
25 November 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Furini F.,  Ljubic I.,  Malaguti E.,  Paronuzzi P. (2022). Casting Light on the Hidden Bilevel Combinatorial
Structure of the Capacitated Vertex Separator Problem. OPERATIONS RESEARCH, 70(4), 2399-2420
[10.1287/opre.2021.2110].

Published Version:

Casting Light on the Hidden Bilevel Combinatorial Structure of the Capacitated Vertex Separator Problem

Published:
DOI: http://doi.org/10.1287/opre.2021.2110

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/897245 since: 2024-02-27

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1287/opre.2021.2110
https://hdl.handle.net/11585/897245


Submitted to
manuscript (Please, provide the manuscript number!)

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

Casting light on the hidden bilevel combinatorial
structure of the Capacitated Vertex Separator problem

Fabio Furini
Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti”

Consiglio Nazionale delle Ricerche (IASI-CNR), Roma, Italy, fabio.furini@iasi.cnr.it

Ivana Ljubić
ESSEC Business School of Paris, Cergy-Pontoise, France, ivana.ljubic@essec.edu

Enrico Malaguti, Paolo Paronuzzi
Dipartimento di Ingegneria dell’Energia Elettrica e dell’Informazione “Guglielmo Marconi”, Università di Bologna,

Viale del Risorgimento 2, 40136 Bologna, Italy, {enrico.malaguti, paolo.paronuzzi}@unibo.it

Given an undirected graph, we study the capacitated vertex separator problem which asks to find a subset of

vertices of minimum cardinality, the removal of which induces a graph having a bounded number of pairwise

disconnected shores (subsets of vertices) of limited cardinality. The problem is of great importance in the

analysis and protection of communication or social networks against possible viral attacks, and for matrix

decomposition algorithms. In this article we provide a new bilevel interpretation of the problem, and model

it as a two-player Stackelberg game, in which the leader interdicts the vertices (i.e., decides on the subset

of vertices to remove), and the follower solves a combinatorial optimization problem on the resulting graph.

This approach allows us to develop a computational framework based on an integer programming formulation

in the natural space of the variables. Thanks to this bilevel interpretation, we derive three different families

of strengthening inequalities and show that they can be separated in polynomial time. We also show how to

extend these results to a min-max version of the problem. Our extensive computational study conducted on

available benchmark instances from the literature reveals that our new exact method is competitive against

the state-of-the-art algorithms for the capacitated vertex separator problem, and is able to improve the best

known results for several difficult classes of instances. The ideas exploited in our framework can also be

extended to other vertex/edge deletion/insertion problems or graph partitioning problems by modeling them

as two-player Stackelberg games and solving them through bilevel optimization.

Key words : Bilevel Optimization; Stackelberg Games; Graph decomposition; Branch-and-Cut; Benders

decomposition.
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1. Introduction

Given a graph, we are interested in finding the smallest subset of its vertices to remove such that

the remaining graph has a bounded number of pairwise disconnected shores (subset of vertices) of

limited cardinality. Formally, we study the following problem:

Definition 1 (capacitated vertex separator problem (CVSP)). Given a simple undi-

rected graph G = (V,E) and two integer values k, b ∈ N, k ≥ 2, the capacitated vertex separator

problem (CVSP) asks for a partition of V into k+1 disjoint subsets V = {V1, V2, . . . , Vk}∪S, where

Vi (i= 1, . . . , k) are denoted as shores and S is denoted as separator such that: v ∈ Vi and w ∈ Vj

with i, j ∈ {1, . . . , k}, j > i implies edge vw /∈E; the size of each shore is bounded by b; empty shores

are allowed; and the cardinality of S is minimized.

In Figure 1, we give an example graph and provide an optimal CVSP solution for k= b= 3. The

separator is composed by the grey vertices, i.e., the set S = {v8, v9}. Dashed lines represent the edges

which are incident to the removed vertices. After the removal of S, the graph is partitioned into

3 pairwise disconnected shores, namely: V1 = {v1, v2, v7} (first shore), V2 = {v3, v4} (second shore),

V3 = {v5, v6, v10} (third shore).

v1 v2 v4v3 v5 v6

v7 v8 v9 v10

Figure 1 An example graph G for the CVSP, with 10 vertices and 13 edges.

Notice that in the definition of the CVSP, the parameter k is an upper bound on the number of

shores since empty shores are allowed. Hence, in some extreme cases (e.g., complete graphs) it may

happen that the removal of S results in a graph having a single shore which consists of a connected

component of size b (or smaller). 1

The CVSP is equivalent to the matrix decomposition problem studied by Borndörfer et al. (1998).

Indeed, it can be viewed as the problem of assigning the rows of a matrix A to k disjoint blocks.

The objective is to remove a minimum number of rows from A and to assign the remaining rows

1 In case a single connected component results from the removal of S, the latter is not strictly a separator of G, which
is defined as a subset of vertices the removal of which disconnects the graph. However, with a slight abuse of notation
we still call it a separator in the remainder of the paper.
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to the blocks so that: (i) each row is assigned to at most one block, (ii) each block contains at

most b rows, and (iii) no two rows in different blocks have nonzero entries in the same column.

The problems are equivalent by defining a binary matrix A having a row for each vertex of G and

a column for each edge of G. Each column has two nonzero entries at the rows corresponding to

the endpoints of the associated edge (while all other entries are 0). Conversely, given A, we define a

vertex in G for each row, and an edge for each pair of vertices if there is a column in A with nonzero

entries in the corresponding rows. The problem is NP-hard as discussed by Borndörfer et al. (1998).

The matrix decomposition problem has relevant applications in parallel computing, namely, in the

parallel solution of linear systems of equations. The number of shores k corresponds to the number

of parallel machines on which the subsystems of equations are solved. At the same time, the bound

b guarantees that the workload assigned to each of the machines is balanced.

Another relevant CVSP application (in which k= |V |) concerns the protection of communication

or social networks against viral attacks. We assume that the decision maker has resources to vac-

cinate/protect some vertices in the network, without knowing at which vertex the attack will take

place. Such situations are commonly analyzed in epidemic control (Tao et al., 2006), or in preventing

the spread of fake news in social networks (see the work of Baggio et al. (2020) and further refer-

ences therein). An attack can suddenly occur at any vertex of the network and the virus can spread

from the attacked vertex to its neighbors, as long as the neighbors are not protected/vaccinated.

To contain the virus, one has to isolate the infected community from the rest of the network. At

the same time, the maximum number of infected vertices need to be kept under control. In this

context, the vertex separator found by the CVSP determines the smallest possible set of “critical”

vertices that need to be protected/vaccinated in order to reduce the network vulnerability against

the viral attack. The obtained CVSP solution guarantees that the number of potentially infected

vertices (corresponding to the largest connected subgraph of the network once protected vertices

are removed) is bounded by the parameter b.

The CVSP is closely related to another interdiction problem in which the available resources for

network protection are limited, and the goal is to find a subset of critical vertices to protect so that

the size of the largest connected component in the remaining graph is minimized (Albert et al.,

2000; Shen and Smith, 2012). A (maximal) connected component of an undirected graph is given

by its connected subgraph, such that no path exists between a vertex outside the subgraph and a

vertex belonging to it. More formally, this problem is defined as follows:

Definition 2 (minimize the maximal connected component problem (MinMaxC)).

Given a simple undirected graph G= (V,E) and an integer budget B ∈N, the MinMaxC asks for

finding a subset of vertices S ⊂ V to remove from G, such that |S| ≤B and such that the number

of vertices of the largest connected component in the remaining graph is minimized.
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We notice that in the MinMaxC, the size of connected components that are strictly smaller than

the largest one does not play any role. In addition, there is no need to pack the connected components

into k shores. Finally, the MinMaxC is strongly NP-hard (Shen and Smith, 2012). Besides the

absence of this “packing” aspect, another major difference between the CVSP and the MinMaxC

is in the type of objective function: instead of dealing with a min-max objective function, in the

CVSP we are minimizing the number of vertices to be removed (i.e., according to the MinMaxC

terminology of Shen et al. (2012), we are minimizing the budget), while making sure the largest

component in the remaining graph will contain no more than b vertices. Although the two problems

are different, we demonstrate that, thanks to the bilevel interpretation of the problem, many ideas

developed for the CVSP can be directly applied to the MinMaxC as well.

Notation. Let K denote the set of integers {1, ..., k}. Given a simple undirected graph, G= (V,E)

for each edge wv ∈E, we say that w and v are neighbours. Let N(w) = {v ∈ V |wv ∈E,w ̸= v} denote

the neighborhood of w. For each edge vw ∈E, we define two arcs (v,w), (w,v) and A denotes the set

of all these arcs. Given a vertex v ∈ V , we indicate by δ−(v) and δ+(v) its subset of incoming and

outgoing arcs from A, respectively. A subset of vertices W ⊂ V is a clique of G, if any two vertices

of W are neighbours. Given a tree T , we indicate by degT (v) the number of edges incident to v in

T . Given a subset of edges E′ ⊆ E of G, we say that E′ is spanning G if for every vertex v of G

there is at least an edge in E′ incident with v. Given W ⊂ V , the subgraph G[W ] = (W,E[W ]) is

the graph induced by W which contains all vertices of W and all edges E[W ]⊂E whose both ends

belong to W . Given a connected subgraph C of G, the vertex set of C is denoted by V (C). Vectors

are denoted in boldface; 0 and 1 denote the null vector and a vector of 1 entries, respectively.

1.1. Paper contributions

This article studies a canonical IP formulation for solving the CVSP in which several new families

of valid inequalities are derived by exploiting a “bilevel” point of view. The problem is seen as a two-

player Stackelberg game in which a leader interdicts the network by removing some of its vertices,

and a follower determines the maximum connected component in the remaining graph (we refer

the interested reader to, e.g., Baïou and Barahona (2016), Brotcorne et al. (2008), Casorrán et al.

(2019) and Cormican et al. (1998), for other relevant problems related to Stackelberg games). In

addition, the leader has to make sure, the connected components can be packed in at most k shores,

each of the size at most b. We first provide a basic canonical formulation, and show how to use

the value function reformulation of the follower’s optimization problem to derive new sets of valid

inequalities. The value function reformulation is convexified in three different manners: the first

one adds penalties for the violation of some constraints in the objective function, the second one

is a Benders reformulation derived from an extended formulation, the third one exploits necessary
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conditions on the number of vertices to remove in order to disconnect a graph. Theoretical analysis

reveals that Benders inequalities are dominated by the first family of inequalities, while there is no

domination between the second and third. We show that the new inequalities can be separated at

integer points in polynomial time, and explain details of an efficient branch-and-cut implementation.

We also show how to extend these results to a min-max version of the problem. A computational

study that is performed on a large set of publicly available benchmark instances shows that our

new exact method is competitive against the state-of-the-art branch-and-price procedure for the

CVSP proposed by Bastubbe and Lübbecke (2019). Moreover, we are able to improve the best

known results for several difficult classes of instances and to provide optimal solution values for 60

previously unsolved instances from the literature.

The paper is structured as follows. In the remainder of this section we provide an overview of

the related literature and illustrate several optimal solutions for a real-world social network. In

Section 2, we present a compact integer programming formulation for the CVSP. In Section 3,

we develop our new formulation in the natural space of the variables obtained through a bilevel

interpretation of the problem. In this section we present several families of valid inequalities whose

separation procedures are presented in Section 4. In Section 5, we discuss how to extend the bilevel

interpretation and the developed inequalities to a min-max version of the problem. In Section 6,

we discuss extensive computational results comparing a newly developed branch-and-cut algorithm

with the state-of-the-art algorithms for the CVSP, and we also present results for the considered

min-max version. Finally, in Section 7, we present the conclusions of our work and some future lines

of research.

1.2. Literature review

In this section, we provide a review of the exact algorithms proposed in the CVSP literature, and

we present closely related problems.

To the best of our knowledge, the first exact algorithm for the CVSP, addressed as the matrix

decomposition problem, has been proposed by Borndörfer et al. (1998). An integer programming (IP)

formulation is proposed and a branch-and-cut algorithm, based on polyhedral investigations, has

been designed. The main motivation of the study was to verify whether the constraint matrix of a

linear or integer program can be decomposed into the so-called bordered block diagonal form (see

also Bergner et al. (2015) for further details). Recently, an alternative exact algorithm for the CVSP

has been proposed by Bastubbe and Lübbecke (2019). In this paper, the CVSP has been called the

capacitated hypergraph vertex separator problem and a branch-and-price algorithm has been designed

based on specialized algorithms to solve the pricing problems. In addition, a branching scheme

tailored for the problem is proposed and enhanced by a number of speed-up techniques. It is worth
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mentioning that, even though Bastubbe and Lübbecke (2019) defined the problem on hypergraphs,

an equivalent problem defined on simple graphs is obtained by replacing each hyperedge with a

clique. We compare the computational performance of this branch-and-price algorithm with our

newly developed branch-and-cut algorithm in Section 6.

Concerning the MinMaxC, the problem has been introduced by Albert et al. (2000), who proposed

a greedy heuristic in which the vertices are sequentially removed from the network, starting with

those with the highest degrees. Shen et al. (2012) introduced an exact approach based on an extended

MIP formulation and a family of valid inequalities. A dynamic programming procedure that runs

in polynomial time on trees and series-parallel graphs can be found in the work of Shen and Smith

(2012). The authors also showed that for the problem variant in which each vertex is associated with

a nonnegative weight, and the goal is to minimize the maximum-weighted connected component in

the remaining graph, the problem becomes NP-hard even on trees.

Another problem related to the CVSP is the k-vertex cut problem. Formally: A vertex cut is a set

of vertices whose removal disconnects the graph into several connected components. If the number

of connected components is at least k, this set is called a k-vertex cut. Given a graph G, a positive

weight cv for each vertex v ∈ V , and an integer k ≥ 2, the k-vertex cut problem (k-VCP) is to find

a k-vertex cut of minimum weight. The k-VCP has been object of research in recent years and

we address the interested reader to, e.g., the work of Cornaz et al. (2019) where an exact branch-

and-price algorithm has been proposed. Recently, Furini et al. (2019) proposed a branch-and-cut

algorithm for the k-VCP, exploiting a bilevel point-of-view of the problem, which allowed to derive

a valid IP formulation in the natural space of the variables and to beat state-of-the-art results

achieved by Cornaz et al. (2019). One of the main differences between the k-VCP and the CVSP

is that no capacity restriction on the size of the components is considered in the former one. In

addition, the CVSP imposes an upper bound k on the number of shores while, for the k-VCP, the

value k represents the lower bound on the number of connected components obtained after removing

the vertices belonging to the k-vertex cut. For these reasons, the two problems are structurally very

different and, even though they both can be seen through bilevel lenses, there is no result for the

k-VCP that straight-forwardly translates into a related result for the CVSP. Moreover, the optimal

solutions of the k-VCP are comprised of k connected components that can be very imbalanced, and

hence they are of little use for the practical applications that motivate our research.

Finally, the CVSP is also related to the vertex separator problem (VSP), considered by de Souza

and Balas (2005a,b). In the VSP we are given an integer b ∈N, and a cost cv ∈N associated with

each vertex v ∈ V . The VSP asks for a partition of V into three disjoint nonempty subsets V1, V2,

S, where V1 and V2 are the shores of the separator S, such that v ∈ V1 and w ∈ V2 implies edge

vw /∈E, the size of each shore is bounded by b, and the function
∑

v∈S cv is minimized. The VSP is
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NP-hard even for planar graphs (Fukuyama, 2006) or maximum degree 3 graphs (Bui and Jones,

1992) and it has several applications for different connectivity problems (we refer the interested

reader to Djidjev (2000), Garg et al. (1999) and Lipton and Tarjan (1979), and to de Souza and

Balas (2005b) for a survey of such applications), one of the most important ones is related to the

efficient solution of linear systems (Heath et al., 1991; Lipton and Tarjan, 1977).

1.3. Examples of optimal solutions

In this section, we depict some examples of optimal solutions of the CVSP and of the MinMaxC

for a classical social network from the literature. We consider the instance introduced by Zachary

(1977) that consists of a network modeling the interactions of an university-based karate club. This

network has 34 vertices and 78 edges, where the vertices represent active members of the club and

the edges represent strong interactions between the members.

