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Grouping residue variations in a protein according to their physicochemical

properties allows a dimensionality reduction of all the possible substitutions in a

variant with respect to the wild type. Here, by using a large dataset of proteins with

disease-related and benign variations, as derived bymergingHumsavar andClinVar

data, we investigate to which extent our physicochemical grouping procedure can

help in determining whether patterns of variation types are related to specific

groups of diseases andwhether they occur in Pfam and/or InterPro gene domains.

Here, we download 75,145 germline disease-related and benign variations of

3,605 genes, group them according to physicochemical categories and map

them into Pfam and InterPro gene domains. Statistically validated analysis

indicates that each cluster of genes associated to Mondo anatomical system

categorizations is characterized by a specific variation pattern. Patterns identify

specific Pfam and InterPro domain–Mondo category associations. Our data

suggest that the association of variation patterns to Mondo categories is unique

and may help in associating gene variants to genetic diseases. This work

corroborates in a much larger data set previous observations from our group.
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Introduction

Modern sequencing technologies and intensive research on the molecular origins of

humans are increasing exponentially the number of missense single-nucleotide mutations

leading to observable changes in protein sequences, and evidently, in their function. For

many of these single-residue variations (SRVs), links to disease are reported in public
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databases such as Humsavar1 (The UniProt Consortium, 2021),

the UniProt dataset of human missense variants, and ClinVar2

(Landrum et al., 2018), the NCBI resource of relationships

among human variations and disease phenotypes.

In this scenario, harmonisation of disease definition is an

issue for a better association of molecular events to phenotypes

(McInnes et al., 2021). Recently theMondo Disease Ontology3, in

its semi-automatic version that includes also manual curation

(Mungall et al., 2017), integrates multiple disease resources to

yield a coherent merged ontology. Furthermore, thanks to the

interoperability provided by the Ontology Lookup Service (part

of the ELIXIR infrastructure4), it is now available for browsing5,

making it feasible to merge data from different databases for a

larger inclusion of variations when characterising variant-disease

association. Indeed, the relationship between sequence variation

and disease predisposition can identify processes that are

responsible of pathogenesis and can help in highlighting new

treatments (McCarthy and MacArthur, 2017; Claussnitzer et al.,

2020; Sheils et al., 2021).

More to this, genome-wide association studies (GWAS) have

identified thousands of noncoding loci that are associated with

human diseases and complex traits, each of which could reveal

insights into the mechanisms of disease. Particularly interesting

is the network of genome-wide enhancers, which links variations

to target disease genes, recently described (Nasser et al., 2021, and

references therein). This stands from the estimation of which

enhancers regulate which genes in the genome and the enhancer-

promoter contact frequency from epigenomic datasets,

supporting the general notion that variations and gene-

mediated disease associations are a very complex

phenomenon, which occurs at the cell level (Nasser et al.,

2021)6.

Different methods are available for functional variant

annotations, before their depositions in specific databases

(Hebbar and Sowmya, 2022). On the other hand,

computational methods try to establish rules of association

between variations and diseases with the purpose of helping

the annotation process of the newly sequenced variants, exomes,

and genomes (for recent implementaions see Pei and Grishin,

2021; Woodard et al., 2021, and references therein). Methods rely

on inference processes standing upon the knowledge present in

databases and require validated sets of variation-disease

associations (Glusman et al., 2017; Peng et al., 2019; Sarkar

et al., 2020; Vihinen, 2021). Alternatively, other methods

based on disease-domain associations and pathway-specific

protein domains (Zhang et al., 2016; Shim et al., 2019,

respectively) have been proposed.

