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THE SHORT-TERM RATIONAL LANCZOS METHOD AND
APPLICATIONS\ast 

DAVIDE PALITTA\dagger , STEFANO POZZA\ddagger , AND VALERIA SIMONCINI\S 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . Rational Krylov subspaces have become a reference tool in dimension reduction pro-
cedures for several application problems. When data matrices are symmetric, a short-term recurrence
can be used to generate an associated orthonormal basis. In the past this procedure was abandoned
because it requires twice the number of linear system solves per iteration compared with the classical
long-term method. We propose an implementation that allows one to obtain the rational subspace
reduced matrices at lower overall computational costs than proposed in the literature by also con-
veniently combining the two system solves. Several applications are discussed where the short-term
recurrence feature can be exploited to avoid storing the whole orthonormal basis. We illustrate the
advantages of the proposed procedure with several examples.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . rational Krylov, rational Lanczos, short-term recurrence

\bfM \bfS \bfC \bfc \bfo \bfd \bfe \bfs . 65F30, 15B57, 41A20
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1. Introduction. Given a symmetric matrix A \in \BbbR n\times n and a unit norm vector
v \in \BbbR n, we are interested in analyzing the algebraic recurrence that generates the
rational Krylov subspace

(1.1) \scrK m(A, v, \bfitxi m) = span

\left\{   v, (I  - \xi  - 1
1 A) - 1v, . . . ,

m - 1\prod 
j=1

(I  - \xi  - 1
j A) - 1v

\right\}   ,

and in the applicability of the computed quantities; here \bfitxi m = [\xi 1, . . . , \xi m - 1] with
\xi i \not = 0 are such that I  - \xi  - 1

i A is nonsingular for i = 1, . . . ,m  - 1. In the considered
applications A is definite (either positive or negative), for which strong theoretical
arguments for the selection of the \xi i have been discussed; see [23, 34] and references
therein. In our context, the corresponding theoretical setting suggests that the eigen-
values of A and \xi i have opposite signs, a hypothesis that we will assume throughout.
By relying on efficient sparse solvers for linear systems, rational Krylov subspaces
have become a major tool in a variety of application problems, including eigenvalue
approximation, dynamical system reduction, matrix equation solution, and matrix
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function and bilinear form evaluations [6, 21, 22, 28, 32, 33, 51]. An orthonormal
basis \{ q1, . . . , qm\} for \scrK m(A, v, \bfitxi m) can be determined by using the Gram--Schmidt
procedure as q1 = v and

\^qj+1 :=
\bigl( 
I  - \xi  - 1

j A
\bigr)  - 1

qj , hj+1,jqj+1 = \^qj+1  - Qjhj ,

where hj = QT
j \^qj+1, Qj = [q1, . . . , qj ], and hj+1,j is the normalization factor for qj+1

for j = 1, . . . ,m [51, eq. (4.15)]. This can be viewed as a rational variant of the
Arnoldi iteration. The parameters (or shifts) \bfitxi m = [\xi 1, . . . , \xi m - 1] can be computed
a priori or determined adaptively as the space grows. The vector hj contains the
orthogonalization coefficients so that Qj has orthonormal columns for j = 1, . . . ,m.

For A symmetric, in [18] a short-term recurrence was introduced to generate an
orthonormal basis of rational functions associated with \scrK m(A, v, \bfitxi m), from which a
short-term recurrence can be derived for the basis \{ q1, . . . , qm\} [33].

The short-term recurrence yielding an orthonormal basis of the polynomial Krylov
subspace generated by a symmetric A was introduced by Lanczos [40], and it is thus
referred to as the Lanczos iteration. This recurrence allows one to store a few n-
dimensional vectors, leading to major savings in various approximation problems
where the whole basis is otherwise not needed. Thanks to the work in [18, 33],
similar advantages can be envisioned in the rational case. G\"uttel in [33, p. 46] says:

``Note that in each iteration of Algorithm 2 two linear systems with
I  - A/\xi j need to be solved [...]. Hence, this algorithm is in general
not competitive with the rational Arnoldi algorithm if the poles \xi j
vary often. Moreover, we will make explicit use of the orthogonal-
ity of the rational Krylov basis Vm+1 when computing Rayleigh--Ritz
approximations for f(A)b (see Chapter 6). In this case full orthogo-
nalization of Vm+1 is required anyway and one cannot take advantage
of the short recurrence.""

In spite of the elegant derivation, these considerations led G\"uttel to discard the short-
term iteration in his application setting.

We claim that in spite of the extra cost per iteration, the rational short-term
recurrence does provide an appealing framework for a variety of approximation prob-
lems. Our contribution is two-fold. First, we propose a new implementation of the
short-term recurrence that (i) alleviates the computational costs associated with the
two solves by combining them into a single linear system solve with multiple right-
hand sides; (ii) derives the entries of the reduced matrix Jm := QT

mAQm as the
iterations proceed, without using Qm or explicitly solving m\times m linear systems. Sec-
ond, we illustrate the advantages of the obtained implementation in the numerical
treatment of several application problems that do not require the whole basis ma-
trix Qm = [q1, . . . , qm]; these include the approximation of quadratic and bilinear
forms in general, and quantities of interest in control, such as the estimation of the
\scrH 2-norm of (parametric) linear time-invariant systems and of the optimal feedback
control function.We will refer to this implementation as the Qm-less computation.

We also start a discussion on the behavior of the obtained recurrence in finite
precision arithmetic. Our matrix relations and experimental evidence seem to suggest
that the short-term iteration is affected by round-off error accumulations similar to
those of the classical Lanczos method. A deeper analysis of this crucial aspect deserves
dedicated research, which will be postponed until future work.

The synopsis of this paper is as follows. In section 2 we revisit the rational Lanc-
zos iteration. An efficient, basis-free procedure to compute the matrix Jm = QT

mAQm
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SHORT-TERM RATIONAL LANCZOS A2845

is derived in section 2.1, while in section 2.2 the novel implementation of the rational
Lanczos method is illustrated. A panel of applications where the rational Lanczos
method can be successfully employed is presented in section 3. These include nu-
merical approximations of quadratic and bilinear forms (section 3.1), matrix function
trace estimation (section 3.2), \scrH 2-norm computation for linear time-invariant (LTI)
systems (section 3.3), and linear-quadratic regulator (LQR) feedback control approx-
imations (section 3.4). In section 4 some preliminary remarks on the behavior of the
rational Lanczos method in finite precision arithmetic are reported. Our conclusions
are given in section 5, while in the appendix the block rational Lanczos algorithm is
given.

