptive Large Neighborhood Search (ALNS) heuristic
algorithm for the PRP. It consists of two stages: the first stage applies an ALNS to the VRP with Time
Windows (VRPTW), while the second one executes a speed optimization algorithm. The latter is applied
on the solution computed in the first stage to determine the optimal vehicle speed along each arc of the
routes. Kramer et al. (2015b) proposed a matheuristic approach for the PRP, and for two green VRP vari-
ants: the EMVRP, and the Fuel Consumption VRP. This approach consists of an Iterated Local Search
algorithm based on a Set Partitioning formulation, combined with a speed optimization procedure.

Kramer et al. (2015a) studied a variant of the PRP, in which both speed and departure time from the
depot have to be optimized. The flexibility of the departure times allows using additional routes and
reducing costs. They proposed an exact algorithm for the optimization of speeds and departure times for
a fixed route, and embedded it in the Iterated Local Search algorithm proposed in Kramer et al. (2015b).
Dabia et al. (2017) proposed an exact method based on a branch-and-price algorithm for this variant. In



this algorithm, the master problem is solved by column generation. The pricing problem, consisting of a
speed and departure time elementary shortest path problem with resource constraints, is solved through a
labelling algorithm. A generalization of this problem is the Time-Dependent PRP (TDPRP): it takes into
account the limitation on the travel speed and the increase of the pollution due to the traffic congestion
during rush hours. Franceschetti et al. (2013) proposed an Integer Linear Programming (ILP) formulation
for this problem. Moreover, they developed an algorithm to optimize departure times and travel speeds
on a fixed route. Recently, Franceschetti et al. (2017) presented a metaheuristic ALNS algorithm for the
TDPRP embedding the speed optimization procedure of Franceschetti et al. (2013).

Another extension of the PRP is the bi-objective PRP: its two distinct objectives take into account
the minimization of fuel consumption and of driving time. The ALNS algorithm proposed in Demir
et al. (2012) was used to solve this extension by integrating four multi-objective methods: the weighting
method, the weighting method with normalization, the epsilon-constraint method and a hybrid method.
The bi-objective PRP was also studied in Costa et al. (2018). They obtained an approximation of the
Pareto front by a two-phase local search heuristic algorithm: the first phase solves a set of weighted sum
PRPs, while the second phase consists of applying a Pareto local search procedure.

Koç et al. (2014) studied a PRP with heterogeneous fleet of vehicles: they proposed a hybrid evolu-
tionary algorithm, combined with a speed optimization procedure. In addition, they performed analyses
on the effects of the different cost components (distance, fuel and emissions, driver), and of the hetero-
geneous fleet. Saka et al. (2017) considered the PRP with heterogeneous fleet and customer deadlines:
instead of using a speed optimization procedure to determine the optimal speed for each arc, the speed
optimization problem is used to estimate the cost of moves in a local search heuristic algorithm.

The pickup and delivery extension of the PRP was studied in Bravo et al. (2019) and in Majidi et al.
(2018). The former work considers the multi-objective feature of the problem and proposes an evolu-
tionary algorithm. The latter introduces a Mixed Integer Non-Linear Programming model, and proposes
an ALNS heuristic for solving the problem.

Cacchiani et al. (2018) introduced the PTSP: they presented a Mixed Integer Linear Programming
(MILP) model, enhanced with explicit subtour elimination constraints. This model was solved by a Cut-
and-Branch algorithm (C&B) and tested on instances with up to 50 customers. Only instances with
up to 25 customers were solved to proven optimality within the time limit of two hours. In order to
find solutions within shorter computing times, an Iterated Local Search algorithm (ILS) (based on the
framework by Lourenço et al. (2019)) was proposed and tested on the same set of instances.

1.2. Literature overview on EMVRP and EMTSP

The EMVRP was introduced by Kara et al. (2007), who presented a MILP model for the problem. Gaur
et al. (2013) considered four versions of the problem with specific characteristics (e.g., all customer
demands are the same, the vehicles have infinite capacities). They presented approximation algorithms
with different constant approximation factors (up to factor 4) for these versions.

Xiao et al. (2012) studied a problem very similar to the EMVRP, in which there is a fixed cost for
using a vehicle. They proposed a simulated annealing algorithm for its solution. The algorithm was
tested on benchmark instances of the VRP. Zachariadis et al. (2015) extended the problem to its pickup
and delivery variant. They proposed a branch-and-cut procedure for the solution of small-size instances



and a metaheuristic algorithm. The latter constructs a feasible solution and iteratively applies local search
moves (customer relocation, customer swap and 2-opt move). It accepts the highest-quality neighboring
solution, and employs diversification to escape from local optimal solutions. Computational experiments
were executed on instances of the EMVRP (taken from Xiao et al. (2012)) and of its pickup and delivery
version. Tiwari and Chang (2015) developed a block recombination algorithm: customers are divided
into clusters, each one representing a block, and block recombination techniques are used to determine
better solutions. Fukasawa et al. (2016a) proposed an arc-load model, enhanced with cycle elimination
constraints, and a set-partitioning formulation strengthened by additional constraints. They theoretically
compared these formulations and the one presented in Kara et al. (2007). In addition, they developed
a branch-cut-and-price algorithm to solve the set partitioning formulation. Computational experiments
showed the effectiveness of the proposed method.

For what concerns the single vehicle problem, Suzuki (2011) studied a TSP with time windows, in
which fuel consumption elements are taken into account: the objective function includes the vehicle
payload (i.e., it minimizes the distance that the vehicle must travel with a heavy payload), and the
fuel consumption while waiting at customer locations (i.e., it minimizes the sum of waiting times).
A metaheuristic algorithm, based on compressed annealing, was developed for this problem, and tested
on instances with up to 15 customers. The EMTSP was introduced by Wang et al. (2020): they pre-
sented a mathematical model, based on the multiple-vehicle version of the arc-load model by Fukasawa
et al. (2016a), and two lower bounds. They developed an approximation algorithm based on the classic
Christofides’s Heuristic for the symmetric TSP. In addition, they developed three heuristic algorithms
and a branch-and-bound approach. All solution methods were tested on instances with up to 30 nodes,
and the results were compared to those obtained by applying CPLEX to the mathematical model. The
branch-and-bound algorithm was capable of solving to optimality instances with up to 28 nodes within
the time limit of one hour.

1.3. Contributions

Both the PTSP and the EMTSP are hard problems whose solution requires non negligible computing
time. In this work, we propose a Matheuristic Algorithm (MA) with the aim of finding good solutions
for the PTSP and the EMTSP instances in short computing times. This algorithm employs the solution
of the Linear Programming (LP) relaxation of a MILP model for the considered (PTSP or EMTSP)
problem to construct an initial set of feasible Hamiltonian tours. Then, it applies a multi-operator Genetic
Algorithm (GA) to improve these solutions, by using effective crossover and mutation TSP operators
from the literature. Finally, it refines the best solution found by applying the ILS algorithm proposed in
Cacchiani et al. (2018). The contributions of this work are the following ones:

• to show the relationship between the PTSP and the EMTSP,
• to derive Hamiltonian tours to construct the initial population, by starting from the LP-solution of a

MILP model,
• to improve these tours through crossover and mutation operators, and by applying the ILS algorithm

as a refinement procedure,
• to fine tune all parameters of MA,
• to find better solutions than those found by the C&B and ILS algorithms, proposed in Cacchiani et al.



(2018) for the PTSP, on instances with up to 200 customers in short computing times,
• to find the best solution, in short computing times, for all (but two) instances presented in Wang et al.

(2020) for the EMTSP, most of which were solved to optimality by their branch-and-bound algorithm.

Section 2 is dedicated to the PTSP, while Section 3 to the EMTSP: in both sections we formally define
the considered problem and present a MILP model for it. The proposed MA algorithm is presented in
Section 4. In Section 5, we report the results of the parameter tuning for MA, and extensive compu-
tational experiments on benchmark instances of both problems. Finally, we draw some conclusions in
Section 6.

2. The Pollution Traveling Salesman Problem

2.1. Problem Definition

The PTSP is a single-vehicle variant of the PRP in which time-windows and capacity constraints are not
considered. The PTSP is defined on a complete directed graph G = (N ,A) where N = {0, . . . , n} is
the set of nodes, 0 is a depot andA is the set of arcs. For each arc (i, j) ∈ A, the associated non-negative
distance dij is given.

Set N0 = N \ {0} is the customer set. Each customer i ∈ N0 has a non-negative demand qi, and
a service time ti, and must be visited exactly once. A single vehicle with capacity D =

∑
i∈N0

qi is
available for visiting all customers. The driver wage per unit time is defined as ud.

The main novelty of the PTSP with respect to the TSP is that it takes fuel consumption into account
with the aim of limiting pollution. Fuel consumption varies according to two main elements: i) the
vehicle speed, that can be different on different arcs, but is kept fixed, along the same arc (i, j) ∈ A, for
the entire distance dij , and ii) the vehicle weight, that depends on the weight of the empty vehicle (curb
weight) and on the load it is carrying.

For what concerns the vehicle speed, we consider, as in Bektaş and Laporte (2011) and in Demir et al.
(2012), a discretized speed function defined by |R| non-decreasing speed levels: each r ∈ R corresponds
to a speed interval [vlr, v

u
r ] in the range [vl, vu] (where vl and vu are, respectively, the lower and upper

speed limits for the considered instance). As proposed in Bektaş and Laporte (2011), for each level
r ∈ R, we compute the average speed v̄r = (vlr + vur )/2. For each arc we can select a different speed
inside the discrete set of speed levels. The weight of the vehicle is expressed, for each arc (i, j) ∈ A,
as the sum of its curb weight w and the load fij carried by the vehicle on this arc. More precisely, we
adopt the fuel consumption expression proposed in Demir et al. (2012), which extends the one presented
in Bektaş and Laporte (2011) to allow for speeds lower than 40 kilometer/hour, and accounts for several
factors, such as engine features (friction, speed, efficiency), acceleration, road angle. In particular, for
a given arc (i, j) ∈ A of length dij , traversed at speed v by a vehicle carrying a load w + fij the fuel
consumption can be expressed as (see Demir et al. (2012)):

F (v) = λkNV dij/v + λβγdijv
2 + λwγαijdij + λγαijfijdij (1)

where λ = ξ/κψ and γ = 1/1000ηtfη are constants, β = 0.5CdρA is a vehicle specific constant,
αij = τ + g sin θij + gCr cos θij is an arc specific constant depending on the road angle θij of arc



(i, j), and on the acceleration τ (meter/second2). In particular, the first two terms of (1) represent the
speed-induced energy requirements, while the last two terms represent the load-induced energy require-
ments. The values of all the parameters, taken from Demir et al. (2012), are reported in Table A1 of the
Appendix.

The PTSP calls for determining the minimum cost Hamiltonian tour that departs from the depot and
visits each customer exactly once by serving its demand, where the cost is given by the sum of fuel
consumption and driver wage.

2.2. The PTSP MILP model

We present the MILP model proposed in Cacchiani et al. (2018), where, in addition to the classical binary
variables xij (i, j) ∈ A used to define which arcs compose the optimal Hamiltonian tour, the following
variables were employed to express the fuel consumption:

• non-negative variables fij representing the load on the vehicle on arc (i, j) ∈ A;
• binary variables zrij assuming value 1 if arc (i, j) ∈ A is traversed at speed level r ∈ R.