A major problem in addressing the problem of gene-disease

association is that data constantly increase and that the name

and/or number of diseases associated to a single gene is strongly

depending on which database you are referring to (Grissa et al.,

2022). With the increasing amount of available data, we are now

interested in understanding to which extent gene structural and

functional features may help in relating variations to diseases. For

this reason, we decided to focus on structural and functional

mapping of genes and their variants with Pfam7 and InterPro8

domains (Mistry et al., 2021). In a previous study, we found that,

in human proteins, pathogenic variations group into variational

patterns that differ depending on the Pfam domain and the group

of diseases they link (Savojardo et al., 2019; 2021b; 2021a). Here,

we extend the analysis to a much larger data set of germline

variations generated by the union of Humsavar and ClinVar.

Besides Pfam, in this paper we include functional features as

described by InterPro domains and find that Pfam and InterPro

regions, covering most of the union data set, specifically relate

variations to associated diseases. Furthermore, we show that

different Mondo categories are associated to different Pfam

and InterPro regions in a significant manner, supporting the

notion that a specific disease may relate to the gene variant

knowing the location of the corresponding variations in specific

structural or functional domains.

Materials and methods

Data collection

Variations were collected from Humsavar (The UniProt

Consortium, 2021)9 and ClinVar (Landrum et al., 2018)10,

along with the annotation of their effect on human health

following the classification scheme of the American College of

Medical Genetics and Genomics/Association for Molecular

Pathology terminology (Richards et al., 2015). In this work,

we focus on germline variations, and we identify genes with

the corresponding UniProt reference protein. ClinVar adopts a

more detailed labelling than Humsavar. For sake of simplicity,

ClinVar variations labelled as Likely Pathogenic or Pathogenic

(LP/P), Pathogenic (P) and Likely Pathogenic (LP) where merged

into a unique LP/P class, like in Humsavar. Similarly Likely

Benign or Benign (LB/B), Likely Benign (LB) and Benign (B)

1 https://www.uniprot.org/docs/humsavar

2 https://www.ncbi.nlm.nih.gov/clinvar

3 https://mondo.monarchinitiative.org/

4 https://elixir-europe.org/

5 https://www.ebi.ac.uk/ols/ontologies/mondo

6 https://www.engreitzlab.org/resources/

7 https://pfam.xfam.org/

8 https://www.ebi.ac.uk/interpro/about/interpro

9 https://www.uniprot.org/docs/humsavar

10 https://www.ncbi.nlm.nih.gov/clinvar/
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where grouped in the class LB/B, following Humsavar.

Furthermore, LB/B variations were collected only when

associated to genes with disease-related variations. Variations

of Uncertain Significance were discarded from both databases.

We collected our dataset, adopting the following procedure.

• From Humsavar (release: 8/04/2021) we collected

30,415 unique single residue variations annotated as LP/

P in 3,043 genes and their included LB/B variations; from

ClinVar (release: 29/03/2021) we extracted

38,415 missense variations annotated as pathogenic,

likely pathogenic or pathogenic/likely pathogenic in

3,842 genes and their included LB, B and LB/B

variations. With this, we consider only LB/B variations

in disease associated genes.

• Gene variations were mapped on the corresponding

UniProt canonical protein sequences by means of the

RefSeq transcript (NM) and protein (NP and WP)

accessions. We found that 93% of the whole variation

set mapped to the UniProt canonical sequence. We

checked the consistency between the protein sequence

and the wild-type residue of the reported missense

variation.

• Somatic variations and variations with contrasting effect in

the two databases were discarded.

• Associations of gene variations to specific diseases were

retrieved by means of the OMIM disease codes (Amberger

et al., 2019) in Humsavar and of the OMIM, Orphanet,

HPO, MeSH, and Mondo codes in ClinVar.

• Associated diseases were annotated with the “disease or

disorder” branch in the Mondo ontology11 (Mungall et al.,

2017), apart from 71 OMIM diseases without any IDs in

Mondo. All the variations associated to diseases without an

OMIM and/or a Mondo ID were discharged.