2. The short-term rational Krylov iteration. Based on the thorough analy-
sis of orthogonal rational functions in [13], the authors of [18, Thm. 4.2] developed
a three-term recurrence relation to generate a sequence of orthogonal rational func-
tions associated with the rational Krylov subspace (1.1); see also [18]. This elegant
construction was further developed in [33, section 5.2], leading to the following vector
recurrence for j \geq 1:

(2.1) \beta j

\bigl( 
I  - \xi  - 1

j A
\bigr) 
qj+1 = Aqj  - \alpha j

\bigl( 
I  - \xi  - 1

j - 1A
\bigr) 
qj  - \beta j - 1

\bigl( 
I  - \xi  - 1

j - 2A
\bigr) 
qj - 1,

where, with the usual convention that 1/\infty = 0, \xi  - 1 := \infty , \xi 0 := \infty , \beta 0 = 0, q0 = 0,
and q1 = v/\| v\| . By setting

r := (I - \xi  - 1
j A) - 1(Aqj+\beta j - 1\xi 

 - 1
j - 2Aqj - 1) - \beta j - 1qj - 1, s := (I - \xi  - 1

j A) - 1(I - \xi  - 1
j - 1A)qj ,

the coefficients \alpha j and \beta j are computed as \alpha j = (rT qj)/(s
T qj) and \beta j = \| r  - \alpha js\| .

A simple rearrangement of the terms leads to the following more compact notation:

A[qj - 1, qj , qj+1]

\left[   
\beta j - 1

\xi j - 2
\alpha j

\xi j - 1
+ 1

\beta j

\xi j

\right]   = [qj - 1, qj , qj+1]

\left[  \beta j - 1

\alpha j

\beta j

\right]  ,

which, after m iterations, gives the Arnoldi-like relation

(2.2) AQm+1Km = Qm+1Hm, with Km = Im +D - 1
m Hm \in \BbbR (m+1)\times m,

where Im is the (m+ 1)\times m identity matrix and Dm = diag(\xi 0, . . . , \xi m). Hence

Km =

\left[                 

1 0

\beta 1
\xi 1

1+\alpha 2
\xi 1

\beta 2
\xi 1

\beta 2
\xi 2

1+\alpha 3
\xi 2

. . .

. . .
. . . \beta m - 1

\xi m - 2

\beta m - 1

\xi m - 1
1+ \alpha m

\xi m - 1

\beta m
\xi m

\right]                 
, Hm =

\left[              

\alpha 1 \beta 1

\beta 1 \alpha 2 \beta 2

\beta 2 \alpha 3

. . .

. . .
. . . \beta m - 1

\beta m - 1 \alpha m

\beta m

\right]              
.

The relation in (2.2) can also be written as

(2.3) AQmKm = QmHm + \beta m

\bigl( 
I  - \xi  - 1

m A
\bigr) 
qm+1e

T
m,

with Km and Hm the leading m\times m upper parts of Km and Hm, respectively. Here
and in the following, ej denotes the jth column of the identity matrix, whose dimen-
sion is clear from the context. Hence, we resume the standard form for the rational
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Krylov iteration [51]. This means that in exact arithmetic the rational Lanczos and
rational Arnoldi recurrences compute the same basis, provided the same set of shifts
is employed in the basis construction.

Thanks to the irreducibility of Hm, it follows from (2.3) that if the matrix Km

is singular, then [Qm, (I  - \xi  - 1
m A)qm+1] is not full rank, which occurs if and only if

the subspace \scrK m(A, v, \bfitxi m) is A-invariant, i.e., A\scrK m(A, v, \bfitxi m) = \scrK m(A, v, \bfitxi m). In the
A-invariant case we have a lucky termination of the algorithm. Hereafter, we always
assume Km to be invertible. As for the standard Lanczos procedure, the matrix
Jm = QT

mAQm represents the projection and restriction of A onto the range space of
Qm. However, while in the (standard) Arnoldi process this matrix is tridiagonal, the
matrix Jm is generally full. A detailed analysis of the structure and decay properties
of the entries of Jm can be found in [49]; see also [50]. The matrix Jm appears in
projection methods for solving problems such as linear and quadratic matrix equations
and matrix functions evaluations. Classical implementations of the rational Lanczos
recurrence rely on the whole matrix Qm. In the following we show that this can be
avoided, leading to memory savings in a variety of application problems.

2.1. On the computation of \bfitJ \bfitj = \bfitQ \bfitT 
\bfitj \bfitA \bfitQ \bfitj . In this section we derive a

recurrence for computing the small dimensional matrix Jj = QT
j AQj without using

Qj or explicitly solving small size linear systems with Kj at each iteration j.
Setting Jj+1 = QT

j+1AQj+1 and multiplying (2.3) byQT
j+1 from the left, we obtain

(2.4) Jj+1Kj = Hj .

Considering the first j rows we can write JjKj + wje
T
j = Hj with wj = QT

j Aqj+1
\beta j

\xi j
,

that is, except for the last column, the matrix JjKj is tridiagonal, and

(2.5) Jj = HjK
 - 1
j  - wje

T
j K

 - 1
j .

To get a Qj-less computation of Jj we need to obtain a different expression for wj .
Setting u = QT

j Aqj+1 and exploiting symmetry, from (2.4) we have

(2.6)

\biggl[ 
Jj u
uT \eta 

\biggr] \biggl[ 
I

\beta j/\xi je
T
j K

 - 1
j

\biggr] 
= HjK

 - 1
j ,

with wj = u\beta j/\xi j . For the last row it holds that uT = eTj+1HjK
 - 1
j  - \eta \beta j/\xi je

T
j K

 - 1
j ,

which gives the sought-after expression for wj . Summarizing, at step j + 1 we can
completely define Jj without storing the whole Qj . In particular, its last column is
given by

Jjej =HjK
 - 1
j ej  - wje

T
j K

 - 1
j ej

=HjK
 - 1
j ej  - 

\bigl( 
K - T

j HT
j ej+1  - K - T

j ej\eta \beta j/\xi j
\bigr) 
\beta j/\xi je

T
j K

 - 1
j ej

=HjK
 - 1
j ej  - K - T

j ej (\xi j  - \eta )
\beta 2
j

\xi 2j

\bigl( 
eTj K

 - 1
j ej

\bigr) 
.(2.7)

The most expensive steps in (2.7) are the solution of the linear systems with Kj and
KT

j . The tridiagonal structure of these matrices allows us to derive a recurrence for
the two solution vectors as the iterations proceed, making the overall computation
cheaper than explicitly solving the linear systems from scratch at each iteration j.
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SHORT-TERM RATIONAL LANCZOS A2847

Lemma 2.1. With the previous notation, for j = 1, . . . ,m the solutions (yj , tj) to
the systems Kjy = ej and KT

j t = ej can be obtained via the following recurrences:

(2.8) yj =
1

\omega j

\biggl( 
ej  - 

\beta j - 1

\xi j - 2

\biggl[ 
yj - 1

0

\biggr] \biggr) 
, tj =

1

\omega j

\biggl( 
ej  - 

\beta j - 1

\xi j - 1

\biggl[ 
tj - 1

0

\biggr] \biggr) 
, j \geq 2,

with y1 = 1 and t1 = 1, where \omega j \in \BbbR is given by the following recursive formula:

(2.9) \omega 1 = 1, \omega 2 =
\alpha 2

\xi 1
+ 1, \omega j =

\alpha j

\xi j - 1
+ 1 - 

\beta 2
j - 1

\xi j - 1\xi j - 2\omega j - 1
, j \geq 3.