The MILP model for the PTSP reads as follows:

Min
∑

(i,j)∈A
λkNV dij

∑
r∈R

zrij/v̄
r +

∑
(i,j)∈A

λβγdij
∑
r∈R

zrij(v̄
r)2 (2)

+
∑

(i,j)∈A
λwγαijdijxij +

∑
(i,j)∈A

λγαijdijfij (3)

+ ud(
∑

(i,j)∈A

∑
r∈R

(dij/v̄
r)zrij +

∑
i∈N0

ti) (4)

subject to ∑
j∈N0

f0j = D (5)∑
j∈N0

fj0 = 0 (6)∑
j∈N

xij = 1, ∀i ∈ N (7)∑
i∈N

xij = 1, ∀j ∈ N (8)∑
j∈N

fji −
∑
j∈N

fij = qi, ∀i ∈ N0 (9)



qjxij ≤ fij ≤ (D − qi)xij ,∀ (i, j) ∈ A (10)∑
r∈R

zrij = xij , ∀ (i, j) ∈ A (11)∑
i∈S

∑
j∈N\S xij ≥ 1, ∀S ⊂ N , {0} ∈ S, |S| ≥ 2 (12)

xij ∈ {0, 1}, ∀ (i, j) ∈ A (13)
fij ≥ 0, ∀ (i, j) ∈ A (14)

zrij ∈ {0, 1}, ∀ (i, j) ∈ A, ∀r ∈ R (15)

The objective function consists of three main components to be minimized: (2) and (3) represent the
fuel consumption, as defined in (1), by taking into account, respectively, the energy required by speed
variations and the energy used to curry the curb weight and the load on the vehicle, while (4) corresponds
to the driver wage, where the term in the external brackets is the total tour duration which depends on
the speeds on the used arcs and on the service times at the customers. Constraints (5) and (6) ensure,
respectively, that the vehicle leaves full and returns empty at the depot. Constraints (7) and (8) guarantee
that each node is visited exactly once. Constraints (9) and (10) define the load of the vehicle on each
visited arc (and implicitly forbid subtours). Constraints (11) link the x and z variables by imposing that
exactly one speed level is chosen for each used arc (i, j) ∈ A. Finally, constraints (12) are the explicit
subtour elimination constraints proposed in Dantzig et al. (1954) for the ATSP, and constraints (13)-(15)
define the variable domains.

As in the PRP (Bektaş and Laporte (2011)), time window constraints can be included in the PTSP.
Let [ai, bi] be the time window in which customer i has to be visited, and yi an additional variable
representing the time at which customer i is visited by the vehicle (i ∈ N0). The time window constraints
are formally defined as:

ai ≤ yi ≤ bi, ∀i ∈ N0 (16)

yi − yj + ti + dij
∑
r∈R

zrij/v̄
r ≤M(1− xij), ∀i ∈ N , j ∈ N0, i 6= j, (17)

with M a large constant value.
When constraints (16) and (17) are not included in the MILP model, the optimal speed can be de-

termined a priori for every arc. This was observed by Kramer et al. (2015b) for the PRP with variables
representing continuous speed values: in that case, for each arc (i, j) ∈ A, the fuel consumption func-
tion including driver wages is a convex function (assuming that acceleration and road angle are null)
and, thus, the speed value that minimizes the fuel costs can be obtained as the minimum of the function
by nullifying its derivative. In our case, we deal with discrete speeds, hence the function is not con-
vex. However, since the number of speeds is finite, we can precompute the optimal speed for every arc
by enumerating all possible speeds and selecting the one achieving the smallest fuel consumption plus
driver cost. Indeed, the choice of the speed is independent of the vehicle load, and, when constraints (16)
and (17) are not imposed, also of the visiting sequence of the customers. We observe that, if the same
lower and upper speed limits vl and vu and the same number of speed levels |R| are used for all arcs,
then there is a single optimal speed value (or two, depending on the discrete set adopted). In the next
section, we present the simplified model for the PTSP with Precomputed Speeds (PTSP-PS).



2.3. The PTSP with Precomputed Speeds (PTSP-PS)

Once the speeds have been optimally precomputed for all arcs, model (2)-(15) can be rewritten as:

Min
∑

(i,j)∈A

λkNV
dij
v̄ij
xij +

∑
(i,j)∈A

λβγdij(v̄ij)
2xij

+
∑

(i,j)∈A

λwγαijdijxij +
∑

(i,j)∈A

λγαijdijfij

+ ud(
∑

(i,j)∈A

dij
v̄ij
xij +

∑
i∈N0

ti) (18)

subject to (5)− (10), (12)− (14),

where v̄ij represents the optimal speed to be used for travelling along arc (i, j) ∈ A. In this model,
variables zrij are not present, and are replaced by variables xij in (2) and (4), in addition, constraints (11)
are removed. In the following sections, we will refer to this model (instead of to model (2)-(15)), since
we do not deal with the time window constraints (16) and (17).

3. The Energy Minimization Traveling Salesman Problem

3.1. Problem Definition

The EMTSP is defined on a complete directed graph G = (N ,A) where N = {0, . . . , n} is the set of
nodes, 0 is a depot and A is the set of arcs. For each arc (i, j) ∈ A, the associated non-negative distance
dij is given. Set N0 = N \ {0} is the customer set. Each customer i ∈ N0 has a non-negative demand
qi, and must be visited exactly once. A single vehicle with capacity D =

∑
i∈N0

qi and curb weight w is
available for visiting all customers.

The EMTSP calls for determining a Hamiltonian tour that departs from the depot and visits each
customer exactly once by serving its demand, minimizing the sum, over all arcs, of the products between
the distance and the vehicle load (including the curb weight).

3.2. The EMTSP MILP model

By using variables xij and fij for all arcs (i, j) ∈ A, defined as in the PTSP formulation, the MILP
model for the EMTSP reads as follows:

Min
∑

(i,j)∈A

(wdijxij + dijfij) (19)

subject to (5)− (10), (12)− (14). (20)

The EMTSP constraints coincide with the constraints of the PTSP-PS. The objective function (19)



aims at the minimization of the energy consumed by the vehicle, measured, along each arc (i, j) ∈ A,
as the arc length dij times the total vehicle load on that arc, that is given by the curb weight w plus its
load fij .

Observation 1. The PTSP-PS is a (slight) generalization of the EMTSP.

Proof. The constraints of both problems are the same. To show that the objective function of the PTSP-
PS is more general than that of the EMTSP, we rewrite objective function (18) as follows:

Min
∑

(i,j)∈A

w [
1

w
(λkNV

dij
v̄ij

+ λβγdij(v̄ij)
2 + ud

dij
v̄ij

) + λγαijdij ] xij

+
∑

(i,j)∈A

λγαijdijfij

+ ud
∑
i∈N0

ti.

We observe that ud
∑
i∈N0

ti is a constant term and, thus, we can further rewrite the objective function as:

ud
∑
i∈N0

ti + Min
∑

(i,j)∈A

(wD
′

ijxij +D
′′

ijfij) (21)

with D
′

ij = 1
w (λkNV dij

v̄ij
+ λβγdij(v̄ij)

2 + ud
dij

v̄ij
) + λγαijdij and D

′′

ij = λγαijdij . Note that (21) has
the same form as (19), but the former corresponds to the latter only when D

′

ij = D
′′

ij .

4. Matheuristic Algorithm (MA)

The proposed MA consists of three phases: in the first phase (Section 4.1) several initial Hamiltonian
tours are built by starting from the solution of the LP-relaxation of the MILP model (corresponding to
(18), (5)-(10), (12)-(14) for the PTSP-PS, and to (19)-(20) for the EMTSP), the second phase (Section
4.2) is the core of the solution process corresponding to the GA algorithm, and is aimed at improving the
initial tours, and in the third phase (Section 4.3) an ILS refinement, proposed in Cacchiani et al. (2018),
is applied to further improve the solutions computed in the previous phase.

The only two differences in the application of MA to the PTSP-PS or to the EMTSP are in the first
phase, in which the appropriate model is used, and in the evaluation of the solution cost (during the
GA algorithm and the ILS refinement) that is based on the objective function of the corresponding
problem. In addition, in the PTSP-PS, we apply a preprocessing phase that computes, for each arc (i, j) ∈
A, the optimal speed before the construction of the starting solution. This computation is executed by
enumerating, for each (i, j) ∈ A, all the possible speeds vr (r ∈ R), and selecting the one (v̄ij) that
leads to the smallest value of the sum between the fuel consumption and the driver cost, expressed as in
objective function (18).



In Section 4.4 we report a summary of MA and its pseudo-code. The parameters of MA, that will be
presented in the following sections, are tuned according to a procedure described in Section 4.5, and the
chosen values are reported in Section 5.1.1.

4.1. Initial Hamiltonian tours

An initial population of Hamiltonian tours is computed by using five procedures based on three different
heuristic methods described in the following. Each procedure is applied with a given probability that
has been fine tuned (see Section 4.5). These heuristic algorithms include an LP-based heuristic, that is
executed on three different LP-solutions, a Random-Heuristic and a Nearest Neighbor-Heuristic, giving
rise to the five procedures. The considered heuristic methods are the following:

• Random-Heuristic: The tour is generated randomly. This algorithm is applied with probability PRH .
• Nearest-Neighbor-Heuristic: The tour is generated by applying the Nearest Neighbor Heuristic

(NNH) (Flood (1956)), that randomly starts from one of the nodes in N . This algorithm is applied
with probability PNNH .
• LP-based heuristic: The LP-based heuristic (described in Algorithm 2) is based on the LP-relaxation

of model (18), (5)-(10), (12)-(14) for the PTSP-PS, and model (19)-(20) for the EMTSP. This heuris-
tic generates a feasible solution by using a randomized NNH, based on the LP-solution (xij). In
particular, three LP-solutions x1, x2 and x3 are determined by Algorithm 1 (Computation of the LP-
solutions), and each of them is used in Algorithm 2 (LP-based heuristic). The latter generates a tour
based on the values assumed by the xij variables in the optimal LP-solution. In addition, it includes
randomization so that more than one tour can be obtained from the same LP-solution. This algorithm
is applied with probability PLPH (with PLPH = 1−PRH −PNNH), and the same probability
is then used to select x1, x2 or x3. The usefulness of the LP-based heuristic will be shown in Section
5: although many best solutions are obtained by MA even without applying the LP-based heuristic, it
allows the algorithm to find better solutions for the larger size instances.

Algorithm 1 (Computation of the LP-solutions) is based on the MILP model of the considered prob-
lem, that contains the classical subtour elimination constraints (SECs) proposed in Dantzig et al. (1954)
for the ATSP: to solve its LP relaxation we start with an empty set of SECs (denoted with F in the
description of Algorithm 1), and adopt the separation procedure proposed in Padberg and Rinaldi (1990)
to identify violated SECs, that are iteratively added to the LP-relaxed model. The LP-relaxed model is
solved by a general purpose solver (CPLEX in our experiments). The procedure is iterated until either no
violated SECs exist or k3 iterations have been executed. Parameters k1, k2 and k3 (with k1 < k2 < k3)
are used to store the LP-solutions obtained after, respectively, k1, k2 and k3 SECs have been added to
the model. In this way, three (generally different) LP-solutions can be used by Algorithm 2 (LP-based
heuristic). If less than k1 (k2 or k3, respectively) SECs are found, then we store in x1 (x2, x3, respec-
tively) the last obtained solution x. Parameters k1, k2 and k3 assume different values according to the
instance size.

