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Abstract
Different encodings of datapoints in the latent space of latent-vector generative models may result in more or less effective

and disentangled characterizations of the different explanatory factors of variation behind the data. Many works have been

recently devoted to the exploration of the latent space of specific models, mostly focused on the study of how features are

disentangled and of how trajectories producing desired alterations of data in the visible space can be found. In this work we

address the more general problem of comparing the latent spaces of different models, looking for transformations between

them. We confined the investigation to the familiar and largely investigated case of generative models for the data manifold

of human faces. The surprising, preliminary result reported in this article is that (provided models have not been taught or

explicitly conceived to act differently) a simple linear mapping is enough to pass from a latent space to another while

preserving most of the information. This is full of consequences for representation learning, potentially paving the way to

the transformation of editing trajectories from one space to another, or the adaptation of disentanglement techniques

between different generative domains.

Keywords Generative models � Latent space � Representation learning � Generative adversarial networks �
Variational autoencoders

1 Introduction

The task of generating new data from samples has always

exerted a particular fascination in machine learning, both

because of the potential for almost endless streams of new

and original data, as well as for the implications on the

knowledge extracted by a model about the data manifold. It

is clear that the effectiveness of generative techniques

crucially depends on data representation, and different

encodings may result in more or less entangled combina-

tions of the different explanatory factors of variation

behind the data [1, 2]. The key idea behind unsupervised

learning of disentangled representations is that real-world

data depends on a relatively small number of explanatory

factors of variation which can be compressed and recov-

ered by unsupervised learning techniques [3–5]. Strictly

related to representation learning, the task of exploration of

the latent space of generative models aims to understand

the ‘‘arithmetic’’ of the variational factors [6, 7], and the

effect that particular trajectories inside the latent space

could produce in the visible domain [8–10].

In spite of the huge amount of work devoted to the

exploration of latent spaces, relatively little attention has

been so far devoted to the problem of comparing the latent

space of different generative techniques, i.e., to the prob-

lem of locating the internal representation zX of X in a

given space starting from its representation in the latent

space of a different model (see Fig. 1).

The key questions we are interested in are the following:

1. Do different trainings of the same generative model

induce the extraction of similar features from data, and

hence substantially isomorphic spaces up to, say

permutations or linear transformations? We refer to

this type of transformations as being of Type 1.

2. Do different architectural models driven by common

learning objectives (e.g., maximizing log-likelihood)
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learn similar features? How much do the extracted

features depend on the neural network structure? We

refer to this type of transformations, between spaces of

variants of models in the same class, as being of Type

2.

3. Finally, what is the influence of the learning objective

on the internal representation? Is, e.g., a Generative

Adversarial Network learning the same features of a

Variational AutoEncoder? We refer to these transfor-

mations as being of Type 3.

Any answer, whether positive or negative, could substan-

tially improve our knowledge of generative techniques.

Our surprising preliminary results, reported in this arti-

cle, seem to suggest that (provided models have not been

taught or explicitly conceived to act differently) it seems to

be possible to pass from a latent space to another by means

of a simple linear mapping preserving most of the

information.

This linear transformation may be computed directly

through linear regression, but we advocate a learning-based

technique based on a suitable small ‘‘support set’’ of data

samples enucleating, in the visible space, the key varia-

tional factors of the data manifold. When we say ‘‘small’’,

we mean that the set has a cardinality comparable with the

number of variables in the latent space (so, really small):

for instance, in the case of CelebA, we experimented with a

support set of 150 images. Locating these 150 samples in

the two spaces is enough to allow the definition of a

relocation map for all data.

The main results of our investigation are summarized in

Fig. 2. Figure. 2a describes an example of relocation

between different trainings of a same network (relocation

of Type 1); Fig. 2b is relative to the relocation between

different models of a same class—two different VAEs, in

this case (relocation of Type 2); Fig. 2c is an example of

relocation from a VAE to a GAN, that is between different

models with different learning objectives (relocation of

Type 3). While details may slightly differ, especially for

transformations between different generative models, the

overall appearance (pose, colors and background) is sub-

stantially preserved. Considering the nonlinearity of these

generative processes, the result is, at a first glance, quite

surprising: pairs of points related by a simple linear map-

ping in the latent spaces of two different generative models

are decoded by the respective decoders in closely related—

in some cases almost identical—images!

1.1 Structure of the article

The structure of the article is the following. We start by

providing, in Sect. 2, a quick introduction to generative

modeling, and in particular to latent variables models,

comprising the popular Variational Autoencoders (VAEs)

and Generative Adversarial Networks (GANs); in this

section, we also discuss the problem of inverting GANs.

Section 3 covers the domain of semantic exploration of

latent spaces, representation learning and disentanglement.

In Sect. 4 we start introducing the datasets, the models and

the methodology that we used for our experiments. Since

we focus on linear transformations, they can be defined by

a small set of points, that we call Support Set: locating the

points in the Support Set in the two latent spaces is enough

to define the transformation. Our approach to get a good

Support Set is discussed in Sect. 5. In Sect. 6 we give

numerical results about the mappings (visual examples,

more readily interpretable, are spread over the article).

Section 7 is devoted to the discussion of the latent space of

StyleGAN that seems to present some pathological issues:

many faces in the CelebA dataset lie outside of its gener-

ative range. Even in this case, however, provided we

confine the transformation to the StyleGAN subspace, we

discover interesting linear mapping to other spaces. Con-

clusion and future works are discussed in Sect. 8. Addi-

tional material is given in appendices: a detailed

description of the models used in this work (Sect. A), a full

list of all images in the CelebA Support Set (Sect. B).