Proof. We focus on the computation of yj = K - 1
j ej . The computation of tj =

K - T
j ej is analogous. Under the assumption that \scrK j(A, v, \bfitxi j) is not A-invariant, Ki

is a nonsingular matrix for i = 1, . . . , j. Hence the LU factorization Kj = LjUj with

no pivoting exists, yj = U - 1
j L - 1

j ej , and the factors are given by

Lj =

\left[         

1
\ell 2 1

\ell 3
. . .

. . .
. . .

\ell j 1

\right]         
\in \BbbR j\times j , Uj =

\left[         

\omega 1 0
\omega 2 \beta 2/\xi 1

. . .
. . .

. . . \beta j - 1/\xi j - 2

\omega j

\right]         
\in \BbbR j\times j .

Thanks to the structure of Lj , x = L - 1
j ej = ej . To solve Ujy = ej we first determine

the diagonal elements of Uj . Direct computation gives the recursion in (2.9), that
is, the computation of \omega j only requires information available in the current subspace.
Moreover, if yj - 1 \in \BbbR j - 1 is such that Kj - 1yj - 1 = ej - 1, the solution yj to Ujy = ej
can be derived as in (2.8). Analogously, the solution tj to KT

j t = ej is obtained as

in (2.8), where tj - 1 \in \BbbR j - 1 is such that KT
j - 1tj - 1 = ej - 1.

Theorem 2.2. With the notation and results of Lemma 2.1, at the jth iteration
the last column (or row) of Jj = QT

j AQj is given by

Jjej = \widehat yj  - \beta 2
j

\xi 2j

\xi j  - \eta 

\omega j
tj ,

where tj is defined as in Lemma 2.1 while \widehat yj := Hjyj satisfies

\widehat y1 = \alpha 1, \widehat yj = \Biggl[ 
 - \widehat yj - 1

\beta j - 1

\xi j - 2\omega j

\beta j - 1e
T
j - 1yj +

\alpha j

\omega j

\Biggr] 
+

\beta j - 1

\omega j
ej - 1 for j > 1.

Proof. By plugging the expressions of yj = K - 1
j ej and tj = K - T

j ej given in
Lemma 2.1 into (2.7), we get

Jjej =HjK
 - 1
j ej  - K - T

j ej(\xi j  - \eta )
\beta 2
j

\xi 2j

\bigl( 
eTj K

 - 1
j ej

\bigr) 
= Hjyj  - 

\beta 2
j

\xi 2j

\xi j  - \eta 

\omega j
tj .

Using Lemma 2.1 and the tridiagonal structure of Hj we can write \widehat yj = Hjyj as

\widehat yj = \Biggl[ 
 - Hj - 1yj - 1

\beta j - 1

\xi j - 2\omega j

\beta j - 1e
T
j - 1yj +

\alpha j

\omega j

\Biggr] 
+

\beta j - 1

\omega j
ej - 1 =

\Biggl[ 
 - \widehat yj - 1

\beta j - 1

\xi j - 2\omega j

\beta j - 1e
T
j - 1yj +

\alpha j

\omega j

\Biggr] 
+

\beta j - 1

\omega j
ej - 1.
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Algorithm 2.1. Qm-less rational Lanczos.

input : A \in \BbbR n\times n, v \in \BbbR n, m \in \BbbN , m > 0, \bfitxi m = [\xi 1, . . . , \xi m].
output: Jm \in \BbbR m\times m s.t. Jm = QT

mAQm, where Range(Qm) = \scrK m(A, v, \bfitxi m).

\bfone Set \widehat q = v/\| v\| , \xi  - 1 := \infty , \xi 0 := \infty , \beta 0 = 0, \=q = 0
\bftwo for j = 1, . . . ,m do
\bfthree Set \widetilde r = A\widehat q  - \beta j - 1(I  - A/\xi j - 2)\=q and \widetilde s = (I  - A/\xi j - 1)\widehat q
\bffour Solve (I  - 1

\xi j
A)[r, s] = [\widetilde r, \widetilde s]

\bffive Compute \alpha j =
rT \widehat q
sT \widehat q

\bfsix Set q = r  - \alpha js
\bfseven Set \beta j = \| q\| , \=q = \widehat q, \widehat q = q/\beta j

\bfeight if j=1 then
\bfnine Set \omega 1 = y1 = t1 = 1 and \widehat y1 = \alpha 1

\bfone \bfzero else
\bfone \bfone Set \omega j = \alpha j/\xi j - 1 + 1 - \beta 2

j - 1/(\xi j - 1\xi j - 2\omega j - 1)

\bfone \bftwo Set yj =

\Biggl[ 
 - yj - 1

\beta j - 1

\xi j - 2\omega j
1
\omega j

\Biggr] 
, tj =

\Biggl[ 
 - tj - 1

\beta j - 1

\xi j - 1\omega j
1
\omega j

\Biggr] 
, and \widehat yj = \Biggl[ 

 - \widehat yj - 1
\beta j - 1

\xi j - 2\omega j

\beta j - 1e
T
j - 1yj +

\alpha j

\omega j

\Biggr] 
+

\beta j - 1

\omega j
ej - 1

\bfone \bfthree Compute \eta = \widehat qTA\widehat q
\bfone \bffour Set J1:j,j = \widehat yj  - \beta 2

j

\xi 2
\xi j - \eta 
\omega j

tj and Jj,1:j = JT
1:j,j

Theorem 2.2 also shows that by storing the low dimensional vectors yj - 1, \widehat yj - 1,
and tj - 1, along with some additional scalar quantities, the allocation of the matrices
Hj and Kj can be avoided.

The following proposition shows that the computation of K - 1
j ej and K - T

j ej in
Lemma 2.1 by means of the LU factorization is backward stable. This result ensures
that using Gaussian elimination does not introduce any instability in the update of
Jj in Theorem 2.2.

Proposition 2.3. Assume that the elements \alpha j and \beta j of the matrix Kj are com-
puted exactly. Moreover, let the matrix A be symmetric positive (negative) definite,
and the shifts \xi j be negative (positive). If the unit roundoff is small enough, then the
solutions of the systems Kjy = ej and KT

j t = ej computed by the recurrences (2.8)
and (2.9) are backward stable.

The proof is a direct consequence of the stability analysis in Proposition 4.6.

2.2. The \bfitQ \bfitm -less procedure. The implementation of the proposed memory
saving method is summarized in Algorithm 2.1. Step 4 relies on the fact that solving a
single linear system with p right-hand sides is more efficient than sequentially solving
p systems with the same coefficient matrix. Indeed, assuming for instance, that a
sparse direct solver is used, the symbolic analysis phase and the factorization step
can be performed once for all the considered right-hand sides. The same gains might
be obtained in the sequential solution of the two systems if a very fine tuning of the
adopted linear solver is possible. Nevertheless, also in the latter scenario, the block
solution strategy is still advantageous thanks to a better computer handling of the
dense kernels involved in the solution process. Moreover, the coefficient factors need
to be accessed only once avoiding an increment in the storage requirements.
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In Algorithm 2.1 we suppose that the shifts are given. Alternatively, dynamic
shift computation strategies can be easily incorporated in the algorithm; see, e.g.,
[23, 24, 34] for different shift selection strategies. Since A is symmetric, all shifts can
be taken to be real.