In the description of Algorithm 2 (LP-based heuristic), x denotes the considered LP-solution, h the
last visited node and T the set of visited nodes. Algorithm 2 works as follows: the tour starts from node
h initialized to be the depot 0. Then, in order to find the successor node in the tour, we consider, with



Algorithm 1 Computation of the LP-solutions x1, x2 and x3

1: F ← ∅; l← 0
2: repeat
3: l← l + 1
4: x← solution of the LP-relaxation of the MILP model with respect to the SEC set F
5: if l = k1 then
6: x1 ← x
7: else if l = k2 then
8: x2 ← x
9: else if l = k3 then

10: x3 ← x
11: end if
12: S ← violated SEC found by the separation-procedure(x)
13: if S 6= ∅ then
14: add S to the SEC set F
15: end if
16: until S = ∅ or l = k3

17: if l < k1 then
18: x1 ← x
19: end if
20: if l < k2 then
21: x2 ← x
22: end if
23: if l < k3 then
24: x3 ← x
25: end if

probability Prinit (see Section 4.5), each unvisited node k, and determine the maximum value max of
the quantities xhk + xkh. The unvisited node j corresponding to the maximum value max is selected as
the next node in the tour, unlessmax = 0 at the end of the for loop. In that case (i.e., if no unvisited node
has been evaluated due to the random value r), we select the unvisited node j with the smallest distance
dhj . The selected node j is inserted in the tour, and becomes the last visited node h. The procedure is
repeated until we obtain a complete tour. Notice that the randomization occurs at line 7. Therefore, given
an LP-solution (xij), different tours can be obtained through Algorithm 2.

An example of the application of the LP-based heuristic is reported in Figure 1: the two arcs corre-
sponding to the solid arrows have been selected in the partial tour, and the last visited node is h. At
this iteration, the procedure considers all the unvisited nodes (indicated in gray), and all the potential
arcs (indicated by dotted arcs). For each unvisited node k, the procedure generates a random number r
between 0 and 1: if this number is larger or equal than Prinit, then the node is not evaluated at this
iteration. Otherwise, we compute the sum of the values of the variables xhk + xkh corresponding to the
two arcs connecting h and k. The node k (among all the evaluated gray nodes) giving the maximum
value of this sum, is selected as the next node j in the tour, and then it becomes the next node h.



Algorithm 2 LP-based heuristic(x)
1: h← 0
2: T ← {h}
3: repeat
4: max← 0
5: for k ∈ N \ T do
6: r ← rnd(0, 1)
7: if r <Prinit then
8: H ← xhk + xkh
9: if H > max then

10: max← H
11: j ← k
12: end if
13: end if
14: end for
15: if max = 0 then
16: j ∈ argmin`∈N\T {dh`}
17: end if
18: T ← T ∪ {j}
19: h← j
20: until a complete tour T is obtained

h
x

hk

x
kh

k

Fig. 1. Example of the application of the LP-based heuristic.

The initial population I0 of the Hamiltonian tours is obtained by Algorithm 3 (Initialization): it starts
by solving the LP-relaxed model to determine the three solutions x1, x2 and x3 with Algorithm 1 (Com-
putation of the LP-solutions), and then applies the five procedures described above to derive the initial set
of the Hamiltonian tours. Once a tour has been determined, in order to improve it, a 2-opt-improvement
procedure is executed. This procedure uses as arc costs the original distances dij (i, j) ∈ A, but each
time an improvement is possible, it checks if the value of the corresponding objective function (min-
imization of (18) for the PTSP-PS, and minimization of (19) for the EMTSP) is also improved, and
accepts the 2-opt move only in this case.



Algorithm 3 Initialization
1: x1, x2, x3← Computation of the LP-solutions
2: I0 ← ∅
3: for t← 1 to number of individuals do
4: r ← rnd(0, 1)
5: if r < PRH then
6: I0,t ← Random-Heuristic()
7: else if r < PRH + PNNH then
8: I0,t ← Nearest-Neighbor-Heuristic()
9: else

10: r′ ← rnd(0, 1)
11: if r′ < 0.33 then
12: I0,t ← LP-based heuristic(x1)
13: else if r′ < 0.66 then
14: I0,t ← LP-based heuristic(x2)
15: else
16: I0,t ← LP-based heuristic(x3)
17: end if
18: end if
19: I0,t ← 2-opt-improvement(I0,t)
20: I0 ← I0 ∪ {I0,t}
21: end for

4.2. Improvement through the multi-operator Genetic Algorithm GA

Genetic Algorithms are effective metaheuristic algorithms that have been successfully applied to solve
the ATSP and several its variants (Potvin (1996), Yuan et al. (2013), Morán-Mirabal et al. (2014), Groba
et al. (2015), Zhang et al. (2018)). Often these algorithms use only single operators for crossover and
mutation, disregarding the potential synergy of multi-operators. However, the crossover and mutation
operators can complement each other, generating a synergy which provides better results than those
obtained by using single operators (see e.g., Elsayed et al. (2011), Li et al. (2013), Contreras-Bolton
and Parada (2015), Mashwani et al. (2017)). We propose an approach based on a multi-operator Genetic
Algorithm (GA) that effectively combines several operators from the literature.

In the following sections, we describe GA and its components. In Section 4.2.1 we present the chro-
mosome representation and the fitness function. The crossover operators are described in Section 4.2.2,
while the mutation operators are illustrated in Section 4.2.3. Finally, Section 4.2.4 presents the genetic
parameters.

4.2.1. Representation and fitness function
A permutation representation is used, where each individual corresponds to a Hamiltonian tour. The
objective function, consisting of (18) for the PTSP-PS, and of (19) for the EMTSP, is used as fitness
function. For the PTSP-PS, the objective function requires to minimize the fuel consumption and the



driver wage, that depend on the speed and load of the vehicle in the traversed arcs. For the EMTSP, the
objective function is the minimization of the sum, over all arcs, of the products between the distance and
the vehicle load. In both cases, once a tour has been determined, the load over each arc is known. In addi-
tion, the optimal speed for each arc is known from the preprocessing phase. Therefore, the computation
of the fitness can be done in linear time with respect to the number of customers.

4.2.2. Crossover operators
Four different crossover operators are used: Order Based Crossover (OX2) (Syswerda (1991)), Distance
Preserving Crossover (DPX) (Freisleben and Merz (1996)), Heuristic Crossover (HX) (Grefenstette et al.
(1985)) and Uniform Nearest Neighbor (UNN) (Buriol et al. (2004)). The probabilities of choosing each
of these operators (POX2, PDPX , PHX , and PUNN ) are determined by the tuning procedure presented in
Section 4.5. As it will be shown in the computational results, the contribution of each operator is useful
to achieve the best solutions. A short description of each operator is reported:

• OX2: randomly select a subset of consecutive positions from the first parent and copy the correspond-
ing nodes in the offspring. Then, copy the remaining nodes from the second parent, according to the
order they have in the second parent, and connect all nodes with arcs based on the node order.
• DPX: the nodes contained in the first parent are copied into the offspring and all the arcs not in

common with the second parent are deleted, leading to a set of disconnected paths (note that some
paths could consist of a single node). These paths are then reconnected, by starting from a randomly
chosen path, without using any of the arcs that are contained in only one of the parents. In particular,
given a path that ends at node i, the nearest available neighbor node k among the initial nodes of the
remaining paths is taken and arc (i, k) is added to the tour, unless (i, k) is contained in one of the two
parents. The procedure is repeated until all paths have been reconnected in a tour.
• HX: first, a node is randomly selected to be the current node of the offspring. Then, the cheapest of

the two arcs, in the two parents, leaving that node is selected. The procedure is repeated to extend the
partial tour until a complete tour has been constructed. If the cheapest arc introduces a subtour (i.e.,
it connects the selected node with a visited node), then a random arc is chosen to extend the tour.
• UNN: initially, all arcs in common between both parents are copied into the offspring, leading to a

set of disconnected paths. The remaining arcs are inserted as follows: for each node i, corresponding
to the final node of a path, a true or false value is generated randomly with the same probability. If
the generated value is true (resp. false), then the arc which links node i to the next node in parent A
(resp. parent B) is copied into the offspring, if no restriction is violated (i.e., if the selected arc does
not create a subtour). If a violation occurs in any of the two cases, then the arc of the other parent is
considered. The resulting tour fragments are patched using the NNH algorithm.

4.2.3. Mutation operators
Three different mutation operators are used: exchange mutation (EM) (Banzhaf (1990)), Greedy Sub
Tour Mutation (GSTM) (Albayrak and Allahverdi (2011)), and 3-opt. Each operator is chosen based on
a probability (PEM , PGSTM , and P3opt) that is determined by the tuning procedure presented in Section
4.5. As for the crossover operators, each mutation operator gives a contribution in achieving the best
solutions. We report a short description of each operator:



• EM consists in exchanging two nodes of the tour: if an improvement is obtained, then the exchange
is applied, otherwise the original tour is not changed. The procedure is repeated |N | times.
• GSTM combines greedy techniques (i.e., operators that apply the move that provides the maximum

local gain) to reach a local minimum quickly, and the use of different parameters to favor diversifica-
tion. The method determines a partial tour by randomly selecting a starting node and an ending node
in the current tour with maximum distance defined in a given interval. Then, according to a given
probability, the partial tour is removed from the tour, and inserted in the cheapest way to again form
a tour, or perturbation operators, such as inversion or random mixing of the partial tour, are applied.
The parametrical structure of the operator prevents a stuck of the local solutions, and reaches good
solutions within short computing times. We refer the reader to Albayrak and Allahverdi (2011) for
further details.
• 3-opt operator consists of exchanging three arcs. In particular, we consider all the pairs of arcs, and

select, for each pair, the third arc randomly in a subset of ten arcs.

4.2.4. Genetic parameters
In addition to the probability of each crossover and mutation operator, the parameters involved in GA are
the population size, the maximum number of generation runs, and the probability of applying crossover
or mutation. The adequate definition of the parameters is directly related to the computational perfor-
mance of the evolutionary algorithms. All the GA parameters where tuned in order to achieve the best
performance. Details on the tuning process are presented in Section 4.5 and the parameter values are
reported in Section 5.1.1.

4.3. Refinement through the Iterated Local Search ILS

The last phase of MA consists of applying the ILS algorithm proposed in Cacchiani et al. (2018), where
it was used to solve the PTSP. In that case, we considered model (2)-(15), and solved to optimality
its LP-relaxation. A single initial tour was constructed as in the LP-based heuristic (Algorithm 2) but
without considering randomization. Then, the ILS algorithm was applied on the constructed tour.

Here, we apply ILS on the best solution T ∗ found by GA. For the sake of clarity, we report, in Al-
gorithm 4, the pseudo-code of the ILS presented in Cacchiani et al. (2018). With respect to the ILS in
Cacchiani et al. (2018) the difference is the starting solution on which ILS is applied: indeed, in Cacchi-
ani et al. (2018) a single tour was computed by an LP-based heuristic without randomization, while in
this work we first generate an initial population with the initialization algorithm, then apply the GA, and
execute ILS on the best tour found. ILS is made of three steps: perturbation, local search and acceptance
criterion.

