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COMMENT

Comment on “Soil salinity assessment 
by using near‑infrared channel and Vegetation 
Soil Salinity Index derived from Landsat 8 OLI 
data: a case study in the Tra Vinh Province, 
Mekong Delta, Vietnam” by Kim‑Anh Nguyen, 
Yuei‑An Liou, Ha‑Phuong Tran, Phi‑Phung 
Hoang and Thanh‑Hung Nguyen
Sonia Silvestri1*   , Diep Ngoc Nguyen2,3 and Emilia Chiapponi1 

Abstract 

Nguyen et al. (Prog Earth Planet Sci 7:1, 2020. https://​doi.​org/​10.​1186/​s40645-​019-​0311-0) suggest that Landsat 8 OLI 
can be used to map and monitor soil salinity in the coastal zone of the Mekong River Delta. The authors use empirical 
correlations between the near-infrared (NIR) band, or vegetation indexes containing the NIR band, and soil salinity. We 
show that within the coastal portion of the Mekong Delta, extensively ponded due to widespread shrimp farming, 
about 90% of Landsat 8 pixels are fully or partially covered by water. We then find that, due to strong NIR radiation 
absorption, NIR reflectance from ponded pixels decreases linearly with increasing water percentage cover, while no 
significant correlation is found between reflectance and soil salinity. Through detailed new analyses, we conclude that 
NIR reflectance attenuation cannot be ascribed to vegetation stress caused by soil salinity, but rather to the presence 
of water ponds. We also show that a similar behavior exists in ponded freshwater inland areas, confirming that the NIR 
absorption exerted by water is independent of salinity.

Keywords:  Soil salinity, Mekong River Delta, Coastal areas, Wetlands, Landsat 8 OLI, Google Satellite, Near-infrared 
reflectance reduction, Water absorption, Mixed pixels
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1  Introduction
Nguyen et  al. (2020) suggest that soil salinity can be 
monitored using Landsat 8 OLI (L8 hereafter) in the 
coastal zone of the Mekong River Delta. The study 
suggests an inverse exponential correlation between 

the near-infrared (NIR) band (i.e., L8 band-5) and the 
electrical conductivity (EC1:5) (i.e., determined using a 
conductivity probe on a mix of 1 part soil with 5 parts 
deionized water) determined at several points within 
their study site (Tra Vinh Province, Fig.  6 plot d of 
Nguyen et  al. 2020). Significant correlations between 
vegetation indexes that include the NIR band and soil 
EC1:5 are also highlighted in the study (see Fig. 8 plots 
SI4, NDSI, NDVI, SAVI and VSSI of Nguyen et  al. 
2020). The authors underline the good performance of 
the Vegetation Soil Salinity Index (proposed by Dehni 
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and Lounis (2012) as VSSI = 2 × green − 5 × (red + NI
R), where “green” and “red” are the L8 band-3 and the 
L8 band-4, respectively).

The Tra Vinh Province covers a large territory that 
includes inner agricultural lands as well as a coastal 
wetland zone, characterized by an extensive presence 
of ponds for shrimp farming (Wassmann et  al. 2019). 
Focusing exclusively on the latter, we will show in this 
comment article that (1) L8 spatial resolution is not 
suitable to distinguish between ponded and non-pon-
ded areas; therefore, (2) the decreased NIR reflectance 
ascribed to increased soil salinity is instead due to the 
presence of water in L8 mixed pixels. Finally, (3) we 
show that NIR reflectance is equally reduced indepen-
dently of whether the water ponding area is saltwater 
or freshwater.