Algorithm 2.1 should be equipped with a stopping criterion that must not involve
the whole basis Qm. Such a stopping criterion depends on the application of interest,
and different instances are discussed in section 3.

Remark 2.4. Algorithm 2.1 can be generalized by replacing the starting vector v
with a full column rank matrix V \in \BbbR n\times p, p > 1. This generates the block rational
Krylov subspace \scrK m(A, V, \bfitxi m) = range([V, (I - \xi  - 1

1 A) - 1V, . . . ,
\prod m - 1

j=1 (I - \xi  - 1
j A) - 1V ]).

In this construction, many of the scalar quantities involved in Algorithm 2.1 are re-
placed by p \times p matrices. Also in this case, the matrix Jm = QT

mAQm \in \BbbR mp\times mp

can still be computed Qm-less at low computational cost. We include the correspond-
ing implementation as Algorithm A.1 in the appendix. Analogously to the matrix
form (2.3), the recurrences in Algorithm A.1 can be written as

(2.10) AQmKm = QmHm +
\bigl( 
I  - \xi  - 1

m A
\bigr) \widehat Qm+1\beta mET

m,

where \widehat Qm+1 \in \BbbR n\times p, Qm = [ \widehat Q1, . . . , \widehat Qm] \in \BbbR n\times mp, Km, Hm \in \BbbR mp\times mp are block
tridiagonal matrices with (p\times p)-size blocks, \beta m \in \BbbR p\times p, and Em = em\otimes Ip \in \BbbR mp\times p.
We also have the block counterpart of (2.5), that is,

(2.11) Jm = HmK - 1
m  - WmET

mK - 1
m , Wm = (\xi m) - 1QT

mA \widehat Qm+1\beta m.

3. Applications. In this section we illustrate the applicability of the Qm-less
rational Krylov algorithm to a variety of problems. All numerical results have been
obtained by running MATLAB R2017b [42] on a standard node1 of the Linux cluster
mechthild hosted at the Max Planck Institute for Dynamics of Complex Technical
Systems in Magdeburg, Germany.

3.1. Quadratic and bilinear forms. Consider a function f defined on the
spectrum of the symmetric matrix A, and vectors u, v. The approximation of the
bilinear form uT f(A) v (or quadratic form for u = v) arises in many applications in-
cluding network analysis [25], regularization problems [26], electronic structure calcu-
lations [52], solution of PDEs [39], Gaussian processes [48], and many others [4, 9, 29].
Bilinear forms can also be used to estimate the trace of f(A); see section 3.2.

Given a large and sparse A, the use of (polynomial) Krylov subspace methods
for the approximation of uT f(A) v is well established and grounded in a theoreti-
cal framework comprising orthogonal polynomials and Gauss quadrature [29]. Under
the assumptions that u = v and \| v\| = 1, the mth Lanczos iteration produces an
m \times m tridiagonal matrix Tm (known as the Jacobi matrix) giving the approxima-
tion vT f(A) v \approx eT1 f(Tm)e1. Such an approximation relies on the so-called moment
matching property, that is, vTAj v = eT1 (Tm)je1, j = 0, . . . , 2m  - 1, or, equivalently,
vT p(A) v = eT1 p(Tm)e1 for every polynomial p(x) of degree at most 2m  - 1. Such
a property is connected with the Gauss quadrature approximation for a Riemann--
Stieltjes integral determined by A and v; see, e.g., [29, 41].

An analogous result can be given for rational Krylov subspaces. Let Qm and Jm
be the matrices associated with the rational Krylov subspace \scrK m(A, v, \bfitxi m). Given

1CPU: 2x Intel Xeon Skylake Silver 4110 @ 2.1 GHz, 8 cores per CPU. RAM: 192 GB DDR4
ECC. See also https://www.mpi-magdeburg.mpg.de/cluster/mechthild.
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q(x) =
\prod m - 1

j=1 (1 - x/\xi j) and a polynomial p = p(x) of degree at most m - 1, it holds
that

(3.1) p(A)q(A) - 1 v = Qmp(Jm)q(Jm) - 1e1 \in \scrK m(A, v, \bfitxi m);

see, e.g., [22, Lemma 3.1], [33, Lemma 4.6]. Left multiplication by QmQT
mA yields

QmQT
m Ap(A)q(A) - 1 v = Qm Jm p(Jm)q(Jm) - 1e1, and, hence, by linearity

(3.2) QmQT
mpm(A)q(A) - 1 v = Qmpm(Jm)q(Jm) - 1e1

for every polynomial pm of degree at most m. The following proposition extends
the moment matching property to the rational case by using ideas borrowed from
Vorobjev's moment problem (see, e.g., [41, section 3.7.1]). The result can also be
obtained as an application of the results in [28, Thm. 2]. However, our approach
provides a short alternative proof that, to the best of our knowledge, has not yet
appeared in the literature.

Proposition 3.1. With the previous notation for \scrK m(A, v, \bfitxi m), Qm, and Jm, let

q(x) =
\prod m - 1

j=1 (1 - x/\xi j). Then, for every polynomial p(x) of degree at most 2m - 1,

vT p(A)q(A) - 2 v = eT1 p(Jm)q(Jm) - 2e1.

Proof. For every pm - 1(x) of degree at most m - 1, (3.1) gives

vT pm - 1(A)q(A) - 1 v = eT1 pm - 1(Jm)q(Jm) - 1e1.

Consider a polynomial pm of degree at most m. Given that (QmQT
m)2 = QmQT

m,
(3.2) becomes QmQT

m

\bigl( 
Qmpm(Jm)q(Jm) - 1e1  - pm(A)q(A) - 1 v

\bigr) 
= 0, implying that

the vector Qmpm(Jm)q(Jm) - 1e1  - pm(A)q(A) - 1 v is orthogonal to \scrK m(A, v, \bfitxi m).
Therefore, for any polynomial pm - 1(x) of degree at most m - 1 we get

vT pm - 1(A)q(A) - 1
\bigl( 
Qmpm(Jm)q(Jm) - 1e1  - pm(A)q(A) - 1 v

\bigr) 
= 0

(where we have used the symmetry of A), that is,

vT pm - 1(A)q(A) - 1Qmpm(Jm)q(Jm) - 1e1 = vT pm - 1(A)pm(A)(q(A) - 1)2 v.

This equality concludes the proof since by (3.1) it holds that vT pm - 1(A)q(A) - 1 =
eT1 pm - 1(Jm)q(Jm) - 1QT

m.

Proposition 3.1 holds for every orthogonalization process of a rational Krylov sub-
space, i.e., for every orthogonal basis. As a consequence, it is not related to short re-
currences. We also remark that similar properties have been derived in [50, Thm. 3.1]
for a different kind of rational Krylov subspaces. Extensions to the nonsymmetric
case have also been studied; see, e.g., [19, 28] among many others.