Perturbation (lines 5–10) is applied on the current best solution, called s∗∗, that is initialized by the
tour T ∗. This step consists of executing a double-bridge move with probability Ppert and a scramble-
subtour move otherwise, and determines a new tour s

′
. In both cases, a random move is applied. The

double-bridge move consists of randomly removing four node-disjoint edges (A, B), (C, D), (E,F), (G,
H) and reconnecting them as (A, F), (G, D), (E, B), (C, H). The scramble-subtour move corresponds to
randomly choosing a path of the tour and randomly changing the order of its nodes.

Local search (lines 11–16) is applied on the local optimal solution s∗, and performs a 2-opt move



with probability Ploc, and an exchange improvement otherwise, thus determining a new tour s
′′
. The

2-opt move consists of iteratively exchanging two randomly chosen arcs until the first improvement is
found (or all exchanges have been tried), and the move is accepted only if an improvement is obtained.
The exchange improvement requires to exchange two randomly chosen nodes of the tour until the first
improvement is obtained (or |N | node exchanges have been tried): if an improvement is obtained, then
the exchange is performed, otherwise the original tour is kept. In both cases, we select the first improving
move.

Finally, the local optimal tour s∗ is updated (lines 17-21) as the best tour between s
′

and s
′′
, according

to the fitness function φ that gives the value of the PTSP-PS or EMTSP objective function. If s∗∗ has not
been improved forNnoimpr iterations (acceptance criterion, see lines 22-24), then a 2-opt-improvement
is applied on s∗∗. It consists of executing a 2-opt procedure by using as cost of each arc (i, j) ∈ A the
original distance dij but each time an improvement is possible, it checks if the (PTSP-PS or EMTSP)
objective function value is also improved, and accepts the change only in this case. Finally, we store in
s∗∗ the best solution between s∗ and s∗∗. The three steps of ILS are executed for Niter iterations.

All the ILS parameters where tuned in order to achieve the best performance. Details on the tuning
process are presented in Section 4.5 and the parameter values are reported in Section 5.1.1.

4.4. MA pseudo-code

The pseudo-code of MA is reported in Algorithm 5. A population of individuals is generated (lines 1-4)
by applying Initialization (Algorithm 3), and each individual is evaluated based on the fitness function.
Subsequently, the main loop of the algorithm (iterated on the maximum number of generations), pre-
sented in lines 5–25, is responsible for generating a new population from the current one. The selection
(line 8) is made in a tournament of three individuals, i.e., three individuals are randomly chosen, and the
best one is selected (Eiben and Smith (2015)). Then, based on the crossover and mutation probabilities
Pcross and Pmut, a new individual is possibly generated through a selection of several crossover and
mutation operators, as described in lines 11 and 16. When a new individual is obtained after applying
crossover and/or mutation, a 2-opt-improvement procedure (line 19) is executed to try to improve it.
Elitism is then applied (line 24), where the best parents of the old population Ig−1 replace Pelit of the
worst individuals generated in the current population Ig. The individual having the minimum value of the
fitness function is stored as the best tour T ∗ and ILS is applied (line 27) starting from this tour. Finally,
the best computed tour is returned. In the next section, we present the method used for tuning all the
parameters.

4.5. Parameter tuning method

Given the significant number of parameters used in MA, we adopted an effective automated method for
parameter tuning, called Iterated racing for automatic algorithm configuration (IRACE) and proposed
by López-Ibáñez et al. (2016). The IRACE is a software package that includes iterated racing procedures,
such as the F-race and Iterated F-race algorithms (Birattari et al. (2002), Birattari and Kacprzyk (2009),
Birattari et al. (2010)) and their extensions (e.g., a restart mechanism, the use of truncated sampling



Algorithm 4 Iterated Local Search (ILS)
1: T ∗ ← best tour obtained at the end of GA
2: s∗, s∗∗ ← T ∗

3: ni := 1
4: repeat
5: r′ ← rnd(0, 1)
6: if r′ < Ppert then
7: s′ ← double-bridge-move(s∗∗)
8: else
9: s′ ← scramble-subtour(s∗∗)

10: end if
11: r′′ ← rnd(0, 1)
12: if r′′ < Ploc then
13: s′′ ← 2-opt-move(s∗)
14: else
15: s′′ ← exchange-improvement(s∗)
16: end if
17: if φ(s′) < φ(s′′) then
18: s∗ ← s′

19: else
20: s∗ ← s′′

21: end if
22: if check-history(φ(s∗∗), Nnoimpr) then
23: s∗ ← 2-opt-improvement(s∗∗)
24: end if
25: if φ(s∗) < φ(s∗∗) then
26: s∗∗ ← s∗

27: end if
28: ni := ni+ 1
29: until ni = Niter

distributions, an elitist racing procedure) that lead to further improvements presented in López-Ibáñez
et al. (2016). The IRACE consists of iteratively applying three phases: sampling new parameter config-
urations according to distributions, selecting the best ones by means of a racing procedure that discards
the configurations leading to the worst results, and finally updating the sampling distributions in order to
increase the probability of sampling the best parameter values.

The main advantage of IRACE over the manual tuning is the large quantity of parameter combinations
that can be explored. We have selected this algorithm since it is widely used in the scientific community
for parameter tuning. In addition, it is a very recent update of F-race, and the authors continuously
improve the corresponding software package. We refer the reader to López-Ibáñez et al. (2016) for
further details.

We applied IRACE on a subset of training instances of the PTSP-PS, and then used the same parame-



Algorithm 5 Matheuristic Algorithm (MA)
1: execute Initialization
2: for t← 1 to number of individuals do
3: compute the fitness value of individual I0,t

4: end for
5: for g ← 1 to maximum number of generations do
6: t← 1
7: repeat
8: (Ig−1,j , Ig−1,k)← selection()
9: r1 ← rnd(0, 1)

10: if r1 < Pcross then
11: Ig,t ← crossover(Ig−1,j , Ig−1,k, OX2 or DPX or HX or UNN)
12: else Ig,t ← Ig−1,j

13: end if
14: r2 ← rnd(0, 1)
15: if r2 < Pmut then
16: Ig,t ← mutation(Ig,t, EM or GSTM or 3-opt)
17: end if
18: if r1 < Pcross or r2 < Pmut then
19: Ig,t ← 2-opt-improvement(Ig,t)
20: compute the fitness value of individual Ig,t
21: end if
22: t← t+ 1
23: until t > number of individuals
24: elitism(Ig, Ig−1)
25: end for
26: find the individual T ∗ ∈ Ig with the best fitness value
27: execute ILS on T ∗

28: return T ∗

ters for the experiments on all the PTSP-PS and EMTSP instances. We selected 20 middle to large size
instances (out of 260 instances in total) of the PTSP-PS, with a number of customers ranging between 75
and 200, since MA is especially useful for instances with a relevant number of nodes. In particular, we
choose the first 5 instances with 75, 100, 150 and 200 customers. Clearly, only a subset of the instances
was used for parameter tuning, to avoid overfitting: indeed, the goal of the automated parameter tuning
is that the configuration found in the tuning phase generalizes to similar new instances. For the EMTSP,
we decided to use the same parameter setting derived for the PTSP-PS, since the two problems are rather
similar (as shown in Section 3.2).

The full list of parameters used in the tuning and the corresponding final values are reported in Section
5.1.1.



5. Computational Experiments

This section presents the results obtained by MA, and the comparison of these results with those from
the literature, on the PTSP-PS instances (Section 5.1) and on the EMTSP instances (Section 5.2). The
algorithms were implemented in C++, and all experiments were executed on an Intel Core i7-6900K with
16-Core 3.20GHz and 66 GB RAM (single thread). We used CPLEX 12.9.0 as LP solver.

5.1. Experiments on the PTSP-PS

We considered the sets of benchmark instances with 10, 15, 20, 25, 30, 35, 40, 45 and 50 cus-
tomers used in Cacchiani et al. (2018) for the PTSP. In addition, we generated instances with 75,
100, 150 and 200 customers, by adapting the instances proposed in Demir et al. (2012) (available at
http://www.apollo.management.soton.ac.uk/prplib.htm) for the PRP to the PTSP. In particular, to make
the instances feasible for a single vehicle, we removed the time window constraints for every customer,
and used a vehicle with capacity D =

∑
i∈N0

qi. Each set of instances contains 20 instances, leading to
a total of 260 instances. In all the PTSP-PS instances, the speed ranges between 20 km/h and 90 km/h
(i.e., vl = 20 and vu = 90, as in Demir et al. (2012)), and we consider |R| = 10 speed levels (namely a
level every 7 km/h with (v̄r) = (23.5, 30.5, 37.5. 44.5, 51.5, 58.5, 65.5, 72.5, 79.5, 86.5). The optimal
speed value for all arcs and all instances is 79.5.

We first report, in the next section, the results of the parameter tuning that we performed with IRACE
(see Section 4.5) on 20 instances selected as the first 5 instances with 75, 100, 150 and 200 customers.
Then, we show in Section 5.1.2 the results obtained by each phase of MA, and a comparison with the
exact and the heuristic algorithms proposed in Cacchiani et al. (2018). Finally, in Section 5.1.3, we show
the behavior of MA with different parameter settings.

5.1.1. Experiments for parameter tuning
In Table 1, we report the list of parameters that were tuned, the list of possible values we gave to the
IRACE algorithm, and the final parameter configuration. Clearly, a larger number of possible values
requires a longer computing time for the execution of IRACE. In particular, the parameter tuning with
the values reported in Table 1 required about 6 days of computation, therefore we had to limit the whole
set of tested values.

IRACE allows to impose rules on the relationship between different parameter values. We used
these rules to ensure that the sum of the probabilities (PRH + PNNH + PLPH) for selecting the
heuristic algorithm in the initialization procedure is 1, that the sum of the crossover operator probabil-
ities (POX2 + PDPX + PHX + PUNN ) is 1, and that the sum of the mutation operator probabilities
(PEM + PGSTM + P3opt) is 1. For these parameters, we used continuous values to easily impose the
rules in IRACE: indeed, to impose restrictions on discrete parameter values, one has to explicitly list all
the forbidden configurations. In addition, note that both values 0 and 1 are allowed for these probabil-
ities, so that IRACE can decide to remove some heuristic algorithms and GA operators if they are not
effective, or instead to require a specific one to be always applied.

Table 1 shows the parameter name, a short description, the set of tested values or the parameter range,
and the final configuration obtained through the IRACE tuning. We selected the configuration that pro-



vided, on the 20 training instances, the best comparison (in terms of gap to the best known solutions)
against the ILS algorithm by Cacchiani et al. (2018), and the corresponding values are reported in the
last column.

We did not include the number of generations and the population size in the parameter tuning: we
observed, through preliminary tuning experiments, that the IRACE algorithm tended to choose the high-
est possible value for these parameters, since larger values led to better results. However, our goal was
also to have short computing times. Therefore, we fixed these parameter values by an ad-hoc tuning
performed on the same 20 training instances used in IRACE: the number of generations was set to 100
and the number of individuals to 150. In addition, in Section 5.1.3, we show how the MA performance
changes with different numbers of generations and population sizes.

We inserted the number of ILS iterations as one of the parameters in the tuning, since the computing
time of this step was very short with respect to the total computing time of MA: indeed, ILS was applied
to the best solution found by GA, which was already a very good solution, and thus the ILS step was
very fast.