In Figure 2, we report three optimal solutions of the CVSP with different values for the maximum

number of shores k, i.e., k ∈ {2,3,4} and we set b=
⌈

|V |
k

⌉
. The vertices belonging to the separators

are depicted in gray and their incident edges are depicted with dashed lines. The vertices belonging

to the different shores are depicted with different colors and different shapes. In Figure 2(a), for k= 2

and b= 17, the size of the largest connected component is 17 and there is one more disconnected

shore of 13 vertices. In Figure 2(b), for k= 3 and b= 12, the size of the largest connected component

is 10 and there are three disconnected shores with 11, 11 and 8 vertices, respectively. Finally,

Figure 2(c), for k = 4 and b= 9, shows that the size of the largest connected component is 8, and

there are four disconnected shores of size 9, 9, 6, and 6, respectively. We notice that the size of the

optimal separator is the same for b ∈ {12,17}, while it increases by just one unit for b = 9. This

can be attributed to the small-world effect and scale-free property of real-world networks (Watts

and Strogatz, 1998; Tao et al., 2006), as opposed to regular or randomly generated networks. These

results are in line with the observations of Albert et al. (2000): in homogeneous networks all vertices

have approximately the same number of links, hence they all contribute equally to the connectivity

of the network. However, the power-low distribution of vertex degrees in scale-free networks implies

that targeting of a relatively small number of the “most-critical” vertices may significantly reduce

the connectivity of the network.

We observe similar effects when solving the MinMaxC: three optimal solutions of the MinMaxC

with different budget levels are reported in Figure 3. We depict in blue the vertices belonging to

the largest connected component and in white the remaining vertices. For B ∈ {2,3,4} the size of

the largest connected component reduces from 34 to 24, 20, and 10, respectively. Hence, a minimal

increase of the budget B allows for a significant reduction of the largest connected component. Due

to the scale-free property of such networks, one might be tempted to apply an intuitive approach in
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Figure 2 Optimal CVSP solutions: in part (a) with k= 2 and b= 17, in part(b) with k= 3 and b= 12 and in part (c)

with k= 4 and b= 9.
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Figure 3 Optimal MinMaxC solutions: in part (a) with B = 2, in part (b) with B = 3 and in part (c) with B = 4.

which the most-connected vertices (i.e., those with the highest degree) should be removed first, as

suggested, e.g., by Albert et al. (2000). However, Figure 3(a) illustrates that it is not always true

that optimal separators contain the highest-degree vertices (i.e., the degree of vertex 2 is only six).

Moreover, it has been shown that a greedy heuristic in which the vertices are removed based on

their degrees, can lead to solutions in which the size of the largest component can be arbitrarily

bad when compared to the value of the optimal solution (Shen et al., 2012).



Furini, Ljubić, Malaguti, Paronuzzi: The bilevel combinatorial structure of the capacitated vertex separator problem
Article submitted to ; manuscript no. (Please, provide the manuscript number!) 9

2. A compact integer programming formulation

A first IP formulation for the CVSP has been introduced by Borndörfer et al. (1998), who defined

a binary variable ξiv for each vertex v ∈ V and each integer i ∈K = {1,2, . . . , k}, such that ξiv = 1

if vertex v belongs to the shore Vi and 0 otherwise. In this formulation, the vertices that remain

unassigned to any of the shores (i.e., for which ξiv = 0, for all i ∈ K), are the ones defining the

separator S. This is why instead of minimizing the cardinality |S| of the separator, one can equiv-

alently maximize the number of vertices in the shores (i.e., the vertices in ∪i∈KVi), thus obtaining

the following IP formulation

max
∑
i∈K

∑
v∈V

ξiv (1a)∑
i∈K

ξiv ≤ 1 v ∈ V, (1b)

ξiw +
∑

j∈K\{i}

ξjv ≤ 1 i∈K, wv ∈E, (1c)∑
v∈V

ξiv ≤ b i∈K, (1d)

ξiv ∈ {0,1} i∈K, v ∈ V. (1e)

The objective function (1a) maximizes the number of vertices assigned to the shores of the separator.

Constraints (1b) impose that each vertex is assigned to at most one shore and (1c) imposes that

the shores induce pairwise disconnected subgraphs. Constraints (1d) impose that the capacity of

each shore is not exceeded, i.e., the number of vertices assigned to each shore is not larger than

the capacity b. This formulation is known to suffer from symmetries, given that any permutation of

indices {1, . . . , k} results in the same feasible (LP-)solution.

Bastubbe and Lübbecke (2019) reformulated this model by defining an edge clique cover Q of G.

An edge clique cover is a collection Q of cliques of G such that for each edge wv of E, there exists

a clique Q ∈Q with w,v ∈Q. The model is then obtained by introducing a binary variable ψi
Q for

each integer i∈K and each clique Q∈Q such that ψi
Q = 1 if some vertex v ∈Q belongs to the shore

i and 0 otherwise. Constraints (1b) and (1c) are then replaced by

∑
i∈K

ψi
Q ≤ 1 Q∈Q, (2a)

ξiv −ψi
Q ≤ 0 i∈K, Q∈Q, v ∈Q. (2b)

Constraints (2a) impose that each clique Q∈Q is assigned to at most one shore; while constraints

(2b) impose that the vertices can be assigned to a shore if and only if they belong to a clique Q∈Q

selected for the shore.
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Borndörfer et al. (1998) strengthened formulation (1a)–(1e) through several valid inequalities and

they solved it by means of a tailored branch-and-cut algorithm. Among the inequalities introduced

in their work, the so called block-invariant inequalities are invariant under a permutation of the

indices of the shores i ∈K (called blocks by Borndörfer et al. (1998)). These inequalities can be

expressed for aggregated variables defined as

zv =
∑
i∈K

ξiv, v ∈ V,

which define if a vertex v is assigned to a shore (zv = 1) or it is removed from G (zv = 0), i.e., it is

in the separator S. In the next section, we present an IP formulation based on the complement of

these variables, and recall some of the block-invariant inequalities that we exploit to strengthen our

formulation.

3. A canonical IP formulation

In this section, we study an IP model for the CVSP that exploits the complement of the aggregated

variables zv, v ∈ V , introduced in the previous section. Our goal is to provide a “thin” formulation

that lives in the natural space of decision variables, namely those constituting the objective function.

This will allow us to tackle more challenging (and potentially denser) instances, using only a linear

number of decision variables.

To this end, for each vertex v ∈ V , a binary variable xv is defined such that xv = 1 if vertex

v belongs to the separator S and 0 otherwise. Given an arbitrary subset of vertices W ⊆ V , the

connected components C in G[W ] can be viewed as items of weight |V (C)|, i.e., the number of

vertices in the component. Let σ(W ) be equal to the number of bins of size b needed to pack the

connected components of G[W ]. If the size of a connected component is larger than b, the packing

is not feasible and we set σ(W ) =∞. The CVSP can be then modeled as follows:

min
∑
v∈V

xv (3a)∑
v∈W

xv ≥ 1 W ⊆ V : σ(W )>k (3b)

xv ∈ {0,1} v ∈ V, (3c)

where the objective function (3a) minimizes the number of deleted vertices, i.e., the vertices in the

separator S. Constraints (3b), denoted as bin packing constraints in the following, guarantee that

any vertex separator S (encoded by x variables) which does not allow to “pack” the connected

components of G[V \ S] into k shores of size b, has to be discarded. The bin packing constraints

model the fact that if more than k bins must be used for a vertex subset W ⊆ V , the connected

components induced by W cannot be “packed” into the k shores of capacity b, so at least one vertex
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in W must belong to the separator. This exponential-size family of constraints has been proposed

by Borndörfer et al. (1998), who showed that their separation problem corresponds to solving the

bin packing problem (BPP). The BPP is strongly NP-hard and we refer the reader to the work of

Delorme et al. (2016) for a recent survey on the problem.

As a special case, if for a vertex subset W ⊆ V there exists a component C in G[W ] such that

|V (C)|> b (which can be determined in polynomial time), the solution is infeasible, and hence, at

least one vertex from C must belong to the separator. It is not difficult to see that in the latter

case, the associated bin packing constraints (3b) are dominated by∑
v∈C

xv ≥ 1, C ⊆W :C connected and |V (C)|= b+1. (4)

Nevertheless, constraints (4) are not sufficient to build a valid formulation unless the value of

k is such that the condition on the maximum number of shores is not binding (i.e., any solution

satisfying constraints (4) also satisfies constraints (3b)). It is not hard to see that this is the case for

any k≥ |V |, whatever the value of capacity b. The following proposition provides a tighter result:

Proposition 1. Any solution satisfying constraints (4) defines a separator S and a graph G[V \

S] whose connected components can be packed into at most k= 2(|V |−1)

b+1
bins for odd values of b; and

k= 2|V |
b+2

bins for even values of b, respectively.

Proof Let S be a separator, satisfying constraints (4). Let us define a BPP instance with bins of

capacity b for packing the connected components of G[V \S], and such that the number of necessary

bins in the largest. This happens when all (but possibly one) item weights just exceed b/2, that is:

• the item weights are all equal to b+1
2

when b is odd; and

• the item weights but one are b
2
+1, and one is possibly b

2
, when b is even.

We can now compute the overall weight that is packed in the two cases, and set it equal to the

residual number of vertices |V | − |S|:

b+1

2
k= |V | − |S| if b is odd;(

b

2
+1

)
(k− 1)+

b

2
= |V | − |S| if b is even.

Since at least one vertex must be removed in a non-trivial instance of the CVSP, we can impose

|S|= 1 and the result follows. □

Besides its sparsity, another major advantage of model (3) compared to the formulation (1) from

Section 2 is that we get rid of the symmetries (i.e., the degeneracy caused by index permutations).

This comes at a cost of having an NP-hard procedure to check feasibility of any integer point of

the branch-and-cut tree.
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To (partially) overcome this difficulty, in the remainder of this section we propose new valid

inequalities in the space of x variables, that can be used to enhance this basic model, and whose

separation can be performed in polynomial time. To derive these inequalities, we approach the

problem from a bilevel perspective.

3.1. A bilevel interpretation of the problem

Bilevel optimization has recently attracted a lot of attention of the research community, not only

because of its relevance for the real-world applications but also because of the recent advancements

in the development of off-the-shelf MILP solvers. The latter ones are the major driving force for the

methods of computational optimization to be pushed to the next frontiers (Dempe and Zemkoho,

2013; Fischetti et al., 2017; Kleinert et al., 2019; Lozano and Smith, 2017; Tahernejad et al., 2019).

We propose a novel way of interpreting the CVSP as a defender-attacker game. Such problems are

typically solved using the tools and methods of bilevel optimization (Baggio et al., 2020; Borrero

et al., 2019; Fischetti et al., 2019). Our ideas based on bilevel optimization allow us to improve the

modeling power and understanding of the CVSP.

The CVSP can be viewed as a two-player Stackelberg game, i.e., a game where players take deci-

sions sequentially, and are denoted as: a leader (i.e., defender) and a follower (i.e., attacker). In the

first step, the leader “interdicts” the follower by deleting (i.e., protecting, vaccinating) some vertices

from the graph. In the following step, the follower determines a maximum connected component in

the remaining graph. Hence, from the perspective of the leader, the problem is to find the smallest

subset of vertices to delete from G so that the size of the optimal follower solution (i.e., the number

of vertices in the maximum connected component in the remaining graph) is at most b. For binding

values of k (cf. Proposition 1) we are interested in finding at most k shores, hence the leader solution

must additionally satisfy the bin packing constraints (3b).

Independently on the value of k, using the value function reformulation for the follower, we can

impose the following condition:

Φ(x)≤ b (5)

where Φ(x) denotes the optimal solution value of the follower subproblem for a given vector x.

In general, the value function Φ(x) does not need to be convex. Hence, one possible way to deal

with the problem and to derive a single-level problem reformulation is to try to convexify the value

function. In the following we discuss two possible ways to convexify this function and derive valid

inequalities.
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3.1.1. Convexification by penalization: component inequalities.

Given a binary realization of the leader variables x∗, we denote by V (x∗) ⊂ V the subset of

interdicted vertices and byG∗ the interdicted graph which is the subgraph ofG induced by V \V (x∗).

The value Φ(x∗) can be calculated in O(|E|) time by simply removing the vertices v ∈ V (x∗) and

searching for a largest connected component in the resulting graph G∗. Nevertheless, as our next

goal is to use the value function reformulation to derive valid linear constraints in the x space, in the

following we are providing a sparse IP formulation for finding Φ(x∗). In this follower’s subproblem,

for each vertex v ∈ V , a binary variable yv is defined such that yv = 1 if vertex v belongs to a

maximum connected component and 0 otherwise, recalling that a maximum connected component

has to be determined in the interdicted graph. The follower IP formulation reads

Φ(x∗) =max
∑
v∈V

yv (6a)

yv ≤ 1−x∗
v v ∈ V (6b)∑

u∈F

yu ≥ yw + yv − 1 wv ̸∈E,F ∈Fwv (6c)

yv ∈ {0,1} v ∈ V. (6d)

The objective function (6a) maximizes the number of the selected vertices. Constraints (6b) ensure

that the interdicted vertices cannot be selected. Constraints (6c) impose that the optimal follower

solutions correspond to connected components (in the interdicted graph G∗). Given a non-adjacent

pair of distinct vertices w,v ∈ V , a set F ⊂ V is called v-w-separator if and only if removing F from

G disconnects w from v. These constraints are then defined with respect to the collection Fwv of

all the (minimal) w-v-separators for each pair of vertices wv /∈E. More precisely, constraints (6c)

impose that if a pair of vertices w and v (wu /∈E) is selected, at least one vertex in each F ∈ Fwv

must be selected as well (see, e.g., the work of Fischetti et al. (2014) for further details).

We aim at finding a reformulation of the follower’s subproblem whose feasible space does not

depend on x∗, with an adapted objective function, so that for any choice of x∗, the two problems

provide the same optimal solution. In our setting, we apply convexification by penalization, as it is

done, e.g., by Brown et al. (2006), Cormican et al. (1998) and Fischetti et al. (2019). The major goal

is to remove interdiction constraints (6b) from the follower’s subproblem, and to introduce penalty

terms Mvx
∗
vyv in the objective function instead, so that the existence of the optimal follower solution

satisfying yvx
∗
v = 0 is guaranteed. The reformulation can be obtained as stated in the following

observation.

Observation 1. The follower subproblem can be restated as

Φ(x∗) = max

{∑
v∈V

yv −
∑
v∈V

Mv x
∗
v yv : (6c), (6d)

}
(7)

where Mv are sufficiently large values that guarantee that yv = 0 whenever x∗
v = 1.
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With the above observation and a proper choice of multipliers Mv, v ∈ V , the value function Φ(x)

becomes a piece-wise convex function defined as

Φ(x) = max
y∗∈Y

∑
v∈V

y∗v −
∑
v∈V

Mv y
∗
v xv,

where Y denotes all feasible points of the follower subproblem defined by constraints (6c) and (6d).

Therefore, y∗ is the indicator vector of the vertex sets V (C), C ∈ C, where C is the collection of the

connected subgraphs of G.

Hence, constraint (5) can now be replaced by the following family of inequalities:∑
v∈V (C)

(1−Mvxv)≤ b, C ∈ C (8)

The new constraints (8) have been obtained by replacing in (5) the expression of Φ(x) by the

objective function of (7). They can be equivalently restated as∑
v∈V (C)

Mvxv ≥ |V (C)| − b C ∈ C, (9)

imposing that, for each connected subgraph C of G, the sum of the Mv coefficients associated with

the interdicted vertices is greater than or equal to the cardinality of the vertex set of C, denoted as

V (C), minus the capacity b.

A straightforward tightening of the coefficients gives∑
v∈V

min

{
|V (C)| − b , Mv

}
xv ≥ |V (C)| − b C ∈ C. (10)

In order to obtain a tight formulation, the values of Mv should be as small as possible. Finding

the tightest possible coefficients Mv is a non-trivial task, and the existing literature on bilevel

optimization provides recipes for their calculation under some very specific assumptions related to

the follower’s subproblem. For example, Wood (2010) and Brown et al. (2006) assume that the

follower’s subproblem is a linear program, whereas Fischetti et al. (2019) provide a more general

result for discrete and continuous follower’s subproblems satisfying the downward monotonicity

property. Other results can be found for the case in which the follower solves a graph optimization

problem which satisfies vertex- or edge-hereditary property, see Furini et al. (2019). Unfortunately,

none of these assumptions are satisfied by the follower’s subproblem defined in (6). In the following,

we discuss how to derive tight inequalities for this non-trivial situation.

Given a tree T with |V (T )|> b, let compT (v) denote the cardinality of the vertex set of a largest

connected component obtained after removing v.