Thanks to Algorithm 2.1, we can compute the matrix Jm by means of the Qm-less
short-term recurrence rational method, that is, we can compute the approximation

(3.3) eT1 f(Jm)e1 \approx vT f(A) v.

The approximation error can be characterized by adapting the results in [17] to our
case. Indeed, since A is symmetric we can interpret the bilinear form as a Riemann--
Stieltjes integral and the approximant (3.3) as a rational Gauss quadrature, that is,

vT f(A)v =

\int 
f(\lambda )d\mu (\lambda ) \approx 

m\sum 
j=1

f(\lambda j)\theta j = eT1 f(Jm)e1,
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where \mu (\lambda ) is a measure depending on the spectrum and the eigenvectors of A, and the
\lambda j 's, \theta j 's are the eigenvalues and eigenvectors of Jm, respectively (see the results in [29,
Chapter 7], which can be easily adapted to this rational case). In this framework, the
approximation (3.3) is a rational quadrature rule. Therefore, by [17, eq. (4)],

(3.4) | eT1 f(Jm)e1  - vT f(A) v| \leq 2\| v\| 2 min
deg(p)\leq 2m - 1

\bigm| \bigm| vT \bigl( 
f(A) - p(A)q(A) - 2

\bigr) 
v
\bigm| \bigm| ,

where we used the notation of Proposition 3.1 (cf. [33, Thm. 4.10] related to a similar
but different problem).

The block case can be treated analogously. Consider the n\times p matrix V and the
n\times n symmetric matrix A. Then using Algorithm A.1 we get the blockmp\times mpmatrix
Jm and, hence, by setting ET

1 = [Ip, 0, . . . , 0] \in \BbbR p\times mp we obtain the approximation

(3.5) ET
1 f(Jm)E1 \approx V T f(A)V.

Algorithm 2.1 can also approximate a bilinear form uT f(A) v with u \not = v. We
describe various alternative strategies. The first one is to rewrite the problem as

uT f(A) v =
1

4

\bigl( 
(u+ v)T f(A) (u+ v) - (u - v)T f(A)(u - v)

\bigr) 
,

and run Algorithm 2.1 twice [29, section 7.3]. Such a strategy maintains the same
exactness of Proposition 3.1 at twice the cost. The second one considers the vector
um = QT

m u (computed on the fly) and the approximation

(3.6) uT
mf(Jm)e1 \approx uT f(A)v.

This approximant is exact for rational functions whose numerator has a degree up to
m  - 1 and denominator q from (3.1). The third possibility uses (3.5) applied to the
2\times 2 block bilinear form

[ u v ]T f(A) [ u v ] =

\biggl[ 
uT f(A)u uT f(A)v
vT f(A)u vT f(A)v

\biggr] 
,

whose (1,2) position yields the sought-after quantity; see, e.g., [39, eqs. (6)--(7)]. Fi-
nally, another possibility is to consider the rational variant of the nonsymmetric Lanc-
zos algorithm in [60].

Stopping criteria. For a general function f a cheap stopping criterion at the mth
iteration is given by the difference between two iterates

| uT
mf(Jm)e1  - uT

m - sf(Jm - s)e1| 

for some fixed index s satisfying 1 \leq s < m. This criterion relies on the idea that the
approximation error decreases as the iterations proceed. For the special case of the
extended Krylov subspace and Laplace--Stieltjes functions the convergence to f(A)v
is indeed monotonic [53], hence the criterion is reliable. This simple criterion can be
further developed following the results in [14].

A ``residual-based"" criterion can be obtained if the function f is such that y(\tau ) =
f(\tau A)v is the solution to the differential equation y(d) = Ay, with y(d) the dth
derivative of y, d \in \BbbN , and specified initial conditions for \tau = 0. Indeed, let
ym(\tau ) = Qmf(\tau Jm)e1 be the approximant derived by (3.1) and define the differential
equation residual

(3.7) rm(\tau ) = Aym(\tau ) - y(d)m (\tau ).
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Then the norm of rm(1) is commonly used as stopping criterion for Krylov subspace
approximations to y(1); see, e.g., [11, 20, 38]. Computing \| rm(1)\| would require
storing Qm; however, it is possible to use an upper bound with quantities available
at the current step. Indeed, using (2.3), (2.5), and Jmf(\tau Jm)e1 = (f(\tau Jm))(d)e1, we
get

rm(\tau ) =Aym(\tau ) - y(d)m (\tau ) = AQmf(\tau Jm)e1  - Qm(f(\tau Jm))(d)e1

=
\bigl( 
QmHm + \beta m(I  - \xi  - 1

m A)qm+1e
T
m

\bigr) 
K - 1

m f(\tau Jm)e1  - Qm(f(\tau Jm))(d)e1

=QmJmf(\tau Jm)e1 +QmwmeTmK - 1
m f(\tau Jm)e1

+ \beta m(I  - \xi  - 1
m A)qm+1e

T
mK - 1

m f(\tau Jm)e1  - Qm(f(\tau Jm))(d)e1

=(I  - QmQT
m)(I  - \xi  - 1

m A)qm+1\beta meTmK - 1
m f(\tau Jm)e1.

Therefore,

(3.8) \| rm(\tau )\| \leq | \beta m| (1 + | \xi  - 1
m | \| A\| ) | eTmK - 1

m f(\tau Jm)e1| ,

and this holds, in particular, for \tau = 1. We recall that tTm = eTmK - 1
m is computed

iteratively during the recurrence (see Lemma 2.1), hence the only extra computational
cost is given by the norm and the inner product | tTmf(\tau Jm)e1| . As already mentioned,
the approximant ym is exact for rational functions with a numerator of degree at most
m - 1 and denominator q from (3.1), while (3.3) is exact on a much larger set of rational
functions; cf. (3.1) with Proposition 3.1. Therefore, the previous stopping criterion
may overestimate the error of (3.3), while it is more appropriate in (3.6) where v \not = u.

The previous stopping criteria can be extended to the block case. For the latter
one, we can derive the bound \| Rm(\tau )\| \leq \| \beta m\| (1 + | \xi  - 1

m | \| A\| ) \| ET
mK - 1

m f(\tau Jm)E1\| .
To prove the inequality above, consider the differential equation Y (d) = AY , with
Y (\tau ) = f(\tau A)V , and the approximant Ym(\tau ) = Qmf(\tau Jm)E1. The bound follows
by using the formulas (2.10) and (2.11) and adapting the scalar case arguments seen
above to the block case.

Example 3.2. Let A be the adjacency matrix of a network. For any i \in \{ 1, . . . , n\} 
the quantity (exp(A))ii measures the importance of the ith node with respect to
the network edge structure, the so-called exp-centrality index [25]. We consider the
symmetric normalized adjacency matrices Oregon-1 and ca-GrQc of size 11492 and
5242, respectively, from the SuiteSparse Matrix Collection [16] and the node i with
the largest exp-centrality. Both matrices are very sparse, with, respectively, 4 and 5
nonzero elements per row on average. We are interested in approximating the bilinear
form eTi exp(A - 2I)ei (note that exp(A) = exp(A - 2I) exp(2), with A - 2I negative
definite). As a quality measure, we use the error between the approximation obtained
by the rational Lanczos/Arnoldi methods and the quantity obtained by the MATLAB
function expm.