Salinity affects vegetation development and its 
health status. Some vegetation species, as halophytes, 
can grow on salt marsh salted soil because they devel-
oped specific adaptation measures (Silvestri and 
Marani 2004). Mangroves are also highly tolerant to 
salinity, thanks to a range of adaptations (Parida and 
Jha 2010). However, in areas other than coastal saline 
wetlands, salt is toxic to vegetation and affects the 
development of natural vegetation as well as crop pro-
duction (Montanarella et al. 2015; Vargas et al. 2018). 
Hence, in these cases, remote sensing can be used to 
detect the stress that salt produces on plants, caus-
ing lower photosynthetic activity (Tilley et  al. 2007; 
Zhang et  al. 2015; Scudiero et  al. 2015). Specifically, 
decreased near-infrared (NIR) reflectance is observed 
when vegetation is subjected to salinity stress (Wang 
et al. 2002; Tilley et al. 2007; Zhang et al. 2011). L8 has 
been used for this purpose in other studies (Scudiero 
et  al. 2015; Gorji et  al. 2020). However, factors other 
than salinity stress may be responsible for a reduction 
in NIR reflectance, as the presence of water around or 
underneath the vegetation, a well-known effect in wet-
lands (Silva et al. 2008; Hestir et al. 2008; Adam et al. 
2010). Therefore, the conclusion that a reduction in 
the NIR reflectance is due to vegetation stress caused 
by increased salinity must be carefully tested in coastal 
wetlands, and the influence of water absorption must 
be accounted for (Dekker et al. 2002).

Here, we focus on the same L8 OLI image analyzed 
by Nguyen et al. (2020), acquired on February 14, 2017, 
and available in USGS EarthExplorer. We selected the 
Collection-2 Level-2 product (see detailed characteris-
tics in Additional file 1: Table S1), which is geometri-
cally, radiometrically and atmospherically corrected 
to surface reflectance by USGS (2022). We masked the 
areas covered by clouds.

2 � Main text
2.1 � Landsat 8 OLI spatial resolution is not adequate 

to study soil salinity in the ponded coastal zone 
of the Mekong River Delta

Wetlands are characterized by partly emerged and sub-
merged areas. The coastal portion of the Mekong River 
Delta is characterized by an almost continuous pres-
ence of artificial ponds, mainly used for shrimp farming 
(Fig.  1). Ponds are surrounded by embankments with 
little streets, small villages, bare soil as well as vegetated 
areas. In order to identify emerged vegetation and study 
its health status, the spatial resolution allowing pixels 
to be mostly “pure” (i.e., either exclusively composed of 
fully emerged or fully submerged areas) should first be 
determined. Too coarse resolution, in fact, gives a large 
percentage of mixed pixels, i.e., pixels comprising both 
emerged and flooded areas, with a reflectance that is 
intermediate between those from both categories. To 
understand if Landsat data can be used to discriminate 
ponded vs non-ponded surfaces, we must determine 
the probability that pixels contain portions of stand-
ing waters. We can perform such analysis by generating 
a grid with cells of 30  m × 30  m, overlaying on L8 pix-
els, and by counting the number of cells that fully fall 
on water ponds, land and mixed water/land areas. Since 
the coastal ponded area within the Tra Vinh Province is 
very large (more than 275 km2, see Fig. 1), we performed 
these analyses by generating 20 grids of 10 × 10 cells (of 
30  m × 30  m each) distributed across the ponded area. 
Twelve grids were created around the sampling points 
described in Nguyen et al. (2020; points with IDs 30–41 
listed in Table 4), while other eight grids were randomly 
generated in QGIS across the remaining ponded area 
(Fig.  1). The detection of the grid cells falling on water 
ponds or on emerged land was determined with a visual 
inspection method in QGIS using Google Earth satellite 
as base image. Google Earth is the most accurate high-
resolution virtual globe currently available and covers 
almost the entire land surface of the Earth (Yu and Gong 
2012; Guo et  al. 2020). It integrates aerial photographs 
with medium to high spatial resolution satellite images 
mainly collected by WorldView-1/2/3, GeoEye-1, Airbus’ 
Pleiades, QuickBird, Landsat and SPOT5. Such integra-
tion allows the operator to zoom to around 0.3–0.5  m 
resolution (see Additional file  1: Table  S2 for details) 
depending on the availability of satellite images in dif-
ferent locations of the world. Therefore, the advantage 
of using Google Earth is that it provides a recent cloud-
free base image with an extremely high spatial resolution 
that allows the operator to clearly detect water ponds 
and land. The horizontal accuracy of Google Earth var-
ies for different locations of the world and is strongly 
affected by topography, being lower on mountainous 
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terrain and higher on plains. Several studies have shown 
that on plains and lowlands the absolute positioning 
accuracy generally varies between 0.1 and 5.0  m (Ben-
ker et al. 2011; Paredes-Hernandez et al. 2013; Goudarzi 
and Landry Jr 2017; Guo et  al. 2020). The disadvantage 
is that Google Earth is a collage of images collected 
very recently but in different periods, and some land-
use changes may have occurred since 2017, when the L8 
image used in this study was acquired. Some differences 
may also be due to seasonal variations or differences in 
water levels. Moreover, given the typically high humid-
ity of the Mekong delta, some areas are still covered by 