Disease classification

We classify diseases following the Mondo “Disease by

Anatomical System” categorization, as reported by EMBL-

EBI Ontology Lookup Service12. According to this Mondo

categorization13, diseases group in relation to their effects on

the functioning of an organ system. For sake of brevity, when

necessary, we arbitrarily label the 14 Mondo “Disease by

Anatomical System” categories as follows: A-respiratory

system disease, B-auditory system disease, C-immune

system disease, D-digestive system disease, E-disease of

the genitourinary system, F-hematologic disease,

G-endocrine system disease, H-urinary system disease,

I-integumentary system disease, J-cardiovascular

disease, K-musculoskeletal system disease, L-disease of the

visual system, M-nervous system disorder, N-mediastinal

disease.

5,223 Mondo IDs are classified in 13 of the 14 Mondo

anatomical system categories, except for the “mediastinal

disease” anatomical category, which includes only one

variation, and it has been therefore excluded from the

analysis.

Pfam and InterPro annotation

Pfam annotations (version 33.1) were downloaded for the

human proteome from the Pfam FTP server14. Annotations were

filtered to retain only those occurring in genes included in our

dataset and covering at least one pathogenic SRV.

Analogously, InterPro annotations including all signatures

for human genes were extracted from the complete UniProt

protein annotation file available in the InterPro website15. We

retained only InterPro signatures mapping on genes in our set

and covering pathogenic SRVs.

Statistical validation

The significance of the observed difference between Pfam/

InterPro-specific distributions of variation types and Mondo

anatomical system categories against respective background

distributions has been assessed using an FDR-corrected Chi-

squared test. Given a domain-specific observed counts co �
(c1o,/, cKo ) for K possible events (either counting SRV types

or Mondo categories) and a corresponding background

distribution f b � (f 1b,/, f Kb ), we compute the Chi-squared test

statistics as:

χ2 � ∑K

i�1
(cio − f ibNo)

2

f ibNo

(1)

Where No � ∑K
i�1c

i
o is the total number of observations.

P-values are then computed using a χ2 distribution with

K-1 degrees of freedom, where K is the number of events.

False-discovery rate (FDR) correction is also applied

to correct p-values for multiple testing. We

computed statistical validation for classes with at least

20 observations.

11 https://www.ebi.ac.uk/ols/ontologies/mondo

12 https://www.ebi.ac.uk/ols/index

13 http://obofoundry.org/ontology/mondo.html

14 ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam33.1/proteomes/
9606.tsv.gz

15 ftp.ebi.ac.uk/pub/databases/interpro/protein2ipr.dat.gz
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Computation of log-odds

Given a domain-specific (either Pfam or InterPro) observed

frequencies f o (either the frequency of SRV types or Mondo

categories) and a corresponding background distribution f b, we
compute log-odd scores as follows:

LOGD � log
f o
f b

(2)

For avoiding numerical errors in the computation of the

logarithm, we introduced pseudocounts when computing f o.
When appropriate, we report the median value of variations

per protein, grouped according to the Pfam/InterPro domains, to

highlight the central value of the distribution, independently of

outliers.

In order to assess the range of variability of the computed

values, we performed a bootstrap experiment by downsampling,

with repetition, 80% of dataset 20 times and by computing the

standard deviation of the resulting set of log-odds.

Results

The union data set

Our dataset is described in Table 1. When the union between

Humsavar and ClinVar is considered (Union), it includes

75,145 variations (43,917 of which are pathogenic) in

3,605 genes. Pathogenic variations (LP/P) are linked to

5,223 diseases. Humsavar and ClinVar differently contribute

to the Union data set; interestingly ClinVar contributes with a

larger LB/B number of variations and a larger number of diseases

to Union (Table 1, between brackets). When LP/P variations are

annotated with OMIM or Mondo codes in both datasets, the

overlap between the lists of associated diseases is 82.4%.

Considering the 2,576 shared genes, the overlap of the

associated diseases between ClinVar and Humsavar is 74.2%

(Table 1).