Figure 3.1 reports the absolute errors for both approximation methods as the
iterations proceed, until the final accuracy is attained after which, not surprisingly,
the full orthogonalization approach shows higher accuracy; see, e.g., Figure 3.1 (right).
See also section 4. The figure also shows the norm of the rational Lanczos residual (3.7)
for \tau = 1 and its estimate (3.8). In Table 3.1, we report the number of iterations and
corresponding CPU times, confirming the similar behavior of the two approaches, in
terms of computational costs. The very limited number of iterations balances the cost
of the extra solves in the Lanczos process with that of the full orthogonalization in
the Arnoldi iteration.
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Fig. 3.1. Example 3.2. Convergence history of the Arnoldi error, together with the rational
Lanczos error, residual norm (3.7) for \tau = 1, and residual estimate (3.8).

Table 3.1
Example 3.2 with s = 1. Number of iterations of the Qm-less rational Lanczos and Arnoldi

methods and corresponding CPU times. Also reported are the dimension and the number of nonzeros
(nnz) of each matrix.

Matrix Size nnz Method It. Time (secs)

ca-GrQc 5242 28980
Qm-less Lanczos 6 0.079
Rat. Arnoldi 6 0.067

Oregon-1 11492 46818
Qm-less Lanczos 8 0.129
Rat. Arnoldi 8 0.130

3.2. The trace of a matrix function. A problem strictly related to that
of approximating a quadratic form is given by the approximation of the trace of a
matrix function, tr(f(A)) =

\sum n
i=1(f(A))ii =

\sum n
i=1 f(\lambda i), where we assume that A

is symmetric with eigenvalues \lambda 1, . . . , \lambda n, and f(\lambda i) is well defined for i = 1, . . . , n.
The approximation of the trace by means of its definition is overly expensive for large
matrices, since it requires estimates for eTi f(A)ei for all i = 1, . . . , n.

A popular strategy is the use of a Monte-Carlo approximation. Let Z be a discrete
random variable with values \{ 1, - 1\} with probability 0.5, and let z be a vector of n
independent samples of Z. Then zT f(A)z is an unbiased estimator for tr(f(A)); see,
e.g., [37]. By exploiting this result, one can generate \ell sample vectors z(k), k = 1, . . . , \ell ,
estimate (z(k))T f(A)z(k) \approx \tau k by means of the procedure from section 3.1, and obtain

(3.9) tr(f(A)) \approx 1

\ell 

\ell \sum 
k=1

\tau k.

Paper [4] analyzes the case f(\lambda ) = \lambda  - 1, with a polynomial Lanczos approach; see
also [44]. The effectiveness of the overall approach for general functions of symmet-
ric matrices has been established in [59]; see also [45] for an improved method for
stochastic trace approximation, and [15] and its references for general randomized
approaches.
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In the past few years probing methods have also emerged as an important al-
ternative, especially in network analysis. These differ from Monte-Carlo approxima-
tions for the selection of the ``probing"" vectors z(k), which are then used to estimate
(z(k))T f(A)z(k) by means, for instance, of Krylov methods; see, e.g., [8, 27, 45].

In all these strategies, a key step is the use of the Lanczos procedure to obtain an
approximation to (z(k))T f(A)z(k); a block method suggests itself. Rational Lanczos
can effectively be used to speed up convergence, in terms of number of iterations,
with respect to polynomial approaches. A disadvantage of the rational approach lies
in the solution of linear systems with the possibly large matrix I  - \xi  - 1

j A, whose cost
depends on the sparsity structure of A.

Applications related to Gaussian processes often require estimating a parameter
\phi by maximizing the so-called log-likelihood function:

(3.10) log(p | \phi ) = 1

2
log det(A(\phi )) - 1

2
xTA(\phi )x - n

2
log(2\pi ),

where the positive definite n\times n matrix A(\phi ) is the inverse of the covariance matrix
parametrized by \phi , and x is a given vector; see, e.g., [59]. Estimating log det(A(\phi ))
constitutes the main computational cost in (3.10). The relation log det(A(\phi )) =
tr log(A(\phi )) allows one to use the stochastic trace estimator in (3.9) to reduce the
overall computational cost. The values \tau k can be obtained by using the block ratio-
nal Lanczos algorithm to approximate the bilinear form BT log(A(\phi ))B, with B =
[z(1), . . . , z(p)].

Example 3.3. We consider the model in [48]; see also [27]. We generate uniformly
distributed random pairs si \in [0, 1]2, i = 1, . . . , n, representing points on the real
plane. A random Gaussian variable is associated with each point si. The model de-
scribes the association between random variables observed at fixed sites in the Euclid-
ean space, thus imposing a neighborhood structure to the points. More precisely, two
points si, sj are associated if and only if the Euclidean distance dij = \| si  - sj\| is
smaller than a given parameter \delta > 0. Such a structure defines a planar graph. We
considered \phi = 20, while the entries of A(\phi ) are defined as follows:

[A(\phi )]ij =

\biggl\{ 
1 + \phi 

\sum n
k=1, k \not =i \gamma ik, i = j,

 - \phi \gamma ij , i \not = j,

with the so-called reciprocal choice [48]

\gamma ij =

\biggl\{ 
1 - dij/\delta , 0 < dij < \delta ,
0 otherwise.

Table 3.2 reports the results obtained with the Qm-less Lanczos and rational Arnoldi
algorithms for different values of n, p, and \delta . The sparsity pattern of A(\phi ) depends
on \delta ; the larger \delta , the denser A(\phi ). In spite of the possible cost increase in system
solves, the rational Lanczos method turns out to be faster than rational Arnoldi for
all the parameters we tested; see Table 3.2. This may be related to an increased cost
of the full orthogonalization step in rational Arnoldi, which seems to suffer the large
rank of the matrix B. Once again, we used as accuracy measure the error between the
computed quantity and the value obtained by means of the MATLAB logm function.

For each iteration of the rational block Lanczos/Arnoldi algorithm, Figure 3.2
displays the error in the trace approximation for the rational block Lanczos/Arnoldi
algorithms as the iterations proceed. The accuracy reached in the last iterations of
the examples agrees with the estimated achievable accuracy of the stochastic strategy
we used; see, e.g., [45]. The algorithms behave almost identically in terms of the error.
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Table 3.2
Example 3.3. Number of iterations of the rational Lanczos/Arnoldi method needed to reach

the maximal achievable accuracy along with the CPU time in seconds. The approximation space
dimension is at most p\cdot (\# It.+1). nnz refers to the number of nonzero elements in the considered
matrices.