Fig. 1 Given a generative model, it is usually possible to have an

encoder-decoder pair mapping the visible space to the latent one

(even GANs can be inverted, see Sect. 2.2.1). From this assumption,

it is always possible to map an internal representation in a space Z1 to
the corresponding internal representation in a different space Z2 by

passing through the visible domain. This provides a supervised set of

input/output pairs: we can try to learn a direct map, as simple as

possible. The astonishing fact is that a simple linear map gives

excellent results, in many situations. This is quite surprising, given

that both encoder and decoder functions are modeled by deep,

nonlinear transformations
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Fig. 2 Examples of relocations of different Types. In the first row we

have the original, in the second row the image reconstructed by the

first generative model, and in the third row the image obtained by the

second model after linear relocation in its space. (a) Relocation of

Type 1, between latent spaces relative to different training instances

of the same generative model, in this case a particular Variational

Autoencoder [11] . The two reconstructions are almost identical.

(b) Relocation of Type 2, between a Vanilla VAE and a state-of-the-

art Split-VAE [11] . The SVAE produces better quality images, even

if not necessarily in the direction of the original: the information lost

by the VAE during encoding cannot be recovered by the SVAE,

which instead makes a reasonable guess. (c) Relocation of Type 3,

between a vanilla GAN and a SVAE. Additional examples involving

StyleGAN are given in Sect. 7. To map the original image (First row)

into the latent space of the GAN we use an inversion network. Details

of reconstructions may slightly differ, but colors pose and the overall

appearance is surprisingly similar. In some cases (e.g., the First

picture) the reconstruction re-generated by the VAE (from the GAN

encoding) is closer to the original than that of the GAN itself.
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2 Generative modeling

Generative modeling is the task of learning the high-di-

mensional probability distribution of a data manifold

starting from a representative set of samples. When suc-

cessfully trained, generative models can be used to create

new samples from the underlying distribution, possibly

providing estimations of their likelihood. The learning

process provides an essential and valuable insight of the

kind of features used to encode the distribution, and the

way the model ‘‘interpreted’’ and ‘‘understood’’ data.

At the heart of generative techniques there is a relatively

small set of techniques [12, 13]: Auto-Regressive models

[14, 15], Flow models [16–19], Energy-based models

[20–22] and Latent-Variable models, particularly GANs

[6, 23, 24] and VAEs [25–27].

In this article, we shall mostly focus on the popular and

effective Latent-Variable models, that is models where the

actual distribution p(x) of a data point x is expressed

through marginalization over a vector z of latent variables:

pðxÞ ¼
Z
z

pðxjzÞpðzÞdz ¼ E pðzÞ½pðxjzÞ�

where z is the latent encoding of x distributed with a known

distribution p(z) named prior distribution. The distribution

pðxjzÞ is usually learned by a deep neural network; after

training it can be used to generate new samples via

ancestral sampling:

1. sample z� pðzÞ;
2. generate x� pðxjzÞ.

2.1 Variational autoencoders

A Variational AutoEncoder (VAE) [28] has a structure

similar to a classical auto-encoder [29, 30], being com-

posed of an encoder producing a latent vector z from an

input x and of a decoder which reconstructs the input x̂

from a latent code; the two components are simultaneously

trained using, e.g., a mean squared error loss j x� x̂ j2.
However, in order to regularize the latent space, which is a

precondition to support semantically meaningful genera-

tion [12], latent variables are interpreted as parameters of a

local distribution qðzjxÞ and a Kullback–Leibler component

KLðqðzjxÞ k N ð0; 1ÞÞ is added to the reconstruction loss,

with the purpose of pushing the marginal distribution q(z)

toward a standard Gaussian N ð0; 1Þ. Balancing of these

two loss components, usually via a c or b parameter, is

crucial for better generation and learning of disentangled

features [31–33].

Several issues affect the performance of VAEs, most

importantly blurriness of generated images [34]. As such,

many variants have been proposed over the years to

improve results by addressing the mismatch between the

aggregate inference distribution q(z) and the prior p(z).

These comprise: quantization of the latent code (VQ-VAE

[35]), use of normalizing flows (Hybrid VAE [36]), two-

Stage architectures [37], and hierarchical models [16, 38].

2.2 Generative adversarial networks

In a Generative Adversarial Network (GAN) [6, 39, 40] a

generator, acting as a sampler for the desired distribution,

is jointly trained with a discriminator, evaluating the output

of the generator by attempting to distinguish real from

generated (‘‘fake’’) data. This can be formalized in the

form of a zero-sum game, where one agent’s gain is

another agent’s loss; the generator and the discriminator

must be trained alternately, freezing the respective adver-

sarial component; at the end of the process the generator is

supposed to win, producing samples that the discriminator

is unable to distinguish from real.

GANs are known to have unstable training and several

issues among which the well-known mode collapse phe-

nomenon [40]. Indeed, multiple variations for the loss

function have been studied over time [41], including the

Wasserstein loss [42], least squares loss [43] or the intro-

duction of a penalty term for the discriminator [44]. Fur-

thermore, a myriad of variations on the structure itself have

been proposed, among which: maximizing the mutual

information between specific latent variables [45];

exploiting pairs of GANs to perform style transfer between

images in distinct datasets [46]; GANs with attention layers

[47].