Union genes and their disease association

The molecular function of the 3,605 genes in the Union

dataset has been derived from the UniProt entries of their

encoded proteins. We considered the annotation in terms of

30 high-level terms of theMolecular Function branch of the Gene

Ontology16 (GO-MF) (Gene Ontology Consortium 2021) and of

the Enzyme Commission numbers (EC) (Pundir et al., 2017).

Some 38% of the dataset consist of enzymes: 1230 proteins are

endowed with one or more EC number (Supplementary Table

S1). Some 136 are annotated with a catalytic activity (GO:

000382) and 15 are annotated as ATPases (GO:0016887)

without EC number.

The other high-level GO-MF terms significantly over-

represented in our dataset are GO:0140110 (transcription

regulator activity, 277 genes), GO:0005198 (transporter

activity, 239 genes), GO:0005198 (structural molecule activity,

159 genes), GO:0098772 (molecular function regulator activity,

135 genes), GO:0060089 (molecular transducer activity,

119 genes). GO:0005488 (binding) annotates 598 genes and

the remaining high-level GO classes for MF account for a

total of 76 proteins. Multiple high-level GO-MF terms are

annotated for 308 genes and 313 genes lack GO-MF annotation.

Union genes are associated to diseases (Figure 1) and 59% of

the genes are associated to one disease. 41% of the Union genes

are associated to more than one disease. Genes associated with

the highest numbers of diseases are Fibrillin, (FBN1, UniProt

code: P35555), the GTPase KRas (KRAS, UniProt code: P01116),

the Cellular tumor antigen p53 (TP53, UniProt code: P04637)

and the Collagen alpha-1(II) chain (COL2A1, UniProt code:

P02458), with 21 disease-associations. Prelamin-A/C (LMNA,

UniProt code: P02545) is associated with 25 diseases.

Union variations are listed as a function of the number of

associated diseases, as represented by Mondo IDs and 71 OMIM

TABLE 1 General description of the Union dataset.

Humsavar ClinVar °Intersection °Union

# # # #

Disease-associated genes 2,984 (408)* 3,197 (621)* 2,576 3,605

Variations in disease-associated genes 41,693 (25,035)* 50,110 (33,452)* 16,658 75,145

- Pathogenic 29,579 (17,371)* 26,546 (14,338)* 12,208 43,917

- Benign 12,114 (7,664)* 23,564 (19,114)* 4,450 31,228

Associated diseaseŝ 3,898 (593)* 4,629 (1,324)* 3,305 5,223

°Intersection, °Union: Intersection and Union of Humsavar and ClinVar, respectively.

M̂ondo IDs (5152) and OMIM (71).

*Between brackets: Exclusive items for each database, included in Union.

16 http://geneontology.org/
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codes (Figure 2). 88% of the variations have only one disease-

association. The variation associated with more diseases (14 in

Figure 2) is P250R on FGFR3, the Fibroblast growth factor

receptor 3 (UniProt code: P22607). Its variation is associated

to the Muenke syndrome (MNKS), a condition characterized by

coronal craniosynostosis, which affects the shape of the head and

face, often with a decrease in the depth of the orbits and

hypoplasia of the maxillae. Therefore, the variation, associated

to 14Mondo IDs, maps to 5Mondo anatomical system categories

(E, H, I, K, L; see Disease classification in Materials and

Methods).

The distribution of diseases with respect to the number of

genes and variations they are associated with are shown in

Supplementary Figure S2, S3, respectively. They show that in

our dataset most 4,595 out of 5,223 are monogenic and a large

fraction (1,366) are associated with only one variation. In order to

perform general and statistically significant analyses it is

necessary to group genes, variations and diseases.

FIGURE 1
Distribution of Union genes as a function of the number of associated diseases (5,223 diseases) (Table 1).

FIGURE 2
Distribution of the 43,917 LP/P variations in the Union data set as a function of the number of associated diseases (5,223).
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FIGURE 3
Frequency of variation types of the Union variations. Blue bars: LP/P variations; Red bars: LB/B variations. Labels are as follows: a, nonpolar; r,
aromatic; p, polar; and c, charged.