Size p \delta nnz Method It. Time (secs)

1 000 20
0.02 2 260

Qm-less Lanczos 6 0.026
Rat. Arnoldi 6 0.063

0.06 11 440
Qm-less Lanczos 7 0.047
Rat. Arnoldi 7 0.094

10 000 200
0.002 11 278

Qm-less Lanczos 5 1.82
Rat. Arnoldi 5 1.99

0.006 21 238
Qm-less Lanczos 10 3.76
Rat. Arnoldi 10 5.96

1 2 3 4 5 6
10

-2

10
-1

10
0

10
1

1 2 3 4 5
10

-3

10
-2

10
-1

10
0

10
1

Fig. 3.2. Example 3.3. Convergence error history of the trace estimation (3.9) obtained at each
step of the rational block Lanczos/Arnoldi methods.

3.3. \bfscrH \bftwo -norm computation. We consider LTI systems of the form

(3.11) \Sigma :

\biggl\{ 
\.x(t) = Ax(t) +Bu(t), x(0) = x0,
y(t) = Cx(t),

where A \in \BbbR n\times n is stable, that is, its spectrum is contained in the left-half open
complex plane \BbbC  - , and B \in \BbbR n\times p, C \in \BbbR q\times n are low rank, i.e., p + q \ll n. The
\scrH 2-norm of \Sigma is defined as follows:

\| \Sigma \| 2\scrH 2
= trace(CQCT ) = trace(BTPB),

where Q, P \in \BbbR n\times n denote the controllability and the observability Gramian, respec-
tively, i.e., Q and P are the solutions of the following Lyapunov equations:

AQ+QAT +BBT = 0, ATP+PA+ CTC = 0;

see, e.g., [3, section 5.5.1]. The \scrH 2-norm gives the maximum amplitude of the system
output resulting from input signals of the LTI system (3.11) with finite energy (see,
e.g., [3, 32]), and thus its estimation is of interest.
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For A of large dimension n, model order reduction (MOR) is used to make the
dynamical system numerically tractable [3], so that the \scrH 2-norm can also be more
cheaply estimated. Given a matrix Qm whose columns span an appropriately chosen
reduction space of dimension much lower than n, in MOR the following smaller system
is introduced:

(3.12) \Sigma m :

\biggl\{ 
\.\widehat x(t) = Jm\widehat x(t) +Bmu(t), \widehat x(0) = QT

mx0, Jm = QT
mAQm,\widehat y(t) = Cm\widehat x(t), Bm = QT

mB, Cm = CQm.

This reduced system is hopefully able to reproduce the main features of the
original large scale setting.2 Rational Krylov subspaces have proven to be partic-
ularly effective for this task [3, 7, 28, 31]. For A symmetric, Algorithm 2.1 pro-
duces the small dimensional matrix Jm, while Bm = QT

mB and Cm = CQm can
be computed incrementally during the iteration, without explicitly storing Qm. Af-
ter these computations, the Qm-less rational Lanczos method can be employed to
cheaply compute \| \Sigma m\| \scrH 2 as an approximation to \| \Sigma \| \scrH 2 . In the following we ap-
proximate \| \Sigma \| \scrH 2 =

\sqrt{} 
trace(BTPB) and we thus focus on the approximation of

the observability Gramian P. The same procedure can be adopted to compute
\| \Sigma \| \scrH 2

=
\sqrt{} 
trace(CQCT ) if the latter formulation is preferred.

The rational Krylov subspace method can also effectively be used for solving the
associated Lyapunov equation; see, e.g., [56]. Given the iteratively generated matrix
Qm for \scrK m(A,CT , \bfitxi ), an approximation to P is sought in the form Pm = QmYmQT

m,
where the reduced matrix Ym is obtained by imposing an orthogonality condition on
the residual matrix Rm = APm + PmA + CTC. In terms of the Euclidean matrix
inner product, this condition can be written as QT

mRmQm = 0. Substituting Pm into
the residual and using the orthogonality of the columns in Qm yields the following
reduced Lyapunov equation:

JmYm + YmJm + E1\bfitgamma \bfitgamma 
TET

1 = 0,

where Jm = QT
mAQm and CT = Q1\bfitgamma for a nonsigular \bfitgamma \in \BbbR q\times q. Hence, the small size

solution Ym can be computed by means of a Schur decomposition based strategy [56].
Using the computed quantities we can write

\| \Sigma \| 2\scrH 2
=trace(BTPB) \approx trace(BTPmB) = trace

\bigl( \bigl( 
BTQm

\bigr) 
Ym

\bigl( 
QT

mB
\bigr) \bigr) 

=: \| \Sigma m\| 2\scrH 2
.

All the required quantities can be computed without ever storing the whole matrix
Qm.

Stopping criterion. For the \scrH 2-norm computation we propose checking the dis-
tance between two subsequent norm approximations, that is, for 1 \leq s \leq m - 1,

| \| \Sigma m\| \scrH 2
 - \| \Sigma m - s\| \scrH 2

| 
\| \Sigma m\| \scrH 2

=

\bigm| \bigm| \bigm| \sqrt{} trace (BT
mYmBm) - 

\sqrt{} 
trace

\bigl( 
BT

m - sYm - sBm - s

\bigr) \bigm| \bigm| \bigm| \sqrt{} 
trace (BT

mYmBm)
.

(3.13)

The scheme presented in this section can be easily adapted to deal with certain
parametric LTI systems like those studied in, e.g., [5], where only the matrices B =
B(\mu ) and C = C(\mu ) affinely depend on a parameter \mu belonging to a given parameter
set \scrD .

2Usually two spaces, range(Qm), range(Wm), can also be considered, so that Jm = WT
mAQm,

Bm = WT
mB, and Cm = CQm. For our problem one reduction space suffices [3].
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Table 3.3
Example 3.4. Results for Qm-less rational Lanczos and rational Arnoldi methods to achieve

the prescribed accuracy. Shown are number of iterations, space dimension, CPU time, and relative
error.

It. dim
\Bigl( 
\scrK m+1( \widetilde A, \widetilde CT , \bfitxi m+1)

\Bigr) 
Time (secs) Rel. err.

Qm-less Lanczos 12 65 0.219 7.13e-9
Rat. Arnoldi 12 65 0.199 7.13e-9

Example 3.4. We consider the two dimensional (2D)Optical Tunable Filter dataset
available in the MOR Wiki repository [58] (see also [36]), giving the following LTI
system:

(3.14) \Sigma :

\biggl\{ 
E \.x(t) = Ax(t) +Bu(t),
y(t) = Cx(t),

with n = 1668, p = 1, and q = 5. The mass matrix E is diagonal and positive definite
so that we can consider the transformed system

(3.15) \widetilde \Sigma :

\Biggl\{ 
\.\widetilde x(t) = \widetilde A\widetilde x(t) + \widetilde Bu(t),

y(t) = \widetilde C\widetilde x(t), \widetilde A = E - 1
2AE - 1

2 , \widetilde B = E - 1
2B\widetilde C = CE - 1

2 , \widetilde x = E
1
2x.

This transformation does not affect the\scrH 2-norm of the system, since \| \widetilde \Sigma \| \scrH 2
= \| \Sigma \| \scrH 2

.