We set k1 = 10, k2 = 30 and k3 = 50 for instances with up to 100 customers, and k1 = 20, k2 = 60
and k3 = 100 for the other instances. These parameters were not tuned in IRACE, but with an ad-hoc
tuning, from which we decided to select different values based on the instance size: we allowed larger
values for larger size instances, but limited to k3 the total number of subtour elimination constraints,
since solving the LP-relaxation is a step that requires a significant portion of the total computing time.

Table 1
Parameter tuning.

parameter description tested values final

Prinit randomization in LP-heur 0.3 0.4 0.5 0.6 0.7 0.7
PRH Random-Heuristic prob. range(0.1) 0.466
PNNH Nearest-Neighbor-Heuristic prob. range(0,1) 0.169
PLPH LP-based Heuristic prob. range(0,1) 0.365

Pcross crossover prob. 0.5 0.6 0.7 0.8 0.9 1.0 0.90
Pmut mutation prob. 0.1 0.2 0.3 0.4 0.5 0.6 0.50
Pelit elitism prob. 0.0 0.05 0.10 0.15 0.20 0.05

POX2 OX2 crossover operator prob. range(0,1) 0.737
PDPX DPX crossover operator prob. range(0,1) 0.061
PHX HX crossover operator prob. range(0,1) 0.035
PUNN UNN crossover operator prob. range(0,1) 0.167

PEM EM mutation operator prob. range(0,1) 0.186
PGSTM GSTM mutation operator prob. range(0,1) 0.206
P3opt 3-opt mutation operator prob. range(0,1) 0.608

Niter ILS iter. 500 1000 3000 5000 10000 10000
Nnoimpr ILS iter. no improv. 10 50 100 200 500 10
Ppert ILS perturbation prob. 0.5 0.6 0.7 0.8 0.9 1.0 0.80
Ploc ILS local search prob. 0.5 0.6 0.7 0.8 0.9 1.0 1.0

We observe that, in the best configuration, the LP-based heuristic probability PLPH is 0.365, show-
ing that it is useful to apply this algorithm for initializing the population. Similarly, we can see that the



probability of each (crossover or mutation) operator is always different from 0, again showing that they
all contribute to obtain the best solutions.

5.1.2. Results for the PTSP
In the following we first report the results obtained after each phase of the MA algorithm i.e., after
the initialization (Algorithm 3) that generates the initial population, after the GA phase and after the
ILS refinement (at the end of MA). The results are displayed in Table 2. Then, we report, in Table
3, the comparison of the results obtained by MA with those found by the C&B algorithm and by the
ILS reported in Cacchiani et al. (2018), on instances with up to 50 customers. However, to have a fair
comparison, we initialized both algorithms proposed by Cacchiani et al. (2018) with the preprocessing
procedure that computes the optimal speed for every arc. For these instances, the time limit for the C&B
algorithm was set to two hours in Cacchiani et al. (2018), and we use the same time limit. In addition, we
report, in Table 4, the comparison of the results obtained by MA with those obtained by ILS on instances
with up to 200 customers. We do not report the results obtained by the C&B algorithm on the larger
instances, since its performance decreases on these instances.

In order to compare the results, in every table, for each instance set and each instance in the set, we
define as “best known solution value” the value of the best solution found by any of the considered
methods: C&B, ILS and MA for instances with up to 50 customers, and ILS and MA for the remaining
instances.

Each row of the tables corresponds to a set of 20 instances and shows average results over the 20 in-
stances in the set. For ILS and MA, for each instance in every set, we executed 10 runs and computed the
average and the minimum solution values obtained over the 10 runs. To make the tables more readable,
we report only in Table 2 the average of the best solution values, while, in the other tables1, we directly
show the average percentage gaps of the values of the solutions found by each method with respect to
the best known solutions values.

In Table 2, for each row, we show the number of customers (|N0|) in the corresponding set and the
average, over the 20 instances in the set, of the best known solution values (BKS), as defined above. Then,
we show the results obtained at the end of each phase of MA: INIT corresponds to the initialization phase
(Algorithm 3), INIT+GA corresponds to lines 5–25 of Algorithm 5, and INIT+GA+ILS corresponds to
the complete MA (Algorithm 5). For each row, and for each phase of MA, and both for the average
and the minimum solution values obtained in 10 runs, we report the average (over 20 instances) of the
percentage gaps (G%) of the solution values found by the considered phase with respect to the best
known solution values, and the number of best known solutions (#B) found. Note that, for the value of
#B, when considering the average over 10 runs, we only count the instances for which the best solution
was found in all the 10 runs (hence this column shows integer values even for the average case). In
addition, we report the average computing time (Time) in seconds over the 10 runs. Moreover, in the
last column (TotTime), we display, for each row, the average (over the 10 runs of the corresponding
20 instances) of the total computing time of MA (expressed in seconds). Finally, the last but one row
reports, for each column, the average value over all the instance sets, and the last row shows, for each
#B column, the total number of best known solutions found out of the 260 considered instances. Note

1Instances and solutions values are available upon request



that in some cases, even if the average value G% is 0.00, the number of best known solutions found is
smaller than 20, since we report average results with two decimal digits.

Table 2
Comparison after each phase of MA.

INIT INIT+GA INIT+GA+ILS (MA) TotTime
average minimum average minimum average minimum

|N0| BKS G% #B Time G% #B G% #B Time G% #B G% #B Time G% #B

10 150.643 0.00 17 0.01 0.00 20 0.00 20 0.03 0.00 20 0.00 20 0.00 0.00 20 0.04
15 215.687 0.04 16 0.02 0.00 20 0.00 20 0.06 0.00 20 0.00 20 0.01 0.00 20 0.09
20 288.557 0.06 15 0.03 0.00 20 0.00 20 0.12 0.00 20 0.00 20 0.02 0.00 20 0.17
25 311.451 0.16 6 0.06 0.03 17 0.00 20 0.20 0.00 20 0.00 20 0.03 0.00 20 0.29
30 417.516 0.38 2 0.11 0.10 16 0.00 20 0.31 0.00 20 0.00 20 0.04 0.00 20 0.46
35 493.212 0.50 0 0.17 0.13 11 0.00 20 0.44 0.00 20 0.00 20 0.05 0.00 20 0.66
40 563.011 1.02 0 0.24 0.29 6 0.00 20 0.63 0.00 20 0.00 20 0.07 0.00 20 0.93
45 643.863 1.49 0 0.34 0.54 6 0.01 18 0.80 0.00 20 0.00 18 0.08 0.00 20 1.22
50 719.768 2.00 0 0.47 0.87 5 0.00 19 1.08 0.00 20 0.00 19 0.10 0.00 20 1.65
75 1266.405 2.99 0 1.93 1.74 0 0.02 13 3.30 0.00 20 0.01 14 0.21 0.00 20 5.45
100 1802.333 4.56 0 4.67 3.03 0 0.12 2 7.58 0.00 20 0.10 3 0.36 0.00 20 12.62
150 3142.335 6.08 0 23.69 4.54 0 0.42 0 20.16 0.01 17 0.37 0 0.77 0.00 20 44.61
200 4449.234 7.11 0 83.21 5.47 0 0.54 0 44.81 0.05 7 0.47 0 1.39 0.00 20 129.41

Avg. 2.03 4.3 8.84 1.29 9.3 0.09 14.8 6.12 0.00 18.8 0.07 14.9 0.24 0.00 20.0 15.20
Tot. 56 121 192 244 194 260

The results reported in Table 2 show that each phase of MA is effective in improving the solutions
obtained in the previous phase. For instances with up to 30 customers, the initialization phase produces
very good solutions: at least 16 best known solutions are already computed in this phase. When consid-
ering larger size instances, the contribution of the GA phase is crucial for improving the initial tours. As
can be seen, for all instances with up to 100 customers, all the best known solutions are obtained by the
GA phase, and for instances with 150 customers a very large number (17) of best solutions is found. On
instances with 200 customers, the ILS refinement phase becomes more important: it allows to find the
best solution for all the instances. It is clear that the GA phase is the most effective phase, as it obtains,
on average, 18.8 best known solutions for each instance set, but the ILS refinement is also useful as this
value increases to 20.

When we observe the solution values obtained on average over the 10 runs, we can see that the solution
qualities after the GA phase and at the end of MA are very similar: on average, 14.8 and 14.9 best known
solutions for each instance set are obtained, respectively, while, as expected, the initialization phase finds
a smaller number of best known solutions (on average 4.3 for each instance set). The average percentage
gaps are very small both after the GA phase and at the end of MA: even for the average values over the
10 runs, the average percentage gaps are at most 0.54% and 0.47% after GA and MA, respectively.

Finally, we can observe that the total average computing time is rather short: on average about 15
seconds. It is very short for small instances with up to 50 customers, and reaches about 130 seconds, on
average, for instances with 200 customers. The two phases that require more time are the initialization
and the GA phases, while the ILS phase is extremely fast. We observe that, clearly, for a given instance
the solution of the LP-relaxation (Algorithm 1) does not need to be re-computed for each of the 10



runs: indeed, this step can be executed only once, and the x1, x2 and x3 solutions can be stored for the
remaining runs, so that the computing time required to find, for each instance, the minimum solution
value over the 10 runs is smaller than 10 times the computing time required for a single run. We also
mention that the preprocessing phase allows to reduce the computing time of the initialization phase,
thanks to the simplified model.

In Table 3, we show the comparison of MA with C&B and ILS on the instances with up to 50 cus-
tomers. The columns for ILS and MA have the same meaning as in Table 2. For the C&B algorithm,
we report, for each row, the average of the final percentage gaps (GL%) between the integer solution
value and the corresponding lower bound obtained, for each instance of the set, at the end of the C&B
solution process, the number of best known solutions (#B) found, the average of the percentage gaps
(G%) between the values of the final integer solutions and of the corresponding best known solutions,
and the average computing time (Time) expressed in seconds. As in Table 2, in some cases the number
of best known solutions found is smaller than 20 although the corresponding G% is 0.00, due to the
approximation to two decimal digits.

Table 3
Comparison on instances with up to 50 customers.

C&B ILS MA
average minimum average minimum

|N0| GL% #B G% Time G% #B Time G% #B G% #B Time G% #B

10 0.00 20 0.00 0.18 0.00 20 0.01 0.00 20 0.00 20 0.04 0.00 20
15 0.00 20 0.00 0.57 0.01 17 0.02 0.00 20 0.00 20 0.09 0.00 20
20 0.00 20 0.00 1.50 0.03 17 0.04 0.00 20 0.00 20 0.17 0.00 20
25 0.00 20 0.00 9.82 0.12 13 0.07 0.00 20 0.00 20 0.29 0.00 20
30 0.00 20 0.00 347.17 0.06 11 0.12 0.00 20 0.00 20 0.46 0.00 20
35 0.58 20 0.00 3186.13 0.12 8 0.19 0.00 20 0.00 20 0.66 0.00 20
40 1.90 18 0.02 5950.54 0.09 7 0.27 0.00 19 0.00 20 0.93 0.00 20
45 3.90 16 0.10 7200.00 0.26 6 0.38 0.03 18 0.00 18 1.22 0.00 20
50 5.28 16 0.08 7200.00 0.22 3 0.52 0.00 20 0.00 19 1.65 0.00 20

Avg. 1.30 18.9 0.02 2655.10 0.10 11.3 0.18 0.00 19.7 0.00 19.7 0.61 0.00 20.0
Tot. 170 102 177 177 180

We underline that the results reported in Table 3 for the C&B algorithm and for the ILS algorithm
are obtained by executing the same algorithms published in Cacchiani et al. (2018), but to have a fair
comparison we have enhanced both algorithms with the preprocessing procedure that computes the op-
timal speed for each arc before starting the solution process. Therefore, some values shown in Table 3
are different from those reported in Cacchiani et al. (2018).

