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ARTICLE INFO ABSTRACT

Keywords: In this paper we present a method to construct a periodic timetable from a tactical planning perspective. We
Public transportation planning aim at constructing a timetable that is feasible with respect to infrastructure constraints and minimizes total
Perlo.dl? timetabling perceived passenger travel time. In addition to in-train and transfer times, our notion of perceived passenger
Heuristic ) ) time includes the adaption time (waiting time at the origin station). Adaption time minimization allows us to
Integration of timetabling and passenger X . . . . .

routing avoid strict frequency regularity constraints and, at the same time, to ensure regular connections between

passengers’ origins and destinations. The combination of adaption time minimization and infrastructure
constraints satisfaction makes the problem very challenging.

The described periodic timetabling problem can be modelled as an extension of a Periodic Event Scheduling
Problem (PESP) formulation, but requires huge computing times if it is directly solved by a general-purpose
solver for instances of realistic size. In this paper, we propose a heuristic approach consisting of two phases
that are executed iteratively. First, we solve a mixed-integer linear program to determine an ideal timetable
that minimizes the total perceived passenger travel time but neglects infrastructure constraints. Then, a
Lagrangian-based heuristic makes the timetable feasible with respect to infrastructure constraints by modifying
train departure and arrival times as little as possible. The obtained feasible timetable is then evaluated to
compute the resulting total perceived passenger travel time, and a feedback is sent to the Lagrangian-based
heuristic so as to possibly improve the obtained timetable from the passenger perspective, while still respecting
infrastructure constraints. We illustrate the proposed iterative heuristic approach on real-life instances of
Netherlands Railways and compare it to a benchmark approach, showing that it finds a feasible timetable
very close to the ideal one.

Adaption time

1. Introduction share considerable part of the physical route. However, in a dense
line network, where many different lines share (part of) their physical

For a passenger, a public transportation system is attractive if it route, and in addition many passenger routes require a transfer, it is
offers a route from their origin to their destination with low travel far from obvious which trains should be synchronized to obtain an
time, no or few transfers, and at the ‘right’ time, i.e., with the desired ideal timetable. Polinder et al. (2021) proposes a model that includes
departure (or arrival) time. As the desired departure time differs from adaption time (the time from desired departure time until the scheduled

passenger to passenger, a good public transport system offers several
alternative routes per origin—destination (OD) pair at various departure
times, so that no passenger has to deviate too much from their desired
departure time.

In state-of-the art models on periodic timetabling, this quality re-
quirement is covered by the inclusion of ‘regularity’ (or ‘synchro-
nization’) restrictions among trains that belong to the same line, or

departure) to be able to drop pre-imposed regularity constraints in
the construction of an ideal timetable. Polinder et al. (2021) approach
periodic timetabling from a strategic perspective and therefore do not
consider any infrastructure constraints.

However, for railway transportation, the infrastructure imposes se-
vere constraints on the scheduling, so that an ideal timetable, computed
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without considering infrastructure constraint, is in many cases not
feasible. In particular on dense networks like the Dutch one, trains of
different lines compete for infrastructure utilization. An extension of
the current infrastructure would be very costly and time consuming.

Therefore, in this paper we present an approach to solve the
Passenger-Oriented Timetabling (POT) problem that aims at finding a
timetable which is feasible with respect to infrastructure, and mini-
mizes the passengers’ total perceived travel time, which is defined as
the travel time on the ‘best’ route for each passenger including adaption
time. The problem is defined as follows:

Passenger-Oriented Timetabling (POT): Given an infrastructure network
with stations and tracks connecting them, and a line plan, specifying
line routes, stopping patterns and frequencies: find a periodic timetable
including all or a subset of the trains that satisfies the headway con-
straints induced by the infrastructure network and that minimizes total
perceived travel time, where we assume that passengers will travel on
shortest routes according to perceived travel time.

We consider the infrastructure constraints on a macroscopic level.
That is, we consider railway stations with a number of tracks connect-
ing them. In macroscopic timetabling, headway constraints impose a
minimum time difference between trains that share part of the tracks
to avoid crossings and overtakings that are not possible due to the
infrastructure and to enforce a minimum safety distance between trains
running on the same track. Further details like block sections and
signalling systems are not relevant at the tactical planning stage and
can be included in a later planning stage (Radtke, 2014).

In the context of strategic timetabling, Polinder et al. (2021) com-
bine a Mixed Integer Linear Program (MILP) formulation of a PESP
model with an approach for modelling total perceived travel time.
A similar approach would be possible for the POT problem, adding
infrastructure constraints (which are not considered in Polinder et al.,
2021) as PESP constraints, and using indicator variables to model the
cancelling of trains (see Appendix A.4). However, the resulting MILP is
very difficult to solve (as is shown in Section 5).

For this reason, in this paper we propose an iterative approach
that combines (extended versions of) two existing approaches. First,
we compute an ideal timetable, that is: a timetable that does not
need to respect infrastructure constraints, using the method proposed
in Polinder et al. (2021) for strategic timetabling. Secondly, we trans-
form this ideal timetable into a feasible timetable, that is: let it satisfy
the infrastructure constraints, using an extension of the Lagrangian
heuristic (LH) proposed in Cacchiani et al. (2010) with the goal to find a
feasible timetable that stays as close as possible to the ideal timetable.
As an additional step, we compare the resulting feasible timetable to
the ideal one and evaluate how the changes influence the quality of
the timetable. Based on this, we provide feedback to the Lagrangian
heuristic to improve the quality of the newly found timetable.

Our contribution in this paper is twofold: First, we propose an iter-
ative heuristic approach to construct a periodic timetable that satisfies
infrastructure constraints and minimizes the total perceived travel time
(that includes the adaption time). The combination of perceived travel
time minimization and infrastructure constraints satisfaction to make
the timetable feasible makes the problem very challenging. Second,
we illustrate our approach on three case studies on the Dutch railway
network providing insights on critical points in the network and trade-
offs in timetable construction. We show that our algorithmic approach
performs better than the alternative of directly incorporating infras-
tructure constraints in the integer program for timetabling, and that
it converges to a feasible timetable very close to the ideal one.

The remainder of this paper is organized as follows. In Section 2,
we give an overview on research that is related to and relevant for
this study. In Section 3 we introduce and define the POT problem in
detail. Afterwards, we describe our iterative approach to solve this
problem in Section 4. We test our approach on three case studies on
the Dutch railway network in Section 5. Finally, the paper is concluded
in Section 6.
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2. Related work

Timetabling with PESP. The problem of finding a train timetable is
extensively studied in the literature. Often, the timetabling problems
are modelled as the problem of assigning times to nodes (‘events’)
in a graph (‘event-activity network’) where arcs (‘activities’) represent
the time constraints. This formulation makes periodic timetabling a
special case of the Periodic Event Scheduling Problem (PESP, Serafini
and Ukovich, 1989), which can be used for various applications with
periodically recurring events. Details how PESP can be applied in
railway timetabling problems can be found in Odijk (1996), Peeters
(2003), Liebchen and Mohring (2007). Essentially, PESP is a feasibility
problem, as its task is to find a feasible solution, satisfying a set of re-
strictions. Often PESP is extended by an objective function that is to be
optimized (cf. Peeters, 2003; Liebchen, 2008; Caimi et al., 2017). These
objective functions can cover a number of subjects, like optimizing the
customer satisfaction, minimizing the costs of the operator, finding a
timetable that is as close as possible to an infeasible input timetable,
or computing a delay-resistant timetable (Cacchiani and Toth, 2012;
Lusby et al.,, 2018). The optimization version of PESP is normally
much more computationally challenging than solving the feasibility
problem. Approaches to solve such problems cover various techniques,
like integer-programming (Liebchen, 2008; Nachtigall, 1994; Liebchen
and Peeters, 2009), a modulo-simplex heuristic (Nachtigall and Opitz,
2008) or combining machine-learning with a SAT formulation (Matos
et al., 2018). In our paper, we employ a PESP-based model for the first
phase of our approach, in which the ideal timetable is computed based
on the total perceived travel time.

Timetabling based on time-space graphs. Time-space graphs constitute
an alternative graph-based modelling approach to event-activity net-
works. In these approaches, time is discretized, and a time-expanded
network is used: nodes correspond to train departures and arrivals
at specific time instants, and a path in the graph corresponds to a
timetable. In these models, variables represent the choice of arcs (or
paths) of this graph. Approaches based on these kind of models have
mainly been used for aperiodic timetabling, although recent works have
shown their effectiveness for periodic timetabling as well (Martin-Iradi
and Regpke, 2021; Zhang et al., 2019).

Time-space graph models easily embed the running and dwelling
time constraints within the graph definition, and allow the option of
not scheduling some trains by assigning them a dummy path: this is
particularly useful when a feasible solution with all trains scheduled
does not exist, for example in highly congested networks. The drawback
of these models is the size of the graph that can be extremely large for
practical instances. For this reason, most approaches in this category
solve the timetabling problem heuristically by decomposing it through
column generation (Cacchiani et al., 2008, Martin-Iradi and Repke,
2021) or Lagrangian relaxation (Brannlund et al., 1998, Caprara et al.,
2002, Cacchiani et al., 2010, Zhang et al., 2019, Ait-Ali et al., 2020):
indeed, computing a timetable for a single train corresponds to solving
a shortest path problem, and can be efficiently done by dynamic
programming algorithms.

In our paper, we extend the heuristic from (Cacchiani et al., 2010)
to deal with periodic timetabling, and use it in the second phase of our
approach, to make a given ideal timetable feasible.

Passenger-centric objective functions. There are several approaches to
measure the quality of a timetable from the viewpoint of the passen-
gers, and, as shown in Hartleb et al. (2019), the choice of the evaluation
approach will have an impact on which timetables are considered to be
‘good’ and ‘optimal’.

In the OR literature, most papers minimize total passenger travel
time. The most simple models for measuring and optimizing travel
time within a PESP approach minimize a function over the weighted
durations of the activities in the timetabling instance, where weights
represent the number of passengers using that activity (cf. Peeters,
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2003). This relies on the assumption that it is a priori known on which
activities passengers travel.

Schmidt and Schobel (2015) propose a mixed-integer linear pro-
gramming model that integrates (aperiodic) timetabling and passenger
routing. Borndorfer et al. (2017) provide a similar, PESP-based model
for the periodic case and study the impact of different routing as-
sumptions. As PESP is already a challenging problem in itself, the
integration of this problem with passenger routing makes it even more
difficult to find good solutions. Schiewe and Schébel (2020) propose an
‘applicable’ approach that relies on (heuristic) preprocessing and bound
generation. Other approaches (Liibbe, 2009; Siebert and Goerigk, 2013)
solve the problem iteratively: first passengers are routed through the
network. Based on these fixed routes a timetable is computed. Then
passengers are rerouted based on the timetable. This is repeated until
a stopping criterion is met.

Martin-Iradi and Rgpke (2021) propose a time-space-graph-based
approach to find periodic timetables minimizing passenger travel time,
and include frequency constraints to guarantee that trains of the same
line are spread along the period. In a column generation approach that
is designed to minimize the travel times of the trains, each feasible
solution found during the process is evaluated with respect to the
passenger travel time, and the best solution is kept. In Farina (2018),
the same problem as in Martin-Iradi and Rgpke (2021) is considered
and modelled on a time-space graph, and a Large Neighbourhood
Search algorithm is proposed.