Proposition 2. Let C ∈ C be a tree T , then Formulation (7) is correct if we choose

Mv = |V (C)| − compT (v). (11)
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Proof The value of Mv exactly models the reduction of the objective value of the follower sub-

problem (7) when a single vertex v is interdicted. When more than one vertex is interdicted, the

overall reduction of the objective value is overestimated, still guaranteeing that the optimal follower

solution satisfies yvx∗
v = 0. □

In the general case, i.e., when C is a generic connected subgraph from C with |V (C)| > b, the

above mentioned constraints remain valid when imposed for a tree of C, and hence can be imposed

for any spanning tree T of C. We have the following result:

Proposition 3. Let C be a connected subgraph of G with |V (C)|> b and let T (C) be the set of

all spanning trees of C, then the following component inequalities

∑
v∈V (C)

(|V (C)| − compT (v))xv ≥ |V (C)| − b T ∈ T (C), (12)

are valid for model (3).

Proof By contradiction, assume there exists a graph G̃, an instance of the CVSP and an associ-

ated feasible solution x̃ which violates one of the inequalities (12). Hence, there exists in G̃ a tree

T̃ spanning non-interdicted vertices according to x̃, and for which (12) is violated. This means that

T̃ is spanning a connected subgraph of G̃ of non-interdicted vertices having cardinality larger than

b, contradicting the assumption that x̃ is feasible.

□

Notice that the component inequalities can be tightened by taking the minimum of the coefficient

next to each variable and the right-hand-side, as in (10).

3.1.2. Convexification by dualization: Benders inequalities.

In this section, we show how to model the followers’ subproblem as a linear program. For each

couple of vertices v, l ∈ V , we define a non-negative continuous variable σvl ≤ 1 which takes value

one if vertices v and l belong to the same component. Furthermore, we introduce an additional

continuous variable λ which represents the size of the largest component in the interdicted graph

G∗. Using these variables, Φ(x∗) can be determined using the following compact LP formulation

(see also the work of Shen et al. (2012)):

Φ(x∗) = min
λ≥0, 0≤σ≤1

λ (13a)

λ≥
∑
v∈V

σvl l ∈ V (13b)

x∗
w +x∗

v≥ σvl −σwl (v,w)∈A, l ∈ V (13c)

σll ≥ 1 l ∈ V. (13d)
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Constraints (13d) impose that each vertex belongs to its own component. Constraints (13c) guar-

antee that if two neighboring vertices v and w are not interdicted, and v is connected to l in G∗,

then w must be connected to l as well. For a pair of vertices vw ∈ E, if x∗
w = 1 or x∗

v = 1, the

corresponding constraints (13c) are deactivated. In constraints (13b), the right-hand-side represents

an upper bound on the size of the connected component in G∗ containing vertex l. Accordingly

constraints (13b) impose that λ is greater than or equal to the maximum of
∑

v∈V σvl over all l ∈ V .

The following proposition guarantees the validity of the model to compute Φ(x∗).

Proposition 4. Given a binary realization of the leader variables x∗, there exists an optimal

solution to (13) in which σ̃vl = 1 if and only if node v and node l belong to the same component in

the interdicted graph G∗, and σ̃vl = 0 otherwise.

Proof We first observe that the solution σ̃ is feasible for (13) and accordingly the optimal solution

value λ∗ ≤maxl∈V

{∑
v∈V σ̃vl

}
. Consider any feasible solution σ̂ satisfying constraints (13c) and

(13d). Let l be a non-interdicted vertex in G∗; σ̂ll = 1 and, due to (13c) for all the non-interdicted

neighbors v ∈N(l) \V (x∗), we have σ̂vl = 1. By repeating this argument for each v ∈N(l) \V (x∗),

we conclude that σ̂vl = 1 for all v belonging to the connected component of l in G∗. From constraint

(13b), we then have: λ∗ ≥maxl∈V

{∑
v∈V σ̂vl

}
. This proves that the solution σ̃ is optimal. Similar

arguments have been used by Shen et al. (2012, Proposition 2). □

The following Corollary allows to strengthen formulation (3) by using the additional σ variables.

Corollary 1. The following set of constraints is valid for model (3):∑
v∈V

σvl ≤ b l ∈ V (14a)

xw +xv≥σvl −σwl (v,w)∈A, l ∈ V (14b)

σll ≥ 1 l ∈ V (14c)

σvw ≥ 0 v,w ∈ V. (14d)

Proof The meaning of the σ variables is the same as in model (13) and constraints (14a) ensure

that the size of any connected component in the interdicted graph G∗ does not exceed the capacity

b. □

To the best of our knowledge, the extended formulation, obtained by adding constraints (14) to

(3), is new and has not been considered in the previous literature. As our major motivation is to

study the IP models in the natural space of x, our next goal is to project out σ variables from this

model. This can be done in a Benders fashion by dualizing the function Φ(x) defined in (13).
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By associating non-negative dual variables α, β and γ to the constraints (13b), (13c) and (13d),

respectively; and by dropping the redundant constraints σ≤ 1, we get the following dual LP:

Φ(x∗) = max
(α,β,γ)≥0

∑
l∈V

(
γl −

∑
vw∈A

βl
vw

(
x∗
v +x∗

w

))
(15a)∑

wv∈δ−(v)

βl
wv −

∑
vw∈δ+(v)

βl
vw ≤ αl v, l ∈ V, v ̸= l (15b)

∑
wv∈δ−(v)

βl
wv −

∑
vw∈δ+(v)

βl
vw ≤ αl − γl v, l ∈ V, v= l (15c)

∑
l∈V

αl = 1. (15d)

The following Proposition provides the Benders reformulation of model (3) extended by (14).

Proposition 5. Constraints (14) can be equivalently replaced by the following family of Benders

feasibility inequalities:

∑
l∈V

(
γ̃l −

∑
vw∈A

β̃l
vw

(
xv +xw

))
≤ b (16)

where (α̃, β̃, γ̃) represent the extreme points of the dual polyhedron defined by (15b)-(15d).

Proof The proof follows from LP duality theory. We point out that Benders inequalities (16)

correspond to normalized and aggregated Benders feasibility cuts derived by the standard projection

of σ variables from the model (3)+(14). To see why this is the case, observe that the relaxed Benders

master problem consists of model (3), whereas the Benders subproblem consists of checking the

feasibility of constraints (14) for any given solution x∗ of the master. By Farkas Lemma, the system

(14) is infeasible if the following LP is unbounded (observe that the Benders subproblem is separable

by l):

Dl(x
∗) = max

(α,β,γ)≥0
γl − bαl −

∑
vw∈A

βl
vw

(
x∗
v +x∗

w

)
(17a)∑

wv∈δ−(v)

βl
wv −

∑
vw∈δ+(v)

βl
vw ≤ αl v, l ∈ V, v ̸= l (17b)

∑
wv∈δ−(v)

βl
wv −

∑
vw∈δ+(v)

βl
vw ≤ αl − γl v, l ∈ V, v= l (17c)

For a binary solution x∗, let Cl be the connected component in the interdicted graph containing l.

The optimal solution of this LP corresponds to a single-commodity flow in which αl units are sent

from l to all other vertices from V (Cl). The flow is sent along a spanning tree T rooted at l of Cl,

and each value βl
vw counts the total amount of flow carried along the arc (v,w) of that tree. Hence,
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γl = |V (Cl)| ·αl, and the value of the optimal solution is (|V (Cl)|− b)αl. The problem is unbounded

if |V (Cl)|> b, and the standard Benders feasibility cut (associated to the l-th subproblem) reads

γ̃l − b α̃l −
∑
vw∈A

β̃l
vw

(
xv +xw

)
≤ 0,

where (α̃, β̃, γ̃) corresponds to an extreme ray from the dual cone defined by (17b)-(17c), along

with the non-negativity constraints. It is now not difficult to see that our Benders inequalities

(16) correspond to latter cuts after aggregating all |V | subproblems and adding a normalization

hyperplane (15d). □

Similarly, given an interdicted graph G∗, the dual model (15) represents a single-commodity flow

formulation imposed for each “root” l ∈ V . For a connected component C in G∗, a vertex l is chosen

as a root, and αl units of flow are sent from l to every other vertex v ∈ V (C). Thereby, the value

γl contains the total amount of flow sent from l plus αl (which is exactly the size of C, assuming

αl = 1). Since we are looking for a distribution of the values of αl among the vertices of G, and

we penalize each arc (v,w) whose end vertices are interdicted (cf. the second term in the objective

function), an optimal solution of problem (15) is obtained by choosing a largest component in the

interdicted graph, arbitrarily picking one of its vertices l as a root and setting αl = 1. Hence, instead

of detecting Benders inequalities using a black-box LP formulation, based on the above arguments

we can use a combinatorial procedure to detect following sub-family of inequalities (16).

Proposition 6. Let C be a connected subgraph of G with |V (C)|> b and let T (C) be the set of

all spanning trees of C, and assume that one unit of flow is sent from a chosen root l ∈ V (C) to all

other v ∈ V (C), v ̸= l along the edges of T . Let alv be the sum of flows sent into the vertex v and out

of v. Then the following Benders inequalities∑
v∈V (C)

alvxv ≥ |V (C)| − b T ∈ T (C), l ∈ V (C) (18)

are valid for model (3).

Proof We first observe that inequalities (16) can be rewritten as∑
l∈V

∑
vw∈A

β̃l
vw(xv +xw)≥

∑
l∈V

γ̃l − b. (19)

Following the discussion from above, we then choose a root l ∈ V (C), calculate the coefficients β̃l

and set

alv =
∑

vw∈δ+(v)∪δ−(v)

β̃l
vw.

Recall that the value of γ̃l is |V (C)| for the chosen l, and that all β̃l′ and γ̃l′ are zero for l′ ̸= l. □

Notice that the Benders inequalities (18) can be tightened as in (10).
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3.2. Another bilevel point-of-view: degree inequalities

Let C ∈ C be a connected subgraph of G such that |V (C)| > b. The minimum number q(C) of

components into which C has to fall apart, so that each resulting component contains no more than

b vertices, is given as:

q(C) =

⌈
|V (C)| −

∑
v∈V (C) xv

b

⌉
. (20)

Hence, from an alternative bilevel perspective, we could see this as a Stackleberg game: the leader

interdicts some vertices, and, for each connected subgraph C such that |V (C)|> b, the follower cal-

culates the number of connected components in the interdicted graph. If the number of components

is smaller than q(C), then the solution of the leader is infeasible. Let ΨC(x) be the number of

connected components of subgraph C in the interdicted graph. The latter condition can be imposed

as the following constraint:

ΨC(x)≥ q(C) C ∈ C, |V (C)|> b.

In Furini et al. (2019, eq. (24)), we showed that the condition for a generic graph G = (V,E) to be

partitioned into at least κ nonempty components by interdicting vertices can be expressed by the

following exponential family of inequalities:∑
uv∈E(S)

(
1−xu −xv

)
≤ |V|−

∑
v∈V

xv −κ S ∈ S, (21)

where S denotes the set of all cycle-free spanning subgraphs of G, S is one such subgraph, E(S)
is its edge set and κ≥ 2. Hence, we can derive a new family of valid inequalities for the CVSP by

applying this result to any connected subgraph C ∈ C with |V (C)|> b and by replacing in (21) the

constant term κ with (20). In addition, we restrict ourselves to spanning trees T ∈ T (C):∑
uv∈E(T )

(1−xu −xv)≤ |V (T )| −
∑

v∈V (T )

xv −

⌈
|V (T )| −

∑
v∈V (T ) xv

b

⌉
T ∈ T (C). (22)

After removing the rounding and using |E(T )|= |V (T )| − 1, we obtain the following result:

Proposition 7. Let C be a connected subgraph of G with |V (C)|> b and let T (C) be the set of

all spanning trees of C, then the following degree inequalities∑
v∈V (T )

[ b (degT (v)− 1)+1] xv ≥ |V (T )| − b T ∈ T (C), (23)

are valid for model (3).

Notice that, according to Furini et al. (2019, Proposition 6), constraints (21) should be imposed

for each acyclic spanning subgraph of C. In the context of the current paper however it is correct

to consider only spanning trees of C, because, if there is a disconnected acyclic spanning subgraph

(i.e., a forest) violating the constraint, we would add the corresponding constraint for each tree of

the forest as well. Furthermore, for (23), the right hand side is always positive, and all coefficients

next to the vertices are non-negative so that the constraints can be tightened as in (10).
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3.3. Comparison between component, degree and Benders inequalities.

By comparing component inequalities (12) and degree inequalities (23), we observe that the latter

are obtained by selecting a tree T spanning C and by setting

Mv = b (degT (v)− 1)+1, v ∈ V (T ).

Despite the fact that both families of inequalities are associated with trees, where each vertex v

in the selected tree appears with a coefficient Mv, the values of these coefficients differ in the two

cases. An example given in Figure 4a) for b= 2 shows that, when these inequalities are imposed for

the same C ∈ C, the two inequalities do not dominate each other (notice that the inequalities are

always tightened as in (10) when possible). For the given example, the component inequality and,

respectively, the degree inequality are given as:

x1 +3x2 +4x3 +3x4 +x5 +x6 +x7 ≥ 5

x1 +5x2 +3x3 +5x4 +x5 +x6 +x7 ≥ 5

For this example, the Benders inequalities (with the root being any non-leaf vertex, e.g., l = v2)

are dominated by component and degree inequalities, and read:

x1 +5x2 +5x3 +5x4 +x5 +x6 +x7 ≥ 5

However, another example depicted in Figure 4b) for b= 3 shows a case where, when imposed for

the same C ∈ C, Benders inequalities dominate degree inequalities. The Benders inequality (with

the root l= v3) and, respectively, the degree inequality are:

x1 +3x2 +5x3 +x4 +x5 +x6 +x7 +x8 ≥ 5

x1 +4x2 +5x3 +x4 +x5 +x6 +x7 +x8 ≥ 5

From the two reported examples, we can conclude that in general there is no dominance between

Benders inequalities and degree inequalities, when imposed for the same C ∈ C.

v6 v7 v5

v1 v2 v3 v4

(a)

v5 v6 v7 v8

v1 v2 v3 v4

(b)
Figure 4 Two examples demonstrating relationships between studied inequalities. a) b= 2, b) b= 3.

The following proposition determines the relative strength of the Benders inequalities (18) with

respect to the component inequalities (12):
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Proposition 8. For a given connected subgraph C and its spanning tree T ∈ T (C), Benders

inequalities (18) are dominated by the component inequalities (12).

Proof We prove this result by showing that, for each vertex v ∈ V (T ), the coefficient av in

the Benders inequality is not smaller than the coefficient Mv in the component inequality. Let

|V (T )| = ρ. When v is a leaf, it is trivial. If v is the root l, av = ρ− 1, whereas Mv ≤ ρ− 1. If v

is neither the root l nor a leaf, by removing v we partition T in deg(v) components: a component

containing l, and deg(v)− 1 components not containing l. Let these components include κ vertices

in total. We have av = 2κ+1. If the largest component of T after removing v is the one including

l, Mv = ρ− (ρ− (κ+1)) = κ+1, and hence, av >Mv. If the largest component of T after removing

v does not include l, let p≤ κ be its cardinality; we have Mv = ρ− p. Having Mv >av would imply

ρ > 2κ+ 1+ p. But this would imply that the component including l has cardinality ρ− κ− 1 >

2κ+ 1 + p− κ− 1 = κ+ p which is a contradiction since we assumed the largest component has

cardinality p. □

3.4. Cover inequalities

These inequalities exploit the concept of connectivity. Let W ⊆ V be a subset such that the induced

subgraph G[W ] is r-vertex-connected (i.e., at least r vertices have to be removed to disconnect

W ) and |W | > b. Then, the following inequalities, which can be derived from the corresponding

block-invariant inequalities proposed by Borndörfer et al. (1998), are valid∑
v∈W

xv ≥min

{
|W | − b , r

}
. (24)

This exponential-size family of constraints is referred to as cover inequalities in the remainder of

this paper.

3.5. Star inequalities

Additional sets of valid inequalities, derived from the corresponding block-invariant inequalities

proposed by Borndörfer et al. (1998), can be exploited in order to strengthen the formulations

of the previous sections. The following polynomial-size family of constraints is referred to as star

inequalities in the remainder of this paper:∑
w∈N(v)

xw ≥ (|N(v)|+1− b)(1−xv) v ∈ V, |N(v)| ≥ b. (25)

Constraint (25) impose that for each vertex v ∈ V having a degree larger than or equal to the

capacity, if vertex v is not interdicted than at least |N(v)|+1− b of its adjacent vertices have to be

interdicted. After some rewriting, it is not difficult to see that the star inequalities are a special case

of the tightened version of the component inequalities (12), imposed for the stars centered at v ∈ V ,
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with |N(v)| ≥ b. Furthermore, for sufficiently large value of r (r > |N(v)|− b), we notice that cover

inequalities (24) dominate star inequalities. Indeed, by setting W =N(v)∪{v}, the cover inequality

reduces to
∑

v∈N(v) xv ≥ |N(v)|+1− b which dominates (25).