From Table 3, we observe that the C&B algorithm proves the optimality of all the solutions for in-
stances with up to 30 customers, as indicated by the values of GL% equal to 0.00. For larger instances,
the average percentage gap with respect to the final lower bound increases, reaching 5.28% for the in-
stances with 50 customers. In addition, while the computing times are very short for solving instances
with up to 25 customers (on average at most 9.82 seconds), they increase for larger instances, and the
time limit is reached for all the instances with 45 and 50 customers. By looking at columns #B and G%,
we can see that the best known solution is found by the C&B algorithm for all the instances up to 35
customers, but #B decreases for larger instances.



ILS obtains good results if we consider the minimum solution values achieved over the 10 runs ex-
ecuted for each instance: indeed, it obtains 177 best known solutions out of 180 for the instance sets
with up to 50 customers. From the results obtained by ILS on the averages over 10 runs, we can observe
that the number of best known solutions found is close to 20 only for the instance sets with up to 20
customers, although the average gaps are small (at most 0.26%). In addition, the computing times are
extremely short.

The best performance is achieved by MA for all these instance sets: MA is capable to find the best
known solution for all these instances when we consider the minimum solution values achieved over the
10 runs, and achieves very good results on the averages over the 10 runs, being able to find on average
19.7 best known solutions for each instance set (with respect to the 11.3 best known solutions obtained
by ILS). Moreover, the average gap is smaller (0.00%) than that of ILS (0.10%). We can observe an
increase of the computing times (on average 0.61 seconds with respect to 0.18 seconds of ILS), which
however are still very short compared to those of the C&B algorithm (on average 2655.10 seconds).

Table 4
Comparison on larger instances with up to 200 customers.

ILS MA
average minimum average minimum

|N0| G% #B Time G% #B G% #B Time G% #B

75 0.48 1 2.05 0.05 16 0.01 14 5.45 0.00 20
100 0.74 0 4.99 0.16 7 0.10 3 12.62 0.00 20
150 1.26 0 24.04 0.57 0 0.37 0 44.61 0.00 20
200 1.60 0 82.21 0.73 0 0.47 0 129.41 0.00 20

Avg. 1.02 0.3 28.32 0.38 5.8 0.24 4.3 48.02 0.00 20
Tot. 1 23 17 80

In Table 4, we report the results obtained by the ILS and MA algorithms on larger instances with up to
200 customers. The columns have the same meaning as those of Table 3 for the two compared methods
ILS and MA. As observed from the results in Table 3, the performance of the C&B algorithm worsens
as the number of customers increases. Therefore, for the larger instances, we only compare the ILS and
MA algorithms.

When we consider the average solution values achieved over the 10 runs executed for each instance,
ILS and MA can obtain a limited number of best known solutions. However, MA obtains average solution
values better than those obtained by ILS, since, on average, it obtains 4.3 best known solutions with
respect to 0.3, and its average gap from the best known solutions is more than four times smaller (0.24%
with respect to 1.02%).

When we consider the minimum solution values achieved over the 10 runs executed for each instance,
ILS still obtains good results for instances with 75 customers, as it obtains 16 best known solutions.
However, on larger size instances, the performance of ILS significantly worsens: for instances with more
than 100 customers, even by considering the minimum solution value over the 10 runs, we can see that
no best solution is found. On the contrary, MA obtains very good results for all the sets of instances: it
finds the best known solution for all the instances with up to 200 customers. The computing times are
slightly larger than those of ILS, although they are still very short. The percentage gap with respect to
the best known solution value is 0.0 on average with respect to 0.38% of ILS: therefore, MA is more



stable than ILS.
It is also to note that, by considering the values of G% and #B reported in Tables 3 and 4, the results

corresponding to the minimum solution values (requiring the execution of 10 runs for each instance)
obtained by ILS are similar to those corresponding to the average solution values obtained by MA.

In summary, we can conclude that, on the smaller instances, MA and ILS have similar performances,
although MA has a better behavior when considering the average solution values over the 10 runs instead
of the minimum solution values. On larger size instances, MA is definitely better than ILS, being able to
achieve all the best known solutions in very short computing times. In addition, as shown in Table 2, both
the initialization and the GA phases are very effective. Therefore, MA successfully improves the results
from the literature, and can be effectively adopted for solving larger size instances of the PTSP-PS.

5.1.3. MA Analysis
We performed additional experiments to analyze how the results change when the values of some param-
eters are modified with respect to those corresponding to the best configuration obtained with IRACE. In
particular, in Table 5, we show the results obtained when the LP-based heuristic is not applied (i.e., the
initialization algorithm applies, with the same probability, only the Random-Heuristic and the Nearest-
Neighbor-Heuristic). In addition, we show the impact on the solution quality obtained by considering
different numbers of generations (50 and 150 instead of 100) and individuals (100 and 200 instead of
150) in GA. Finally, we show the outcome when a single crossover operator is applied (operator prob-
ability set to 100%) together with all the mutation ones, or when a single mutation operator is applied
together with all the crossover ones: this comparison is meant to show the contribution of each operator
to the final solution quality.

Each row of Table 5 corresponds to a different parameter setting, and the first row is the best con-
figuration obtained with IRACE. Basically, each row contains the same information as the last but one
row of Tables 3 and 4. For each row, we report the comparison of the results obtained by ILS and MA,
in order to have, for all the MA parameter settings, the same benchmark, and to show how robust is
MA with different parameter settings in comparison with the ILS method from the literature. Clearly,
the outcome of ILS is not the same in every row, since the ILS results are compared with different MA
results (i.e., if MA achieves better results, ILS gets worse). Both for ILS and MA, for each of the 260
instances, we executed 10 runs and computed the average and the minimum solution values obtained
over the 10 runs. In each row, we report the summary of the results (i.e., the average over the 260 tested
instances) obtained in the corresponding setting.

Firstly, we observe the usefulness of the LP-based heuristic. When it is not applied, all figures worsen:
the average and the minimum percentage gaps increase, and not all the best known solutions are deter-
mined. However, we can also notice a significant computing time reduction, so that we could resort to
this type of setting when the computing time is limited.

By looking at the results obtained when changing the number of generations and the number of indi-
viduals, we can see that a larger number of generations allows for finding slightly better average results,
at the expenses of longer computing times, while a larger number of individuals is not useful. On the
contrary, a smaller number of generations or individuals causes a worsening, although the results are still
much better than those of ILS. In addition, the computing time decreases.

We then compare the results obtained when a single crossover operator is used (together with all the
standard mutation operators). The best results are obtained when only OX2 is applied: yet, the combina-



Table 5
Comparison with other parameter settings.

ILS MA
average minimum average minimum

Setting G% #B G% #B Time G% #B G% #B Time

MA best 0.384 7.9 0.118 15.4 8.8 0.074 14.9 0.000 20 15.2

MA no LP-based Heur. 0.378 7.9 0.113 15.5 8.8 0.097 14.5 0.002 19.8 4.4

MA 50 gen. 0.378 7.9 0.113 15.5 8.8 0.088 14.2 0.000 19.9 11.5
MA 150 gen. 0.387 7.9 0.121 15.4 8.8 0.070 15.0 0.000 20 19.5
MA 100 ind. 0.381 7.9 0.116 15.4 8.8 0.097 14.2 0.000 20 13.8
MA 200 ind. 0.386 7.9 0.120 15.4 8.8 0.065 14.8 0.000 19.9 17.7

MA OX2 100% 0.383 7.9 0.118 15.2 8.8 0.085 14 0.000 19.9 17.5
MA DPX 100% 0.375 7.9 0.110 15.4 8.8 0.084 13.8 0.001 19.8 15.4
MA HX 100% 0.370 7.9 0.105 15.5 8.8 0.098 13.2 0.000 19.8 15.9
MA UNN 100% 0.353 7.9 0.088 15.8 8.8 0.114 14.1 0.006 19.5 10.6

MA EM 100% 0.378 7.9 0.112 15.5 8.8 0.086 13.9 0.002 19.8 10.3
MA GSTM 100% 0.380 7.9 0.115 15.4 8.8 0.084 14.1 0.001 19.9 9.9
MA 3-opt 100% 0.386 7.9 0.120 15.4 8.8 0.073 14.6 0.000 20 18.8

tion of all operators leads to explore a larger search space and to find better solutions. We also note that
the average results are more affected than the minimum ones.

Finally, we compare the results obtained when a single mutation operator is used (together with all the
standard crossover operators). Also in this case, the average results are more affected than the minimum
ones. Slightly shorter computing times are required when using only EM or GSTM, but the average per-
centage gaps and the number of best solutions found worsen with respect to the best MA configurations.
Therefore, we can confirm the usefulness of the combination of all the mutation operators. We can also
see that MA is robust with respect to different parameter settings.

5.2. Experiments on the EMTSP

We considered the benchmark instances proposed in Wang et al. (2020). There are two sets of small-size
instances2: the first set (set 1) contains 30 instances with the number of nodes (including the depot) in
{16, 19, 20, 21, 23, 26} that are created by adapting 10 instances of the VRP Library and considering
different curb weights w = αD, with α ∈ {0.1, 0.3, 0.5}, while the second set (set 2) contains 45
instances with the number of nodes (including the depot) chosen from {15, 16, 18, 20, 22, 24, 26, 28, 30}.
We tested all these instances with MA, and the values of the parameters set as shown in Table 1. The
results are presented in the next section.

2All the instances are available at https://pan.baidu.com/s/1mfMFaBhgT55VFWUR7S14-Q



5.2.1. Results for the EMTSP
We report the results for set 1 in Table 6 and those for set 2 in Table 7. In both tables, we show the
comparison of MA with the methods proposed in Wang et al. (2020): the authors developed an exact
branch-and-bound algorithm, three heuristic algorithms, and an approximation method. The best heuris-
tic results were obtained by an algorithm based on the Reverse Nearest Neighbor (RNN) approach, that
constructs a reverse path starting backward from the depot with full vehicle load (i.e., it determines the
shortest arc for heavy loads), and by the approximation method. In both tables, for each instance, we
report the instance name with the corresponding α value, the solution value obtained by the branch-
and-bound algorithm (WB&B) and the corresponding computing time in seconds (a time limit of 3600
seconds was imposed in Wang et al. (2020)), the solution value obtained by the best among all the
heuristic and approximation algorithms (WHBest), and the MA results. For the latter, we report, for
each instance, the average and the minimum values obtained in 10 runs, the corresponding percentage
gaps from the best solution value, and the average (over 10 runs) computing time (in seconds). In the last
but one row, we report, for each column, the average value over all the instances, and, in the last row, we
show, for each Val. column, the total number of best known solutions found.

Note that, in Table 6, all the instances were solved to optimality by WB&B, and, in Table 7, all the
instances with up to 26 nodes were solved to optimality, while for four instances with 28 or 30 nodes
the time limit was reached. The computing time of the heuristic algorithms proposed by Wang et al.
(2020) was not reported. For the branch-and-bound algorithm, we report the computing time provided in
Wang et al. (2020). Their algorithms were implemented in C language with the Xcode 8.3.3, and run on
a MacOS with 3.2 GHz processor and 8 GB memory. Therefore, the computers used to execute WB&B
and MA have similar performance.