FIGURE 4
Log-odd scores of variation types associated to the different Mondo anatomical system categories. The heatmap shows the log-odd score of
each variation type with respect to the corresponding LP/P background (shown in Supplementary Figure S1). For eachMondo category, we show the
number of diseases, genes (italic) and disease related variations. In variation types, labels are as follows: a, nonpolar; r, aromatic; p, polar; and c,
charged. The log-odd values are affected by a relative error lower than 5%, as estimated with a bootstrapping procedure. Statistical validation of
the and resulting FDR-corrected p-values are reported in Supplementary Table S2.
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For finding distinguished features among genes,

variations, and diseases, we first grouped the disease

related variations by variation types. To this aim, we firstly

grouped residues according to their physicochemical

properties, obtaining four major groups: nonpolar

(GAVPLIM), aromatic (FWY), polar (STCNQH) and

charged (DEKR) residues. We define a variation type in

relation to the conservation or substitution of nonpolar

(a), polar (p), aromatic (r) and charged (c) residues

(Savojardo et al., 2019). Variations are then grouped into

the 16 possible variation types, which allows to distinguish

between residue substitutions which may affect protein

stability and function based on the notion of being

conservative or not, respectively. Results are in Figure 3

(and Supplementary Figure S1), which shows the different

distribution of pathogenic versus benign variations in the

different types. The variation types most frequently

associated to diseases (LP/P) with respect to benign ones

(LB/B), are a->c, c->a, p->r, r->p, c ->r, r ->c and r->a.
Disease-related and benign variations have a different

distribution and from now on we will focus on disease-

related variations, being our goal to explore gene-disease

association. The most abundant types of disease-related

variations are nonpolar into nonpolar, polar, and charged,

respectively, and charged into polar. These results agree with

the more frequent variation types that we described as disease

associated in a much smaller data set (Savojardo et al., 2019).

The relationship among pathogenic variations associated

to Mondo IDs and Mondo anatomical system categories is

shown in the heatmap of Figure 4. Here we list as a function

of the variation type, all the variations which are associated to

the different Mondo anatomical system categories. For sake

of clarity, we include the number of diseases in the set, the

genes (italic) and the number of disease-related variations.

The color-coded heat map indicates that for each category,

the pattern of disease related variation types is different. A

statistical validation of our findings is in Supplementary

Table S2. In Figure 4, to better highlight over/under-

representation, we show log-odds between each disease-

type distribution and the background frequency of LP/P

variations in the whole dataset.

Pfam and InterPro coverage

In the following we take advantage of Pfam and InterPro

coverage of each single gene to locate disease related variation

types into structural and functional regions (Table 2). Pfam

entries cover at least one pathogenic variant in 2,987 genes

(83% of the 3,605 Union disease related genes, Table 1).

Overall, 1,949 Pfam entries are identified in Union genes,

including 32,575 pathogenic variations (74%). 1685 Pfams are

endowed with an associated PDB structural domain. This

analysis complements and confirms previous observation in a

smaller data set (Savojardo et al., 2019; 2021b; 2021a).

InterPro17, which integrates Pfam annotations with

signatures taken from other member databases such as

PROSITE, PRINTS and PANTHER, provides a larger number

of functional regions. Indeed, with InterPro mapping we further

enlarge the coverage at both gene and variation levels and can

include some more 8,515 pathogenic variations in 459 genes

(Table 2).

156 disease genes (4% of the total) do not have Pfam and/or

InterPro domains including their pathogenic SRV positions.

Finally, three SwissProt disease genes (Dentin

sialophosphoprotein (UniProt: Q9NZW4), Uncharacterized

protein FAM120AOS (UniProt: Q5T036) and Ribitol-5-

phosphate xylosyltransferase 1 (UniProt: Q9Y2B1) do not

have Pfam and/or InterPro signatures.