The above-mentioned approaches have in common that they eval-
uate timetables based on the assumption that every passenger will
choose the shortest route (with respect to (perceived) travel time)
towards his destination, just as we do.

Including adaption time into passenger-centric objectives. Besides the
travel time between departure at the origin and arrival at the destina-
tion, also the number of travel options between origin and destination
and their timing play a crucial rule in evaluating timetables from a
passenger perspective (de Dios Orttizar and Willumsen, 2011). E.g.,
a timetable with four travel options between origin and destination,
offered every fifteen minutes, would most likely be preferred to a
timetable where there is just one such option (or four, all departing
at the same time), even if in the latter case the travel time is slightly
shorter.

Focusing in the evaluation of a timetable solely on passenger travel
time, measured from departure at the origin, neglects the effect that the
spread of travel options over time has on the quality of a timetable. This
can be overcome by including adaption time in the objective function,
while making an assumption on the distribution of ‘desired departure
times’ of passengers over time.

There are several publications on timetabling on lines and corridors,
where adaption time is explicitly included in the objective function.
Often, ‘adaption time’ is called ‘waiting time’ in this context. We use
the term ‘adaption time’ throughout this literature review, also when
referring to literature where the authors use the term ‘waiting time’,
to avoid confusion with the waiting time at transfers. For single rail
rapid transit lines, Barrena et al. (2014a,b) propose, respectively, an
exact and an adaptive large neighbourhood search minimizing adaption
time. A single rail line is also considered in Zhu et al. (2017), where
a bi-level model is proposed: the upper level model determines the
train headway times to minimize the total passenger perceived costs
(given by adaption time, in-vehicle time and penalty costs associated
with arriving at the destination outside the desired interval), while the
lower level determines passenger arrival times at their origin stations.
A genetic algorithm is used to solve it. Yin et al. (2017) proposed an
integrated approach to determine train schedules and speed profiles
with the aim of minimizing energy consumption and passenger adap-
tion time. A Lagrangian based algorithm is developed for solving it for
a bidirectional urban metro line. A rail corridor is considered in Niu
et al. (2015), where a quadratic model to determine train timetables
based on given time-varying passenger demand data is proposed.
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Wang et al. (2015) propose a very detailed event-driven model
for timetabling on urban networks with the objective to minimize a
weighted sum of travel time (including adaption time) and energy
consumption. Their solution approach is based on sequential quadratic
programming and a genetic algorithm, and tested on a small network
with two cyclic lines.

Instead of including adaption time into the objective function, Gat-
termann et al. (2016) group passengers into time slices, and add a
penalty to the objective function if passengers do not depart in the
respective time slice. They propose a (non-linear) PESP-based mathe-
matical programming formulation, and transfer it to a SAT formulation
to solve it. While the model allows to group passengers into (pre-
defined) time slices and penalize deviation from the respective time
slice, a heuristic to include adaption time, only one time slice (that
spans the whole period) is used in the numerical experiments reported
in Gattermann et al. (2016).

Polinder et al. (2021) consider timetabling in the strategic railway
planning phase. Like in the POT problem, they aim at finding a periodic
timetable that minimizes perceived travel time (a weighted sum of in-
train, transfer, and adaption time and transfer penalties) under the
assumption that passenger demand is uniformly distributed over the
period. However, in contrast to the POT problem, they do not consider
infrastructure constraints, arguing that these are not relevant in the
strategic planning phase. In this paper, we use the approach developed
in Polinder et al. (2021) for strategic timetabling to compute an ideal
timetable in the first phase of our solution approach. It is therefore
described in more detail in Section 4.1.

Compared to the existing literature on passenger timetabling, we
include the adaption time minimization in the objective, instead of
having strict regularity constraints in order to gain flexibility. In ad-
dition, we consider a large railway network while most works tackle
the problem on a single line or corridor.

3. Problem description
3.1. Input

The timetable that is to be designed is based on three items: First,
the infrastructure network on which the trains operate. Second, an
origin—destination matrix representing passenger demand. Third, a line
plan that specifies line routes and frequencies.

As wusual in tactical planning, we consider the infrastructure at
the macroscopic level. That means that our infrastructure network
consists of stations as nodes and tracks between the stations as arcs.
Furthermore, we have estimates of driving times on tracks and dwell
times at stations, and headway times between trains that consecutively
use the same tracks.

Passenger demand is given in the form of an origin—destination (OD)
matrix (dy);epp- For each OD-pair k € OD, the corresponding matrix
entry d, represents the number of passengers who want to travel from
the origin to the destination in one period.

A line plan specifies a set of train lines that are to be operated on
the given infrastructure network. Each train line consists of a route
through this network, a list of stations where the train stops (a stopping
pattern) and a frequency that specifies how often the line is operated
per period (e.g., every hour). We assume that all lines are operated
in both directions. Note that in the line planning phase, no timetable
is known yet. Therefore, while line planning can take into account
constraints on the infrastructure utilization, and on eligible frequencies,
it is not ensured that there exists a feasible timetable where all trains
specified in the line plan can be operated. Therefore, we allow our
method to cancel trains if necessary.
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3.2. Timetabling constraints

Based on the infrastructure network, the demand encoded in the
OD-matrix (dy),cop, and the line plan, we aim at finding a periodic
timetable n that assigns a timestamp to each arrival and departure of
trains at/from every visited station during the considered period.

To ensure operational feasibility, the time difference between a
departure of a train and its subsequent arrival needs to be at least the
minimum driving time, and is only allowed to exceed it up to a certain
extent. The time between an arrival and the subsequent departure of a
train from a station must be equal to or higher than the minimum dwell
time and is constrained by a maximum dwell time. When trains use the
same infrastructure, headway times need to be respected. Furthermore,
we require the timetable to be periodic, i.e., events reoccur every time
period.

These constraints can be encoded by using the PESP approach
(Serafini and Ukovich, 1989): in this case, departure and arrival events
are represented as nodes in a so-called Event-Activity Network. The
arcs of this network, called activities, represent driving and dwelling
of the trains and headway constraints. In addition, transfer activities
that represent the transferring of passengers from one train to another
within one station, can be added to the PESP model. While these do
not impose operational constraints on the timetable, they allow us
to represent passenger routes as paths in the event-activity network.
Details on how to encode standard timetabling constraints as PESP
constraints can be found in Appendix A.1.

Another way to encode timetabling constraints is by using a time—
space graph, in which each node corresponds to a potential departure or
arrival time of a train from/at a station along a track, and arcs represent
driving and dwelling between departures and arrivals. In this case, a
Time-index ILP Formulation is used, in which the headway constraints
are expressed as incompatibility between arcs of the time-space graph.
An example of this graph is shown in Appendix A.2, while the Time-
index ILP formulation will be introduced in Section 4, since it will be
employed in our solution approach (and also requires more detail that
will be presented in that section).

3.3. Quality of the timetable with respect to perceived passenger travel time

Among all operationally feasible timetables, we aim to find one that
optimizes the total perceived passenger travel time.

To evaluate the quality of a timetable by computing the corre-
sponding total perceived travel time, we first distribute the passenger
demand given by the OD-matrix OD on the network and compute
total perceived travel time. This evaluation is based on a number of
assumptions (see Polinder et al., 2021):

1. Passenger numbers for one period T are given in the OD-matrix
(di)keop- This demand is independent of the timetable.

2. Passenger demand per OD-pair is distributed uniformly over the
period T'. I.e., every time unit (in our experiments: every minute)
d?" passengers would like to depart from the origin station of
OD-pair k to travel to the destination station of OD-pair k.
The rationale behind this assumption is that the timetable is
usually constructed a number of years to six months before the
actual day of operation, and we cannot expect that the demand
distribution over the period is known accurately at that time,
in particular since we assume a relatively short period length of
one hour.

3. Train capacity constraints do not play a role in the route choice
of passengers. In fact, it is common to neglect capacity con-
siderations in timetable design. Often these considerations are
explicitly addressed in the next phase of public transport plan-
ning, the rolling stock planning, where capacity requirements
can be met (to a certain extent) by assigning a sufficient number
of train units to the train trips scheduled in the timetable.
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Fig. 1. Time-space diagram with two possible journeys from .S, to .Sj;.

4. Passengers are rational in the sense that they choose a route with
minimum perceived travel time, based on the timetable and their
desired departure time.

5. Perceived travel time is computed as a weighted sum of several
components that are listed below. The weights are equal for each
passenger.

The components of the perceived travel time are as follows:

In-train time The time the passenger actually spends in the train, both
when the train is driving and when it dwells at a station.

Adaption time The time difference between the desired departure
time of the passenger and the moment the train departs that
brings him to his destination. The adaption time is weighted by
a factor y,,.

Transfer time The time a passenger has to spend on some station to
transfer from one train to another. The transfer time is weighted
by a factor y,.

Transfer penalty If the passenger needs to transfer from one train to
another, a penalty of y, is added for each transfer, compare (de
Keizer et al., 2015).

The different components are illustrated in Fig. 1, which displays a
time—space diagram. A passengers arrives at .S; at the time indicated
by the arrow, and wants to travel to S;. He can either take the first
departing train to .S,, transfer (indicated by the dashed line) there to
the train to .53, or he can take the direct train, and he then arrives later
at S;. If the passenger takes the first route, he has a short adaption time,
which is beneficial for his perceived travel time, but he needs a transfer,
thus leading to a transfer penalty. He could also wait for the later train,
which is a direct train, but then the adaption time is larger. Depending
on the weights for the adaption time, transfer time and transfer penalty,
he will choose a route that has the lowest perceived travel time.

Note that in-train time, transfer time, and transfer penalty are
characteristics of the route and do not depend on the desired departure
time of a passenger. We therefore refer to the weighted sum of these as
perceived route length.

To compute the total perceived travel time for timetable 7 effi-
ciently, we follow the approach described in Polinder et al. (2021):

We use a precomputed set of passenger routes. A route for passenger
k is a sequence of drive, dwell, and transfer activities that form a path
from the origin of passenger k to the destination of passenger k. We use
the method described in Warmerdam (2004) to precompute the routes.
Details can be found in Appendix A.3.

We assume that each passenger will take the route with lowest
perceived travel time, based on his desired departure time. That can be
the route that departs earliest after the desired departure time, but it
can also be a route that departs later (e.g., if that route has significantly
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shorter travel time or contains less transfers and is therefore preferable
despite the higher adaption time, as illustrated in Fig. 1).

For each OD-pair k, we call the set of departure events at the origin
of k that belong to a precomputed route relevant departure events. This
set is denoted by V*. We divide the period T based on the scheduled
times z; of relevant departure events i. Based on the assumption that
perceived route length is the same for all passengers, we know that
all passengers whose desired departure time falls between two relevant
departure events o' and v will choose the same route (although their
adaption time can differ, and therefore also their perceived travel time
for the chosen route). Therefore, it is sufficient to compute for each OD-
pair and each corresponding relevant departure event the route with
lowest perceived travel time from departure time r, on. We denote the
perceived travel time of this route (measured from r, on) as Y.