A particularly interesting series of works come from the

application of style transfer concepts to GANs (StyleGAN

and its successors [48–50]). StyleGAN builds on Progres-

sive GANs [24], whose structure is unchanged from that of

a baseline GAN but is implemented progressively: the

architecture is trained starting from down-sampled images

at very low resolution, and at each progression step the

input size is increased while additional layers are intro-

duced to both generator and discriminator.

StyleGAN further builds on this structure by adding to

the generator (Synthesis network) a fully connected Map-

ping network which takes the usual seed z 2 Z and pro-

duces a ‘‘style’’ vector w 2 W . This vector is then

specialized per-layer through Adaptive Instance Normal-

ization (AdaIN), which according to the authors produce a

behavior similar to style-transfer. Furthermore, a small

amount of noise is added to all blocks of the Synthesis

network to better fill in the output details. The full structure

of StyleGAN can be seen in Fig. 3.
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2.2.1 GAN inversion

The generator of a GAN usually takes as input a seed

z�N ð0; 1Þ, and has a role directly comparable to that of a

VAE decoder. However, GANs lack a direct encoding

process of the original input sample, unlike a VAE enco-

der. If, as is the case for our study, both generative and

encoding processes are needed, a third neural network has

to be added to a pre-trained GAN as a sort of plug-in

encoder. This re-coder component is known as an inverse

GAN, and building an accurate re-coder is a known prob-

lem in the literature [51].

Several approaches to inversion have been explored

[52–55], mostly for editing applications, the simplest being

SGD optimization [56] or a learning-based approach such

as using a neural network trained on generated images to

reconstruct the original latent vector using a mean squared

error loss j z� ẑ j2, with the advantage that over-fitting is

never an issue since training is not constrained to samples

of the original data. Hybrid methods combining both

efforts have also been explored [57, 58].

Recent works have focused mostly on the inversion of

the popular StyleGAN, building on previous work with a

variety of inversion structures and minimization objectives

[59–63] with the aim of generalization to any dataset.

However, we used a simpler and narrow approach by

developing our own StyleGAN inverter for the W space

using a naive recoding network. It works surprisingly well

for commonly generated samples, with a final mean square

error close to 0.0040. We show some examples of recoding

in Fig. 4.

3 Semantic interpretation of latent spaces

The latent space of a generative model efficiently synthe-

sizes information from data, however, the resulting com-

pressed vectors cannot be easily mapped onto

understandable features such as labels or attributes.

Therefore, it is also unknown how exactly a model learns

from data, in terms of how well it encodes its features,

biases and human-meaningful characteristics. At the same

time, this knowledge could fundamentally influence the

quality of models and provide a foundation on which to

improve their performances without relying solely on

empirical and qualitative analyses.

Conditional architectures [45, 64] can indeed mitigate

this issue by explicitly feeding features alongside samples

during training, but in doing so they remodel the task as a

supervised problem with respect to the classes on which

conditioning is done, with all other data features remaining

non-explainable. These approaches do not provide inter-

esting information about the way the neural network

understand data, and for this reason, they will not be dis-

cussed in this work.

3.1 Exploration and disentanglement

Many works attempt to understand the latent space of

GANs by performing exploration on the latent space, that

is, they introduce small nudges in a direction based on the

empirical principle that they will correspond to a small

change in the corresponding generated data. The approach

can be particularly useful for image editing, as once a

semantically meaningful direction is found (e.g., color,

pose, and shape), it can be traveled to tweak an image,

introducing a desired feature without the need for a con-

ditional generation model. InterFaceGAN [8] supposes that

for a given feature taking values in ð�1;1Þ there exists

an hyperplane in the latent space whose normal vector

allows for a gradual modification of the feature, which can

be found, e.g., via an SVM [65]. Further work based on this

idea searches for these directions as an iterative or an

optimization problem [66] and also extend it to controllable

walks in the latent space [10].

Fig. 3 Structure of the StyleGAN generative network (picture from

[48]). Observe: (1) the two distinct latent spaces Z and W; (2) the

mapping network taking a randomly sampled point z 2 Z as input and

generating a style vector w; (3) the use of Adaptive Instance

Normalization, or AdaIN (Blocks A), to apply style vectors after each

convolution layer of the Synthesis network; (4) the exploitation of

noise as an additional source of randomness passed through learned

scaling layers (Blocks B)
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A different, more systemic approach to the problem is

by [7], which use a closed-form equation to find the editing

direction ni applied per-layer i of a generator, which is then

composed to find the overall direction n. Another approach

of the same ‘‘arithmetic’’ flavor comes from [67], where a

generative application of PCA with a nonlinear kernel is

used to determine the hidden features of a small-scale

dataset, without any reliance on a particular generative

model.

Much less work on exploration has been devoted to

VAEs. An example is given by [9], which however works

on a conditional architecture, in order to produce lower-

dimensionality subspaces that are easier to analyze.

4 Datasets, models, methodology

4.1 Datasets

As stated in the abstract, we confined our analysis to the

familiar and largely investigated data manifold of human

faces. Our dataset of reference is CelebA [68], including its

higher-quality version CelebAHQ [24]. Images taken from

CelebA have been aligned as per their paper [68] and then

cropped to size 128� 128 with a y offset of 45 and an x

offset of 25 in order to remove as much background

information as possible. The crop is then downsampled to

size 64� 64 with bilinear interpolation).