A complete list of the Pfam and InterPro regions, detailed for

each gene, is reported in Supplementary Table S1. For each gene,

we report the accession, the name, the functional annotation (EC,

GO MF), the list of Pfam and InterPro domains, the number of

pathogenic variations and associated diseases, the disease names

and the associated Mondo disease anatomical system categories.

Results highlight that the Pfam domain covering the highest

number of disease related genes (62) is Pkinase (PF00069) while

the domain mostly enriched in pathogenic variations (1,566) is

Ion_trans (PF00520). Supplementary Table S1 lists also the

results obtained with the InterPro coverage. Among the most

TABLE 2 Pfam and InterPro coverage statistics.

Pfam # InterPro #

Union genes with at least one pathogenic variant in a Pfam and/or InterPro region 2,987 (83%)a 3,446 (96%)a

Domains covering pathogenic variants 1,949 5,357

Pathogenic variants in Pfam and/or InterPro regions 32,575 (74%)b 41,090 (94%)b

Benign variants in Pfam and/or InterPro regions 13,195 (42%)c 24,461 (78%)c

aPercentages computed with respect to the total number of diseases associated Union genes (3,605, Table 1).
bPercentages computed with respect to the total number of pathogenic variants (43,917, Table 1).
cPercentages computed with respect to the total number of benign variants (31,228, Table 1).

17 https://www.ebi.ac.uk/interpro/
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abundant InterPro entries we found many conserved, binding,

and active sites (as expected, being these important sites driving

the gene/protein function). Some of them are within Pfam

domains: e.g., the Homeobox_CS (IPR017970), included in

the Homeodomain (PF00046) domain. This finding provides

an additional specification of the most critical regions containing

pathogenic variations.

Distinctive patterns of pathogenic
variation types within Pfam and InterPro
regions

After structural and functional Pfam and IterPro gene

mapping, we can analyze the relationship among variation

types and diseases (grouped by Mondo anatomical system

categories). With the concept of variation types (Figure 3), the

16 different SRV types can be associated to individual Pfam and

InterPro (complete results are provided in Supplementary Table

S3, which for Pfam and InterPro entry, include the number of

genes, the number of LP/P variations, the frequencies of the

variation type, the statistical validation and log-odds scores

between domain-specific distributions and LP/P background

frequency).

In Figure 5 we show the log-odd scores of pathogenic

variation types for the 20 most populated Pfam domains

(Figure 5). Pfams are sorted by the number of genes covered.

For each domain, we report its Pfam accession and name with the

number of genes and pathogenic SRVs covered, respectively

(within parentheses). Overall, the 20 Pfams shown in Figure 5

cover 557 genes and 6,729 pathogenic SRVs, corresponding to

19 and 21% of the total number of Pfam-covered genes and SRVs,

respectively (Table 2). In particular, genes covered by 6 out of

20 Pfams (p450, Pkinase, Ras, Trypsin, Helicase_C and

PK_Tyr_Ser-Thr) are mainly associated with enzymatic

activities, 2 (Homeodomain and zf-C2H2) occur in proteins

performing transcription regulation activities (GO:0140110), 2

(Filament and Collagen) cover structural proteins (GO:0005488),

2 (Mito_carr and Ion_trans) are in transporters (GO:0005215), 1

(7tm_1) cover transducers (GO:0060089), 1 (Hormone_recep) is

associated with proteins performing either transduction or

transcription regulation activities, 1 (Neur_Chan_memb) is

found in proteins associated to transport or transduction. The

remaining 4 domains (fn3, EGF_CA, I-set, and Cadherin) have

FIGURE 5
Log-odd scores of variation types in Pfam entries sorted by number of genes covered (the first 20, out of 1,940 Pfams, Supplementary Table S3).
Log-odds are computed with respect to the whole dataset LP/P background (Figure 3). For each Pfam, the corresponding InterPro accession is also
included. Numbers within parentheses report the number of genes, variations, and diseases, respectively. The log-odd values are affected by a
relative error lower than 5%, as estimated with a bootstrapping procedure. Statistical validation and resulting FDR-corrected p-values for each
Pfam entry are reported in Supplementary Table S3.
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multiple associated functions and mainly act as mediators of

interactions in proteins associated with a diverse range of

functional activities.