For each OD-pair k, we denote by ij = (7, — 7y)( mod T) the
time before departure event v, but after the previous relevant departure
event v/. Note that this calculation is made modulo the time period
T. That is, also the ‘first’ relevant event of a period has a preceding
relevant departure event (namely the last relevant departure event of
the previous period) and the time difference between the two events
is correctly calculated and assigned to L. Due to the assumption of
uniformly distributed passenger arrivals, the number of passengers of
OD-pair k arriving in this interval is d?" - Lk, The expected waiting time

(and hence the adaption time) of these passengers is W* = %ﬁ, based
on the assumption of uniformly distributed customer arrivals. That is,
the average perceived travel time for a passenger of OD-pair k, arriving
between departure events v’ and v, is y,, - WX + Y*. To compute the
overall average perceived travel time for a passenger of OD-pair k we
consider the total number of passengers di - L¥ of OD-pair k arriving
in each interval L¥, and consider all intervals in T (defined by the
scheduled times of the relevant events v € V), and then divide the

expression by d, to have the average value for a single passenger:

Ry(x) = di Z %-Lﬁ-(yw~WUk+YL{‘):% Z LK (y, - WE+YF) (3.1)
vevk vevk
If, due to train cancellations, there is no route from origin to desti-
nation of OD-pair k, we set R, (z) := M, where M is a (high) penalty
value. In the remainder of this paper, we call the average perceived
travel times of passengers of OD-pair k, weighted with the number
of passengers on this OD-pair, d, - R, (r), the evaluation contribution of
OD-pair k € OD.
Note that the evaluation contribution can also simply be interpreted as
summing up the perceived travel time of all passengers of an OD-pair.
To evaluate the timetable we sum up the evaluation contributions
of the OD-pairs and obtain the total perceived travel time

Y di Ry (3.2)

keOD

3.4. The passenger-oriented timetabling problem

To find a timetable that is optimal with respect to the minimization
of function (3.2), we have to determine the timetable, the passenger
routes, and the corresponding total perceived travel time simultane-
ously. We can summarize the POT problem as

Minimize, ' d; - R(r) (3.3)
keOD

Such that 7 is a feasible periodic timetable (3.4
passengers take best routes with respect to « (3.5)

R, (r) is the average perceived travel time of OD-pair k Vk € OD
(3.6)

Note that (3.4) means that all the timetabling constraints described
in Section 3.2 are respected. In addition, by optimizing with respect
to total perceived travel time, which includes the adaption time, we
automatically obtain a timetable in which departures of trains that

Computers and Operations Research 142 (2022) 105740

serve the same line or whose corresponding lines share a substantial
part of the physical route are spread relatively evenly over the period.
For this reason, we can exclude additional ‘synchronization constraints’
that are often imposed in other timetabling models to synchronize these
train runs.

4. Solution approach

In this section, we present our iterative heuristic approach. A graph-
ical overview is shown in Fig. 2.

The approach consists of decomposing the POT problem into two
subproblems: make an ideal timetable that determines an ideal timetable
that minimizes the total passenger perceived travel time but neglects
the infrastructure constraints, and make a feasible timetable that modifies
the ideal timetable to make it satisfy all the infrastructure constraints,
with the aim of applying as few as possible changes. These steps are
solved in sequence, and a feedback mechanism on the second step
allows to iteratively improve the feasible timetable in terms of the total
passenger perceived travel time.

More precisely, in the first step, we construct an ‘ideal’ timetable
using the solution approach for the strategic timetabling problem
from Polinder et al. (2021). This approach is summarized in Section 4.1.
An extension of the Lagrangian heuristic (LH) from Cacchiani et al.
(2010) is used, in the second step, to modify the ideal timetable to make
it feasible with respect to infrastructure constraints, while staying as
close as possible to the ideal timetable. This approach is summarized
in Section 4.3. This algorithm is chosen because it runs in relatively
short computing times, and was designed to start from a given ideal
(infeasible) timetable to derive a feasible similar one (although in a
different context), therefore fitting to our aim. LH relies on a profit
structure for trains used to define the objective function: the idea is that
each change that modifies the ideal timetable is penalized but changes
on different train services have different impacts on the timetable
quality. Each train is assigned a profit, and each change reduces this
profit by a different value, giving rise to the profit structure. Since LH
requires rather short computing times, we adopt a multi-start method,
i.e., we heuristically construct several different profit structures, based
on the relative importance of the trains and on the changes that we
allow to make a timetable feasible.

For each profit structure, we execute LH and find a feasible
timetable. We evaluate these timetables with the evaluation function
(3.2). The best feasible timetable(s) found are then compared to the
ideal timetable found in the previous step: We check for which OD-
pairs the evaluation contribution gets worse. This serves as input in a
feedback mechanism to generate new updated profit structures which
are used for generating new feasible timetables. Details can be found
in Section 4.4.

In the remainder of this section, we explain each phase in detail.

4.1. Make an ideal timetable

We define an ideal timetable as a timetable that fulfils all constraints
on driving time and dwell time and minimizes total perceived travel
time. In many cases, an ideal timetable will not be feasible with respect
to infrastructure constraints.

To find an ideal timetable, we apply an approach that has been
proposed in Polinder et al. (2021) in the context of Strategic timetabling:
We formulate the problem for finding an ideal timetable as a mixed
integer (quadratic) program and linearize it. On the linearized model,
we apply a relax-and-fix heuristic (see Belvaux et al., 1998; Wolsey,
1998). to find a sequence of timetables, which fulfil the timetabling
constraints with respect to driving time and dwell time, of increasing
quality. For the sake of completeness, the MIP model from Polinder
et al. (2021) is given in Appendix A.4. The linearization and details of
the heuristic can be found in Polinder et al. (2021). The basic idea of the
relax-and-fix heuristic is as follows: First, we restrict the set of OD-pairs
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Fig. 2. Flow diagram of our approach.

to consider only the OD-pairs which are largest in size. In a first step, all
variables are relaxed to continuous variables, except for the variables
related to the timetabling constraints. This leads to a relatively easy
model which we solve with a commercial solver until an optimal
solution is found or a time limit is reached. Based on the timetable
found, we use a dynamic programming approach to route passengers
on routes with shortest perceived travel time, which, together with
the timetable, provides a feasible solution for the MIP. In each further
iteration step, more variables are changed into integers. The solution of
the previous step is used as a warm start for the new step, which helps
the solver in finding a (close-to) optimal solution for this step, which is
then extended to a full solution by dynamic programming. After the
heuristic finishes (when a time limit or optimality gap is reached),
the resulting timetable is used as a warm start to solve the full ‘ideal
timetabling model’.

4.2. Profit structure

LH relies on a profit structure that accounts for three operations
applied to modify the ideal timetable and make it feasible: (i) shift,
i.e., moving the departure time of some trains at their origin stations to
an earlier or later point in time (and consequently moving the arrival
and departure times, at all the stations visited by the train, by the same
amount), (ii) stretch, i.e., increasing the train dwell time at some of the
visited stations, and (iii) cancelling trains.

Each of these changes is undesirable from the perspective of an ideal
timetable, and is thus penalized. Not all changes have the same impact:
train cancellation has a stronger effect on passenger travel times but
shift and stretch also affect the passenger travel times as they influence
the adaption, in-train and transfer times. In addition, the severity of the
consequences on passenger travel time will also depend on the type of
train where a change is applied. To account for the impact of these
changes on different trains, we define the following profit structure. We
associate to each train j € P:

* a train profit: this value reflects the importance of scheduling the
train, based on the train type (intercity, local, etc.) and on the
line frequency (see Section 5.2.2 for details);

* a shift penalty: it decreases the profit for every minute of shift;

« astretch penalty: it decreases the profit for every minute of stretch;

» a maximum shift value: it limits the (early or late) shift from the
origin station defining a departure time window centred in the
ideal departure time of train j;

» a maximum stretch value: it limits the total stretch along the whole
train path.

As detailed in Section 5.2.2, in our experiment, we use a multistart
method, that is, we consider different values for shift and stretch
penalties, as well as for maximum shift and stretch, since different
profit structure produce different timetables.

4.3. Make a feasible timetable

To make a feasible timetable that satisfies all the headway con-
straints, we extend the method developed in Cacchiani et al. (2010).

Following that approach, we employ a time-index ILP model based
on a time-space multi-graph, as the one reported in Appendix A.2. The
goal is to find a feasible timetable that is as close to the ideal one as
possible. The ILP model uses binary variables that represent whether
a specific arc is chosen, with constraints ensuring that, for each train,
at most one path (i.e., a timetable feasible for driving and dwelling
times) in this time-space graph is selected, and that no two selected
paths of different trains are in conflict to each other with respect to
infrastructure. These constraints ensure that a timetable found with this
method is feasible (Caprara et al., 2002).

In the ILP model, profits are assigned to the arcs, according to
the profit structure defined in Section 4.2. These profits are highest
if no change is applied, and decreased if the dwell time is stretched
or the departure time from the origin station shifted, and the profit
becomes null for a train if it is cancelled. In this way, the ideal
timetable yields the highest possible profit, if it is feasible with respect
to infrastructure, and changes are penalized. The time-index ILP model
is reported in Appendix A.5.

As in Cacchiani et al. (2010), to have an efficient solution approach,
we do not use a general-purpose ILP solver to solve the time-index for-
mulation, but apply a Lagrangian-based heuristic algorithm. It consists
of iteratively executing three steps: (i) apply the Lagrangian relax-
ation of the constraints that prevent infrastructure conflicts by using
the current Lagrangian multipliers (initially set to 0), (ii) solve the
relaxed problem by dynamic programming and update the Lagrangian
multipliers, and (iii) compute a heuristic feasible solution.

At every iteration, the Lagrangian multipliers are updated through
subgradient optimization by considering constraint violations or loose-
ness (the relaxed problem is reported in Appendix A.6). As a conse-
quence, arc profits are updated, and each train is associated with a
Lagrangian profit (see Appendix A.6) that, in addition to the profit
structure of Section 4.2, takes into account the penalties due to the
relaxed constraints.

To compute a heuristic solution, at every iteration, the following
steps are applied:
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1. order trains based on their Lagrangian profits;

2. schedule one train at a time, in this order, in the most prof-
itable and compatible way (avoid all conflicts with the previously
scheduled trains) by dynamic programming;

3. apply a local search procedure to find a better path for trains that
underwent shift, stretch or were cancelled.

We extend the approach in Cacchiani et al. (2010) to deal with
periodic timetabling, train service regularity, and (simplified) rolling
stock constraints, as described in the following.

To respect the periodicity requirement, if a train departs by the end
of the time horizon and arrives later than T, then its arrival is mapped
back to the beginning of the time horizon: i.e., the arrival node in the
time-space graph is mapped to the corresponding node at the beginning
of the time horizon. The same holds for train stops that traverse the end
of the time horizon: in this case, the departure node after the stop is
mapped to the corresponding node at the beginning of the time horizon.
As explained above, we impose a limit on the time change that can be
applied to each train departure or arrival: in particular, the departure of
a train from its origin station is bounded (early or late) by the maximum
shift value, while the total stretch along the whole train path is bounded
by the maximum stretch value. Accordingly, the maximum change that
train departure (or arrival) time can get is given by the sum of earlier
shift, later shift and total stretch. As the timetable constructed in this
paper has to be periodic, we impose this maximum change to be at
most T: indeed, changing a train departure (or arrival) time by T + K
time units is equivalent to changing it by K units.