3.6. Precedence constraints

Finally, we can impose some precedence conditions between the interdiction of the vertices, as

in Borndörfer et al. (1998). When the neighbourhood of a vertex w is strictly included in the

neighbourhood of a vertex v, we can impose that the vertex w can be interdicted only if vertex v is

interdicted. Indeed, any feasible solution where xw = 1 and xv = 0 can be transformed to a feasible

solution of the same cost where xw = 0 and xv = 1. These precedence conditions can be stated as

xw ≤ xv v,w ∈ V, N(w) \ {v} ⊂N(v) \ {w}. (26)

In addition, when two vertices share the same neighbourhood, we can impose an order in the

interdiction of the two vertices. In this case, we remove the symmetries with constraints (27) by

imposing that the vertex with the lowest index can be interdicted only after the vertex with the

largest index is interdicted. These additional precedence conditions are stated as

xw ≤ xv v,w ∈ V, w < v, N(w) \ {v}=N(v) \ {w}. (27)

These two polynomial-size families of constraints are referred to as precedence constraints in

the remainder of this paper. Observe that at least one optimal solution exists that satisfies these

constraints, whereas many (equivalent) feasible solutions can be cut off by imposing (26) and (27).

4. Separation routines

This section describes separation strategies for the presented inequalities. All inequalities we propose

(with the exception of cover inequalities) are given for a specific tree associated with a connected

component. Trees are constructed during the detection of connected components, which can be per-

formed by depth first search (DFS) or breadth first search (BFS). By construction, trees obtained

through BFS define inequalities where one vertex (having large degree) receives a large coefficient,

and the other vertices receive a small coefficient. After tightening, these constraints tend to be com-

putationally more effective than the corresponding constraints where the initial trees are detected

by DFS.

4.1. Separation of degree inequalities

Integer case. Given an integer solution x∗, the separation problem reduces to finding a connected

subgraph C of the interdicted graph G∗ such that |V (C)| > b, yielding a violation |V (C)| − b of

constraints (23). The most violated inequality is obtained by choosing the (elementwise) maximal
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subgraph C. Our inequalities (23) are however not associated with connected subgraphs, but with

subtrees contained in the subgraphs, whose number can be exponential in the size of each subgraph.

So, during the separation procedure, a tree for each connected subgraph of the interdicted graph

that exceeds the capacity is built by means of a BFS, where the edges are processed in an arbitrary

order. As soon as the size of the tree under construction is larger than b, and for each edge later on

added to the tree, an inequality is defined and included in the formulation. So, at the end of the

procedure, for each connected subgraph C (of the interdicted graph) that exceeds the capacity b,

|V (C)| − b inequalities of type (23) are added to the model.

Observation 2. For integer solutions, the exact separation of degree inequalities (23) can be

performed in polynomial time.

Fractional case. Given a fractional solution x∗, after rewriting (23), we can see that checking

whether a violated constraint exists is equivalent to finding a subtree T that maximizes the following

function ∑
vw∈E(T )

(1−x∗
v −x∗

w)−
∑

v∈V (T )

(1−x∗
v)

(
1− 1

b

)
. (28)

If the obtained value is positive, a violated constraint (23) is added to the model. The above

separation problem can be formulated as the following IP:

max

{∑
v∈V

wv yv −
∑
vw∈E

wvw zvw : (z, y) is a subtree of G

}
(29)

with wvw = x∗
v+x

∗
w, vw ∈E and wv =

1
b
+(1− 1

b
)x∗

v, v ∈ V . This problem can be seen as an instance

of the prize-collecting Steiner tree problem (PCSTP). To solve it, one can use an IP, a specialized

algorithm for the PCSTP (see, e.g., the one proposed by Leitner et al. (2018)), or a heuristic

procedure.

We propose a heuristic procedure that builds a tree starting from the edge with the largest weight,

where the weight of an edge is defined according to the contribution of the edge itself and of its

endpoints to (28). Iteratively, the procedure adds edge-vertex pairs to the current tree according

to an arbitrary order, as long as edge-vertex pairs with a positive contribution can be found. The

contribution for adding a vertex v and an edge vw is again defined as in (28). When the procedure

stops, if the tree has a positive weight then a violated inequality has been detected.

4.2. Separation of component inequalities

For integer solutions, any tree T that is contained in the interdicted graph and whose vertex set

V (T ) exceeds the capacity, produces a violation |V (T )|−b of constraints (12). In this case, however,

computing the coefficients of each variable xv, v ∈ T requires to run a BFS procedure with vertex v
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as a root. So, adding an inequality for each intermediate tree (i.e., trees that do not span a maximal

connected subgraph) can be time consuming. For this reason when separating inequalities (12) we

only consider a spanning tree for each maximal subgraph C in the interdicted graph that exceeds

the capacity b. In this case as well, the tree is built according to an arbitrary order of the vertices

in V (C).

Observation 3. For integer solutions, the exact separation of component inequalities (12) can

be performed in polynomial time.

No separation is performed for fractional solutions, for which a well defined associated optimiza-

tion problem is lacking. Although it is always possible to define the separation problem by means of

a MIP, the use of a general purpose solver for solving the latter would be inefficient, when embedded

within a branch-and-cut scheme.

4.3. Separation of Benders inequalities

Benders inequalities are separated for integer solutions as discussed in Section 3.1.2: for each con-

nected component C of the interdicted graph whose vertex set V (C) exceeds the capacity, a vertex

of maximum degree l is chosen as a root (this choice produces lower values of the coefficients in

the Benders inequality). A spanning tree rooted at l is constructed by BFS (as this choice produces

lower values of the coefficients in the Benders inequality), where vertices are sorted according to an

arbitrary order, and the corresponding Benders inequality is defined.

Observation 4. For integer solutions, the exact separation of Benders inequalities (18) can be

performed in O(|E|) time. Fractional solutions of the master problem can be separated in polynomial

time by solving the associated LP (15).

4.4. Separation of cover inequalities

Given a connected subgraph C of the interdicted graph with |V (C)|> b, inequalities (24) impose

either to disconnect the set (by removing at least r vertices, when the component is r-connected)

or to remove a number of vertices to reduce the cardinality of the vertex set to b. Since for each

connected subgraph r≥ 1, if there exists a violated inequality (24), then there is one with r= 1. For

integer solutions it is hence enough to find a connected subgraph C of the interdicted graph with

|V (C)|> b.

Observation 5. For integer solutions, the exact separation of cover inequalities (24) can be

performed in O(|E|) time.

However, in order to separate strong inequalities, we have to increase the value of r and to search

for r-connected components of cardinality b + r. There are different options for computing the

vertex-connectivity r of a connected subgraph:
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1. The vertex-connectivity r of a connected subgraph C can be obtained in polynomial time by

maximum-flow computations. Even though this procedure runs in polynomial time, it can be time

consuming in dense graphs.

2. Borndörfer et al. (1998) proposed a greedy procedure to possibly detect biconnected compo-

nents and, so, to derive inequalities (24) with r= 2.

3. Computing biconnected components in a connected undirected graph can be performed in

linear time with the sequential algorithm proposed by Hopcroft and Tarjan (1973), during the exe-

cution of a DFS. This procedure can be used to detect whether a component is (at least) biconnected

and to derive inequalities (24) with r= 2.

4.5. Separation of bin packing inequalities

Inequalities (3b) are separated for integer solutions only. Given an integer solution x∗ and the

associated interdicted graph G∗, defined by the set of interdicted vertices V (x∗), the bin packing

problem instance associated with the connected components of the latter graph is defined and solved.

If the optimal solution to the bin packing problem uses more than k bins, an inequality (3b) is

defined for W = V \V (x∗).

Observation 6. The exact separation of bin packing inequalities (3b) is NP-hard.

5. Extension to the MinMaxC

Although not the main focus of this paper, in this section we discuss how to extend some of the

developed ideas to the solution of the MinMaxC (Shen et al., 2012), that is, the problem of discon-

necting a graph G= (V,E) by deleting a subset of no more than B < |V | vertices, while minimizing

the maximum cardinality of a connected component in the residual graph. Notice that Shen et al.

(2012) considered a second objective: among all equivalent solutions, the second objective is to

minimize the number of deleted vertices. In order to properly consider this hierarchy of objectives,

a lexicographic optimization approach is advisable. However, this would move the analysis far from

the scope of the present paper, which is to investigate how to disconnect a graph by vertex removal,

and hence we do not consider the second objective.

A first compact formulation of the MinMaxC is obtained by adapting the compact model (1a) –

(1e) presented in Section 2, where in addition to the binary variables ξiv taking value 1 if vertex v

belongs to the shore Vi, a continuous variable λ denotes the cardinality of the largest component.

The model reads

min λ (30a)

λ≥
∑
v∈V

ξiv i∈K, (30b)
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|V | −
∑
i∈K

∑
v∈V

ξiv ≤B, (30c)

(1b)− (1c),

ξiv ∈ {0,1} i∈K, v ∈ V. (30d)

where K = {1, . . . , |V | −B} is the index set of possible shores, constraints (30b) impose that λ

is at least the cardinality of each (and hence of the largest) shore, and constraint (30c) impose the

budget constraint. The model can be strengthened by introducing extra variables and by replacing

(1b)–(1c) with clique inequalities (2a)–(2b), as explained in Section 2.

An alternative compact model is the one considered by Shen et al. (2012) which we adapt for

completeness to the notation and variables of the present paper. The model considers interdiction

variables xv, v ∈ V and the σ variables (introduced in Section 3.1.2) and reads

min
x∈{0,1}|V |

λ (31a)∑
v∈V

xv ≤B, (31b)

(13b)− (13d).

5.1. Extension of the bilevel approach

By considering the usual binary interdiction variables xv for v ∈ V , the leader problem in the space

of x variables reads

min λ (32a)∑
v∈V

xv ≤B (32b)

Φ(x)≤ λ (32c)

xv ∈ {0,1} v ∈ V, (32d)

where Φ(x) denotes the optimal solution value of the follower subproblem for a given vector x. By

a derivation equivalent to the one in Section 3.1 we have that constraint (32c), for each connected

subgraph C of G with |V (C)|> b, can be replaced by the following inequalities

∑
v∈V (C)

(|V (C)| − compT (v))xv ≥ |V (C)| −λ T ∈ T (C), (33)

where T (C) is be the set of all spanning trees of C. These inequalities for the MinMaxC are the

counterpart of inequalities (12).
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Similarly, a derivation equivalent to the one in Section 3.1.2 allows to write Benders inequalities

that are the counterpart of (18).

Observation 7. We remark that, among the inequalities discussed in this paper, only component

inequalities, Benders inequalities and the precedence conditions can be extended to the MinMaxC,

while keeping linear formulations. Indeed:

• degree inequalities remain valid at the cost of introducing nonlinearities;

• cover inequalities are not valid, since they are defined for each subset of vertices whose cardi-

nality violates the capacity b, which is substituted by a variable (λ) in the MinMaxC;

• star inequality are not valid, since they are defined for each vertex with a degree greater or

equal to the capacity b, which is substituted by a variable (λ) in the MinMaxC.

6. Computational results
In this section, we present the results of the computational experiments with the aim of assessing

the performance of the mathematical models described in the previous sections. We implemented a

branch-and-cut framework based on formulation (3), strengthened by constraints (4) for appropriate

k, which has a polynomial number of variables and an exponential number of constraints, namely,

the bin packing inequalities (3b) and their feasibility counterpart (4). Even though correct, this

formulation asks to solve a NP-hard problem to check feasibility of any integer point of the branch-

and-cut tree. Hence, this basic model is enhanced by four different families of constraints for which

we have developed polynomial separation algorithms for integer points: (i) component inequalities

(12), (ii) degree inequalities (23), (iii) Benders inequalities (18) and (iv) cover inequalities (24).

The first goal of this computational section is to assess the relative computational performance of

each family of inequalities, and their computational interaction when embedded in a branch-and-cut

algorithm. Based on the results of these experiments, which are presented in Section 6.1, the best

(and hence, default) configuration of our newly developed branch-and-cut algorithm is determined.

The latter is then used in a second set of experiments (cf. Section 6.2), in which the performance

of the branch-and-cut algorithm is compared with the state-of-the-art exact methods for the CVSP

present in the literature.

Benchmark instances. We tested the same four sets of benchmark instances considered by Bas-

tubbe and Lübbecke (2019). The first two sets of graphs are obtained from matrix decomposition

problems, as discussed in Section 1. The considered matrices are the constraint matrices of several

Netlib (Gay, 1985) and MIPLIB (Koch et al., 2011) instances. There are 55 graphs constituting the

Netlib dataset, with the number of vertices ranging from 51 to 500. The MIPLIB dataset contains

37 graphs whose number of vertices ranges from 19 to 490 2. The other two sets are 40 instances

2 The constraint matrices determining these graphs have been presolved and reduced by SCIP 3.2.0 with default
settings by Bastubbe and Lübbecke (2019).
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from the second DIMACS challenge (Johnson and Trick, 1996) and 50 Random graphs representing

hypergraphs generated by Bastubbe and Lübbecke (2019). For the DIMACS set, the number of ver-

tices ranges from 23 to 496, whereas for the Random set, the number of vertices ranges from 68 to

164. Since Bastubbe and Lübbecke (2019) considered hypergraphs, we adapted the latter instances

to our case by defining a clique for each hyperedge. In summary, our computational study is con-

ducted on a set of 182 graphs with different structures and densities; the exact number of vertices

and edges of these graphs are reported in the tables provided in the Appendix.

As far as the values of k (maximum number of shores) and b (maximum capacity of each shore)

are concerned, we borrow the same setting used by Bastubbe and Lübbecke (2019) in which k ∈
{4,8,12,16,24,32,64,218,256} and b =

⌈
|V |
k

⌉
. In our analysis, we do not consider instances for

which the value of b equals to 1, since, in these cases, the problem reduces to the maximum stable

set problem. The values of k are clustered into three major categories: (i) small → k ∈ {4,8,12},
(ii) medium → k ∈ {16,24,32} and (iii) large → k ∈ {64,128,256}. In summary, using 9 different

values of k and 182 graphs, we obtained a testbed of 1397 different instances. In the remainder of

this article, aggregated results for small, medium and large values of k are reported (whereas the

detailed results can be found in the Appendix).

Computational environment. All the reported experiments are performed on a computer equipped

with an i7 processor clocked at 3.20 GHz and 64 GB RAM under Linux operating system. We use

the CPLEX 12.7.1 MIP framework to implement our branch-and-cut algorithms and to solve the

compact formulations for which we report the results. CPLEX is run in single-threaded mode and all

CPLEX parameters are set to their default values. A time limit of 30 minutes is set for each tested

instance.

6.1. Determining the best configuration of the branch-and-cut algorithm

As previously discussed, a basic valid formulation for the CVSP is given by (3a)-(4). Each one

of the four families of inequalities: the component inequalities (12), the degree inequalities (23),

the Benders inequalities (18) and the cover inequalities (24) can be used to enhance this basic

model. These families of inequalities are composed by an exponential number of constraints and

thus they are separated within the branching tree for integer solutions. In addition, they can be

separated for fractional solutions in order to strengthen the dual bounds and (potentially) improve

the computational convergence. In the following, we report results for the following branch-and-cut

configurations:

• C: the branch-and-cut separating the component inequalities (12), tightened as in (10), for

integer solutions;

• D: the branch-and-cut separating the degree inequalities (23), tightened as in (10), for integer

solutions;
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• B: the branch-and-cut separating the Benders inequalities (18), tightened as in (10), for integer

solutions;

• CV: the branch-and-cut separating the cover inequalities (24) for integer solutions, via the detec-

tion of biconnected components. Among the three separation procedures given in Section 4.4, after

extensive preliminary computational tests, we determined that the best performing way is via the

application of the algorithm proposed by Hopcroft and Tarjan (1973).

Concerning the separation of fractional points for (12), this is not performed since we could not

identify a well-defined associated optimization problem (see Section 4.2). Regarding the constraints

(23), we tested the separation of fractional points either in an exact or heuristic fashion. Although

improvements were obtained for some specific instances, on average the computational performance

was worsened – additional computational effort was needed to solve the LP relaxation at the branch-

ing nodes due to a large number of violated cuts detected. We therefore do not report the results for

this particular setting. Similar considerations apply to the separation at fractional points of (18),

which can be performed by solving a LP; and (24), which was performed by means of the greedy

procedure proposed by Borndörfer et al. (1998). Also in these cases, the average computational

performance was worsened.