CelebaHQ is a dataset of 30K images at resolution

1024� 1024, obtained from a subset of CelebA with a

complex methodology explained in Appendix C of [24],

comprising a sophisticated preprocessing phase, super-

resolution techniques, and selection of best quality

samples.

4.2 Generative models

For our experiments we took into considerations four dif-

ferent models, two GANs and two VAEs; in each class, we

investigated a basic, average quality ’’vanilla’’ version and

a more sophisticated, state-of-the-art model. A summariz-

ing Table 1 for these models is provided. More in-detail,

we have investigated the following architectures:

1. Vanilla VAE [28] using c balancing [31] with a latent

dimension Z = 64 trained on the cropped CelebA;

2. Vanilla GAN [39] with a latent dimension Z = 64

trained on the cropped CelebA;

3. SVAE [11] with a latent dimension Z = 150 trained on

the cropped CelebA;

4. StyleGAN [48] pre-trained on CelebA-HQ1, which has

a latent dimension Z of size 512 and a style-vector

latent dimension W of the same size.

The structure of the StyleGAN has been already briefly

discussed in Sect. 2.2. The in-depth architecture of the

other models, not central to the topic of this article, is given

in Appendix A.

The dimension of the latent space and the resolution of

the different models is summarized in Table 1.

4.3 Methodology

For each one of the previous models, apart StyleGAN

where we only had at our disposal a single set of pre-

trained parameters, we trained and tested five different

instances. When reporting values in the results, if not dif-

ferently stated, they have to be understood as an average

over the different trainings.

Fig. 4 Results of our own network for StyleGAN inversion. Images in

the first row have been generated by StyleGAN; they are re-coded

into the W space and regenerated (second row). The two images are

hardly distinguishable. However, as we shall see in Sect. 7, inversion

can be more problematic for images outside the generative range of

the model; in principle, a good generative model should be able to

produce any sample, provided it is not too atypical

1 We have used the original model weights at https://github.com/

NVlabs/stylegan and the Tensorflow 2.0 conversion repository https://

github.com/ialhashim/StyleGAN-Tensorflow2.
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Mapping between different models (transformations of

Type 2 and 3) can have a lot of additional issues. Firstly,

the two latent spaces may have sensibly different dimen-

sions, for instance 512 for StyleGAN versus 150 for the

SVAE and for the other models, and may work at different

resolutions, for instance 1024� 1024 for StyleGAN versus

64� 64 for the other models. Furthermore, the two gen-

erative models may have been trained on the two different

datasets which, albeit similar, have different data and dif-

ferent crops. To this aim, when passing from CelebA-HQ

to CelebA we take a simplified crop of dimension 880�
880 with an height offset of 20 and a width offset of 60,

which is then downsampled to size 64� 64 with bilinear

interpolation.

Since we are interested in linear mappings, the trans-

formations may be defined by a small set of ’’corre-

sponding’’ points common to both spaces: this is what we

call a Support Set. Our methodology to build it is defined in

Sect. 5. The support Set is defined in the visible domain;

we trace their respective encodings in the different spaces,

and define the map by linear regression with mean squared

error as a loss. When we cannot use a Support Set, we may

directly work with the whole visible domain (or the subset

of the visible domain common to the two spaces), sampling

minibatches in it.

5 Support set

In this Section we explain the technique used to build a

small support set of examples driving the linear transfor-

mation. This is based on the following steps, each one

detailed in a respective subsection:

features

ordering

we order latent variables according to their

relevance for reconstruction, using a suit-

able metric discussed below;

features

selection

we select a small number n of particularly

significant latent variables; 2n must be

lower than the cardinality of the support

set;

sample

selection

we select points in the space belonging to

extremal regions with respect to the selec-

ted features.

5.1 Features ordering

Feature importance—the task of associating a score to

input features based on how useful they are for solving a

specific problem—is a major subfield of Machine Learn-

ing. In the case of generative modeling, the goal is to

maximize the (log)likelihood of data, and it is natural to

associate a score to features according to their contribution

to this objective. It is worth observing that different tech-

niques, like, e.g., PCA, would not be beneficial to this aid,

due to the shape of the prior latent distribution which is,

typically, a spherical Gaussian distribution2.

Our feature importance technique requires an encoder in

addition to a decoder: it fits particularly well with VAEs,

but it can be generalized to GANs by exploiting a re-coder

network (see Sect. 2.2.1). Specifically, in order to evaluate

the contribution of the variable to the loss function, we

compute over a large number of data the average difference

between the reconstruction error when the latent variable is

zeroed out with respect to the case when it is normally

taken into account. We call this information the recon-

struction gain associated with the latent variable. It was

introduced in [69] where it was used to compare the

reconstruction error and the Kullback–Leibler divergence

on a per-variable base, in order to clarify the variable

collapse phenomenon [27, 70, 71].

We did the experiment on the SVAE, which in our

experiments has a latent space of 150 variables. In Fig. 5

we show the information gain relative to all its latent

variables, ordered by relevance.

Eleven variables have a score higher than 10, although

the distribution has a relatively long tail: the first 20 vari-

ables are responsible for about 75% of the information.

5.2 Feature selection

We keep a small number of the most informative variables.

For the way we shall use it, this number must be smaller

than the logarithm of the cardinality of the support set. In

our case, we aim to a support set of dimension 150, so we

focus on the seven most relevant variables.