In contrast to the approach described in Cacchiani et al. (2010) that
only penalizes shift (deviation from ideal timetable) at the first station
of a train, our approach can also penalize shift at intermediate stations.
In this way, we can penalize deviation from a regular pattern at inter-
mediate stations. This is particularly relevant for improving the feasible
timetable in the feedback mechanism, since irregular departures lead to
significant worsening of the objective to minimize the total perceived
travel time.

With respect to the method described in Cacchiani et al. (2010), our
approach is able to take into account basic rolling stock constraints: in
practice, trains of the same line (i.e., trains with the same origin and
destination stations, and stopping at the same intermediate stations)
are scheduled in “pairs”. In this way, when a train is scheduled in
one direction, another train is also scheduled in the opposite direction,
and the same rolling stock (physical train) is assigned to both services.
This also leads to a more regular timetable having the same number
of trains running in both directions. Since LH allows train cancellation,
we need to guarantee that, if a train j, is cancelled, then also train
Jo, going on the same line in opposite direction, is cancelled. Clearly,
this can be easily obtained by simply cancelling j,, but it is highly
undesirable. Therefore, we modify LH by including a new procedure
that first cancels trains to balance both directions of each line, and then
tries to reschedule them. At each iteration, after a feasible timetable has
been determined, for every train line, if needed we cancel additional
trains to have the same number of trains scheduled in both directions.
Once all train lines have been processed, we try to reschedule trains in
pairs, for each train line: we compute, for each train, the most profitable
path compatible with the previously scheduled ones. If there exists a
feasible path for each direction of a line, the corresponding trains are
inserted, otherwise they are cancelled again. Since this procedure can
change the set of scheduled trains, at the end we apply again the local
search procedure. Note that it is possible to schedule previously can-
celled trains thanks to the additional train cancellation applied at the
beginning of this procedure. We also observe that, for the considered
instances, the number of trains per line is two or four, and thus this
procedure can be executed efficiently.
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4.4. Evaluate & update profit structure

The profit structures used in LH are heuristically chosen to penalize
deviation from the ideal timetable, based on the severity of the devi-
ation and the relative importance of trains. Different profit structures
lead to a different order in which train timetables/paths are fixed in the
steps of LH, which often leads to different timetables. For this reason,
we do not use one, but several profit structures, which typically lead to
different feasible timetables. We evaluate each timetable generated by
LH using the evaluation function (3.2). The best timetable according
to this evaluation function after running LH will be referred to as best
pure Lagrangian (BPL) timetable in the remainder of this manuscript.
However, there is no guarantee that the BPL timetable is the best
feasible timetable with respect to our evaluation function. Therefore,
as an attempt to find even better timetables, we update the profit
structures based on a comparison of BPL timetable and ideal timetable,
restart the LH with the updated profit structures, and find new feasible
timetables.

By comparing the evaluation contributions of all OD-pairs in the
ideal timetable = and in the BPL-timetable n’, we can identify the OD-
pairs for which the evaluation contribution increased the most. We
inspect the routes chosen for these OD-pairs and the corresponding
trains to find the reason of the increase. In a ‘feedback’ step, we
generate a new set ¥ of updated profit structures, based on the initially
chosen profit structure .S to penalize the undesired changes more. Since
we are not able to predict an ‘optimal’ penalty for deviations, we use
a set of penalty values P = {p,p,,...,p,} and create several profit
structures based on .S and P. We proceed as follows:

1. Identify the OD-pairs with highest excess evaluation contribution.
The excess evaluation contribution is computed as follows: Based
on minimum drive, dwell, and transfer times and penalties, we
compute lower bounds on perceived route lengths. Furthermore,
we can compute a lower bound on the average waiting time of
passengers of OD-pair k by assuming that the relevant departure
events for this OD-pair are perfectly synchronized, and that each
passenger chooses the route that departs earliest after his desired
departure time. In this way, we can lower-bound the average
waiting time for a passenger of OD-pair k by ZI% The sum
of the lower bound for perceived route length plus the lower
bound on adaption time, multiplied with the number of passen-
ger for this OD-pair gives us a lower bound on the OD-pair’s
evaluation contribution. The difference between the evaluation
contribution of an OD-pair and the so-computed lower bound is
the excess evaluation contribution. This increase with respect to
the lower bound can be caused by a large number of passengers
in the OD pair or by a high increase in the perceived travel time.
We include the OD-pairs whose excess evaluation contribution
exceeds a certain threshold in the set of relevant OD-pairs. To
avoid that we increase penalties for many OD-pairs, we fur-
thermore impose an upper bound B on the number of relevant
OD-pairs. If there are more than B OD-pairs exceeding the
threshold, we include the B OD-pairs with highest evaluation
value contribution in the set of relevant OD-pairs.

Let © = {0y,05,...,0.} be the set of origin-stations for the
relevant OD-pairs.

2. We create |O| - | P| new profit structures, one for each penalty
value p; € P assigned to each station o; € O. More precisely,
we create the corresponding profit structure as follows: for each
station o; € O and for each p; € P, we create a new profit
structure that is based on .S, with an additional intermediate
shift penalty of value p; that is assigned to all trains passing
station o;. Furthermore, all trains for which o; is an origin or
terminal station and which are relevant for the corresponding
OD-pair identified in Step 1, receive shift penalty max{s(),p;},
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where s(7) is the regular shift penalty for train 7 in profit structure
S.

If |O| > 1, we generate additional profit structures. In these new
profit structures we apply the same principle as above, but now
we apply the penalties to all pairs of stations. In particular, for
each pair of stations o;, 0, € © and for each pair of penalty values
pj»p; € P, we assign (intermediate) shift penalty p ; to station o;
and p; to station o,,.

For example, if |O| = 2 and | P| = 2, we create 4 profit structures,
as described above, that correspond to assigning p; to station o;
or o,, and similarly p, to station o, or o,. Moreover, we generate
4 additional profit structures: two are obtained by assigning p,
both to stations o, and o,, or p, both to stations o, and o,, while
two other profit structures are obtained by assigning p, to station
0, and p, to station o,, or p, to station o, and p, to station o,.

Given the set of updated profit structures ¥, we again run LH.
Each of these profit structures leads to a new timetable which we
evaluate. If any of these timetables gives a better evaluation value, we
stop the feedback process and finish with the best timetable generated
using ¥. Else, execute steps 1 and 2 again with the original profit
structure as input, but now also identify OD-pairs as relevant for which
the evaluation contribution increased the most in the best timetable
generated using the profit structures in ¥. The timetable that is the
best after providing feedback is referred to as the best after feedback
(BF). The feedback process is repeated until either we find an improved
timetable or we reach a given maximum number of iterations.

We underline that the intermediate shift penalty is not adopted at
every intermediate station where there are irregular departure head-
way times, but only at those that cause a significant increase in the
evaluation value. Indeed, it would not be effective to penalize shifts at
every station, since some changes are needed in order to get a feasible
timetable. Therefore, we aim at penalizing the changes that have most
impact on the evaluation value of the timetable. For the same reason,
we do not use the intermediate shift penalty when LH is applied to the
ideal timetable in the first round before the feedback process.

The rationale behind our feedback approach is that adaption times
have a strong influence on the evaluation value of a timetable. If LH
causes a higher irregularity in the new timetable compared to the ideal
timetable, the evaluation value is likely to increase. For this reason,
we focus on the shift penalties in the feedback process. However,
many alternative strategies to provide feedback in order to reduce the
evaluation contributions of OD-pairs can be thought of, as we can
update initial train profits, shift and stretch penalties, maximum shift
and maximum stretch, as well as adding intermediate shift penalties.
We experimented with different strategies on how to update profit
structures before we identified this one which was successful on our
three test instances and that is presented here.

5. Case study

In this section we perform three case studies of the Dutch railway
network with increasing complexity in terms of considered number
of trains and OD-pairs. First, we describe the three instances in Sec-
tion 5.1. Next, in Section 5.2 we describe the parameters that are used
in our approach. In Section 5.3, we describe and discuss the obtained
results. Finally, in Section 5.4 we benchmark our iterative approach
with solving the POT model as an integer program (see the extended
model in Appendix A.4).

5.1. Instances

Here we describe the instances that we consider in more detail. Each
instance consists of a railway network displayed in Fig. 3: as can be
seen, Fig. 3(a) contains a central corridor with few connected lines,
while Fig. 3(b) and Fig. 3(c) are larger networks. Some of the stations
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in Fig. 3 are labelled, because we refer to them in the presentation and
discussion of the results.

5.1.1. A2 instance

The first instance that we consider is the ‘A2’ that consists of a
main corridor between the stations Eindhoven (Ehv) and Amsterdam
Central (Asd), and few additional lines from Hdr, Ut and Ehv. The
network contains 34 stations. We consider five Intercity train lines that
are operated on this network with a frequency of two trains per hour
in both directions, so there are 20 trains in total. In this instance, we
consider 891 OD-pairs.

The underlying event-activity network contains 1344 events and
1460 drive and dwell activities. To build the model for constructing
the ideal timetable, 376 transfer activities (which do not impose oper-
ational constraints on the timetable, but facilitate passenger routing)
are included. An inclusion of infrastructure constraints in the PESP
framework leads to 2964 additional activities.

5.1.2. Rotterdam—Groningen instance

The second instance covers part of the 2019 line plan of Netherlands
Railways (NS, 2019). It is centred on the line between Rotterdam (Rtd,
in the South-West) and Groningen (Gn, in the North-East), and also
includes all connected lines that share a part of their route with this
main line. Fig. 3(b) shows the corresponding network. The network
contains 77 stations. We consider 3810 OD-pairs and 60 trains in the
network.

The underlying event-activity network contains 1664 events and
1716 drive and dwell activities. 1402 transfer activities are added to
enable passenger routing. To model infrastructure constraints, 4004
additional activities are needed.

Note that, although in this instance we have three times as many
trains compared to the A2 instance, the number of events, as well as of
drive and dwell activities, increases only slightly. The reason for this
is that we have a number of trains on short lines (and thus less events
are needed per train line). The main increase is seen in the number of
transfer activities, to generate all possible transfer routes, as well as in
the number of activities modelling infrastructure constraints.

5.1.3. Extended A2

The third instance is an extension of the A2 instance. It contains
all train lines in the 2019 network of Netherlands Railways that share
a part of their route with the main line between Amsterdam Central
(Asd) and Eindhoven (Ehv). As can be seen from Fig. 3(c), this is a large
network with many interconnected lines. The network contains 140
stations. We consider 88 trains on the network and 11121 OD-pairs.

The event-activity network contains 3160 events and 3308 drive
and dwell activities. 3592 transfer activities are added to enable pas-
senger routing. Adding the infrastructure constraints leads to 8360
additional activities.

5.2. Parameters

To solve the mixed integer linear programs in the computation of
ideal timetables, and to solve the benchmark model (see Section 5.4),
we use a machine with an Intel Xeon Silver 4110 2.10 GHz proces-
sor with 96 GB of RAM installed. The mathematical programs are
solved by Cplex 12.9.0 under default settings, using up to 15 parallel
threads (IBM, 2019). We use a time limit of two hours for the ‘A2’
instance, and a time limit of four hours for the ‘Rotterdam-Groningen’
instance and the ‘Extended A2’ instance. In the heuristic approach to
solve the MIP models, we use a subset of the OD-pairs: we include as
few OD-pairs as possible, with the restriction that at least 30% of all
passengers are included in this smaller model.