In all the configurations of the branch-and-cut algorithm, bin packing inequalities (3b) are sepa-

rated at integer points only when no other violated inequalities have been detected. This guarantees

that the resulting connected components in the interdicted graph can be packed into k shores of

capacity b. The associated bin packing instances were not challenging and hence, a standard MIP

formulation for the bin packing problem was used with CPLEX as the off-the-shelf solver. Indeed, the

performance of our configurations was not affected by the efficiency of the latter separation proce-

dure which is why we refrained from developing a tailored algorithm for the bin packing problem.

In Sections 3.5 and 3.6, we presented two additional families of inequalities which are polynomial

in number: (i) the stars inequalities (25) and (ii) the precedence constraints (26) and (27). Thanks

to extensive preliminary experiments, we observed that these inequalities are useful to strengthen

the formulation and to speed-up the computational convergence. For this reason, they are always

included into our models.

In Table 1, we present the results of the computational experiments performed with the previously

discussed configurations of the branch-and-cut algorithm. Specifically, we report the performance

of 5 different configurations: C, D, B and CV, i.e., the four basic variants separating the component

inequalities, degree inequalities, Benders inequalities and cover inequalities for integer solutions,

respectively. In addition, we report the performance of C+CV, which corresponds to the separation of

the component inequalities and of the cover inequalities for each integer solution. Indeed, while the

first three families of inequalities have the same structure (i.e., are all associated with trees of the
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Table 1 Performance comparison for different configurations of our branch-and-cut algorithm.

k C D B CV C+CV

small

Opt. (out of 546) 294 226 258 219 305
Avg time 66.52 89.38 74.72 78.92 85.12
Avg nodes 87355 12375 70370 29922 75221

medium

Opt. (out of 540) 382 354 363 356 386
Avg time 54.37 47.18 47.33 32.97 45.03
Avg nodes 83435 21368 65391 32864 54991

large

Opt. (out of 311) 249 248 249 248 249
Avg time 35.72 33.08 40.71 29.41 36.70
Avg nodes 77583 74830 79778 71280 75227

Total opt. (out of 1397) 925 828 870 823 940
Avg time 53.21 54.47 53.55 44.13 55.83
Avg nodes 83106 34926 70985 43658 66915

graph G), the latter family is structurally different. Hence, we tried to combine cover inequalities

with the other inequalities, and we report the results for the best configuration, i.e., C+CV. Table 1 is

horizontally divided in four sections, the first three reporting aggregated results for the three classes

of instances by the choice of parameter k, i.e., small → k ∈ {4,8,12}, medium → k ∈ {16,24,32},

large → k ∈ {64,128,256}. These three sections report, for each configuration of the branch-and-

cut algorithm, the total number of instances solved to proven optimality (rows “Opt”), the average

computing time in seconds (rows “Avg time”, computed over optimally solved instances by each

configuration) and the average number of nodes explored by the branching tree (rows “Avg nodes”,

computed over optimally solved instances ). Finally the fourth section of the table reports the same

information for the entire set of the 1397 instances. All the averages are computed separately for each

configuration, by considering only the instances solved to proven optimality by that configuration.

As far as the comparison of the four basic variants (C, D, B and CV) is concerned, from the table it

emerges that with 925 instances solved to proven optimality, C is the best configuration followed by

B, which is able to solve 870 instances, D which is able to solve 828 instances and by CV, which only

solves 823 instances. A similar pattern can also be seen for the three different categories of values

for k. The number of instances solved to proven optimality and the computational times suggest

that the class small is the hardest to solve for all our branch-and-cut algorithms.

Separating both the component and the cover inequalities pays off in terms of the number of

instances solved to proven optimality, precisely C+CV is able to solve 940 instances (15 more than C

alone). The average number of branch-and-bound nodes suggests that CV explores on average fewer

nodes than C, especially for small values of k. By combining the two families of inequalities, on

average the number of explored nodes is reduced, compared with C alone.
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6.2. Comparison with state-of-the-art solution methods

In this section we compare the performances of our best branch-and-cut configuration identified in

the previous section (i.e., the configuration C+CV) with the state-of-the-art exact methods available

in the literature for the CVSP:

• BP: the branch-and-price algorithm proposed by Bastubbe and Lübbecke (2019), and

• Cplex: the direct solution of the compact model (1a), (1d) -(2b) via CPLEX , a state-of-the-art

commercial MIP solver.

For these tests we used the same test-bed of 1397 instances proposed by Bastubbe and Lübbecke

(2019) and described in the previous section. We recall that, in our analysis, we do not consider

instances for which the value of b results equal to 1 and that a time limit of 30 minutes is set for

each run as for the experiments reported by Bastubbe and Lübbecke (2019). The results of BP are

directly borrowed from the tables reported by the authors in their work (the performance of our

machine is comparable with the machine used for their experiments, which is equipped with a i7

processor clocked at 3.40 GHz).

The information reported in Table 2 summarizes the results of this second set of tests. The

table follows the same structure given in Table 1, but in addition to the disaggregation concerning

the category of k, we also report disaggregated information for each class of instances. All the

averages are computed separately for each method, by considering only the instances solved to

proven optimality by that method. We discuss now the results for each class of instances separately.

For 296 DIMACS instances, Cplex is able to solve 124 instances, BP 164 instances and C+CV 182

instances. For 303 MIPLIB instances, Cplex is able to solve 73 instances, BP 109 instances and C+CV

138 instances. For 436 Netlib instances, Cplex is able to solve 237 instances, BP 351 instances

and C+CV 354 instances. For the 362 Random instances, Cplex is able to solve 168 instances, BP 322

instances and C+CV 266 instances.

Summarizing, in terms of the number of instances solved, our branch-and-cut algorithm C+CV

outperforms both Cplex and BP for the DIMACS and MIPLIB classes of instances, it has a performance

comparable with that of BP for the Netlib instances, while it is outperformed by BP for the Random

instances. For the category small of the k values, Cplex remains instead the best option. This is

due to the small number of variables of the compact formulation which linearly depends on k. For

medium and large values of k, Cplex is largely dominated by BP and C+CV, which improve their

performance for increasing values of k, thus showing a complementary performance with respect to

Cplex. In particular, C+CV is the best option for all classes of instances, when k is large.

Finally, performance profiles depicted in Figures 5 and 6 give a graphical representation of the

relative performance of the three compared methods, i.e., C+CV, BP and Cplex. In Figure 5, the

instances are gathered by class of instances, i.e., Netlib, MIPLIB, DIMACS and Random. In Figure 6,
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Table 2 Performance comparison between Cplex, BP and our best branch-and-cut algorithm.

Class k Cplex BP C+CV

DIMACS

small
Opt. (out of 120) 73 59 66
Avg time 213.87 164.37 45.57

medium
Opt. (out of 117) 47 70 75
Avg time 382.73 114.47 29.82

large
Opt. (out of 59) 4 35 41
Avg time 601.75 19.19 72.58

Total Opt. (out of 296) 124 164 182
Avg time 290.39 112.09 45.17

MIPLIB

small
Opt. (out of 111) 47 23 45
Avg time 179.34 147.41 22.99

medium
Opt. (out of 108) 22 43 45
Avg time 278.15 186.35 2.83

large
Opt. (out of 84) 4 43 48
Avg time 180.73 182.70 95.31

Total opt. (out of 303) 73 109 138
Avg time 209.19 176.70 41.57

Netlib

small
Opt. (out of 165) 133 114 122
Avg time 103.29 182.35 36.34

medium
Opt. (out of 165) 91 141 134
Avg time 301.08 66.15 30.52

large
Opt. (out of 106) 13 96 98
Avg time 589.42 40.33 15.95

Total opt. (out of 436) 237 351 354
Avg time 205.90 96.83 28.49

Random

small
Opt. (out of 150) 106 110 72
Avg time 247.72 276.42 242.86

medium
Opt. (out of 150) 60 150 132
Avg time 554.37 43.92 82.78

large
Opt. (out of 62) 2 62 62
Avg time 1281.65 0.97 0.39

Total opt. (out of 362) 168 322 266
Avg time 369.55 115.07 106.91

the instances are gathered by values of k, i.e., small, medium and large. As proposed by Dolan and

Moré (2002), let s be any solution method, for each value of τ in the horizontal axis, the vertical axis

ρs(τ) gives the percentage of instances for which the computing time of method s was not larger

than τ times the time of the best performing method. Notice that these values may sum up to a

value larger than 100%, if more than one algorithm is classified as the fastest for a specific instance

(because of ties in the computing time); and they may sum up to a value smaller than 100%, if

there are instances that have not been solved by any method. All computing times smaller than 0.1

seconds were scaled to 0.1, which is the granularity of the profile. This way we avoid comparisons

between tiny values, which would produce inaccurate conclusions. The curves originate from a point
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denoting the percentage of instances for which the corresponding algorithm is the fastest, and at

the right end of the chart, they show the percentage of instances solved within time limit. The best

performing algorithm is graphically represented by the curve in the upper part of the respective

figure. The horizontal axis is represented in logarithmic scale.

From Figure 5, it emerges that C+CV is the fastest exact method for around 60% of the DIMACS

instances, while this is the case for the BP and Cplex for only ≈10% of instances. Even by allowing

larger computing times, C+CV outperforms BP and Cplex on this class of instances. For the MIPLIB

instances, C+CV is the fastest exact method for approximately 35% of the instances, while this is

true for BP (resp., Cplex) for approximately 25% (resp., approximately 10%) of the instances. By

allowing larger computing times, C+CV outperforms BP and Cplex also on this class of instances. For

the Netlib instances, C+CV is the fastest exact method for 70% of the instances, while this is true for

BP (resp., Cplex) for less than 30% (resp., less than 10%) of the instances. Even by allowing larger

computing times, the fraction of instances solved by C+CV is slightly larger than that of instances

solved by BP. For the Random instances, BP is the fastest method for more than 50% of the instances,

followed by C+CV (less than 40%) and Cplex (around 10%). BP is the best method for this class of

instances. From Figure 5 it also emerges that the hardest set of instances are the MIPLIB ones, since

only less than 50% of these instances can be solved to proven optimality by the best performing

method. Instead, more than 60% of the DIMACS, around 80% of the Netlib and more than 90% of

the Random instances, respectively, can be solved by the best exact method.

Figure 6, where instances are gathered by values of k, confirms that the hardest instances are

the ones of category small, for which more than 60% of the instances can be solved to proven

optimality by the best considered exact method. C+CV is the fastest method for around 40% of

the instances, while for BP and Cplex this is true for around 20% of the instances. However, by

allowing larger computing times, Cplex is the best performing method for this class. The situation

is slightly improved for the category medium, where more than 70% of the instances can be solved

to proven optimality by C+CV and BP. C+CV is the fastest method for around 55% of the instances,

BP is the fastest for around 35% of instances and Cplex is completely outperformed. For large

computing times, C+CV and BP have a similar performance. As far as the category large is concerned,

approximately 80% of these instances can be solved by C+CV which is also the fastest method for

almost 60% of these instances, while this is true for BP for around 35% of the instances and Cplex

is completely outperformed. C+CV is the best performing method for this class.

6.3. Computational experiments on the MinMaxC

We conclude the section with a concise analysis of the computational results obtained for the

MinMaxC. As discussed in Section 5, this is a closely related problem to the CVSP.
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Figure 5 Performance profiles by class of instances: DIMACS, MIPLIB, Netlib and Random.
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Benchmark instances. For this problem, we considered the same classes of instances (DIMACS,

Netlib, MIPLIB and Random) described in the previous section. We fix the value of the budget B

(i.e., the maximum number of vertices that can be removed) as a percentage of the number of

vertices. More precisely, for each instance, we considered B = ⌈p|V |⌉ with p ∈ {0.05,0.1,0.2}. This

way we obtained a testbed of 564 different instances. We also generated another set of 15 random

instances (as described by Shen et al. (2012)): five 20-, five 30-, and five 40-vertex instances. In this

case, we tested all the different values of B considered by Shen et al. (2012).

The computational environment is the same as described in the previous section. Also in this

case, a time limit of 30 minutes is set.

Performance comparison. We compare the computational results obtained with the following

exact methods:

• CPX: the direct solution of compact model (30) where (1b) and (1c) are replaced by (2a) and

(2b);

• SIG: the direct solution of compact model (31).

• CC: the branch-and-cut algorithm based on formulation (32a),(32b),(32d) and component

inequalities (33);

We do not report results of the tests performed on the instances generated as described by Shen

et al. (2012), because these instances turned out to be very easy for state-of-the-art MIP solvers

(all these instances are solved in short computing time by CPX). In addition, we do not report

results for a branch-and-cut algorithm based on a formulation exploiting Benders inequalities, since

the previous analysis showed that component inequalities lead to computationally more effective

formulations.

Table 3 summarizes the results on the set of instances of classes DIMACS, Netlib, MIPLIB and

Random. We aggregated the results according to three different ranges of the number of vertices of

the instances (up to 100 vertices, between 100 and 200 vertices, and more than 200 vertices). The

first column of the table indicates the range, the second column reports the percentage p of the

vertices that can be removed. Then, for each solution method, we report the number of instances

solved to optimality within the time limit (rows “Opt.”), and the average time in seconds (rows “Avg

time”, computed over optimally solved instances for each method), for each range and for each p.

In the last two rows, we also report for each method the total number of solved instances and the

average time.

These results show that CPX outperforms CC and SIG on small instances having up to 100 vertices.

Indeed, CPX is able to solve 115 out of the 153 instances in range [−,100], while CC solves 106

instances and SIG solves 100 instances. On the other hand, as soon as the number of vertices

increases, our branch-and-cut algorithm improves its performance, while CPX and SIG drastically
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Table 3 Performance comparison between CC, CPX and SIG on instances of DIMACS, Netlib, MIPLIB and Random

classes.

|V | p CPX SIG CC

[−,100]

0.05
Opt. (out of 51) 45 39 45
Avg time 260.04 385.65 19.10

0.1
Opt. (out of 51) 38 31 32
Avg time 326.14 315.92 138.77

0.2
Opt. (out of 51) 32 30 29
Avg time 485.52 303.77 85.27

(100,200]

0.05
Opt. (out of 69) 15 11 44
Avg time 798.00 409.03 135.92

0.1
Opt. (out of 69) 11 10 36
Avg time 905.83 445.88 144.22

0.2
Opt. (out of 69) 9 12 31
Avg time 899.18 203.88 58.88

(200,−]

0.05
Opt. (out of 62) 1 8 25
Avg time 329.95 386.94 47.26

0.1
Opt. (out of 62) 2 8 24
Avg time 154.17 81.69 117.67

0.2
Opt. (out of 62) 8 15 24
Avg time 222.06 105.86 114.73

Total opt. (out of 564) 161 164 290
Avg time 447.66 309.08 94.93

get worst results, due to the increasing number of variables in the associated formulations. More

precisely, out of the 207 instances in the range (100,200], CC is able to solve 111 instances, CPX

solves 35 instances and SIG solves 33 instances. Out of the 186 instances in the range (200,−], CC

is able to solve 73 instances, CPX solves 11 instances and SIG solves 31 instances. For the last two

ranges, we also observed that in many cases CPX and SIG failed because CPLEX does not even have

the capability to load the MIP model, due to the huge size of the latter. Overall, our branch-and-cut

algorithm CC turns out to be the best method both in terms of solved instances (290 out of 564)

and in terms of computational speed.

7. Conclusions

In this article we studied the capacitated vertex separator problem in which a subset of vertices

of minimum cardinality has to be removed from a given graph so that the size of each connected

component in the remaining graph is bounded by b, and all components can be packed into k shores,

each one containing no more than b vertices. For this hard problem with applications in network

protection against the spread of a virus, detection of critical nodes in social and communication

networks, networks analysis and matrix decomposition, extended formulations have been well stud-

ied in the previous literature, but very little is known about solving the problem using a canonical
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IP formulation. The major drawback of the canonical IP formulation is that it requires solving

an (NP-hard) bin-packing problem in order to verify the feasibility of a solution. To improve the

computational efficiency of the underlying IP formulation, we proposed three new families of valid

inequalities which have been derived from the perspective of a two-player sequential game in which

a leader removes the vertices, and a follower solves another combinatorial optimization problem that

(partially) guarantees the feasibility of the solution. The effects of the introduced inequalities on the

basic IP formulation have been studied both from the theoretical and computational perspectives.

In addition, we also showed how to extend some of the developed ideas to tackle a related min-max

problem, where, given a maximum number of vertices to remove, the objective is to minimize the

cardinality of the largest connected component in the residual graph.