Noticeably, the different Pfam domains show a distinctive

variational pattern with significant deviations from the

background distribution. Overall, our results confirm over a

larger dataset, previous observations (Savojardo et al., 2021a).

Statistical validation and resulting FDR-corrected p-values for

each Pfam entry are also reported in Supplementary Table S3.

A similar analysis is performed for those InterPro regions

that do not include Pfam domains (Figure 6 and Supplementary

Table S3). The 20 InterPro entries in Figure 6 cover 836 genes and

9,208 pathogenic SRVs, corresponding to 24 and 22% of total

number of InterPro-covered genes and SRVs, respectively

(Table 2). Among the 20 InterPros, 9 cover proteins that are

clearly associated to specific functions: 6 InterPros (Kinase-

like_dom_sf, Znf_RING/FYVE/PHD, Protein_kinase_ATP_BS,

Tyr_kinase_cat_dom, P-loop_NTPase and NAD(P)-

bd_dom_sf) cover enzymes while 3 entries (Homeobox-

like_sf, Homebox_CS and Znf_C2H2_sf) are associated to

transcription factors. The other 11 InterPros are

predominantly (not univocally) associated with proteins

having different functions, including binding activities

(Growth_fact_rcpt_cys_sf, WD40/YVTN_repeat-like_dom_sf,

WD40_repeat_dom, LRR_dom_sf, Ig-like_dom_sf and

WD40_repeat_dom_sf), molecular transducer activities (Ig-

like_fold, FN3_sf) and 2 to enzymes (Ig_sub, TPR-

like_helical_dom_sf).

Also in this case, different variational patterns can be

observed for different InterPro entries.

Associating Pfam/InterPro to Mondo
anatomical system categories

In Figure 4, we established a relation between Mondo

anatomical system categories and pathogenic variation types.

In Figures 5, 6, we detailed the association among variation types

and Pfam/InterPro regions in the different genes. For sake of

generalization, an important question to answer is then to which

extent Pfam and/or InterPro domains can be directly related to

diseases grouped according to Mondo categories.

Figure 7 shows log-odd scores for the disease Mondo

categories associated to the 20 most populated Pfam domains

FIGURE 6
Log-odd scores of variation types for the first 20 InterPro entries (out of 5,357, Table 2), sorted by number of genes covered and not including
Pfam signatures. Log-odds are computed with respect to the whole dataset LP/P background (Figure 3). Numbers in parentheses report, for each
InterPro, the number of genes, of SRVs and of diseases, respectively. The log-odd values are affected by a relative error lower than 5%, as estimated
with a bootstrapping procedure. Statistical validation and resulting FDR-corrected p-values for each InterPro entry are reported in
Supplementary Table S3.
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FIGURE 7
Log-odd scores for disease categories associated to different Pfam domains. Log-odds are calculated with respect to the whole-dataset
background of disease categories (Supplementary Table S4). For each Pfam the corresponding InterPro accession is indicated. Numbers in
parentheses report the number of genes, of SRVs, the median number of SRVs per gene and the number of diseases (for statistical validation see
Supplementary Table S4).

FIGURE 8
Log-odd scores for disease categories associated to different InterPro domains. Log-odds are calculated with respect to the whole-dataset
background of disease categories (Supplementary Table S4). Numbers in parentheses report the number of genes, of SRVs, the median number of
SRVs per gene and the number of diseases (for statistical validation see Supplementary Table S4).
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(the full association with the 1,949 Pfam domains covering our

Union set are listed in Supplementary Table S4, also including the

background distribution frequency of disease categories in the

entire set and the statistical validation results).