In all our experiments we discretize time to minutes and use a
period length of one hour, i.e., T = 60.
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(b) Rotterdam-Groningen
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(c¢) Extended A2

Fig. 3. Networks of the three instances considered.

In the remainder of this section, we specify the parameters that
we use in our experiments. First, we describe the parameters for the
objective function. Next, we detail the profit structure that we use for
LH.

5.2.1. Objective function parameters

In line with Polinder et al. (2021) and de Keizer et al. (2015), we
set y, = 20, i.e., the transfer penalty equals 20 min. We use y, = 1,
i.e., transfer time weights as much as in-train time as we already have
a transfer penalty. We set y,, = 3, i.e., adaption time weights three times
as much as in-train time.

If passengers no longer have a travel option when trains are can-
celled, we count a penalty of value M = 24 - T (a full day) as the
perceived travel time of these passengers.

Note that in the presentation of our results, for confidentiality
reasons we normalize evaluation values with the ideal timetable. That
is, an increase in the evaluation value by one unit means the evaluation
value is 1% higher than that of the ideal timetable.

5.2.2. Profit structure and feedback parameters

The Lagrangian heuristic LH requires the specification of a profit
structure (see Section 4.2). In our experiments, we initially create 9
profit structures for the multistart approach. These profit structures are
based on the same initial train profits, but differ in the stretch and shift
penalties and the in the maximum values for stretch and shift.

Train profits are based on the train type (Intercity, local, etc.) and on
line frequencies. For the train type ‘Intercity’, we consider a base profit
of 4000. For the train type ‘local train’, the base profit is reduced by
10% to 3600 and for trains that partly operate as an Intercity and partly
as a local train, it is reduced by 5% (to 3800). In this way, Intercity
trains have priority in the scheduling process over the other train types,
hence are more likely scheduled as in the ideal timetable. To account
for different line frequencies, for each train we identify for each pair of
consecutive stations on the corresponding line the number of trains that
travel between the stations, and take the minimum m of these numbers
along the line. The train profit is computed as the base profit divided
by m. For example, if we consider a local train line with frequency two
that is the only train line offering a service on some part of the network,
we have m = 2 and the profit for the trains in this line is 3600/2 = 1800.
If another line with frequency two is present as well on the considered
part of the network, we have m = 4 and the profit is 900. Thus, trains
with lower frequency become more important in the scheduling process
than more frequent trains, so that it is more probable that the former
are not cancelled.

For the shift and stretch penalties, we consider equal values for
all trains, and use three different settings: (1) shift penalty set to 20
and stretch penalty to 10; (2) both shift and stretch penalty set to
15; (3) shift penalty set to 10 and stretch penalty to 20. Namely, we
assign more importance to the shift penalty in the first case, same
importance to both changes in the second case, and more importance
to the stretch penalty in the third case. Indeed, it is not known a priori
whether a shift or a stretch is worse: it depends on the location where
this happens and on the influence it has on the regularity of trains in
general. In addition, we want to explore a rather broad spectrum of
profit structures, because it is not a priori known which changes in
the timetable have the least negative effect on the evaluation of the
timetable according to evaluation function (3.2).

For maximum shift and maximum stretch, we consider three set-
tings: (1) maximum stretch and maximum shift both equal five: this
means that each train can have its departure time from its origin station
up to 5 minutes earlier or 5 minutes later, and a total stretch along its
route of up to 5 minutes, (2) maximum shift is 10 and maximum stretch
is 5, (2) maximum shift is 5 and maximum stretch is 10.

Based on preliminary experiments, the total number of iterations for
each run of LH is set to 250.

In the evaluate and update step we use a threshold of +0.03 to identify
the set of relevant OD-pairs, together with a bound B = 4 on the
size of this set. Indeed, by modifying the profit structure of a small
number of trains, we are able to focus on the locations that show higher
irregularity of service. We adapt the values for the intermediate shift
penalties at the corresponding stations, as well as for the initial shift
penalty of a train starting in such a station. We use values of 10, 20
and 30 for these penalties. We set the maximum number of iterations
for the feedback mechanism to 5: this limit was never reached in our
experiments, since we found an improved timetable for all instances
within 2 feedback iterations.

5.3. Results of the algorithm

In this section we illustrate the different steps of our approach on
the three described instances, providing insights on critical points in
the network and trade-offs in timetable construction.

5.3.1. A2 instance

Make an ideal timetable. Within the time limit of two hours, we are not
able to solve the optimization problem of finding an ideal timetable to
optimality. The lower bound that is proven by CPLEX is 97% of the
objective value, hence the remaining gap is 3%.
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Fig. 4. Time-space diagrams for A2.

To illustrate the best ‘ideal’ timetable = found within the time limit
of two hours, we show a time-space diagram for the corridor between
Hdr and Ut in Fig. 4(a). Time is shown on the horizontal axis, between 0
and 60, i.e., one cycle period is displayed. Space is shown on the vertical
axis, where several stations are mentioned. The lines on the right of the
figures display, for each section, the number of tracks that are present
on that section.

Even though no regularity constraints are added to the model, we
see in Fig. 4(a) that the trains are spread over time rather regularly
in this network thanks to the inclusion of the adaption time in the
objective function. However, the ideal timetable does not satisfy the
constraints imposed by the infrastructure. There are two conflicts,
which are indicated by red circles in Fig. 4(a). At one location, two
trains are scheduled at the exact same time: the light blue and dark
blue trains are scheduled at the exact same time between Ut and Asb.
At another location two trains are scheduled to cross each other in a
single track area between Hdr and Sgn.

Make a feasible timetable. We run LH with the nine different parameter
sets specified in Section 5.2.2, thus obtaining nine feasible timetables
in which all trains are scheduled. The best timetable found in this step,
BPL, has an evaluation value of 100.18, i.e., the evaluation value
increased by 0.18% with respect to the ideal timetable. For the BPL
timetable, the time-space diagram is shown in Fig. 4(b), where it can
clearly be seen that the conflicts are resolved. Trains that crossed on a
single track area are now stretched such that they pass each other at a
station. Secondly, the trains that were scheduled at the same time are
now moved away from each other. Fig. 4(c) shows the best timetable
after feedback, reported here for a more direct comparison with the
ideal and BPL timetables. The process to obtain it is discussed in the
following.

Evaluate & update profit structure. Fig. 5(a) shows the difference in
excess evaluation contribution for individual OD-pairs between timeta-
bles = and BPL. Each OD-pair is represented by a star, the stars are
sorted from left to right according to the excess evaluation contribution
of the corresponding OD-pair in the ideal timetable. As can be seen,
for many OD-pairs the excess evaluation contribution is small in the
ideal timetable, for only a few OD-pairs it is large. These OD-pairs
are selected for profit structure updating according to the considered
threshold +0.03 and bound B 4. In this instance, these OD-pairs
correspond to those having a high demand and a small irregularity
in their departure pattern: recall that the evaluation contribution is
weighted by the number of passengers, i.e., a large increase for only

10

a few passengers can count less than a small increase for many pas-
sengers. In Fig. 5(a), the vertical coordinate indicates the difference
in evaluation value between = and BPL. In particular, if a star lies
above 0, the evaluation contribution of the OD-pair has increased
after applying LH. But there are also some OD-pairs which have a
lower evaluation contribution after applying LH, these can be found
below 0. Two OD-pairs are labelled in the figure: these are the OD-
pairs with the increase in evaluation contribution over the considered
threshold, and on which we base the feedback. The OD-pair Ut-Asd has
an excess evaluation contribution of 0.38 in the ideal timetable, and
that evaluation contribution increased to 0.47 in the BPL-timetable, due
to a more irregular departure pattern at Ut, giving an excess evaluation
contribution of 0.09. Similarly, the OD-pair Ut-Asa gives an excess
evaluation contribution of 0.07.

Fig. 5(b) contains a different visualization of the differences be-
tween = and BPL with respect to the evaluation contribution. All 891
OD-pairs are shown on the horizontal axis sorted by their corresponding
increase in evaluation contribution. As can be seen well in this figure,
there are many OD-pairs for which the evaluation contribution hardly
changed, only for a minority there are major changes. Hence, also in
this figure it can be seen that the BPL timetable is very close to the ideal
one, and only few OD-pairs were subject to an increase in evaluation
contribution.

First feedback step. As mentioned above, two OD-pairs are iden-
tified as relevant, based on the considered threshold: Ut-Asd and Ut-Asa
(see Fig. 5).

These two OD-pairs have the same set of travel options, as the trains
from Ut to Asd first pass Asa (see Fig. 3(a)). In fact, Asa is the only
station where the trains from Ut to Asd stop. Passengers on these OD-
pairs can choose from six different trains. Thus, in a timetable that
minimizes adaption time upon departure in Ut, the headway times
between consecutive trains would be 10 min. In the ideal timetable
we have headway times of 12 min (2 times) and 9 min (4 times), as is
visible in Fig. 4(a). As these OD-pairs have high passenger numbers, the
deviation from the ideal timetable causes high excess evaluation con-
tributions. In the BPL-timetable, the departure pattern in Ut becomes
even less regular. The headway times now are 15 min (twice), 9 min
(twice) and 6 min (twice), i.e., excess evaluation contributions are even
higher.

We add intermediate shift penalties, according to the values defined
in Section 5.2.2, at Ut to improve the timetable for Ut-Asd and Ut-Asa,
and run LH with the three new profit structures. Unfortunately, none
of these timetables gives an overall improvement. For the OD-pairs in
the other direction (Asd-Ut and Asa-Ut) the situation becomes worse
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Fig. 5. A2: ideal timetable vs BPL-timetable.

after the feedback because the regularity at Asd (and in line with that
also at Asa) is lost. Indeed, the excess evaluation contribution of Asd-Ut
becomes 0.093 and that of Asa-Ut becomes 0.067. Hence, we identify
these two OD-pairs as the new set of relevant OD-pairs, and apply a
second feedback step.

Second feedback step. Starting with the initial profit structure
that was used to find the BPL timetable, we add shift penalty values
at Ut and Asd, which have been identified as relevant OD-pairs for
feedback. This leads to 12 new profit structures: 3 for adding the
three different penalty values 10, 20, and 30 at Asd and 9 for the
combinations of Ut and Asd. Note that a shift penalty at Asd can also
improve the timetable at Ut, since these two stations are close to each
other and there is only one stop in between.

The best evaluation value among the 12 created timetables is
100.10, which is an improvement with respect to the BPL timetable.
The time-space diagram for this timetable is shown in Fig. 4(c), where
we can see the improved regularity between Ut and Asd.

By preliminary experiments, we observed that additional feedback
loops do not achieve further improvement. Indeed, the objective value
found after this improvement is very close to the ideal one (100.1
versus 100), and to obtain a better timetable we would rather need to
restart with a completely new profit structure. Therefore, we stop the
feedback loop after the first improvement, as explained in Section 4.4.
We refer to the timetable found in the second feedback iteration as the
Best after feedback (BF).