In Fig. 6 we show examples of the effect of some of

these variables on generated images: we take a random

point and progressively modify the given variable in the

Table 1 Dimension of the Latent Space and Resolution for the dif-

ferent models

Model Latent dim Resolution

GAN 64 64� 64

VAE 64 64� 64

SVAE 150 64� 64

StyleGAN 512 1024� 1024

2 Even the potential mismatch between the prior and the aggregate

inference distribution in the case of VAEs cannot be exploited by

PCA, since this technique only takes into consideration the first two

moments of the distribution.
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range between -2.25 and 2.25 (remember that the latent

space standard deviation is 1).

5.3 Sample selection

Finally, we divide the latent space in sectors corresponding

to extreme values for the previously selected variables, and

pick up samples in these sectors.

More precisely, having defined a threshold th and a

’’direction’’ dir given by a þ=� sign for each selected

variable, a sector defined by the pair (th, dir) is the set of

points with direction compatible with dir and at a distance

from the origin larger than th. Since we consider all pos-

sible directions, this gives a total of 2n sectors where n is

the number of selected variables (for a fixed th). In each

sector, we pick up a sample at random (enlarged th sectors

become progressively less inhabited).

It is interesting to observe that the number of latent

points in the dataset within different sectors at a given

threshold is far from uniform. This seems to be a confir-

mation that the actual image distribution is far from the

desired Gaussian normal prior and, in a VAE, a symptom

of the potential mismatch between the generative prior and

the aggregate inference distribution computed by the

encoder, which is a well-known and problematic aspect of

VAEs [72–74]. Attempts to solve this issue have been

made both by acting on the loss function [75] or by

exploiting more complex priors [36, 76, 77]; the actual

effects on the latent space of these techniques is an inter-

esting research direction for future investigations.

Fig. 5 Information gain for all variables, in decreasing order. Only a

bunch of variables are in charge of the macroscopic factors of

variations

Fig. 6 Effect of the seven most informative latent variables in the

visible domain. Each image is obtained by varying a specific variable

in the range [-2.25; ?2.25]. Considering these are the variables with

the largest information gain, it may be argued that their impact is less

pronounced than expected. Most of the variables are associated with a

change in luminosity of all or part of the image, possibly associated

with modifications in hair color, source of illumination and tiny

variations in the pose. In the case of variable 21, there seems to be

progressive Female-Male transition (and vice versa for variable 114)
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In Figure we show typical inhabitants for a few given

sectors. As expected, they share macroscopic features like

background color, pose, hairs, and illumination.

Part of the 128 images resulting from our selection

process are depicted in Fig. 9. The complete list of labels

for the support set is reported in the appendix. The samples

in the support set occupy ‘‘extreme’’ positions in the latent

space with respect to the most informative directions: for

this reason, they as supposed to be representative of the

principal factors of variations in the dataset.

As a partial confirmation of the previous hypothesis, we

expect the distance between elements in the support set to

be sensibly higher than the average distance between points

in the full dataset. This is actually the case: the mean

squared error between random CelebA images is 0.116,

versus 0.183 for samples in the support set.

6 Results

This Section contains numerical results relative to the

transformation between latent spaces. The discussion of

StyleGAN, for its relevance and some interesting patho-

logical issues, will be postponed to the next Section.

Here, with we shall use the names VAE, GAN and

SVAE to refer to our specific implementations of these

models, discussed in Sect. 4.2 and detailed in Appendix A.

We build a set of correspondent input-output pairs by

encoding the Support Set (or the full set of visible data)

into the two latent spaces. Then, we directly build a linear

map by linear regression, minimizing the mean squared

error between target and computed latent vectors.

For each transformation, we provide three values:

L-MSE Latent Mean Squared Error. This is the loss of

the model, namely the mean squared error

between the target vectors and those computed

by the model;

R-MSE Reconstruction Error. This is the mean squared

error between the original image in the visible

domain and its reconstruction via the source

generative model;

M-MSE Mapped Error. This is the mean squared error, in

the visible domain, between original images and

images reconstructed by the target generative

model after linear mapping.

The three errors are graphically described in Fig. 10.

The latent error L-MSE is not easily deciphered; the

comparison between R-MSE and M-MSE provides a more

intelligible information about the quality of the translation.

The results are given in Table 2.

For the sake of comparison, it it worth to recall that the

mean squared error between CelebA images is 0.116; in all

models the M-MSE is always below 0.039.

Fig. 7 Example of sectors in three dimensions (cropped to distance 2

from the origin). The distance between sectors is equal to twice a

configurable threshold. We work with the seven most informative

latent variables, obtaining a total of 27 ¼ 128 sectors

Fig. 8 Examples of data in different sectors. For each sector, images

are different, but share macroscopic features: background color, pose,

hairs, illumination, etc.
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7 The StyleGAN space

The ‘‘extreme’’ nature of the images in the Support Set

makes them a very natural benchmark of the expressive-

ness of generative models: is it possible to reconstruct these

images by passing them through an encoding-decoding

process?

For StyleGAN trained on CelebA-HQ, the results are

disappointing (see Fig. 11, and compare them with the

inversion of generated images in Fig. 4). Although the

macrostructure is preserved (background, pose, and illu-

mination), details are sensibly different. Numerically,

while the average mean squared error on generated images

is 0.026, the corresponding value for the Support Set is

0.251, almost ten times higher.

Our conjecture is that StyleGAN is simply unable to

generate data in the support set: they do not belong to its

latent space, specifically due to its training dataset. To

check this claim we implemented a gradient ascent tech-

nique to generate latent representations corresponding to a

desired output. Once again, the gradient ascent technique

provides almost perfect results on generated images but

substantially fails on images in the CelebA support set, as

shown in Fig. 12.