clouds. Therefore, to further verify the method, we also 
used Google Earth Pro to explore the database of avail-
able images, including those collected before February 
2017, by overlaying the same 20 grids generated in QGIS. 
Figure 1 shows an example of two generated grids, while 
Table 1 shows the number of cells that, within each grid 
of 10 × 10 cells, fully fall within water ponds, land or on 
mixed surfaces using the recent Google Earth image as 
well as cloud-free images collected before February 2017. 
The table includes the dates of the analyzed images. We 
notice that, on average, more than 86% of the cells con-
tain both water and emerged areas, and almost 4% fall on 

Fig. 1  The upper left panel shows the study area: the yellow polygon indicates the coastal zone with ponds used for shrimp farming, which is 
magnified in the A panel; the B panel shows the freshwater area. Blue points in the A panel indicate the location of the grids created around the 
twelve sampling points provided by Nguyen et al. (2020); red points in the A panel indicate the location of the eight additional grids randomly 
generated; orange points in the B panel indicate the location of the grids created on freshwater ponds. The images of the grids of 10 × 10 cells (of 
30 m × 30 m each) in the bottom right of the figure correspond to the grids created around point with ID 32 and around point with ID 36 overlaid 
on the most recent and on the historic Google Earth satellite images (see Table 1 for the exact dates of the images). Coordinate reference system: 
WGS84 UTM Zone 48. Maps were produced in QGIS and Google Earth Pro using Google Earth satellite images
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water ponds, confirming that the large majority of L8 pix-
els are affected by the presence of water.

Pixels that fully or partially fall on water bodies are 
affected by the water ability to absorb incident energy 
in the infrared portion of the electromagnetic spectrum, 
attenuating the reflected NIR signal (see Dekker et  al. 
2002) and therefore interfering with any possible sig-
nal attenuation linked to vegetation stress. Our results 
indicate that in the ponded coastal area of the Tra Vinh 
Province, about 90% of the Landsat pixels are affected 
by the presence of water and should be masked to avoid 
the NIR reflectance attenuation exerted by water. Only 
the remaining 10% can be used to study a possible cor-
relation between soil salinity and NIR reflectance, using 
salinity field measurements performed exclusively within 
pixels that fully fall on emerged land. This method would 
provide a map with more than 90% of masked pixels. 
Therefore, we conclude that L8 spatial resolution is not 
suitable for this purpose in the ponded coastal area of 
the Tra Vinh Province. High spatial resolution satellites, 
such as WorldView-3 or Planet, would provide a much 
larger number of pixels falling on emerged land, allowing 
a more effective analysis.

2.2 � The presence of ponds influences the NIR signal (and 
the vegetation indexes containing NIR), masking 
possible relations with soil EC1:5 in the coastal area 
of the Tra Vinh Province

We selected twelve L8 pixels corresponding to the field 
measurement points described in Nguyen et  al. (2020) 
across the coastal area (points with IDs 30–41 listed in 
Table  4). The location of the twelve points can be seen 
in Additional file  1: Fig. S1. We notice that the points 
fall on embankments surrounded by ponds and chan-
nels and that eleven out of the twelve L8 OLI pixels cor-
responding to the sampling points fall on mixed water/
land surfaces (Additional file  1: Fig. S1). We notice that 