To visualize the changes in the timetable, we show in Fig. 6 the
same plots as in Fig. 5 extended by adding blue stars, showing the
evaluation contributions in the BF-timetable. Note that the OD-pairs Ut-
Asa and Ut-Asd significantly improve in the second iteration, as the blue
stars representing these OD-pairs are now on the horizontal axis (the
indicated arrows show the obtained improvements). However, there are
also some OD-pairs for which the evaluation contribution increases in
comparison to the BPL timetable. This is best seen in Fig. 6(b). Here, the
same red line as in Fig. 5(b) is shown. The excess evaluation contribu-
tions for the OD-pairs in the timetable after feedback are added in blue.
It is visible that some OD-pairs for which the evaluation contribution
was the same as in the BPL timetable are now changed: for some the
evaluation contribution decreases, but for others it increases. It is also
visible that the excess evaluation contributions are now smaller than in
the BPL timetable, thus leading to an overall improved timetable.

Summary. A summary of the progress of our approach on the A2
instance is given in Table 1. The table displays the evaluation values for
the best timetables found in the steps of the algorithm. The last row of
the table shows the lower bound that is found by CPLEX when solving
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Table 1
Evaluation values for A2.

Timetable Evaluation value
Ideal 100

Best Pure Lagrangian 100.18
Feedback step 1 (FB-1) 100.23
Feedback step 2 (FB-2) 100.10

Lower bound 97.00

the integer programming model for finding an ideal timetable, which
is, of course, also a lower bound on the objective value of a feasible
timetable. We can see that the BF timetable, that respects all headway
constraints, is very close to the ideal one.

A visual summary of our approach is displayed in Fig. 7. Here,
the evaluation values of all computed timetables are displayed. The
horizontal axis displays the step in the algorithm. The vertical axis
shows the evaluation value of the timetable. First, the evaluation value
of the ideal timetable is shown at the bottom left. Then, the blue lines
and dots link this evaluation value to the evaluation values of the nine
timetables computed by LH. Next, the red lines and dots display the
values of the timetables computed during the feedback process. The
evaluation values of the three timetables computed in the first and
second feedback step (FB-1 and FB-2) are shown, with lines linking
this evaluation value to the evaluation value of the BPL timetable. It
is clearly visible that the evaluation value of the BF timetable is lower
than that of the BPL timetable.

5.3.2. Rotterdam—Groningen instance

Make an ideal timetable. Within the time limit of four hours, the
optimality gap of the best found ‘ideal’ timetable to the lower bound is
7.31%.

Figs. 8(a) and 8(b) show the time-space diagrams for best found
ideal timetable = on two relevant corridors: Rotterdam (Rtd) to Utrecht
(Ut) and Leiden Central (Ledn) to The Hague Central (Gvc).

The ideal timetable violates infrastructure constraints. E.g., between
stations Gd and Wd, two trains are scheduled at the exact same time on
the same track and hence do not satisfy the headway constraints (see
the circled area in Fig. 8(a)). Also on the other corridor violations of
the headway constraints occur: e.g., two trains from the same direction
arrive in Gvc at the same time, while there is only one track available
for them, so the headway constraint upon arrival of two trains is not
satisfied (see the circled area in Fig. 8(b)).
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Make a feasible timetable. In seven out of the nine timetables obtained
with the different parameter settings (Section 5.2.2) of the multistart
approach, all trains are scheduled. In two of them, two trains are can-
celled (however, also in these timetables there are still travel options for
all passengers). The best evaluated timetable has an evaluation value
of 100.59 with all train being scheduled. The time-space diagrams for
this BPL-timetable on the two aforementioned corridors are displayed
in Figs. 8(c) and 8(d). In Figs. 8(e) and 8(f), we show the corresponding
best timetables obtained after feedback through the process described
in the following.

Evaluate & update profit structure. To illustrate the differences between
the ideal timetable = and the BPL-timetable, we show, in Figs. 9(a)
and 9(b), the same plots as for the previous instance, showing the
differences in evaluation contribution per OD-pair. Note that for many
OD-pairs the evaluation contribution does not change.

In the BPL-timetable, there are three OD-pairs above the considered
threshold, as is indicated in Fig. 9(a): Ledn-Laa and Ledn-Gvc are
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two OD-pairs that have very similar routes, have the same origin and
their destinations are close to each other (see also Fig. 3(b)). The
corresponding excess evaluation contributions increased by +0.056 and
+0.044 respectively with respect to the ideal timetable. The third OD-
pair for which the evaluation value is above the threshold is Rtd-Ut:
its excess evaluation contribution increased by +0.050 with respect to
the ideal timetable. This OD-pair is located on a different part of the
network than the other two OD-pairs.

First feedback step. Based on the parameters defined in Section 5.2.2,
we make new profit structures, by adding the intermediate shift penal-
ties of values 10, 20 and 30 for trains starting in or traversing Ledn
and Rtd. This leads to 15 new profit structures: 3 with a penalty only
at Ledn, 3 with a penalty only at Rtd, and 9 for all combinations of
penalties at the stations.

We run LH on these new profit structures and evaluate the resulting
timetables. We find the best timetable to have an evaluation value of
100.55. This timetable is referred to as the best after feedback (BF).
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Fig. 10. Rotterdam-Groningen: Timetable comparisons after feedback.

We show in Fig. 10 the evaluation contributions of the OD-pairs in
the BF-timetable to illustrate the differences with respect to the BPL-
timetable. The increase in evaluation contribution with respect to the
ideal timetable of Ledn-Laa reduces to —0.001, i.e., the timetable for this
OD-pair is better than the ideal timetable. The increase in evaluation
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contribution for Ledn-Gvc now reduces to +0.037 and Rtd-Ut reduces

to +0.040.

Similar to the previous instance, we stop after the first improvement
step, as also in this case we obtain an objective value very close to the

ideal one.
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Table 2

Evaluation values for Rotterdam-Groningen instance.
Timetable Evaluation value
Ideal 100
Best Pure Lagrangian (BPL) 100.59
Feedback step 1 (FB-1) 100.55
Lower bound 92.69

As an example of how the feedback process allows for obtaining im-
provements in the timetable, we refer to OD-pair Ledn-Laa, and exam-
ine the time-space diagrams in Figs. 8(b), 8(d) and 8(f). In the ideal
timetable, passengers can either take a local train directly from Ledn
to Laa, or an Intercity train that travels to Gvc, where passengers can
transfer, with 5 min of transfer time, to a local train back to Laa.

In the BPL-timetable though, the Intercity train is shifted while
the local train is not shifted: therefore, passengers have to wait half
an hour for the connection, leading to a very high excess evaluation
contribution.

In the feedback, trains get an intermediate shift penalty at Ledn.
This causes the Intercity train still to arrive in Gvc later than in the
ideal timetable, but earlier than in the BPL-timetable. Thus, passengers
can again make the connection to the local train and we are in a similar
situation as in the ideal timetable.

This illustrates how the additional penalties lead to a different
timetable and how feedback can be used to improve the timetable that
is found.

Summary. Table 2 and Fig. 11 summarize the progress of our approach
on the Rotterdam-Groningen instance. The evaluation values are dis-
played for each step of our algorithm. We can observe that the obtained
timetable is very close to the ideal one.

Note that two lines are drawn with a dash-dotted line. These corre-
spond to the timetables where some trains are cancelled. We observe
that the evaluation value of these timetables is not extremely high: in-
deed, all OD-pairs still have a travel option, hence, penalty M (defined
in Section 5.2) does not have to be considered. We can also see that
these timetables have a better value than two timetables in which all
trains are scheduled (solid lines with evaluation value around 101.4):
this happens because the cancelling of trains gives us more freedom
to schedule other trains, that can thus have a timetable more similar to
the ideal one. However, we can also clearly see that the best timetables
do not have any cancelled train: indeed, train cancellation reduces the
travel options for the passengers and usually increases their adaption
time.

5.3.3. Extended A2
Make an ideal timetable. After the time limit of four hours, we find a
solution with optimality gap 7.0%.

Time-space diagrams displaying the best found ideal timetable are
shown in Figs. 12(a)-12(c) for three corridors in the network: Arnhem
(Ah) to Nijmegen (Nm), Amsterdam Central (Asd) to Schiphol (Shl) and
Zaandam (Zd) to Utrecht (Ut). See Fig. 3(c) for the location of these
stations. In this dense network, there are numerous conflicts between
trains that have to be resolved in the next step (hence we do not show
red circles here).

Make a feasible timetable. Using the same initial profit structures as in
the earlier cases, in the first step of LH nine feasible timetables are
computed. In three of these timetables, all trains are scheduled. In the
other six, trains are cancelled in a way that causes some passengers
not to have a travel option any longer. This is highly penalized in the
evaluation function and as a consequence these six timetables have a
bad evaluation value. However, the evaluation value of the best feasible
timetable found is 101.51, that is rather close to the ideal value. The
corresponding time-space diagrams are shown in Figs. 12(d)-12(f). We
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Table 3
Evaluation values for extended A2 instance.

Timetable Evaluation value
Ideal 100

Best Pure Lagrangian (BPL) 101.51
Feedback step 1 (FB-1) 101.28

Lower bound 93.00

show in Figs. 12(g)-12(i) the best timetables obtained after feedback
through the process described in the following.

Evaluate & update profit structure. The changes in the evaluation contri-
bution for each OD-pair are pictured in Fig. 13, in a similar way as in
the previous two cases. We observe that for many OD-pairs there are
only few or little changes (see Fig. 13(b)). However, there are a few
OD-pairs for which the evaluation contribution increases significantly
as is visible in Fig. 13(a). The highest increase occurs for the OD-pair
Ah-Nm. Its evaluation contribution increases by +0.062. Besides Ah-
Nm, Asd-Ut (+0.045), Asd-Zd (+0.039) and Asd-Shl (+0.038) account for
evaluation contributions above the threshold. Indeed, as illustrated in
Fig. 12, we see that departure and arrival patterns have changed at Asd,
trains depart in a less regular pattern. Also the pattern of departures
at Ah is less regular in the BPL-timetable than in the ideal timetable
(compare Figs. 12(a) and 12(d)).

First feedback step. The relevant OD-pairs with excess evaluation con-
tribution above the threshold are: Ah-Nm, Asd-Ut Asd-Zd, and Asd-Shl.

As described in Section 4.4, we update the profit structure for trains
at the stations Ah and Asd with penalty 10, 20, or 30, leading two 15
new profit structures (3 for the shift penalties at Asd, 3 for the shift
penalties at Ah, and 9 for the combinations).

We run LH with the new profit structures and obtain 15 new
timetables. When evaluating these solutions, we find an improved
timetable with an evaluation value of 101.28, i.e., a reduction of 0.23
with respect to the BPL-timetable. This new timetable is referred to as
the BF-timetable. Similar to the previous cases, we stop after the first
improvement.

Fig. 14 displays the new evaluation contributions, both for the BPL-
timetable and BF-timetable in a similar way as in previous sections.
The OD-pairs that had a high increase in evaluation contribution now
improved significantly: the increase in evaluation contribution for Ah-
Nm reduced from +0.062 to 0 (see also the time-space diagram in
Fig. 12(g)). For Asd-Ut, the increase in evaluation contribution reduced
from +0.045 to +0.014 and for Asd-Zd it reduced from +0.039 to +0.027.
The increase for Asd-Shl remained the same. The improvements for
the first three mentioned OD-pairs are shown by means of arrows in
Fig. 14(a).