On a large benchmark set of the instances available in the current literature, we demonstrated

that our new branch-and-cut approach is competitive with the state-of-the-art branch-and-price

algorithm and a compact formulation proposed by Bastubbe and Lübbecke (2019). In particular,

our approach computationally outperformed the branch-and-price algorithm from Bastubbe and

Lübbecke (2019) for large values of the number of shores k and for structured graphs from various

applications, while the latter had a better performance for random graphs and average values of

the k parameter. Our computational analysis revealed that exact approaches for the capacitated

vertex separator problem can tackle graphs with up to 500 vertices. Solving the problem for graphs

with thousands of vertices is a relevant open problem, for which heuristic and approximate methods

should be considered as an interesting stream of research. The computational analysis has been

further extended to the related min-max problem, where a variant of our new branch-and-cut

algorithm outperformed two compact formulations.

Finally, we hope that this article raises the awareness on the importance and merit of bilevel opti-

mization for solving difficult combinatorial optimization problems by modeling them as two-player

Stackelberg games. Many vertex/edge deletion/insertion problems or graph partitioning problems

could benefit from this new modeling paradigm. The same is true for problems that ask for finding

the most central or most critical vertices/edges with respect to various centrality measures.
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Appendix

In Table 4 we report, for each instance from the DIMACS set and for each considered value of k,

the optimal solution value of the CVSP in parenthesis, and the computational times of C+CV, for

instances solved to proven optimality. When the time limit of 30 minutes is reached, we report the

values of lower and upper bound at time limit. In the first two columns of the table, we report

the number of vertices (|V |) and the number of edges (|E|) of the graph. The same information is

reported in Tables 5, 6 and 7 for the MIPLIB, Netlib and Random sets of instances, respectively.

We report the same information for the MinMaxC solved by CC for each consider value of p in

Tables 8, 9, 10 and 11 for the DIMACS, MIPLIB, Netlib and Random sets of instances, respectively.
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Table 4 Features, computational times and optimal solution values (if known) of C+CV for the DIMACS instances.

|V | |E| k = 4 k = 8 k = 12 k = 16 k = 24 k = 32 k = 64 k = 128 k = 256

anna 138 493 0.2 (13) 0.4 (15) 0.5 (16) 0.6 (18) 0.4 (22) 0.3 (23) 0.1 (29) 0.1 (39) 0.0 (58)

david 87 406 0.2 (13) 0.3 (16) 0.2 (19) 0.2 (21) 0.1 (25) 0.1 (32) 0.0 (38) 0.0 (51) 0.0 (51)

fpsol2.i.1 496 11654 3.2 (51) 3.1 (57) 10.5 (74) 8.7 (88) 18.2 (95) 14.8 (102) 22.8 (125) 15.0 (145) 5.9 (166)

fpsol2.i.2 451 8691 2.7 (29) 1.2 (34) 1.6 (44) 3.5 (54) 4.5 (63) 5.7 (71) 9.8 (88) 12.0 (114) 8.1 (143)

fpsol2.i.3 425 8688 1.8 (29) 1.9 (36) 1.5 (47) 1.6 (56) 1.7 (65) 2.0 (73) 6.3 (93) 7.4 (114) 3.0 (143)

games120 120 638 (24-46) (29-57) (31-58) (35-69) (52-72) (59-75) (77-86) 0.1 (98) 0.1 (98)

huck 74 301 0.1 (5) 0.0 (11) 0.0 (16) 0.0 (21) 0.0 (23) 0.0 (28) 0.0 (36) 0.0 (47) 0.0 (47)

jean 80 254 0.0 (7) 0.1 (11) 0.0 (14) 0.1 (20) 0.1 (24) 0.0 (28) 0.0 (33) 0.0 (42) 0.0 (42)

miles250 128 387 0.2 (8) 2.0 (13) 190.2 (22) 305.9 (28) 88.3 (37) 0.7 (46) 0.1 (67) 0.0 (84) 0.0 (84)

miles500 128 1170 (23-29) (37-46) (47-52) (60-61) 1087.8 (71) 4.8 (81) 0.4 (96) 0.0 (110) 0.0 (110)

miles750 128 2113 1601.2 (38) (57-63) 86.7 (69) 8.8 (77) 2.5 (86) 0.7 (96) 0.2 (108) 0.0 (116) 0.0 (116)

miles1000 128 3216 (52-54) (74-76) 66.7 (85) 5.5 (90) 1.3 (96) 0.4 (104) 0.1 (114) 0.0 (120) 0.0 (120)

miles1500 128 5198 0.7 (64) 2.0 (91) 0.8 (99) 0.4 (104) 0.3 (108) 0.1 (114) 0.1 (120) 0.0 (123) 0.0 (123)

mulsol.i.1 197 3925 0.5 (38) 0.3 (69) 0.3 (74) 0.3 (76) 0.2 (77) 0.3 (79) 0.3 (82) 0.3 (87) 0.2 (97)

mulsol.i.2 188 3885 0.1 (38) 0.1 (54) 0.2 (55) 0.2 (55) 0.4 (57) 0.2 (60) 0.3 (73) 0.2 (77) 0.1 (98)

mulsol.i.3 184 3916 0.1 (39) 0.2 (55) 0.2 (55) 0.2 (55) 0.1 (57) 0.2 (60) 0.2 (74) 0.2 (77) 0.1 (98)

mulsol.i.4 185 3946 0.1 (38) 0.2 (55) 0.2 (55) 0.1 (55) 0.2 (57) 0.2 (60) 0.2 (73) 0.2 (77) 0.1 (99)

mulsol.i.5 186 3973 0.1 (38) 0.2 (55) 0.2 (55) 0.2 (55) 0.2 (57) 0.2 (60) 0.2 (73) 0.2 (76) 0.1 (98)

myciel4 23 71 0.2 (10) 0.1 (11) 0.0 (12) 0.0 (12) 0.0 (12) 0.0 (12) 0.0 (12) 0.0 (12) 0.0 (12)

myciel5 47 236 116.1 (19) 0.5 (20) 0.2 (22) 0.2 (23) 0.1 (24) 0.1 (24) 0.0 (24) 0.0 (24) 0.0 (24)

myciel6 95 755 (29-38) 32.0 (35) (40-42) 225.2 (44) 4.4 (45) 2.2 (47) 0.6 (48) 0.1 (48) 0.1 (48)

myciel7 191 2360 (42-75) (55-65) (61-84) (64-86) (73-89) (81-86) 402.6 (95) 8.3 (96) 0.5 (96)

queen5_5 25 160 503.9 (16) 0.3 (17) 0.2 (19) 0.1 (20) 0.1 (20) 0.0 (20) 0.0 (20) 0.0 (20) 0.0 (20)

queen6_6 36 290 (17-25) 364.7 (26) 1.6 (28) 1.5 (28) 0.2 (28) 0.2 (28) 0.0 (30) 0.0 (30) 0.0 (30)

queen7_7 49 476 (19-35) (28-36) (32-38) (36-38) 16.5 (39) 1.1 (40) 0.0 (42) 0.0 (42) 0.0 (42)

queen8_8 64 728 (22-47) (34-48) (39-50) (45-52) 393.0 (52) 12.6 (54) 0.0 (56) 0.0 (56) 0.0 (56)

queen8_12 96 1368 (30-72) (44-75) (54-79) (59-79) (65-81) (69-82) 802.5 (83) 0.3 (88) 0.2 (88)

queen9_9 81 1056 (26-59) (38-62) (47-66) (50-66) (56-64) (59-68) 106.0 (69) 0.2 (72) 0.1 (72)

queen10_10 100 1470 (31-75) (45-81) (54-82) (59-84) (65-85) (68-85) 1559.1 (87) 0.4 (90) 0.3 (90)

queen11_11 121 1980 (36-90) (50-101) (61-99) (69-101) (75-104) (81-105) (96-107) 1.2 (110) 1.0 (110)

queen12_12 144 2596 (42-108) (57-121) (74-120) (80-123) (88-125) (91-126) (98-128) (109-128) 6.0 (132)

queen13_13 169 3328 (49-126) (62-145) (79-144) (91-146) (98-147) (103-148) (115-150) (123-152) 31.2 (156)

queen14_14 196 4186 (56-147) (68-170) (90-172) (99-169) (111-171) (116-172) (125-176) (139-178) 64.6 (182)

queen15_15 225 5180 (62-168) (73-195) (99-199) (113-198) (125-200) (130-199) (142-204) (155-206) 264.1 (210)

queen16_16 256 6320 (71-192) (81-224) (110-232) (124-231) (138-234) (147-231) (165-234) (174-235) (238-240)

school1 385 19095 (101-267) (125-311) (154-292) (168-295) (185-301) (196-307) (219-307) (234-318) (277-328)

school1_nsh 352 14612 (85-245) (119-303) (140-269) (160-269) (173-279) (184-275) (204-281) (230-291) (249-300)

zeroin.i.1 211 4100 0.7 (43) 0.5 (49) 0.8 (57) 1.0 (61) 0.5 (70) 0.5 (72) 0.8 (78) 0.5 (84) 0.2 (91)

zeroin.i.2 211 3541 0.2 (28) 0.6 (38) 0.9 (42) 0.7 (46) 0.8 (51) 0.4 (55) 0.4 (62) 0.5 (73) 0.2 (84)

zeroin.i.3 206 3540 0.3 (28) 0.7 (38) 0.6 (42) 0.7 (47) 0.8 (51) 0.8 (54) 0.4 (62) 0.5 (73) 0.2 (83)
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Table 5 Features, computational times and optimal solution values (if known) of C+CV for the MIPLIB instances.

|V | |E| k = 4 k = 8 k = 12 k = 16 k = 24 k = 32 k = 64 k = 128 k = 256

30n20b8 490 28234 (136-180) (208-239) (229-260) (245-268) (259-283) (270-289) (305-314) 18.0 (362) 2.1 (413)

50v-10 233 549 (19-22) (23-25) 435.6 (27) 10.5 (30) 4.2 (35) 0.8 (36) 0.7 (50) 0.7 (50) 0.2 (50)

b-ball 19 143 0.0 (11) 0.0 (11) 0.0 (11) 0.0 (11) 0.0 (11) 0.0 (11) 0.0 (11) 0.0 (11) 0.0 (11)

csched007 271 5427 (53-131) (79-218) (95-198) (104-206) (114-211) (125-215) (146-205) (170-186) (180-199)

csched008 271 4956 (50-127) (75-210) (91-193) (100-197) (109-209) (121-200) (145-201) (163-194) (178-203)

csched010 272 5321 (49-134) (72-219) (92-189) (101-178) (112-171) (123-176) (147-177) (168-176) (182-189)

dfn-gwin-UUM 156 1409 (40-47) (47-50) 24.6 (47) 5.0 (56) (71-74) (81-87) 1303.0 (96) 241.6 (99) 0.1 (101)

eil33.2 32 496 0.0 (24) 0.0 (28) 0.0 (29) 0.0 (30) 0.0 (30) 0.0 (31) 0.0 (31) 0.0 (31) 0.0 (31)

eilB101 100 3921 (61-65) 49.9 (73) 5.5 (77) 1.7 (79) 1.0 (82) 1.0 (84) 0.7 (91) 0.0 (94) 0.0 (94)

ger50_17_trans 498 14021 (111-135) (138-163) (152-184) (151-189) (185-194) (197-210) (255-323) (287-351) (300-359)

glass4 392 24768 (120-276) (191-290) (219-301) (232-306) (255-311) (263-316) (304-325) (329-335) 98.4 (345)

gmu-35-40 357 3461 12.6 (19) (41-71) (59-75) (68-102) (82-114) (94-121) (146-162) (207-213) 140.1 (239)

gmu-35-50 358 4443 400.3 (28) (52-78) (69-85) (80-100) (99-111) (108-124) (169-172) 35.5 (229) 5.2 (258)

go19 361 1978 (28-177) (33-240) (36-251) (39-244) (41-249) (47-272) (133-266) (186-260) (203-265)

harp2 92 999 0.1 (18) 0.1 (18) 0.1 (18) 0.1 (19) 0.1 (19) 0.1 (19) 0.1 (19) 0.1 (19) 0.1 (19)

k16x240 256 600 4.3 (14) 8.6 (15) 1.7 (16) 1.9 (16) 2.2 (16) 1.4 (16) 1.0 (16) 1.0 (16) 0.4 (16)

m100n500k4r1 100 2248 (38-74) (54-82) (65-80) (70-80) (75-84) (81-84) 17.8 (86) 0.9 (89) 0.9 (89)

mik.250-1-100.1 100 4950 0.0 (75) 0.0 (87) 0.0 (91) 0.0 (93) 0.0 (95) 0.0 (96) 0.0 (98) 0.0 (99) 0.0 (99)

neos-1228986 241 2915 (18-68) (43-84) (65-117) (74-137) (88-124) (98-135) (132-141) 36.7 (160) 0.1 (161)

neos-1426635 486 6210 (18-67) (18-164) (48-76) (77-173) (115-257) (143-217) (186-264) (235-281) (318-325)

neos-1440225 328 8630 (70-96) (82-242) (86-177) (103-215) (136-219) (157-211) (204-224) (248-273) (270-286)

neos-777800 475 38862 (142-201) (216-259) (236-279) (253-291) (274-299) (295-305) 1331.3 (311) 142.1 (315) 48.1 (317)

neos-911880 83 1704 0.1 (35) 0.0 (35) 0.0 (35) 0.0 (35) 0.0 (35) 0.0 (35) 0.0 (35) 0.0 (48) 0.0 (48)

neos15 492 1680 (19-86) (25-133) (26-143) (33-147) (35-227) (37-215) (81-204) (167-217) 2.3 (261)

neos788725 433 6960 (62-96) (66-112) (74-115) (86-217) (120-268) (130-230) (180-328) (222-344) (255-353)

neos858960 128 2427 1.1 (43) 0.1 (46) 0.1 (46) 0.1 (46) 0.1 (47) 0.1 (48) 0.1 (48) 0.1 (48) 0.1 (48)

noswot 172 1442 (10-27) (30-52) (44-68) (54-77) (68-82) (84-97) 0.0 (107) 0.0 (122) 0.0 (147)

ns1766074 110 1755 (34-80) (50-82) (60-83) (68-88) (74-90) (80-90) 1078.7 (95) 7.6 (100) 7.5 (100)

p80x400b 474 990 4.5 (7) 0.4 (10) 3.7 (16) 8.0 (21) 5.4 (30) 3.8 (32) 9.8 (43) 3.7 (78) 3.5 (78)

pg 135 2760 0.3 (25) 0.3 (25) 0.3 (25) 0.3 (25) 0.3 (25) 0.3 (25) 0.3 (25) 0.3 (25) 0.1 (35)

pg5_34 225 5100 0.2 (25) 0.2 (25) 0.2 (25) 0.2 (25) 0.2 (25) 0.2 (25) 0.2 (25) 0.1 (25) 0.1 (125)

probportfolio 302 45450 0.3 (226) 0.2 (264) 0.2 (276) 0.2 (283) 0.2 (289) 0.2 (292) 0.2 (297) 0.2 (299) 0.2 (300)

ran14x18 284 756 1.2 (16) 1.2 (16) (16-20) 1.3 (16) 2.6 (32) 1.9 (32) 1.2 (32) 1.0 (32) 1.2 (32)

ran14x18.disj-8 447 15861 54.2 (96) 20.7 (99) (103-105) 5.5 (103) (146-149) 59.5 (165) 8.1 (172) 8.4 (182) 1.4 (195)

ran16x16 288 768 0.1 (16) 1.2 (16) (19-20) 2.5 (16) 2.3 (32) 2.1 (32) 1.6 (32) 1.3 (32) 1.4 (32)

swath 482 22110 (125-361) (152-421) (192-423) (233-430) (257-437) (272-443) (303-451) (311-450) (333-451)

timtab1 332 12582 (91-129) (121-144) (140-162) (155-170) (174-192) (187-198) 25.1 (224) 0.3 (259) 0.1 (270)



Furini, Ljubić, Malaguti, Paronuzzi: The bilevel combinatorial structure of the capacitated vertex separator problem
44 Article submitted to ; manuscript no. (Please, provide the manuscript number!)