two points (point G30 and point G41) fall at the edge 
between land and water, and point G40 falls on water, 
even though very close to the embankment. This may 
be due to a low precision of the Global Navigation Sat-
ellite System (GNSS) receiver used by the authors or to 
a low absolute positioning accuracy of the Google Earth 
images as discussed in the previous chapter. Neverthe-
less, we underline that an error of a few meters in the rel-
ative positioning of GNSS points is small with respect to 
the size of the L8 pixels themselves. We notice that in all 
cases, pixels and their nearest neighbors contain a very 
high proportion of water. In order to quantify the water 
percentage cover within each selected pixel, we gener-
ated 100 regularly spaced points (see Additional file  1: 
Fig. S2). As we did for the analysis described at para-
graph 2.1, we used recent and historical Google Earth 
satellite images (see Table  1 for image dates) to visually 
determine the number of points falling on water ponds 
(Additional file 1: Fig. S2). This number is the best avail-
able proxy of actual water percentage cover. Figure  2a 
shows that there is a significant linear correlation (P 
value < 0.01) between the water percentage cover and 
the L8 NIR band reflectance: Reflectance decreases 
with increasing water percentage cover, confirming that 
shrimp farming ponds interfere with the reflectance sig-
nal, by absorbing near-infrared electromagnetic energy. 
This correlation is slightly stronger if we consider the 
values of water percentage cover determined using his-
torical images in Google Earth. No significant correlation 
could be found between EC1:5 and the L8 NIR reflectance 
(Fig.  2). We also performed a multiple regression of L8 
NIR reflectance on EC1:5 and water percentage cover as 
independent variables. We find that L8 NIR reflectance 
variability is almost totally explained by water percent-
age cover, while the correlation with EC1:5 is not signifi-
cant (P value > 0.05). A similar behavior is observed when 

Fig. 2  Relationship of the L8 NIR reflectance of the G30–G41 pixels with a the water percentage cover and b the EC1:5 provided by Nguyen et al. 
(2020)
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considering the VSSI as a dependent variable instead of 
the NIR reflectance.

2.3 � The presence of ponds reduces NIR reflectance 
whether they contain saltwater or freshwater

In order to explore the possible influence of salt on the 
previous analysis, we compared the effect of the water 
presence on the NIR reflectance in freshwater and saline 
ponded environments. Therefore, we randomly selected 
20 pixels falling on freshwater ponds in the inner Mekong 
River Delta, at a distance higher than 60  km from the 
mouth (Fig.  1), so that the ponds are not affected by 
salinity (Eslami et al. 2019; Wassmann et al. 2019). As for 
the coastal saline area, in order to match the 20 obser-
vations selected in the freshwater area, to the original 12 
pixels corresponding to the field observations performed 
by Nguyen et  al. (2020), we added 8 pixels randomly 
selected within the grids used to determine if the L8 spa-
tial resolution were adequate (Fig. 1). We generated 100 
points regularly spaced within all the created pixels. Fig-
ure 3 shows that in (a) saltwater ponded areas as well as 
in (b) freshwater ponded areas, there is a significant lin-
ear correlation (P value < 0.01) between water percent-
age cover and reflectance of the L8 NIR band. Similarly, 
Fig. 3 shows that there is a significant linear correlation 

(P value < 0.01) also between water percentage cover 
and the VSSI for (c) saltwater and (d) freshwater ponded 
areas. Our results confirm that NIR reflectance is gradu-
ally reduced by an increasing water surface, in both salted 
and freshwater environments. This result confirms that 
salinity does not influence the absorption of the incident 
energy exerted by water.

3 � Conclusions
Nguyen et  al. (2020) has the merit of exploring the use 
of L8 OLI to study the influence of salinity on vegeta-
tion in the Mekong River Delta. Even though the L8 spa-
tial resolution is suitable to perform the analysis on the 
inner agriculture land of the Tra Vinh Province consid-
ered by the authors, we show that the method cannot be 
applied to the coastal area where shrimp farming ponds 
are widely present. We have shown that L8 spatial reso-
lution is not suitable to distinguish between ponded and 
non-ponded areas in the coastal portion of the Tra Vinh 
Province, because about 90% of the L8 pixels fully or par-
tially fall on ponds and canals. We have also shown that 
the attenuation of the NIR reflectance is primarily due to 
the water presence and decreases linearly with increasing 
water percentage cover, while no significant correlation 
between soil salinity and NIR reflectance could be found. 

Fig. 3  Relationship of the L8 NIR reflectance with the water percentage cover in a the coastal area and b in the freshwater area (plot A and plot B of 
Fig. 1, respectively). Relationship of the VSSI with the water percentage cover (c) in the coastal area and d in the freshwater area
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The attenuation of the NIR reflectance due to the pres-
ence of water ponds is similar in the coastal saline area 
and in the inner freshwater area.
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