Although the overall evaluation value of the new timetable im-
proved and the contributions of the aforementioned three OD-pairs
improved as well, now other OD-pairs have a higher evaluation con-
tribution, as already indicated in Fig. 14(b). An improvement for some
OD-pairs can indeed imply a worsening for others. This is also caused
by the large number of trains considered in this network: when moving
the schedule of one train to improve it, some other trains are affected.
However, also for this instance the objective value of the BF-timetable
is close to the ideal one (101.28 versus 100).

Summary. Table 3 and Fig. 15 summarize the progress of our approach
on the extended A2 instance in terms of evaluation values for each of
the steps.

Note that all timetables with comparatively bad evaluation values
are timetables in which not all passengers can travel. Although this
instance is more congested than the previous ones, also in this case
the best timetable after feedback is close to the ideal one.
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5.4. Comparison to a benchmark approach

In this section, we compare our approach to solving POT with
the benchmark approach of modelling POT as a mixed-integer linear
program. To make this comparison, we extend the MIP model proposed
in Polinder et al. (2021) by infrastructure constraints (see the extended
model in Appendix A.4). As is the PESP modelling approach, infras-
tructure constraints are modelled in the same way as driving time and
dwelling time constraints, this adds many constraints to the model, but
does not change the type of constraints included. We can therefore
linearize the model in the same way as described in Polinder et al.
(2021) (see also Section 4.1) and apply the heuristic stated there to
attempt to solve it. Note that as solutions with cancelled trains were
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not competitive in the instances that we consider, we do not implement
the possibility to cancel trains in our benchmark approach.

The results of the comparison are displayed in Table 4. In this table
we show, for each instance, the results obtained by applying several
alternative approaches to find a feasible timetable. For each approach,
we report the evaluation value of the best timetable it obtained, and the
corresponding computing time. In particular, the first result (Ideal+LH)
is the value of the best timetable obtained after computing an ideal
timetable, and then running LH. The table reports the evaluation value
of the timetable in the third column. The fourth column shows the time
it took to compute this timetable: the time is split up in two parts, the
first number shows the time spent on computing the ideal timetable,
the other number shows the time spent on LH.
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Table 4
Benchmark results.
Instance Approach Evaluation value Time (h)
Ideal + LH 100.18 2+40.03
Ideal + LH + FB 100.10 2+0.11
A2 POT as PESP
- After 2.11 h 105.80 2.11
- After 8 h 104.88 8
Lower bound CPLEX 97.09
Ideal + LH 100.59 4+ 0.06
Ideal + LH + FB 100.55 4+0.18
Rotterdam POT as PESP
Groningen - After 418 h 105.64 4.18
- After 16 h 103.69 16
Lower bound CPLEX 92.72
Ideal + LH 101.51 4+0.14
Ideal + LH + FB 101.28 4+0.49
POT as PESP
E A2
xtended - After 4.49 h - 4.49
- After 16 h - 16
Lower bound CPLEX 93.00

The second result (Ideal+LH+FB) shown for each instance is the
value of the best timetable obtained after computing an ideal timetable,
then running LH, and finally applying the feedback process (i.e., the
proposed iterative heuristic approach). In this case, the time reported
in the fourth column includes the computing time needed for the
feedback. The third result (POT as PESP) concerns the best timetable
obtained after solving the integer programming formulation for POT
including infrastructure constraints. In particular, we report the values
of the best timetables obtained, respectively, in the same computing
time required by the iterative heuristic approach (Ideal+LH+FB) and
in the given time limit (8 or 16 h). For example, for the A2 instance,
the iterative heuristic approach required 2.11 h, and, in the same
computing time, the full POT model found a solution of value 105.80,
while in the time limit (8 h) it obtained a solution of value 104.88.
Finally, we display the lower bound as computed by CPLEX when
solving the POT model until the time limit is reached. Note that the
CPLEX lower bounds are stronger than those mentioned in Section 5.3
where we report lower bounds on the MILP model for finding the ideal
timetable, because the POT model is more restrictive and therefore,
combined with a longer computation time, a stronger lower bound is
more likely to be obtained.

We observe that our approach is able to find better solutions in less
time, even when no feedback is included. In particular, for the extended
A2 instance, we were not able to find any feasible timetable within 16 h
using the MILP formulation for POT, while the approach of this paper
generates a reasonably good one within a bit more than two hours.

6. Conclusion and further research

In this paper, we proposed an approach to solve the tactical
timetabling problem. Hereby we specifically focused on the quality of
the timetable for the passengers.

In order to find a feasible passenger-oriented timetable for chal-
lenging real-world instances, for which the timetabling model itself
already is challenging, we used variants of two existing approaches.
These two approaches are combined into an algorithmic framework.
First, an ideal timetable is computed, thereby neglecting infrastructure-
related constraints. Next, through a Lagrangian heuristic, this timetable
is modified to obtain a feasible timetable with respect to infrastructure.
A feedback mechanism is used to improve the found solutions.

We showed that for real-life instances, based on the network oper-
ated by Netherlands Railway, we can obtain satisfying results. Further-
more, we showed that the provided feedback indeed leads to (overall)
better timetables.
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For the first step of our method, the construction of an ideal
timetable, we use the approach described in Polinder et al. (2021). This
approach linearizes the quadratic objective function, and then uses a
‘Relax-and-Fix’ heuristic to solve the formulation. It may be promising,
in particular to improve time consumption, to investigate different
approaches to find an ideal timetable, possibly working directly on the
quadratic formulation of the problem.

One merit of our approach is that passenger demand is taken into
account more accurately due to the inclusion of adaption time in the
perceived travel time. On the other hand, however, the POT model
relies on the assumption that demand would be uniformly distributed
over the period in absence of a known timetable. It may be worthwhile
to investigate to what extent this assumption is realistic, and, if it is
not, to develop models that can handle other demand distributions,
or that explicitly include the transitions between peak-demand and
low-demand periods.

Train capacity (for transporting passengers) is not explicitly ad-
dressed in our timetabling problem, as this is traditionally solved in
a subsequent step, the rolling stock scheduling, by assigning sufficient
train units to individual train trips to meet the passenger demand. It
could be an interesting extension to our model to take into account train
capacity by explicitly scheduling individual train units, possibly over
several periods. This extension would also allow evaluating the impact
of train cancellations on the passenger demand, during the timetabling
process.
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Appendix

A.1. Modelling timetabling constraints using the PESP model

A periodic timetable (7;),c), is an assignment of times to eventsi € V'
that represent departures and arrivals of trains. To represent a feasible
timetable, x has to fulfil a number of constraints. These are formulated
based on the line plan, the infrastructure network, and time bounds on
activities like driving, dwelling, and headway (when trains share part
of the infrastructure).

It is convenient to represent these constraints using an Event-Activity
Network (EAN), in which the nodes are events and the arcs, called activ-
ities, model driving, dwelling, headways, and transfers, and correspond
to the constraints of the PESP model.

Minimum driving times between stations, constrain the arrival time
of a train to the preceding departure time. Furthermore, in stations
we have minimum dwell times to let passengers board and alight. In
macroscopic timetabling, a safe operation is ensured through headway
constraints upon departure and arrival at stations. Headway constraints
ensure that a minimum time between two consecutive trains is re-
spected upon departure and arrival at a station, in order to avoid
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collisions. We also consider overtaking constraints, ensuring a min-
imum headway time is respected on tracks between stations, when
the headway constraints only are not enough to prevent overtakings.
Finally, crossing constraints ensure that if two trains use a track in
opposite directions, they can do this safely, without meeting each other
halfway. As we consider a periodic timetable, these events are periodic,
i.e., they re-occur every time period. In the most common mixed-integer
linear programming (MILP) formulation for PESP, these constraints are
expressed as

Cij<mi—m+Tp <uy. (A1)

Here, p;; is a binary variable denoting the modulo operator, i.e., a shift
from one period to the next, and /;; and u;; are the lower and upper
bounds on the activity durations. All aforementioned constraints can be
formulated as a PESP-constraint. An overview of other activities that
can be formulated in a PESP context can be found in Liebchen and
Mohring (2007), Kroon et al. (2014).

As we use the event-activity network also for passenger routing,
we also model transfer possibilities as activities in the event-activity
network. To ensure that these do not impose constraints on timetable
feasibility, we set the lower bound of these activities ¢;; to the min-
imum required transfer time, and the upper bound of these activities
to u; = ¢;; + T — 1. This choice ensures that the activity duration
7; + Tp;; can take any value in the interval [0, T — 1].

When for example z; = z; +2 and #;; = 3, the time difference
between events i and j is two minutes, but also any multiple of T
minutes can be added (due to the Tp; ; term in (A.1)). In this case,
the transfer time is not 2 min, but 62 (when 7 = 60), since ¢; ;=3
en u; = 62. By this way of modelling, the proper transfer times for
passengers can be determined. The same principle holds when upper
bounds of, for example, trip and dwell times are omitted. In this way,
no operational constraints are added. In Section 4, when our model is
explained, these transfer activities are used to determine the correct
passenger paths and their perceived duration.

m; =

A.2. Time-space graph

To represent the train timetabling problem, we can use a time-space
multi-graph G = (W,Q), in which every node w € W is either a
departure node or an arrival node, i.e., it corresponds to a departure or
an arrival time of a train from/at a station along a track. We define W/
as the set of nodes of train j, Woj C W/ the set of departure nodes of
train j from its origin station and W/ c W9 the set of arrival nodes
of train j at its destination station (j € P). Arcs in set Q represent the
travel of a train between two consecutive stations (travel arcs) or the
stop of a train at a station (dwelling arcs), and are partitioned into arc
sets, one for each train. We call Q/ c Q the set of arcs of train j € P,
QT/ c Q/ the set of travel arcs of train j, QT({ C QT/ the set of travel
arcs of train j from its origin station, and Q.S the set of dwelling arcs
of train j.

A simple example of graph G for an instance with 4 stations and
2 trains is reported in Fig. 16. For sake of clarity, only very few arcs
are reported. Train 1 has origin station .§; and destination station S,
while train 2 has origin station .5, and destination station .S,. We use
black colour for Train 1 and blue for Train 2. Set W! contains nodes
wy, ..., wg and set W2 nodes w, ..., w,s. Node w, belongs to set W/,
and nodes wg and wg to set W /. Nodes wy and w3 belong to set W and
nodes w,, and w4 to set W2, Travel arcs q;, g3, g5 in set QT represent
the travel of train 1, while dwelling arcs ¢, and ¢, in QS its stops at
stations S, and 3, respectively. Dotted arc g, represents an increase of
the dwelling time at station .S that can be used as an alternative arc to
avoid train conflicts, and is followed by travel arc g,. For train 2, g3 and
qyo are travel arcs, while g, is a dwelling arc. Dotted arcs ¢, ¢;, and
q3 correspond to alternative departure times from station S, that can
be used to avoid train conflicts (in this case, the arrival and departure
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a,
S1
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1

Fig. 16. An example of time—space graph G.

times, at all the stations visited by the train, are modified by the same
amount). Set OT, 01 contains ¢, while QTO2 includes ¢g and ¢;;. A path
in this time-space multi-graph corresponds to a timetable for one train
that respects the train travel and dwell times, while, to determine a
timetable that respects infrastructure constraints, additional constraints
that avoid arc incompatibilities must be imposed (see A.5).