Table 6 Features, computational times and optimal solution values (if known) of C+CV for the Netlib instances.

|V | |E| k = 4 k = 8 k = 12 k = 16 k = 24 k = 32 k = 64 k = 128 k = 256

adlittle 53 239 0.1 (10) 0.0 (14) 0.0 (16) 0.0 (17) 0.0 (20) 0.0 (23) 0.0 (27) 0.0 (27) 0.0 (27)

agg 164 1694 1.6 (22) 30.6 (44) 19.9 (57) 2.4 (62) 0.6 (78) 0.4 (83) 0.1 (104) 0.0 (114) 0.0 (130)

agg2 280 4010 (42-46) 59.5 (63) (81-84) (91-101) (109-114) (127-128) 1.2 (147) 0.4 (180) 0.1 (199)

agg3 282 4104 (44-48) 209.2 (66) (83-89) (93-105) (112-119) 917.1 (128) 2.0 (151) 0.3 (180) 0.1 (200)

bandm 180 2379 30.2 (40) 33.8 (52) 4.1 (58) 1.8 (62) 0.6 (70) 0.1 (82) 0.1 (112) 0.1 (126) 0.0 (143)

beaconfd 90 1199 0.3 (26) 0.1 (36) 0.1 (37) 0.0 (38) 0.0 (40) 0.1 (40) 0.0 (40) 0.0 (42) 0.0 (42)

blend 54 548 0.1 (20) 0.1 (26) 0.0 (30) 0.0 (32) 0.0 (36) 0.0 (39) 0.0 (43) 0.0 (43) 0.0 (43)

bnl1 448 2102 (26-55) (33-61) (38-77) (43-79) (65-71) (74-77) 1223.5 (107) 1.5 (149) 1.0 (218)

boeing1 284 2751 2.4 (23) 83.9 (41) 20.9 (46) 39.0 (53) 50.3 (64) 12.1 (73) 0.9 (104) 0.8 (142) 0.2 (164)

boeing2 122 740 0.9 (19) 2.4 (25) 4.3 (30) 3.1 (35) 0.5 (37) 0.3 (42) 0.2 (56) 0.1 (71) 0.0 (71)

bore3d 52 615 0.2 (23) 0.1 (28) 0.1 (29) 0.0 (30) 0.0 (32) 0.0 (35) 0.0 (40) 0.0 (40) 0.0 (40)

brandy 113 1613 8.5 (34) 3.3 (42) 2.3 (49) 0.5 (53) 0.1 (60) 0.1 (64) 0.0 (75) 0.0 (84) 0.0 (84)

capri 166 2676 (43-47) 125.0 (57) 2.8 (59) 7.8 (64) 0.7 (73) 0.7 (78) 0.2 (96) 0.1 (105) 0.0 (122)

czprob 475 464 8.8 (3) 18.4 (4) 20.6 (5) 39.4 (6) 110.8 (9) 46.2 (9) 28.0 (11) 28.2 (13) 27.9 (13)

degen2 382 5686 (67-102) (77-114) (86-119) (89-134) (118-126) (131-138) (170-172) 1.1 (200) 1.2 (221)

e226 148 1537 29.4 (29) 1.9 (38) 0.6 (42) 0.3 (50) 0.3 (65) 0.2 (75) 0.0 (90) 0.0 (99) 0.0 (113)

etamacro 307 1489 (30-71) (36-85) (39-88) (42-104) (52-105) (60-120) (106-126) (140-143) 31.1 (165)

fffff800 306 3886 1.6 (24) 17.7 (43) 8.7 (52) 18.2 (76) 3.7 (110) 2.8 (128) 1.0 (156) 1.0 (166) 0.3 (174)

finnis 350 977 2.8 (11) 282.6 (24) (31-34) 670.0 (38) 793.9 (45) 70.8 (50) 7.1 (61) 17.0 (92) 3.5 (108)

forplan 104 1153 (33-35) 137.1 (41) 87.9 (47) 16.2 (51) 8.9 (57) 4.2 (59) 0.3 (67) 0.0 (75) 0.0 (75)

gfrdpnc 322 314 0.2 (4) 1.4 (9) 0.8 (11) 1.8 (13) 3.0 (19) 3.7 (23) 2.1 (40) 1.5 (72) 2.1 (92)

grow15 300 2934 745.1 (15) (28-36) (43-63) (54-67) 0.1 (105) 0.0 (150) 0.0 (225) 0.0 (255) 0.0 (269)

grow22 440 4315 (12-24) (29-35) (41-49) (58-104) (83-108) 0.1 (132) 0.0 (286) 0.0 (352) 0.0 (395)

grow7 140 1371 22.5 (17) (32-34) 0.0 (56) 0.0 (77) 0.0 (98) 0.0 (105) 0.0 (119) 0.0 (125) 0.0 (132)

israel 163 10628 0.2 (98) 0.1 (118) 0.2 (129) 0.1 (133) 0.0 (137) 0.0 (138) 0.0 (145) 0.0 (147) 0.0 (152)

lotfi 122 528 10.2 (19) 26.3 (25) 11.3 (30) 0.4 (31) 0.9 (37) 0.3 (44) 0.1 (56) 0.0 (67) 0.0 (67)

perold 500 5743 (49-188) (55-285) (62-253) (76-223) (98-339) (126-226) (185-232) (246-262) 17.6 (305)

pilot4 352 5707 (46-75) (66-104) (95-122) (117-124) 38.6 (122) 156.9 (130) 22.2 (142) 8.0 (178) 0.9 (193)

recipe 55 129 0.0 (1) 0.4 (8) 0.0 (12) 0.0 (15) 0.0 (25) 0.0 (28) 0.0 (38) 0.0 (38) 0.0 (38)

sc105 59 356 0.3 (16) 0.2 (20) 0.1 (25) 0.1 (26) 0.1 (28) 0.1 (34) 0.0 (42) 0.0 (42) 0.0 (42)

sc205 113 1558 (35-40) 3.7 (45) 1.4 (54) 0.7 (56) 0.5 (63) 0.3 (64) 0.1 (71) 0.0 (90) 0.0 (90)

scagr25 221 8050 1641.0 (69) 5.9 (101) 0.5 (113) 0.2 (120) 0.1 (127) 0.1 (132) 0.1 (137) 0.1 (151) 0.0 (176)

scagr7 58 661 0.0 (21) 0.0 (28) 0.0 (32) 0.0 (33) 0.0 (35) 0.0 (39) 0.0 (46) 0.0 (46) 0.0 (46)

scfxm1 242 2057 2.5 (17) (45-49) (58-61) (64-67) (80-82) 74.1 (91) 0.4 (111) 0.3 (142) 0.0 (168)

scfxm2 485 4231 137.7 (18) (36-40) (64-85) (82-105) (101-124) (115-139) (172-187) 4.1 (228) 1.2 (285)

scorpion 105 502 0.3 (11) 0.2 (12) 0.1 (36) 0.1 (38) 0.1 (41) 0.0 (43) 0.0 (50) 0.0 (70) 0.0 (70)

scrs8 181 1835 (30-35) (47-50) (53-56) 355.7 (58) 7.7 (62) 1.3 (66) 0.1 (74) 0.3 (91) 0.1 (117)

scsd1 77 202 0.1 (8) 0.1 (13) 0.1 (16) 0.0 (18) 0.0 (20) 0.0 (25) 0.0 (32) 0.0 (45) 0.0 (45)

scsd6 147 342 (14-16) (20-22) (24-28) (28-31) (34-35) 458.6 (43) 0.6 (53) 0.2 (62) 0.0 (86)

scsd8 397 1069 (14-25) (20-63) (24-71) (26-92) (31-104) (37-125) (70-149) (131-168) 31.3 (199)

sctap1 269 706 70.7 (15) 287.4 (22) 111.7 (25) 44.4 (29) 7.9 (35) 1.7 (40) 1.1 (55) 0.6 (71) 0.6 (91)

share1b 102 493 0.1 (7) 0.0 (15) 0.1 (27) 0.0 (31) 0.0 (37) 0.0 (45) 0.0 (60) 0.0 (68) 0.0 (68)

share2b 93 619 0.1 (9) 0.0 (12) 0.0 (37) 0.0 (51) 0.0 (63) 0.0 (65) 0.0 (66) 0.0 (70) 0.0 (70)

shell 252 247 0.1 (4) 0.3 (6) 0.8 (9) 1.4 (10) 1.1 (13) 1.4 (17) 0.6 (27) 1.8 (49) 0.2 (75)

ship04l 313 593 0.3 (5) 2.1 (9) 2.2 (9) 2.5 (11) 3.2 (12) 3.4 (13) 3.9 (14) 4.0 (19) 2.9 (32)

ship04s 213 391 0.2 (4) 1.1 (8) 2.2 (10) 2.0 (10) 0.8 (11) 1.0 (12) 0.9 (17) 1.0 (25) 0.2 (37)

ship08s 284 462 0.2 (4) 0.3 (7) 1.3 (12) 5.3 (14) 4.0 (17) 2.4 (18) 2.1 (23) 2.3 (26) 2.5 (40)

ship12s 344 592 0.2 (3) 0.2 (3) 0.3 (3) 0.6 (11) 1.2 (21) 4.1 (25) 8.9 (37) 3.2 (42) 2.5 (63)

stair 246 11285 (104-116) 33.9 (131) 5.3 (132) 3.8 (138) 2.3 (145) 1.7 (149) 10.7 (168) 0.5 (171) 0.1 (189)

standata 258 411 0.3 (1) 0.4 (3) 1.1 (4) 1.0 (5) 1.0 (9) 1.8 (9) 2.2 (20) 0.7 (28) 0.6 (64)

standmps 360 638 2.4 (8) 8.9 (12) 15.3 (16) 23.6 (19) 20.8 (25) 13.5 (26) 12.0 (38) 17.4 (52) 6.1 (69)

stocfor1 62 272 0.1 (10) 0.0 (13) 0.0 (16) 0.0 (20) 0.0 (24) 0.0 (29) 0.0 (37) 0.0 (37) 0.0 (37)

tuff 137 1464 0.7 (26) 0.7 (36) 3.7 (45) 0.6 (47) 0.2 (58) 0.1 (64) 0.2 (73) 0.2 (79) 0.0 (90)

vtpbase 51 354 0.1 (14) 0.0 (23) 0.0 (25) 0.0 (30) 0.0 (35) 0.0 (40) 0.0 (44) 0.0 (44) 0.0 (44)

wood1p 171 3310 0.1 (28) 0.1 (62) 0.0 (67) 0.0 (78) 0.0 (94) 0.0 (106) 0.0 (135) 0.0 (145) 0.0 (155)
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Table 7 Features, computational times and optimal solution values (if known) of C+CV for the Random instances.

|V | |E| k = 4 k = 8 k = 12 k = 16 k = 24 k = 32 k = 64 k = 128 k = 256

grp1_1 68 191 17.6 (15) 12.4 (18) 0.5 (19) 0.3 (20) 0.1 (25) 0.1 (25) 0.0 (29) 0.0 (35) 0.0 (35)

grp1_2 68 169 39.4 (14) 4.9 (16) 0.8 (18) 0.3 (20) 0.1 (22) 0.1 (22) 0.1 (26) 0.0 (36) 0.0 (36)

grp1_3 58 217 (18-21) (22-24) 43.2 (25) 4.6 (27) 0.4 (28) 0.1 (31) 0.0 (36) 0.0 (36) 0.0 (36)

grp1_4 60 187 50.6 (16) 48.3 (19) 1.1 (21) 0.3 (22) 0.2 (23) 0.1 (28) 0.0 (35) 0.0 (35) 0.0 (35)

grp1_5 75 184 1.0 (12) 0.6 (14) 0.3 (16) 0.3 (20) 0.1 (21) 0.1 (23) 0.1 (28) 0.0 (37) 0.0 (37)

grp2_1 75 230 (17-20) (21-24) (24-26) 43.2 (28) 1.6 (29) 0.6 (32) 0.1 (35) 0.0 (46) 0.0 (46)

grp2_2 95 183 3.7 (11) 27.2 (15) 2.2 (17) 1.4 (19) 0.4 (23) 0.2 (27) 0.0 (33) 0.0 (47) 0.0 (47)

grp2_3 87 219 224.2 (16) (20-22) 1668.2 (23) 511.1 (26) 2.4 (29) 0.5 (32) 0.2 (35) 0.0 (46) 0.0 (46)

grp2_4 98 203 32.1 (14) 135.8 (18) 78.4 (20) 16.8 (22) 1.1 (24) 0.6 (26) 0.2 (35) 0.0 (48) 0.0 (48)

grp2_5 93 160 0.5 (9) 2.1 (13) 1.0 (15) 0.5 (17) 0.3 (21) 0.1 (24) 0.1 (33) 0.0 (43) 0.0 (43)

grp3_1 102 232 517.3 (16) (19-22) 1041.8 (23) 104.6 (25) 5.1 (28) 1.0 (30) 0.1 (39) 0.0 (55) 0.0 (55)

grp3_2 108 217 1384.5 (15) 1146.5 (19) 1765.4 (23) 46.4 (24) 10.9 (28) 0.8 (30) 0.2 (41) 0.0 (53) 0.0 (53)

grp3_3 122 213 4.5 (11) 9.1 (14) 3.6 (16) 1.2 (18) 1.2 (21) 0.3 (26) 0.2 (42) 0.0 (60) 0.0 (60)

grp3_4 104 217 501.9 (15) 1435.2 (19) 1062.6 (22) 329.4 (24) 5.5 (27) 2.9 (31) 0.1 (40) 0.0 (55) 0.1 (55)

grp3_5 107 216 337.4 (15) 1245.3 (19) 975.8 (22) 100.6 (23) 2.5 (26) 0.8 (29) 0.1 (38) 0.1 (50) 0.0 (50)

grp4_1 142 221 226.3 (12) (16-17) (19-20) 446.3 (22) 182.9 (26) 10.9 (28) 0.8 (35) 0.4 (43) 0.1 (63)

grp4_2 125 246 1605.3 (15) (18-20) (21-23) 495.7 (25) 36.0 (27) 1.2 (33) 0.3 (45) 0.0 (58) 0.0 (58)

grp4_3 135 187 0.9 (8) 1.3 (11) 1.1 (13) 1.6 (16) 0.8 (18) 0.8 (20) 0.2 (29) 0.2 (34) 0.1 (57)

grp4_4 128 161 0.2 (5) 0.3 (8) 0.3 (9) 0.4 (12) 0.5 (15) 0.2 (18) 0.1 (32) 0.0 (53) 0.0 (53)

grp4_5 126 195 0.5 (7) 2.7 (12) 3.6 (15) 1.8 (18) 1.0 (20) 0.6 (24) 0.2 (40) 0.0 (57) 0.0 (57)

grp5_1 173 219 0.4 (7) 0.5 (9) 1.1 (12) 0.8 (13) 2.3 (17) 1.6 (19) 0.5 (32) 0.5 (43) 0.1 (68)

grp5_2 161 155 0.3 (2) 0.5 (5) 1.0 (6) 0.5 (8) 1.4 (10) 0.3 (12) 0.9 (23) 0.3 (30) 0.1 (54)

grp5_3 158 195 0.4 (7) 1.3 (10) 2.5 (13) 1.6 (15) 2.0 (19) 1.2 (23) 0.7 (31) 0.4 (40) 0.1 (61)

grp5_4 159 192 0.2 (3) 0.5 (6) 0.5 (9) 1.2 (12) 1.5 (17) 0.9 (21) 1.3 (30) 0.3 (43) 0.1 (67)

grp5_5 158 199 0.2 (4) 0.3 (8) 0.4 (9) 0.4 (12) 0.7 (13) 0.3 (18) 0.2 (30) 0.3 (38) 0.1 (64)

grp6_1 69 292 (20-24) (23-30) (28-31) 555.6 (31) 1.5 (35) 1.5 (35) 0.3 (39) 0.0 (46) 0.0 (46)

grp6_2 74 266 (19-24) (23-27) (25-28) 135.3 (30) 2.8 (31) 0.5 (33) 0.2 (36) 0.0 (44) 0.0 (44)

grp6_3 50 250 (19-22) 544.7 (24) 67.2 (26) 3.0 (27) 0.5 (27) 0.1 (29) 0.0 (33) 0.0 (33) 0.0 (33)

grp6_4 52 275 (20-24) (25-26) 91.9 (27) 6.6 (28) 0.6 (30) 0.3 (32) 0.0 (37) 0.0 (37) 0.0 (37)

grp6_5 63 297 (21-26) (24-29) (28-30) 13.2 (32) 0.7 (33) 0.2 (36) 0.1 (43) 0.0 (43) 0.0 (43)

grp7_1 96 223 (16-19) (19-25) (23-26) 440.8 (27) 4.0 (31) 0.8 (34) 0.1 (38) 0.0 (50) 0.0 (50)

grp7_2 77 272 (19-25) (23-29) (26-30) 358.7 (31) 5.6 (32) 0.8 (34) 0.2 (40) 0.0 (46) 0.0 (46)

grp7_3 77 349 (21-31) (26-35) (28-35) (34-36) 39.9 (37) 2.1 (38) 0.6 (43) 0.1 (49) 0.1 (49)

grp7_4 87 316 (21-29) (24-30) (26-33) (31-32) 8.8 (35) 0.7 (38) 0.3 (44) 0.0 (55) 0.0 (55)

grp7_5 78 291 (20-25) (24-28) (26-30) 320.8 (32) 10.8 (33) 0.8 (35) 0.3 (39) 0.0 (47) 0.0 (47)