We believe that the latent space of StyleGAN, trained on

CelebA-HQ, only faithfully reflects a subspace of the latent

space of our other models, trained on the full CelebA

dataset. In particular, points in our extreme sectors seem to

lie outside of the generative range of StyleGAN, or to be

severely underrepresented (Fig. 13). The problem is pos-

sibly also related to the well-known fact that faces gener-

ated by StyleGAN (and other generative networks) can be

easily distinguished from reals [78–80].

7.1 Comparison with different spaces

Since exploiting the Support Set is not a viable solution, we

need to define a direct mapping by regression on all data.

As it is customary for exploration studies, we work with the

W StyleGAN space; as matter of fact, the Z space is passed

through a long series of fully connected layers (the Map-

ping network) which we presume, by construction, not

being linearly invertible.

Fig. 9 Part of the images in the support set resulting from our

selection process. The samples are supposedly representative of the

principal factors of variations in the dataset. Additional examples are

given in the appendix

Fig. 10 Relocations Errors. An original point o in the visible domain

is mapped into internal representations z1 and z2 in the latent spaces

Z1 and Z2. The map M is trained to reconstruct z2 from z1: L-MSE is

the mean squared error between z2 and Mðz1Þ. R-MSE is the mean

squared error, in the visible domain, between o and its reconstruction

according to the first generative model. M-MSE is the mean squared

error, in the visible domain, between o and D2ðMðz1ÞÞ

Table 2 Mapping results for different model pairs: (L-MSE) MSE

between the target and Mapped Latent vectors; (R-MSE) MSE

between the original and Reconstructed (encoded-decoded) images;

(M-MSE) MSE between the original and mapped images via the

learned linear mapping. When source and target coincide, we mean

different trainings of the same model (Type 1 transformations)

From To L-MSE R-MSE M-MSE

VAE VAE 0.03 0.0073 0.0103

VAE SVAE 0.72 0.0073 0.0105

VAE GAN 0.49 0.0073 0.0339

GAN VAE 0.50 0.0284 0.0254

GAN SVAE 0.86 0.0284 0.0275

GAN GAN 0.43 0.0284 0.0335

SVAE VAE 0.195 0.0035 0.0125

SVAE GAN 0.63 0.0035 0.0388

SVAE SVAE 0.20 0.0035 0.0067
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Here we try to map the W space of StyleGAN, trained

over CelebA-HQ, to the latent space of SVAE trained over

CelebA. The input to the transformation map is the vector

w, obtained by ancestral sampling from the Z space. The

expected output z is obtained by synthesizing with Style-

GAN the image corresponding to w, cropping and resizing

it to dimension 64� 64 and encoding it in the SVAE latent

space. The result of the linear map will be called ẑ; let

SVAEðzÞ, and SVAEðẑÞ the corresponding decodings to the

visible domain. As usual, input vectors w may be generated

ad libitum, with no risk of overfitting.

After training, the mean squared error between z and ẑ is

around 0.45 with a standard deviation of 0.05. The mean

squared error between SVAEðzÞ, and SVAEðẑÞ is 0.014 with

standard deviation of 0.002. All results have been repeated

over five different parameters configurations of SVAE,

relative to five different trainings (obviously, each experi-

ment results in a different linear transformation).

The result is shown in Fig. 14. They are not perfect, but

definitely interesting.

We also tested a few variants weighting the distance

between latent variables according to their ‘‘information

relevance’’, but we did not observe significant

improvements.

Let us come to the mapping from the latent space of

VAE to that of the StyleGAN. To train the transformation

model (as usual, a single dense layer with no bias), we

simply invert input and output of the previous network.

After training, the mean squared error between w and ŵ is

around 0.029 with a standard deviation of 0.004. The mean

squared error between StyleGAN(w), and StyleGANðŵÞ is

0.076 with standard deviation of 0.014. The results are

visually really good, as can be visually checked in Fig. 15.

Fig. 11 StyleGAN inversion on images in the Support Set. The macro

structure (background, pose, illumination, etc.) is preserved, but all

other features are lost: images in the Support Set seem to lie outside

of the generative range of StyleGAN. Note also the more ‘‘conven-

tional’’ nature of the images obtained by the inversion

Fig. 12 Gradient ascent technique for StyleGAN on data in the

Support Set. The original is in the first row, and the image generated

through gradient ascent, in the second. The technique confirms that

these images cannot be generated by StyleGAN

Fig. 13 CelebA Sectors seem to be external to the latent space of

StyleGAN
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8 Conclusions

In this article we addressed the problem of comparing the

latent space of different generative models, defining

transformations between them. Specifically, we proved that

we can pass from a latent space to another by means of a

simple linear map preserving most of the information.

Hence, the organization of the latent space seems to be

largely independent from

• The training process

• The network architecture

• The learning objective: GANs and VAEs share the

same space

The result is original, surprising and largely unexpected;

apparently, the latent space, if not artificially constrained

with different objectives, seems to naturally organize itself

in a way that is merely dependent from the data manifold.

Of course, we expect that this ‘‘natural’’ structure can be

altered in many different ways, e.g., through conditioning,

which strongly impacts the latent structure, or via trans-

formations like normalizing flows, explicitly aiming

toward a strong regularization of the space. We also do not

expect the two spaces Z and W of StyleGAN to be linearly

related, since otherwise the long chain of eight dense layers

between them would have no purpose.