A.3. Precomputation of routes

In order to route passengers through the railway network when no
timetable is known yet, we use a method described in Warmerdam
(2004). The routes are generated based on a given line plan (specifying
train lines, frequencies, and possible transfer options).

First, all direct travel options are determined. After this, all travel
options with exactly one transfer are determined, then with two trans-
fers, until a predefined maximum number of transfer options is reached.
This leads to a large set of possible travel options. For each travel
option, the expected duration is computed, which is the sum of the
minimum travel and dwell times, plus for each transfer an estimate of
transfer time. The result is multiplied by a percentage (generally 5%),
to take uncertainty in trip durations into account.

We estimate transfer times for a transfer at a certain station s
based on the number of direct connections from the origin to s, n,
and the number of direct connection from s to the destination, n,.
More precisely, we set the estimated transfer time for transfer at s
to T/(2max{n;,n,}). After generating routes as described above, we
exclude dominated routes.

A.4. MIP model and approach to compute an ideal timetable

To compute an ideal timetable, we apply the approach described
in Polinder et al. (2021). This approach makes use of mixed integer
program (MIP) (A.2a)-(A.2n) to find an ideal timetable that meets
driving time constraints and dwell time constraints and minimizes the
total perceived travel time of passengers.

As before, also in this model variable z; denotes the times of
departure and arrival events i € V. The timetabling constraints (A.1)
for driving times and dwell times (with lower and upper bounds on
activity durations) are rewritten as (A.2b)—(A.2c), introducing a new
variable y; ; that stands for the duration of activity (i, j) € A. As before,
p;; is a binary variable denoting the modulo operator, i.e., a shift from
one period to the next. Note that although all our infrastructure-related
constraints can be modelled as PESP constraints and could therefore be
included in the form of constraints (A.2b)-(A.2c), we explicitly exclude
them from the model formulation in this first step, to keep the model
tractable.
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The model uses a precomputed set of routes R as input, details can
be found in Section A.3. Constraints (A.2d) set Y, to the perceived
duration of route r, where y, is the transfer penalty and 1, is an
indicator function that takes the value 1 if activity a is a transfer activity
and O if it is not. For each OD-pair k and each relevant departure
event for this OD-pair (that is, each departure event that denotes the
start of a precomputed route for OD-pair k), variable L* denotes the
time difference between event v and the previous relevant departure
event. These variables are set in constraints (A.2e)—(A.2f). Note that in
constraints (A.2e), the time difference between 7, and r, is computed
modulo T: For v,0" € V, v # v/, the binary variable a,, , takes the value
1 if an only if 7, > z,, due to constraints (A.2e), (A.2f), and the non-
negativity requirement on Ll; in (A.2i). As a consequence, if for example
T =60, r,y, =40 and z, =9, then =, — 7y + Tay , =9 —40+ 60 = 29.
Furthermore, note that (A.2f) makes sure that in case two events v and
v’ happen at the same time, exactly one is considered to ‘precede’ the
other.

The average expected waiting time for all passengers of OD-pair
k that depart on a route starting at event v is denoted as W} and
computed in (A.2g), based on the assumption that passenger arrivals
are uniformly distributed over the period. Finally, in constraints (A.2h),
for each OD-pair k and each relevant departure event v, we set variable
YF to the perceived travel time of the best route from event v on
towards the destination of OD-pair k. Note that the best route may start
in event v, but it may also start in a later event v’: in the latter case,
the term (z, — r, + Ta,,) that represents the time difference between
v and ¢’ is non-zero, and enters the perceived duration, weighted with
adaption time weight y,,. Constraints (A.2i)-(A.2n) state the domains of
the variables. In the objective (A.2a), we compute the total perceived
travel time of passengers given timetable = as described in Section 3.3.

The model from Polinder et al. (2021) is summarized in (A.2a)-
(A.2n).

. di
min Z - Z LE - (r, - Wr+YF) (A.2a)
keOD veVk
st. y;=m—-x+Tp; Y(i,j) €A (A.2b)
€ <y Suy V(i,j) €A (A.2¢)
Y, =Y (ya+7 - 1,@) vreR (A.2d)
acr
Lf= min {r,—n,+Ta,,} VkeOD,veV* (A.2e)
v'eVk\{v} ’
Ay Fay, =1 VkeOD,veVk v eVh\ (v}
(A.2f)
1, '
wk= EL,‘, VkeoD,Vvevt  (A.2g)
Yi= min, gn {Y,+y, - (ny —7,+Ta,,)} VkeOD veVk (A.2h)
Lt €[0,T] VkeOD,veV* (A.21)
Wk e[0,1/2] VkeOD, veVk (A.2))

Y. YFeRy, VreR, keOD,veVi(A.2k)
7, €10,...,T -1} YoeV (A.21)
Pij € Zso V(i.j) € A (A.2m)
a,, €1{0,1} VkeOD,veVk v eVk\ (v}

(A.2n)

Extensions to model POT as PESP

Model (A.2a)-(A.2n) can be extended to formulate the POT prob-
lem, by adding the infrastructure constraints, expressed in the same
form as (A.2b)—(A.2c). In addition, it can be generalized by including
the possibility of not scheduling all trains. In order to do so, we
introduce some necessary notation. First of all, let L be the set of trains
that have to be scheduled. Next, V, C V be the set of events that
correspond to departures or arrivals of train / € L. Then, let A; C A
be the set of activities for which at least one of the involved events is
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in v}, i.e.
A ={G,j)eA:i€V,and/or j €V}

Finally, we define an indicator function

1,(a>={ .

The model in (A.2) can now be adapted by introducing binary
variables z;, indicating whether train / € L is scheduled or not. We
replace (A.2c) by

ifae 4
else

Cii—1(@ T-A-z)<y; Su;+ (@ -T-(1-2z).

This means that activity a € A imposes no restriction if at least one
of the involved trains is not scheduled. In order to ensure that no
passenger is routed on a cancelled train, we update (A.2d) to

Y, = Z(yaw, L@+ M- Y L@ —z,)>,
acgr leL

where M is a sufficiently large value. This ensures that passengers will

not be routed in a route that involves an activity related to a train that

is not scheduled (compare also Section 3.3).

A.5. Time-index ILP model

The time-index ILP model, based on the time-space graph intro-
duced in A.2, contains one binary variable xé foreacharcqe Q/,j e P,
that assumes value one if the arc is selected in the solution. The model
requires to select arcs to form the best path for each train that is as
close as possible to the ideal one. To this aim, each arc is assigned a
profit (pé, based on the profit structure defined in Section 4.2. For each
train j € P, let @’ be the train profit, #/ the shift penalty, y/ the stretch
penalty, msh/ the maximum shift value, and mst#/ the maximum stretch
value. In addition, let (w) be the time instant associated with node
w € W, and &/(w) the ideal time instant of train j at node w (e.g., in
Fig. 16, the ideal time instant at node w; is ' (w,) = 8(w5)). In addition,
let ¢ = (w,, w;,) € O be an arc with tail node w, and head node w,. The
arc profit is defined as follows:

+ the travel arc profit (pé for arc ¢ = (w,, wy,) from the origin station
of train j (¢ € QT é) is given by the train profit decreased by the
shift penalty counted for every minute of shift incurred by that
departure time: (pé =@/ — /10w, - O(w,)l;

the dwelling arc profit (pé for station arc ¢ = (w,, wy,) of train
j (g € 0S) is zero, if that arc corresponds to the minimum
dwell time, and otherwise is decreased by the stretch penalty
counted for every minute of stretch incurred at that station: (pé =
—y I (O(w;,) — Ow,) — (B(wy,) — B(w,))), where (B(w;,) — B(w,)) is the
dwelling time in the ideal timetable.

In this way, the total train profit @’ is gained if train j is scheduled
according to its ideal timetable (path), while the profit is decreased for
each operation that changes the ideal timetable. Clearly, if a train is
cancelled, no profit is obtained.

Shift, stretch and cancellation are applied when train conflicts are
present in the ideal timetable. Let C be the family of all sets C of pair-
wise incompatible arcs: two arcs g, = (w,,, wy,) and q;, = (w,,, wy,;,) are
incompatible if |0(w,,) — O(w,)| or |0(wy,) — O(wy,)] is strictly smaller
than the minimum headway time, or if the two arcs represent an
overtaking between two trains along the same track, or they correspond
to a crossing between two trains in opposite directions along the same
track. Let b,c be a binary value that is 1 if arc ¢ is contained in set C,
and §~/(w) and 5%/ (w) be, respectively, the set of entering and outgoing
arcs of node w € W/ \ (WOj U W}{).

The ILP model reads as follows:

ms 3, 3 ol

JEP qeQi

(A.3)
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Z X<, VjeP, (A.4)
quTé

Z X = > xt, vWve\(VI/.quff'),jep, (A.5)
q€6~ (w) qe8t (w)
DY bexi <1, vCec. (A6)
JEP qeQi
xé €{0,1}, Yge Q/,jeP. (A7)

The objective (A.3) is to maximize the total profit of all trains. The
constraints require to select, for each train, arcs that form a path in the
time-space graph (constraints (A.4) to allow at most one travel arc for
each train from its origin station, and constraints (A.5) to build a path),
and do not conflict with arcs selected for any other train, i.e., satisfy
all infrastructure constraints (A.6).

A.6. Lagrangian Relaxation

Obviously, the difficulty of solving the problem comes from the
latter constraints: therefore, LH applies a Lagrangian relaxation of all
constraints (A.6).

Let A¢c (C € C) be non-negative Lagrangian multipliers associated
with constraints (A.6). The Lagrangian relaxed model reads as follows:

Z Ac + max Z Z ((pé - Z Acch)xg
cec JEP qeQi cec
(A.4), (A.5), (A7),

(A.8)

where 55 = go{; - Zcec Acb,c is the Lagrangian profit of arc ¢ € o/,
Jj € P.In &, profit ¢, is defined as described in Appendix A.5, while A
(C € () are the Lagrangian multipliers. The latter are initialized to zero,
and then iteratively updated through subgradient optimization, based
on whether each constraint (A.6) is violated or loose in the relaxed
solution. In particular, to speed-up the process of multipliers updating,
as in Caprara et al. (2002) and Cacchiani et al. (2010), constraints
(A.6) are reformulated by using variables associated with the nodes of
the time-space graph (instead of arc variables): indeed, the number
of arc variables is very large, and each one would have associated
its Lagrangian profit. Thanks to this reformulation, Lagrangian profits
are instead associated with nodes of the time-space graph, and can be
updated more quickly. In addition, at each iteration of the subgradient
optimization process, only the constraints (A.6) violated by the current
Lagrangian-relaxed solution are added to a constraint pool to avoid
handling a large number of inactive constraints. We refer the reader
to Caprara et al. (2002) and Cacchiani et al. (2010) for more details
on the reformulation and on the developed subgradient optimization
procedure.
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