grp8_1 115 325 (19-28) (22-32) (23-37) (27-36) 805.4 (39) 10.4 (41) 0.3 (51) 0.0 (66) 0.0 (66)

grp8_2 121 301 (18-23) (21-28) (23-29) (27-31) 482.5 (33) 2.1 (37) 0.2 (49) 0.1 (62) 0.1 (62)

grp8_3 118 302 (18-22) (21-30) (24-32) (26-33) 43.2 (35) 3.1 (38) 0.3 (49) 0.0 (63) 0.0 (63)

grp8_4 122 298 (17-29) (20-32) (22-35) (25-38) (31-40) 242.7 (41) 0.4 (51) 0.1 (67) 0.1 (67)

grp8_5 108 302 (19-21) (22-26) (26-30) 251.4 (29) 6.9 (33) 1.6 (36) 0.1 (45) 0.0 (59) 0.0 (59)

grp9_1 136 340 (19-25) (23-29) (24-32) (27-35) (35-37) 708.4 (41) 1.2 (48) 0.1 (54) 0.1 (74)

grp9_2 143 237 107.8 (13) (17-18) (20-21) (23-24) 326.3 (29) 48.3 (31) 0.7 (39) 0.5 (46) 0.1 (64)

grp9_3 146 342 (17-24) (20-31) (23-33) (26-35) (34-37) 62.4 (40) 0.9 (49) 0.4 (58) 0.0 (74)

grp9_4 139 332 (17-24) (21-28) (23-31) (27-33) 411.4 (36) 20.7 (38) 0.4 (45) 0.2 (57) 0.0 (73)

grp9_5 138 297 (17-19) (20-25) (23-28) (25-30) 201.5 (33) 27.0 (36) 0.8 (42) 0.2 (51) 0.0 (69)

grp10_1 168 321 (15-19) (19-26) (21-28) (24-28) 559.7 (32) 29.4 (34) 0.9 (47) 0.5 (57) 0.1 (80)

grp10_2 169 348 (16-22) (19-28) (21-29) (24-34) (31-35) 552.1 (37) 1.3 (51) 0.3 (62) 0.1 (83)

grp10_3 161 296 (14-17) (18-21) (21-23) 1462.4 (23) 106.0 (30) 15.7 (32) 0.7 (43) 0.3 (56) 0.1 (77)

grp10_4 157 281 94.7 (13) 287.3 (17) 478.2 (20) 100.2 (22) 22.8 (27) 1.7 (31) 0.4 (41) 0.6 (49) 0.1 (73)

grp10_5 164 265 134.4 (13) (16-18) (19-22) (22-24) 80.4 (27) 25.2 (29) 0.8 (42) 0.6 (50) 0.1 (71)
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Table 8 Features, computational times and optimal solution values (if known) of CC for the DIMACS instances.

|V | |E| p= 0.05 p= 0.1 p= 0.2 |V | |E| p= 0.05 p= 0.1 p= 0.2

anna 138 493 0.1 (77) 0.2 (19) 0.1 (4) myciel6 95 755 (84-90) (72-82) (48-63)

david 87 406 0.1 (62) 0.1 (30) 0.5 (9) myciel7 191 2360 (148-180) (104-164) (50-129)

fpsol2.i.1 496 11654 3.0 (208) 0.9 (141) 0.4 (18) queen5_5 25 160 0.0 (23) 0.5 (22) 453.2 (20)

fpsol2.i.2 451 8691 2.6 (249) 1.6 (37) 1.3 (8) queen6_6 36 290 0.1 (34) 879.5 (32) (23-28)

fpsol2.i.3 425 8688 1.7 (280) 0.4 (39) 0.7 (9) queen7_7 49 476 72.2 (46) (41-44) (31-39)

games120 120 638 (92-100) (68-94) (30-81) queen8_8 64 728 (57-60) (50-57) (38-51)

huck 74 301 0.0 (27) 0.0 (16) 0.1 (8) queen8_12 96 1368 (85-91) (72-86) (46-76)

jean 80 254 0.0 (39) 0.1 (16) 0.1 (7) queen9_9 81 1056 (70-76) (58-72) (41-64)

miles250 128 387 1.0 (33) 18.8 (16) (8-9) queen10_10 100 1470 (88-95) (73-90) (51-80)

miles500 128 1170 89.1 (88) (63-69) (21-37) queen11_11 121 1980 (104-114) (88-108) (57-96)

miles750 128 2113 2.3 (96) (81-89) (44-63) queen12_12 144 2596 (124-136) (102-129) (66-115)

miles1000 128 3216 (112-121) 63.5 (92) (62-77) queen13_13 169 3328 (142-160) (115-152) (67-135)

miles1500 128 5198 509.0 (121) (111-115) 45.4 (86) queen14_14 196 4186 (159-186) (123-176) (67-156)

mulsol.i.1 197 3925 1.0 (128) 21.2 (118) 0.2 (49) queen15_15 225 5180 (177-213) (143-202) (80-180)

mulsol.i.2 188 3885 (161-163) 0.2 (88) 0.3 (47) queen16_16 256 6320 (192-243) (128-230) (72-204)

mulsol.i.3 184 3916 (161-164) 0.1 (88) 0.3 (48) school1 385 19095 (290-351) (218-327) (76-289)

mulsol.i.4 185 3946 (162-165) 0.4 (88) 0.2 (48) school1_nsh 352 14612 (276-320) (147-301) (26-264)

mulsol.i.5 186 3973 (163-166) 0.9 (88) 0.2 (47) zeroin.i.1 211 4100 1.3 (115) 16.9 (104) 0.3 (48)

myciel4 23 71 0.0 (21) 0.7 (20) 0.3 (16) zeroin.i.2 211 3541 (144-146) 0.9 (121) 0.2 (18)

myciel5 47 236 38.2 (44) 711.1 (41) 278.0 (31) zeroin.i.3 206 3540 (144-146) 5.0 (123) 0.3 (18)

Table 9 Features, computational times and optimal solution values (if known) of CC for the MIPLIB instances.

|V | |E| p=0.05 p=0.1 p=0.2 |V | |E| p= 0.05 p= 0.1 p= 0.2

30n20b8 490 28234 (286-464) (197-221) (128-196) neos-1426635 486 6210 (44-47) (34-44) (21-39)

50v-10 233 549 (129-182) (20-38) 0.2 (5) neos-1440225 328 8630 (278-311) (200-295) (64-132)

b-ball 19 143 0.0 (18) 0.0 (17) 0.0 (15) neos15 492 1680 (1-275) (1-227) (1-128)

csched007 271 5427 (218-256) (164-242) (69-216) neos-777800 475 38862 (407-449) (331-424) (204-368)

csched008 271 4956 (209-257) (154-240) (57-113) neos788725 433 6960 (190-411) (86-351) (0-160)

csched010 272 5321 (204-257) (140-241) (37-215) neos858960 128 2427 44.3 (115) (101-108) (71-91)

dfn-gwin-UUM 156 1409 (130-148) (104-137) (57-119) neos-911880 83 1704 456.7 (78) (70-74) (58-66)

eil33.2 32 496 0.0 (30) 0.0 (28) 0.0 (25) noswot 172 1442 0.3 (33) (29-31) (21-27)

eilB101 100 3921 0.0 (95) 0.0 (90) 0.6 (80) ns1766074 110 1755 (93-104) (80-99) (49-88)

ger50_17_trans 498 14021 (366-473) (274-448) (87-398) p80x400b 474 990 4.9 (23) 0.2 (7) 0.0 (1)

glass4 392 24768 (347-371) (28-352) (190-310) pg 135 2760 0.0 (128) 0.0 (121) 0.0 (2)

gmu-35-40 357 3461 17.6 (93) (50-70) (13-51) pg5_34 225 5100 (205-213) (184-202) 0.0 (2)

gmu-35-50 358 4443 (127-142) (60-74) (14-58) probportfolio 302 45450 0.2 (286) 0.2 (271) 0.2 (241)

go19 361 1978 (176-342) (13-324) (0-288) ran14x18 284 756 0.2 (15) 0.1 (15) 0.0 (1)

harp2 92 999 0.0 (76) 0.0 (68) 0.0 (1) ran14x18.disj-8 447 15861 (409-420) (324-395) (105-319)

k16x240 256 600 0.3 (87) 0.0 (1) 0.1 (1) ran16x16 288 768 (141-217) 0.2 (17) 0.0 (1)

m100n500k4r1 100 2248 (91-95) (80-90) (52-80) swath 482 22110 (365-457) (259-433) (0-385)

mik.250-1-100.1 100 4950 0.0 (95) 0.0 (90) 0.0 (80) timtab1 332 12582 (282-307) (225-290) (130-231)

neos-1228986 241 2915 (168-228) (42-44) (29-39)
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Table 10 Features, computational times and optimal solution values (if known) of CC for the Netlib instances.

|V | |E| p= 0.05 p= 0.1 p= 0.2 |V | |E| p= 0.05 p= 0.1 p= 0.2

adlittle 53 239 0.0 (42) 0.0 (29) 0.0 (12) recipe 55 129 0.0 (8) 0.0 (7) 0.0 (6)

agg 164 1694 0.4 (82) 1.2 (45) 22.4 (28) sc105 59 356 0.1 (50) 3.2 (44) 7.2 (27)

agg2 280 4010 1.4 (129) 1419.4 (85) (20-80) sc205 113 1558 21.7 (100) (84-92) (56-66)

agg3 282 4104 123.2 (138) 38.6 (87) (35-75) scagr25 221 8050 81.1 (148) (123-127) (86-89)

bandm 180 2379 2.3 (144) 644.5 (125) 236.4 (56) scagr7 58 661 0.0 (46) 0.1 (39) 0.1 (27)

beaconfd 90 1199 21.9 (80) (70-72) 0.5 (32) scfxm1 242 2057 4.6 (68) 267.9 (51) (26-32)

blend 54 548 0.0 (49) 0.1 (46) 0.1 (31) scfxm2 485 4231 (65-73) (1-436) (6-50)

bnl1 448 2102 (1-413) (2-179) (2-105) scorpion 105 502 0.1 (44) 0.9 (26) 0.6 (13)

boeing1 284 2751 1.7 (143) (31-60) (12-17) scrs8 181 1835 593.8 (128) 1039.6 (84) (34-47)

boeing2 122 740 0.1 (67) 8.8 (51) 16.9 (16) scsd1 77 202 0.1 (53) 0.1 (17) 0.7 (6)

bore3d 52 615 0.0 (45) 0.0 (38) 0.1 (31) scsd6 147 342 4.6 (66) (33-38) (8-10)

brandy 113 1613 0.4 (99) 5.1 (88) 55.5 (60) scsd8 397 1069 (47-134) (1-155) (1-83)

capri 166 2676 9.7 (129) 1525.9 (107) (63-71) sctap1 269 706 326.8 (77) 393.6 (21) 223.5 (6)

czprob 475 464 0.0 (1) 0.0 (1) 0.1 (1) share1b 102 493 0.1 (26) 0.1 (17) 0.2 (12)

degen2 382 5686 (282-348) (194-322) (23-240) share2b 93 619 0.0 (37) 0.1 (13) 0.1 (11)

e226 148 1537 2.5 (121) 3.9 (87) 172.6 (35) shell 252 247 0.4 (11) 65.0 (5) 0.1 (2)

etamacro 307 1489 (159-238) (73-223) (2-118) ship04l 313 593 0.1 (5) 0.1 (2) 0.0 (1)

fffff800 306 3886 21.3 (182) 16.4 (56) 1060.4 (24) ship04s 213 391 0.0 (9) 0.1 (3) 0.0 (1)

finnis 350 977 270.0 (55) (20-27) 1463.1 (5) ship08s 284 462 0.1 (13) 0.1 (3) 0.0 (2)

forplan 104 1153 520.1 (92) (78-84) (54-63) ship12s 344 592 0.3 (17) 0.2 (7) 0.1 (2)

gfrdpnc 322 314 (16-17) (7-9) (3-4) stair 246 11285 (222-231) (203-218) (150-192)

grow15 300 2934 (63-75) (34-51) (14-30) standata 258 411 0.2 (7) 0.1 (4) 0.0 (3)

grow22 440 4315 (66-94) (32-48) (17-32) standmps 360 638 318.8 (25) 596.0 (7) 2.3 (2)

grow7 140 1371 (68-73) (44-47) (19-30) stocfor1 62 272 0.0 (43) 0.1 (34) 0.1 (8)

israel 163 10628 0.1 (152) 0.1 (144) 0.9 (123) tuff 137 1464 29.7 (121) 1.1 (84) 2.2 (24)

lotfi 122 528 1.9 (78) 9.7 (54) 192.9 (16) vtpbase 51 354 0.1 (47) 0.0 (24) 0.1 (15)

perold 500 5743 (249-462) (1-433) (1-370) wood1p 171 3310 0.4 (121) 0.2 (79) 0.3 (35)

pilot4 352 5707 (238-302) (106-277) (2-100)
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Table 11 Features, computational times and optimal solution values (if known) of CC for the Random instances.

|V | |E| p= 0.05 p= 0.1 p= 0.2 |V | |E| p= 0.05 p= 0.1 p= 0.2

grp1_1 68 191 0.7 (56) 38.0 (47) 99.1 (19) grp6_1 69 292 16.5 (61) (54-55) (32-45)

grp1_2 68 169 0.6 (52) 35.1 (44) 168.4 (17) grp6_2 74 266 21.4 (64) (51-57) (29-45)

grp1_3 58 217 2.3 (53) 912.4 (47) (30-35) grp6_3 50 250 0.9 (45) 266.9 (43) (31-36)

grp1_4 60 187 0.1 (50) 15.2 (43) 1415.6 (29) grp6_4 52 275 1.8 (48) (41-44) (30-38)

grp1_5 75 184 0.2 (52) 6.3 (38) 2.1 (9) grp6_5 63 297 21.7 (57) (50-52) (33-44)

grp2_1 75 230 10.7 (62) (49-54) (27-30) grp7_1 96 223 59.8 (72) (49-60) (8-21)

grp2_2 95 183 2.3 (56) 12.0 (30) 7.5 (6) grp7_2 77 272 2.5 (65) (54-58) (27-44)

grp2_3 87 219 18.4 (62) 1431.7 (51) (13-18) grp7_3 77 349 23.5 (68) (57-63) (32-53)

grp2_4 98 203 6.4 (68) 121.9 (45) 36.2 (8) grp7_4 87 316 61.3 (74) (59-70) (29-53)

grp2_5 93 160 0.4 (44) 5.2 (19) 2.2 (5) grp7_5 78 291 18.2 (69) (57-63) (29-46)

grp3_1 102 232 314.9 (73) (47-58) (9-12) grp8_1 115 325 (89-95) (59-83) (10-40)

grp3_2 108 217 134.4 (75) 102.0 (41) (8-10) grp8_2 121 301 (88-95) (56-76) (5-24)

grp3_3 122 213 6.1 (62) 34.1 (20) 10.2 (5) grp8_3 118 302 1037.3 (90) (54-80) (2-35)

grp3_4 104 217 16.3 (67) 168.3 (41) (8-11) grp8_4 122 298 (84-93) (50-85) (2-36)

grp3_5 107 216 15.9 (67) 450.3 (44) (7-9) grp8_5 108 302 631.1 (84) (61-71) (12-26)

grp4_1 142 221 50.2 (54) (18-20) 342.2 (5) grp9_1 136 340 (99-102) (56-85) (2-26)

grp4_2 125 246 58.5 (73) (38-42) (7-9) grp9_2 143 237 (74-80) (22-25) (5-6)

grp4_3 135 187 1.1 (35) 10.1 (11) 0.4 (4) grp9_3 146 342 (94-109) (51-71) (3-27)

grp4_4 128 161 0.1 (19) 0.2 (7) 0.2 (3) grp9_4 139 332 (99-103) (52-83) (4-25)

grp4_5 126 195 1.0 (31) 21.8 (14) 1.5 (4) grp9_5 138 297 1395.7 (93) 922.4 (49) (4-14)

grp5_1 173 219 0.8 (22) 5.5 (8) 0.2 (3) grp10_1 168 321 (86-105) (28-56) (5-6)

grp5_2 161 155 0.3 (11) 0.0 (4) 0.1 (2) grp10_2 169 348 (91-110) (37-61) (5-10)

grp5_3 158 195 1.9 (29) 12.7 (9) 3.9 (3) grp10_3 161 296 (81-88) (20-37) (5-6)

grp5_4 159 192 0.4 (16) 7.3 (8) 0.7 (3) grp10_4 157 281 479.2 (82) 110.7 (21) 34.9 (5)

grp5_5 158 199 0.1 (15) 0.2 (6) 0.1 (3) grp10_5 164 265 (76-79) (17-24) 683.4 (5)