Pfam domains are associated to multiple disease categories,

as visible by comparing with the background signal. However, it

is evident (Figure 7) that there is often one or more prevalent

category/ies with an evident and significantly high log-odd score.

For instance, in the case of Trypsin domain (PF00089), about

63% of the pathogenic variations associates to Hematologic

diseases (F), a percentage significantly higher than the

background frequency of this type of disease in the whole set

(4%). Remarkably, these SRVs come from different genes (the

median number of SRVs per gene for the Trypsin domain is 8).

The same situation can be observed for other domains, like

Ion_trans (PF00520), particularly enriched in neurological

diseases (M). Finally, similar conclusions are obtained, when a

similar heatmap is generated considering the relationship among

Mondo anatomical system categories and InterPro regions that

do not include Pfam signatures (Figure 8, reporting log-odd

scores).

Conclusions and perspectives

We investigate the relation between variants and diseases

with the aim of finding possible descriptors for the association of

genes carrying pathological variations and the corresponding

diseases. To this aim we generated a dataset of variants with

pathological and benign variations, union of the last releases of

Humsavar and ClinVar (Table 1). Our focus are germline

variations excluding somatic ones, whose associations to

different types of cancers may require different ontologies.

We represent variations with variation types, which refer to

their physicochemical properties. The distribution of disease-

related and benign variation types of the union set is different

(Figure 3). We therefore focused on the pathological variations,

the carrying genes and the associated diseases, grouped into the

corresponding Mondo anatomical system categories. We

recognise that disease related variation types are specifically

and significantly associated to different Mondo categories

(Figure 4) and detailed the specificity by mapping variations

into Pfam and InterPro regions. We find that these regions

include most of the pathological variants (Table 2) and that

the Pfam and InterPro mapping (Figures 7, 8) significantly

associates to Mondo disease categories. A different

confirmation on the stability of our results derives from the

comparison with our previous results (Savojardo et al., 2021).

The number of Pfams increases from 1,670 up to 1,949. When

computing the Spearman’s correlation coefficient of the

variation-type composition on the 247 Pfam domains that

collect more than 20 variations in both samples, we obtain

values ranging between 0.89 and 0.99. This indicates that the

results obtained on the Pfam domains present in both analyses,

are quite similar, despite the large difference in disease related

variations (from 22,763 to 43,917) in the dataset size.

To our knowledge, the type of analysis that we propose is new

and relies not only in associating domains to gene (Savojardo

et al., 2021b), but also InterPro functional domains to them.

Moreover, by showing that variation types show a statistically

significant profile on specific domains, depending on the disease

category, we indicate possible insights into the complex

relationship among genes, variants, and associated diseases.

Our final goal is to provide a mapping of the complex space

relating variations, genes, and disease by means of gene structural

and functional features. This can be useful for future algorithmic

developments focusing on variant annotation. Possibly, new

incoming data will be framed into our basic representation

and will allow a better understanding of the mechanisms

eliciting specific phenotypes linked to germline variations.

However, before considering a prediction step, one major

problem is at hand. Which is the real number of genes that

are disease associated? We focused on germline variations for a

very simple reason. The Monarch initiative and the Mondo

ontology presently include the dataset we describe in this

paper, namely 3,605 genes associated to 5,223 diseases.

However, according to Pharos18, which includes DisGeNet19,

the number of possible target genes is 20,412 and the number

of associated diseases is currently 13,704, a large fraction of which

is not characterized by reported variations in OMIM, Clinvar and

Humsavar. Even worse, although Pharos includes Monarch,

most of the common genes are associated also to different

diseases. In this scenario, we believe that our findings,

strengthened by this new analysis on a larger data set than

before (Savojardo et al., 2021b), indicate a possible pattern of

investigation.
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