Our result is full of implications from the point of view

of representation learning and disentanglement. The fact

that the latent space has a sort of implicit and native

structure raises promising expectations about the possibil-

ity of learning features in a completely unsupervised way.

Moreover, the recent observation [8, 66] that variations

over a single semantical feature is a quasi-linear manifold

in the latent space of generative models fits well with our

empirical observations, opening interesting perspectives

about the possibility of ‘‘porting’’ disentanglement between

different spaces, and more generally, to better understand

the issue in a more general framework.

Fig. 14 Mapping from the W space of StyleGAN to the latent space

of SVAE. In the first row we have sources, sampled by StyleGAN

from w 2 W . In the second row we have the SVAE reconstruction,

starting from a suitably cropped and rescaled images (SVAE work at

resolution 64): these images are the best possible approximation of

the source images obtainable by SVAE. In the third row we show the

output produced by the SVAE decoder after mapping each w in its

latent space: results are very similar to those of the second row

Fig. 15 Mapping from the latent space of SVAE to the W space of

StyleGAN. In the first row we have images generated by StyleGAN:

StyleGAN(w), for w 2 W . In the second row we have their SVAE

reconstructions, starting from suitably cropped and rescaled versions.

Images in the third row are obtained by first encoding StyleGAN(w) in
the latent space of the SVAE, obtaining a latent representation z. This
z is then linearly transformed to a vector ŵ 2 W; the final image is

StyleGANðŵÞ
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The fact that the transformation between spaces is linear

obviously permits its definition in terms of a small set of

independent points of the same cardinality of the dimen-

sion of the latent space; this is what we call a Support Set.

Locating these points in the two latent spaces is enough to

define the map. In principle, any set of independent points

could serve as a Support Set, but for robustness reasons, it

seems preferable to choose points as apart as possible

between each other. We described a possible approach for

defining such a set, based on ’’sectors’’ in the space. This

set is of interest in its own, as it is representative of the

principal factors of variations in the dataset. Due to this

fact, it also provides a natural benchmark to test the

expressiveness of generative models.

This leads to an additional side contribution of our work:

in contrast with the usual belief, StyleGAN trained on

CelebA-HQ seems to have serious generative deficiencies:

many images, in particular most of the images in our

Support Set from CelebA, seem to lie outside the genera-

tive range of StyleGAN. In particular, as it is also evident

in inversion results, the StyleGAN generative process is

privileging standardization, strongly penalizing defects,

oddities and eccentricities: the StyleGAN space is not a

space for minorities.

This could be a cause for concern about CelebA-HQ.

Not only it is computationally demanding, but one could

also wander if it has statistical relevance: an assortment of

30K images in a space of dimension 3� 220 looks more

like a collection of scattered points than a data manifold.

Our results also raise serious worries about the

increasing use of generative techniques for data augmen-

tation purposes. All generative techniques seem to have

serious biases, privileging likelihood over diversity: using

them for data augmentation may have no statistical sig-

nificance. It is a bad practice that should be discouraged

and deprecated.

As for future developments, most of the work just lies

ahead. Here is a short, not-exhaustive list of possible

topics:

• Test and hopefully confirm our mapping results on

different datasets;

• Deepen the relationship between the field of disentan-

glement through suitable linear manipulations of the

latent space;

• Define and test a Support Set for StyleGAN and Celeba-

HQ;

• Investigate the possibility to improve the transformation

with residual nonlinearities, and in that case study them;

• Better investigate and possibly find a remedy to the

generative deficiencies of StyleGAN.

Appendix

A Models

In this section we briefly discuss the architecture of the

generative models used for our experiments. In addition,

we also largely experimented with StyleGAN, whose

structure is discussed in Sect. 2.2. Two of the models are

vanilla implementations of GAN and VAE with very

similar structures; this was an intentional choice since we

wished to evaluate the impact of the objective function

independently from the network architecture.

A.1 Vanilla GAN structure

The structure of the discriminator is as follows:

1. A Convolutional layer going from an input of size

(64, 64, 3) with stride s ¼ 2, same padding, ReLU

activation, kernel size k ¼ 4 and 128 channels, fol-

lowed by a Leaky ReLU layer with a ¼ 0:2 for

regularization;

2. A Convolutional layer as in 1. but with 256 channels,

followed by another leaky ReLU;

3. A Convolutional layer as in 1. but with 512 channels,

followed by another leaky ReLU;

4. A Dropout layer with a ¼ 0:2 for GAN regularization;

5. A Dense layer outputting a single value, which is the

confidence the discriminator has that its input image is

real.

The structure of the generator is instead the following:

1. A Dense layer going from L to size (8, 8, 16);

2. A Transposed Convolutional layer with stride s ¼ 2,

same padding, ReLU activation, kernel size k ¼ 4 and

128 channels, followed by a Leaky ReLU layer with

a ¼ 0:2 for regularization;

3. A Transposed Convolutional layer as in 1. but with 256

channels, followed by another leaky ReLU;

4. A Transposed Convolutional layer as in 1. but with 512

channels, followed by another leaky ReLU;

5. A Convolutional layer with 3 channels, kernel size

k ¼ 5, sigmoid activation and same padding, thus

producing a (64, 64, 3) output.

We also implemented a re-coder, for GAN inversion, with

an essentially symmetric structure.