When we consider the average values achieved by MA over the 10 runs executed for each instance,
we observe that the overall average percentage gap from the optimal solution values is very small (only
0.013%), and that for only 3 (out of 30) instances the optimal solution is not found. For the best value
achieved by MA over the 10 runs, we can see that the overall average percentage gap reduces to 0.001%,
and that for all instances but one the optimal solution was found. Compared to the best heuristic solution
values reported in columnWHBest, it is evident that MA outperforms the heuristic algorithms proposed
in Wang et al. (2020). The computing time of MA is also very short, being 0.150 seconds on average,
and at most 0.235 seconds.

We observe a similar behavior for the second set of instances. When we consider the average val-
ues achieved by MA over the 10 runs executed for each instance, the overall average percentage gap
(0.017%) is again very small, and for only 3 (out of 45) instances the best solution is not found. The
minimum value achieved by MA over the 10 runs executed for each instance corresponds to the best
solution value in all cases but one, giving on average a gap of 0.008%. The average computing time is
very short (0.167 seconds). The advantage of MA with respect to the existing heuristic algorithms is
evident also in this case. We can conclude that, both on the PTSP-PS and the EMTSP, MA shows a very
good performance in terms of solution quality and computing time.



Table 6
Comparison on the EMTSP instances (set 1).

WB&B WHBest MA
average minimum

inst. α Val. Time Val. Val. G% Val. G% Time

P-n16 0.1 22013 0.094 24251 22013 0.000 22013 0.000 0.099
0.3 30447 0.150 33648 30447 0.000 30447 0.000 0.094
0.5 38483 0.120 42566 38483 0.000 38483 0.000 0.092

P-n19 0.1 29874 0.834 33925 29874 0.000 29874 0.000 0.137
0.3 41220 0.560 46449 41220 0.000 41220 0.000 0.132
0.5 52566 0.490 58973 52566 0.000 52566 0.000 0.133

P-n20 0.1 32670 4.310 36178 32783.6 0.348 32670 0.000 0.148
0.3 44923 2.750 49260 44923 0.000 44923 0.000 0.152
0.5 56889 1.970 62342 56889 0.000 56889 0.000 0.144

P-n21 0.1 31815 6.240 34831 31828 0.041 31828 0.041 0.155
0.3 43664 4.430 47731 43664 0.000 43664 0.000 0.165
0.5 55287 3.320 60416 55287 0.000 55287 0.000 0.155

P-n23 0.1 33854 25.680 37768 33854 0.000 33854 0.000 0.168
0.3 47227 34.790 51523 47227 0.000 47227 0.000 0.183
0.5 59968 26.820 65518 59968 0.000 59968 0.000 0.197

E-n16 0.1 28989 0.040 28989 28989 0.000 28989 0.000 0.099
0.3 41660 0.070 42353 41660 0.000 41660 0.000 0.090
0.5 53900 0.080 55460 53900 0.000 53900 0.000 0.087

E-n21 0.1 44919 9.660 54544 44924 0.011 44919 0.000 0.138
0.3 65202 12.590 73882 65202 0.000 65202 0.000 0.146
0.5 85134 14.940 93220 85134 0.000 85134 0.000 0.148

E-n22 0.1 3491300 26.990 3943450 3491300 0.000 3491300 0.000 0.162
0.3 4814300 19.590 5387950 4814300 0.000 4814300 0.000 0.162
0.5 6137300 15.170 6832450 6137300 0.000 6137300 0.000 0.162

E-n23 0.1 1728187 30.980 1795564 1728187 0.000 1728187 0.000 0.168
0.3 2799765 41.390 2806412 2799765 0.000 2799765 0.000 0.166
0.5 3809551 32.460 3817260 3809551 0.000 3809551 0.000 0.170

E-n26 0.1 64095 1380.580 73363 64095 0.000 64095 0.000 0.214
0.3 89742 1653.790 102815 89742 0.000 89742 0.000 0.200
0.5 114925 1530.920 131869 114925 0.000 114925 0.000 0.235

Avg. 799662.3 162.7 864165.3 799666.7 0.013 799662.7 0.001 0.150
Tot. 30 0 27 29

6. Conclusions

We studied the Pollution Traveling Salesman Problem (PTSP) and the Energy Minimization Travel-
ing Salesman Problem (TSP) that generalize the Asymmetric Traveling Salesman Problem (ATSP) by
considering environmental issues through the minimization of fuel consumption and energy. We pro-
posed a matheuristic algorithm (MA), consisting of three phases. First, it effectively uses the Linear
Programming (LP) solutions of a Mixed Integer Linear Programming (MILP) model (for the PTSP or
the EMSTP) to generate the initial population. Then, it executes a Multi-operator Genetic Algorithm
(GA) featuring four crossover and three mutation operators, applied according different probabilities, to



Table 7
Comparison on the EMTSP instances (set 2).

WB&B WHBest MA
average minimum

inst. α Val. Time Val. Val. G% Val. G% Time

15 1 59300 0.04 65213 59300 0.000 59300 0.000 0.171
2 74705 0.12 78025 74705 0.000 74705 0.000 0.093
3 48455 0.02 51698 48455 0.000 48455 0.000 0.097
4 66543 0.03 71396 66543 0.000 66543 0.000 0.089
5 81418 0.04 87136 81418 0.000 81418 0.000 0.087

16 1 71069 0.08 76669 71069 0.000 71069 0.000 0.101
2 77669 0.17 78291 77669 0.000 77669 0.000 0.095
3 84557 0.26 87008 84557 0.000 84557 0.000 0.094
4 76403 0.10 81251 76403 0.000 76403 0.000 0.094
5 62571 0.08 69622 62571 0.000 62571 0.000 0.100

18 1 95714 0.48 97231 95714 0.000 95714 0.000 0.116
2 76621 0.37 77495 76621 0.000 76621 0.000 0.115
3 79886 0.29 91988 79886 0.000 79886 0.000 0.121
4 90099 0.15 92431 90099 0.000 90099 0.000 0.119
5 81175 0.45 83270 81175 0.000 81175 0.000 0.120

20 1 101208 1.86 101208 101208 0.000 101208 0.000 0.133
2 122715 7.09 123696 122715 0.000 122715 0.000 0.141
3 94658 4.88 100266 94658 0.000 94658 0.000 0.143
4 105954 6.43 106425 105954 0.000 105954 0.000 0.135
5 80805 4.91 88566 80805 0.000 80805 0.000 0.145

22 1 111970 5.18 113859 111970 0.000 111970 0.000 0.162
2 90974 13.185 91841 90974 0.000 90974 0.000 0.168
3 134593 4.68 134606 134593 0.000 134593 0.000 0.166
4 97630 5.04 97630 97630 0.000 97630 0.000 0.154
5 148287 14.25 150949 148287 0.000 148287 0.000 0.151

24 1 102358 39.46 102859 102358 0.000 102358 0.000 0.174
2 114742 48.95 116068 114742 0.000 114742 0.000 0.182
3 122687 153.72 129965 122687 0.000 122687 0.000 0.190
4 163427 12.34 163427 163427 0.000 163427 0.000 0.178
5 158821 14.38 158821 158821 0.000 158821 0.000 0.180

26 1 124633 238.18 136037 124633 0.000 124633 0.000 0.203
2 142410 121.38 154296 142410 0.000 142410 0.000 0.216
3 174879 845.33 193727 174879 0.000 174879 0.000 0.206
4 149405 186.08 162748 149405 0.000 149405 0.000 0.199
5 114232 595.67 122917 114240.4 0.007 114232 0.000 0.204

28 1 158892 3600 179417 158892 0.000 158892 0.000 0.243
2 148362 3270.84 159317 148362 0.000 148362 0.000 0.229
3 148800 1015.8 161080 148800 0.000 148800 0.000 0.222
4 131802 1745.16 151329 131802 0.000 131802 0.000 0.232
5 146748 879.28 153243 146748 0.000 146748 0.000 0.229

30 1 178041 3600 190655 178041 0.000 178041 0.000 0.267
2 178880 3285.01 192602 179560 0.380 178880 0.000 0.256
3 150708 3600 162562 151263 0.368 151263 0.368 0.266
4 186409 3600 197104 186409 0.000 186409 0.000 0.252
5 151510 54.04 162544 151510 0.000 151510 0.000 0.259

Avg. 114727.2 599.5 121077.5 114754.9 0.017 114739.6 0.008 0.167
Tot. 45 0 42 44



improve the initial solutions. Finally, it employs an Iterated Local Search algorithm (ILS) proposed in
the literature.

All the three phases contribute to achieve the best results, although the most relevant improvements
are obtained by the GA algorithm. We observed that the LP-based heuristic used in the initialization
phase was decisive to obtain some of the best solutions, and that the ILS allowed to further improve
the GA solutions. Extensive computational experiments were executed to tune all the parameters and to
show the contribution of each crossover and mutation operator. We observed that all the ingredients are
important to achieve the best results, even though we also noticed that the algorithm was robust with
respect to different parameter settings.

In addition, we showed that significant improvements were obtained over the methods from the litera-
ture. We tested the proposed algorithm on 260 instances of the PTSP and on 75 instances of the EMTSP,
and compared it with exact and heuristic approaches from the literature. The results showed that MA
finds the best known solution for all the instances of the PTSP and for most of the instances of the
EMTSP.

A future research direction is to extend MA to deal with time-window constraints at the customers:
this would imply in particular to modify the MILP model, and the GA and ILS phases, that could require
the use of different operators. Another research direction is to develop exact algorithms for solving the
existing instances to optimality: as it can be seen from existing works, it is still very challenging to solve
these problems. Exact algorithms could also benefit from a warm-start obtained by applying MA.

Acknowledgments

This material is based upon work supported by the Air Force Office of Scientific Research under
award numbers FA9550-17-1-0025 and FA8655-20-1-7019. We also acknowledge project CONICYT
PFCHA/DOCTORADO BECAS CHILE/2015-72160389 and VRID INICIACIÓN 220.097.016-INI,
Vicerrectorı́a de Investigación y Desarrollo (VRID), Universidad de Concepción. We wish to thank the
anonymous reviewers for their insightful comments that allowed to improve the MA performance.

References

Albayrak, M., Allahverdi, N., 2011. Development a new mutation operator to solve the traveling salesman problem by aid of
genetic algorithms. Expert Systems with Applications 38, 3, 1313–1320.

Andelmin, J., Bartolini, E., 2017. An exact algorithm for the green vehicle routing problem. Transportation Science 51, 4,
1288–1303.

Andelmin, J., Bartolini, E., 2019. A multi-start local search heuristic for the green vehicle routing problem based on a multigraph
reformulation. Computers & Operations Research 109, 43–63.

Banzhaf, W., 1990. The “molecular” traveling salesman. Biological Cybernetics 64, 1, 7–14.
Bektaş, T., Ehmke, J.F., Psaraftis, H.N., Puchinger, J., 2019. The role of operational research in green freight transportation.

European Journal of Operational Research 274, 3, 807–823.
Bektaş, T., Laporte, G., 2011. The pollution-routing problem. Transportation Research Part B: Methodological 45, 8, 1232–

1250.
Birattari, M., Kacprzyk, J., 2009. Tuning metaheuristics: a machine learning perspective, Vol. 197. Springer,

Berline/Heidelberg.



Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K., et al., 2002. A racing algorithm for configuring metaheuristics. In Gecco,
San Francisco, CA: Morgan Kaufmann Publishers, pp. 11–18.

Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T., 2010. F-race and iterated f-race: An overview. In Experimental methods for
the analysis of optimization algorithms. Springer, pp. 311–336.

Bravo, M., Rojas Pradenas, L., Parada, V., 2019. An evolutionary algorithm for the multi-objective pick-up and delivery
pollution-routing problem. International Transactions in Operational Research 26, 1, 302–317.

Bruglieri, M., Mancini, S., Pezzella, F., Pisacane, O., 2019a. A path-based solution approach for the green vehicle routing
problem. Computers & Operations Research 103, 109–122.

Bruglieri, M., Mancini, S., Pisacane, O., 2019b. More efficient formulations and valid inequalities for the green vehicle routing
problem. Transportation Research Part C: Emerging Technologies 105, 283–296.

Buriol, L., França, P.M., Moscato, P., 2004. A new memetic algorithm for the asymmetric traveling salesman problem. Journal
of Heuristics 10, 5, 483–506.

Cacchiani, V., Contreras-Bolton, C., Escobar, J.W., Escobar-Falcon, L.M., Linfati, R., Toth, P., 2018. An iterated local search
algorithm for the pollution traveling salesman problem. In New Trends in Emerging Complex Real Life Problems. Springer,
pp. 83–91.

Contreras-Bolton, C., Parada, V., 2015. Automatic combination of operators in a genetic algorithm to solve the traveling
salesman problem. PloS one 10, 9, e0137724.

Costa, L., Lust, T., Kramer, R., Subramanian, A., 2018. A two-phase pareto local search heuristic for the bi-objective pollution-
routing problem. Networks 72, 3, 311–336.

Dabia, S., Demir, E., Van Woensel, T., 2017. An exact approach for a variant of the pollution-routing problem. Transportation
Science 51, 2, 607–628.

Dantzig, G., Fulkerson, R., Johnson, S., et al., 1954. Solution of a large-scale traveling-salesman problem. Operations Research
2, 4, 393–410.

Demir, E., Bektaş, T., Laporte, G., 2012. An adaptive large neighborhood search heuristic for the pollution-routing problem.
European Journal of Operational Research 223, 2, 346–359.

Demir, E., Bektaş, T., Laporte, G., 2014. A review of recent research on green road freight transportation. European Journal of
Operational Research 237, 3, 775–793.

Eiben, Á.E., Hinterding, R., Michalewicz, Z., 1999. Parameter control in evolutionary algorithms. IEEE Transactions on
evolutionary computation 3, 2, 124–141.

Eiben, A.E., Michalewicz, Z., Schoenauer, M., Smith, J.E., 2007. Parameter control in evolutionary algorithms. In Parameter
setting in evolutionary algorithms. Springer, pp. 19–46.

Eiben, A.E., Smith, J.E., 2015. Introduction to evolutionary computing, Vol. 53. Springer, Berlin.
Elsayed, S.M., Sarker, R.A., Essam, D.L., 2011. Multi-operator based evolutionary algorithms for solving constrained opti-

mization problems. Computers & Operations Research 38, 12, 1877–1896.
Flood, M.M., 1956. The traveling-salesman problem. Operations Research 4, 1, 61–75.
Franceschetti, A., Demir, E., Honhon, D., Van Woensel, T., Laporte, G., Stobbe, M., 2017. A metaheuristic for the time-

dependent pollution-routing problem. European Journal of Operational Research 259, 3, 972–991.
Franceschetti, A., Honhon, D., Van Woensel, T., Bektaş, T., Laporte, G., 2013. The time-dependent pollution-routing problem.

Transportation Research Part B: Methodological 56, 265–293.
Freisleben, B., Merz, P., 1996. A genetic local search algorithm for solving symmetric and asymmetric traveling salesman

problems. In Proceedings of IEEE international conference on evolutionary computation, IEEE, pp. 616–621.
Fukasawa, R., He, Q., Song, Y., 2016a. A branch-cut-and-price algorithm for the energy minimization vehicle routing problem.

Transportation Science 50, 1, 23–34.
Fukasawa, R., He, Q., Song, Y., 2016b. A disjunctive convex programming approach to the pollution-routing problem. Trans-

portation Research Part B: Methodological 94, 61–79.
Gaur, D.R., Mudgal, A., Singh, R.R., 2013. Routing vehicles to minimize fuel consumption. Operations Research Letters 41,

6, 576–580.
Grefenstette, J., Gopal, R., Rosmaita, B., Van Gucht, D., 1985. Genetic algorithms for the traveling salesman problem. In

Proceedings of the first International Conference on Genetic Algorithms and their Applications, Vol. 160, L. Erlbaum
Associates Inc., Hillsdale, NJ, USA, pp. 160–168.

Groba, C., Sartal, A., Vázquez, X.H., 2015. Solving the dynamic traveling salesman problem using a genetic algorithm with



trajectory prediction: An application to fish aggregating devices. Computers & Operations Research 56, 22–32.
Kara, I., Kara, B.Y., Yetis, M.K., 2007. Energy minimizing vehicle routing problem. In International Conference on Combina-

torial Optimization and Applications, Springer, pp. 62–71.
Koç, Ç., Bektaş, T., Jabali, O., Laporte, G., 2014. The fleet size and mix pollution-routing problem. Transportation Research

Part B: Methodological 70, 239–254.
Kramer, R., Maculan, N., Subramanian, A., Vidal, T., 2015a. A speed and departure time optimization algorithm for the

pollution-routing problem. European Journal of Operational Research 247, 3, 782–787.
Kramer, R., Subramanian, A., Vidal, T., Cabral, L.d.A.F., 2015b. A matheuristic approach for the pollution-routing problem.

European Journal of Operational Research 243, 2, 523–539.
Larranaga, P., Kuijpers, C.M.H., Murga, R.H., Inza, I., Dizdarevic, S., 1999. Genetic algorithms for the travelling salesman

problem: A review of representations and operators. Artificial Intelligence Review 13, 2, 129–170.
Li, K., Fialho, A., Kwong, S., Zhang, Q., 2013. Adaptive operator selection with bandits for a multiobjective evolutionary

algorithm based on decomposition. IEEE Transactions on Evolutionary Computation 18, 1, 114–130.
Lin, C., Choy, K.L., Ho, G.T., Chung, S.H., Lam, H., 2014. Survey of green vehicle routing problem: past and future trends.

Expert systems with applications 41, 4, 1118–1138.
López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T., 2016. The irace package: Iterated racing for

automatic algorithm configuration. Operations Research Perspectives 3, 43–58.
Lourenço, H.R., Martin, O.C., Stützle, T., 2019. Iterated local search: Framework and applications. In Handbook of meta-

heuristics. Springer, Boston, MA, USA, pp. 129–168.
Macrina, G., Laporte, G., Guerriero, F., Pugliese, L.D.P., 2019. An energy-efficient green-vehicle routing problem with mixed

vehicle fleet, partial battery recharging and time windows. European Journal of Operational Research 276, 3, 971–982.
Majidi, S., Hosseini-Motlagh, S.M., Ignatius, J., 2018. Adaptive large neighborhood search heuristic for pollution-routing

problem with simultaneous pickup and delivery. Soft Computing 22, 9, 2851–2865.
Mashwani, W.K., Salhi, A., Yeniay, O., Hussian, H., Jan, M.A., 2017. Hybrid non-dominated sorting genetic algorithm with

adaptive operators selection. Applied Soft Computing 56, 1–18.
Moghdani, R., Salimifard, K., Demir, E., Benyettou, A., 2020. The green vehicle routing problem: a systematic literature review.

Journal of Cleaner Production p. 123691.
Moon, C., Kim, J., Choi, G., Seo, Y., 2002. An efficient genetic algorithm for the traveling salesman problem with precedence

constraints. European Journal of Operational Research 140, 3, 606–617.
Morán-Mirabal, L., González-Velarde, J., Resende, M., 2014. Randomized heuristics for the family traveling salesperson

problem. International Transactions in Operational Research 21, 1, 41–57.
Padberg, M., Rinaldi, G., 1990. An efficient algorithm for the minimum capacity cut problem. Mathematical Programming 47,

1-3, 19–36.
Potvin, J.Y., 1996. Genetic algorithms for the traveling salesman problem. Annals of Operations Research 63, 3, 337–370.
Saka, O.C., Gürel, S., Van Woensel, T., 2017. Using cost change estimates in a local search heuristic for the pollution routing

problem. OR spectrum 39, 2, 557–587.
Snyder, L.V., Daskin, M.S., 2006. A random-key genetic algorithm for the generalized traveling salesman problem. European

Journal of Operational Research 174, 1, 38–53.
Suzuki, Y., 2011. A new truck-routing approach for reducing fuel consumption and pollutants emission. Transportation

Research Part D: Transport and Environment 16, 1, 73–77.
Syswerda, G., 1991. Scheduling optimization using genetic algorithms. Handbook of genetic algorithms pp. 332–349.
Tiwari, A., Chang, P.C., 2015. A block recombination approach to solve green vehicle routing problem. International Journal

of Production Economics 164, 379–387.
Wang, S., Liu, M., Chu, F., 2020. Approximate and exact algorithms for an energy minimization traveling salesman problem.

Journal of Cleaner Production 249, 119433.
Xiao, Y., Zhao, Q., Kaku, I., Xu, Y., 2012. Development of a fuel consumption optimization model for the capacitated vehicle

routing problem. Computers & operations research 39, 7, 1419–1431.
Yu, Y., Wang, S., Wang, J., Huang, M., 2019. A branch-and-price algorithm for the heterogeneous fleet green vehicle routing

problem with time windows. Transportation Research Part B: Methodological 122, 511–527.
Yuan, S., Skinner, B., Huang, S., Liu, D., 2013. A new crossover approach for solving the multiple travelling salesmen problem

using genetic algorithms. European Journal of Operational Research 228, 1, 72–82.



Zachariadis, E.E., Tarantilis, C.D., Kiranoudis, C.T., 2015. The load-dependent vehicle routing problem and its pick-up and
delivery extension. Transportation Research Part B: Methodological 71, 158–181.

Zhang, M., Qin, J., Yu, Y., Liang, L., 2018. Traveling salesman problems with profits and stochastic customers. International
Transactions in Operational Research 25, 4, 1297–1313.

Appendix A

A.1. Fuel consumption parameters

Table A1
Parameters used in the PTSP model.

Notation Description Typical Values

w Curb-weight (kilogram) 6350
ξ Fuel-to-air mass ratio 1
k Engine friction factor (kilojoule/rev/liter) 0.2
N Engine speed (rev/second) 33
V Engine displacement (liters) 5
g Gravitational constant (meter/second2) 9.81
Cd Coefficient of aerodynamic drag 0.7
ρ Air density (kilogram/meter3) 1.2041
A Frontal surface area (meter2) 3.912
Cr Coefficient of rolling resistance 0.01
ηtf Vehicle drive train efficiency 0.4
η Efficiency parameter for diesel engines 0.9
ud Driver wage per (£/second) 0.002222222
κ Heating value of a typical diesel fuel (kilojoule/gram) 44
ψ Conversion factor (gram/second to liter/second) 737
vl Lower speed limit (meter/second) 5.5 (or 20 kilometer/hour)
vu Upper speed limit (meter/second) 25 (or 90 kilometer/hour)