A.2 Vanilla VAE structure

Our VAEs use a balancing c factor for its two loss com-

ponents, which are the KL divergence and the
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reconstruction error, as suggested in [31] in order to

improve variability and reduce blurriness.

The structure of the encoder is as follows:

1. A Convolutional layer going from an input of size

(64, 64, 3) with stride s ¼ 2, same padding, ReLU

activation, kernel size k ¼ 4 and 128 channels, fol-

lowed by a Leaky ReLU layer with a ¼ 0:2 for

regularization;

2. A Convolutional layer as in 1. but with 256 channels,

followed by another leaky ReLU;

3. A Convolutional layer as in 1. but with 512 channels,

followed by another leaky ReLU;

4. A Dropout layer with a ¼ 0:2 for GAN regularization;

5. Two separate Dense layers corresponding to the mean

and variance vectors of the inference distribution qðz j
xÞ with size L, plus a third non-trainable layer which

performs the sampling.

The structure of the decoder is the same as the structure of

the GAN generator.

A.3 SVAE structure

Split-VAE (SVAE) [11] is a simple architectural variation

of a traditional VAE where the output x̂ is computed as a

weighted sum

x̂ ¼ r� x̂1 þ ð1� rÞ � x̂2

of two generated images x̂1; x̂2, and a learned composi-

tional map r. The splitting structure facilitate the synthesis

of uncorrelated latent features, usually permitting to work

with latent spaces of higher dimension.

For the implementation of the encoder and the decoder

we adopted a ResNet-like architecture derived from [37]

that we already used in previous works [31, 34]. The basic

component, used both for encoding and decoding is a

Scale-block, described in Fig. 16.

Encoder and decoder are essentially alternations of

ScaleBlocks and downsampling/upsampling layers, as

described in Fig. 17.

B Labels for the support set

In this section we give the list of labels for elements in the

support set that we used for our experiments. The precise

set is not very relevant; other choices driven by the

methodology described in Sect. 5.3 give similar results.

Fig. 16 Scale Block: a Scale Block is a sequence of Residual Blocks

intertwined with residual connections. A Residual Block alternates

BatchNormalization layers, nonlinear units and convolutions

Fig. 17 Encoder: the input is progressively downsampled via

convolutions, preceded by Scale Blocks. At the final scale, a global

average pooling layer extract features that are further processed via

dense layers to compute mean and variance for latent variables.

Decoder: the decoder is essentially symmetric. A SVAE only differs

in the final layer (circled in the picture): instead of directly producing

x̂, it produces two images x̂1 and x̂2 and a compositional map r,
defining x̂ ¼ r� x̂1 þ ð1� rÞ � x̂2
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Due to memory limitations, we have been forced to

restrict the investigation to the first 70000 images in the

CelebA dataset. This is the full list (150 elements):

[30, 58, 298, 702, 842, 873, 1779, 1809, 1844, 2590,

2719, 3888, 4114, 4223, 4550, 5659, 5718, 6058, 6108,

6128, 6175, 6244, 6705, 6815, 7499, 7679, 8225, 9457,

11254, 11282, 12367, 13077, 13371, 13993, 14193, 15390,

15711, 15817, 16505, 17186, 17458, 18250, 18283, 18582,

19080, 19175, 19612, 22505, 22633, 23173, 23199, 23308,

23511, 24231, 26431, 27169, 28270, 28401, 28433, 29453,

30248, 30269, 30619, 31741, 31795, 31836, 31978, 32272,

32770, 32828, 33332, 33613, 33669, 34024, 35804, 35823,

35882, 35944, 36483, 36926, 37374, 37534, 37538, 37572,

37682, 38194, 38483, 38677, 39232, 39267, 39424, 39901,

40405, 41464, 42969, 43035, 43199, 44054, 44252, 44589,

44798, 45930, 46259, 46693, 48128, 48786, 48839, 49498,

50345, 52454, 52516, 52673, 52753, 52834, 53071, 53308,

54937, 56128, 56492, 56693, 57844, 57927, 57942, 58020,

58089, 58162, 58389, 58947, 60359, 61004, 61180, 61374,

61495, 61530, 61794, 61878, 63535, 63891, 64328, 64342,

64663, 65041, 66277, 66321, 66663, 68027, 68753, 69274,

69750, 69936]

As it is clear from Fig. 18 some images in the support

set are a bit pathological: extreme poses, frequent use of

accessories like hats and eyeglasses, strange illumination,

etc. So the support set also provides a good test-bench to

check (through inversion) the robustness and diversifica-

tion of the generative model.

In the github repository we also provide a version of the

Support Set with people without hats. If required, a more

‘‘comformist’’ Support Set can be easily derived by

reducing the threshold constraint as in Sect. 5.3.
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Università di Bologna within the CRUI-CARE Agreement.

Data Availability The training datasets can be found at CelebA-

dataset and CelebAHQ-dataset The code relative to this work is

available on Github in the following repository: https://github.com/

asperti/We_love_latent_space. We also provide pre-trained weights

that can be downloaded using suitable facilities.

Declarations

Conflict of interest On behalf of all authors, the corresponding author

states that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Bengio Y, Courville AC, Vincent P (2013) Representation

learning: A review and new perspectives. IEEE Trans Pattern

Anal Mach Intell 35(8):1798–1828. https://doi.org/10.1109/

TPAMI.2013.50

2. Kim H, Mnih A (2018) Disentangling by factorising. In: Pro-

ceedings of the 35th International conference on machine learn-
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