We construct \scrK m( \widetilde A, \widetilde CT , \bfitxi m) for the approximation of \| \widetilde \Sigma m\| \scrH 2
\approx \| \widetilde \Sigma \| \scrH 2

. The iter-
ations are stopped as soon as the relative quantity in (3.13) for s = 1 is smaller
than 10 - 8. Table 3.3 collects the results for both the Qm-less Lanczos and Arnoldi
methods, using the same shifts. Thanks to the moderate dimension of the dataset,
we are also able to explicitly compute the \scrH 2-norm of the full system3 \widetilde \Sigma . Therefore,
Table 3.3 also reports the relative error | \| \widetilde \Sigma \| \scrH 2

 - \| \widetilde \Sigma m\| \scrH 2
| /\| \widetilde \Sigma \| \scrH 2

.
The results in Table 3.3 show a very similar behavior for the Qm-less rational

Lanczos and rational Arnoldi methods. The Lanczos method allows us to store only
three basis blocks, namely 15 vectors of length n, instead of the whole basis as in
the rational Arnoldi method. In terms of CPU time, solving 2q linear systems per
iteration in the Lanczos approach, instead of only q systems in rational Arnoldi, does
not lead to a remarkable increment in the computational efforts.

Example 3.5. We consider yet another dataset from [58], the three dimensional
(3D) Gas Sensor example. The LTI system has the form (3.14) with a diagonal posi-
tive definite mass matrix E, hence the transformed LTI system in (3.15) is employed.
In this example we have n = 66917, p = 1, and q = 28. The large problem dimension
n does not allow for the computation of the \scrH 2-norm of the full system \widetilde \Sigma , hence only
the approximation \| \widetilde \Sigma m\| \scrH 2 is computed. Since p is significantly smaller than q (the

number of columns of B and CT , resp.), we proceed by constructing \scrK m( \widetilde A, \widetilde B, \bfitxi m)

and then we compute \| \widetilde \Sigma m\| 2\scrH 2
= trace( \widetilde C \widetilde Qm

\widetilde CT ). Both methods are stopped as soon
as (3.13) for s = 1 becomes smaller than 10 - 8. Table 3.4 collects the results. Also,
for this example the rational Lanczos and Arnoldi methods perform similarly. This
means that the cost per iteration of the two schemes is rather similar. On the other
hand, for problems where a larger number of iterations is required to converge, the
computational cost of the Arnoldi algorithm may significantly increase due to the
explicit full orthogonalization.

3\| \widetilde \Sigma \| \scrH 2
is computed by norm(sys,2) where sys=ss( \widetilde A, \widetilde B, \widetilde C, 0).
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Table 3.4
Example 3.5. This table presents results for Qm-less rational Lanczos and rational Arnoldi

methods to achieve the prescribed accuracy. Shown are the number of iterations, the space dimension,
and the CPU time.

It. dim
\Bigl( 
\scrK m+1( \widetilde A, \widetilde B, \bfitxi m+1)

\Bigr) 
Time (secs)

Qm-less Lanczos 19 20 30.5
Rat. Arnoldi 19 20 28.8

3.4. LQR feedback control. We consider once again LTI systems \Sigma of the
form (3.11), and we investigate the efficient computation of a different quantity related
to the so-called LQR problem. Given the LTI system (3.11) with a stable A, this can
be stated as

u\ast = argmin
u

\scrJ (u), with \scrJ (u) =

\int \infty 

0

y(t)T y(t) + u(t)TR - 1u(t)dt,

where \scrJ is a quadratic cost functional and R is a p \times p symmetric and positive
definite matrix. Since A is stable, this u\ast exists and is given by u\ast (t) =  - Kx(t) =
 - R - 1BTXx(t), where X \in \BbbR n\times n is the unique positive semidefinite and stabilizing4

solution of the following Riccati equation [43]:

(3.16) ATX+XA - XBR - 1BTX+ CTC = 0.

Using u\ast the first equation in (3.11) can be written in terms of a closed-loop dynamic

\.x(t) = (A - BR - 1BTX)x(t), x(0) = x0,

whose solution is given by x(t) = exp((A - BR - 1BTX)t)x0 for t \geq 0. Therefore,

(3.17) u\ast (t) =  - R - 1BTX \cdot exp((A - BR - 1BTX)t)x0.

In the following we show that for A symmetric an approximation to u\ast can be cheaply
obtained by the Qm-less rational Lanczos method; see also [1] for related results.

Rational Krylov subspaces have appeared to lead to competitive methods for
solving large-scale Riccati equations; see, e.g., [55] and references therein. In case
a projection approach is employed, the overall scheme is very similar to the one
reported in section 3.3 for Lyapunov equations. Once again, an approximate solution
is sought in the form Xm = QmYmQT

m, where Range(Qm) = \scrK m(A,CT , \bfitxi ), while
Ym is computed, for instance, by imposing an orthogonality (Galerkin) condition on
the residual matrix. Explicitly imposing this condition and exploiting the property
QT

mQm = I determines a reduced Riccati equation to be solved in Ym (see [10]), that
is,

(3.18) JmYm + YmJm  - YmBmR - 1BT
mYm + E1\bfitgamma \bfitgamma 

TE1 = 0,

where Bm = QT
mBm and \bfitgamma \in \BbbR q\times q is such that CT = Q1\bfitgamma . Since A is stable and

symmetric, the matrix Jm is also stable so that Ym exists and it is the unique positive
semidefinite stabilizing solution to (3.18).

Algorithm 2.1 can be employed to construct (3.18) for a growing m, where the
rows of Bm are computed iteratively during the recurrence. At the mth iteration an
approximation um to u\ast is obtained as

um(t) =R - 1BT
mYm exp((Jm  - BmR - 1BT

mYm)t)(QT
mx0) \approx u\ast (t),(3.19)

4That is, A - BR - 1BT\bfX is a stable matrix.
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which does not require storing the whole Qm, since QT
mx0 can also be constructed

iteratively asm grows. Thanks to the stability of Jm, it can be shown that the function
um(t) defined in (3.19) is indeed the optimal control of the reduced model (3.12),
namely (see [55, Corollary 3.2])

um = argmin
u

\widehat \scrJ (u), \widehat \scrJ (u) =

\int \infty 

0

\widehat y(t)T \widehat y(t) + u(t)TR - 1u(t)dt.

Stopping criterion. The L2-distance between two iterates can be employed as a
measure to assess the quality of the computed approximation um(t),

(3.20)
\| um  - um - s\| 2L2

\| um\| 2L2

=

\int \infty 
0

\| um(\tau ) - um - s(\tau )\| 2d\tau \int \infty 
0

\| um(\tau )\| 2d\tau 
, s \in \BbbN , 0 < s < m.

This quantity can be cheaply approximated because it only involves small dimen-
sional quantities. Furthermore, since Jm  - BmR - 1BmY T

m is a stable matrix, it holds
that exp((Jm  - BmR - 1BmY T

m )t) \rightarrow 0 as t \rightarrow \infty which may lead to an exponential
convergence of the quadrature formula adopted to approximate (3.20); see, e.g., [12].

Example 3.6. We consider data in [2, Test 1]. The matrix A \in \BbbR n\times n amounts to
the 5-point finite differences discretization of the 2D Laplacian operator in the unit
square [0, 1]2 with zero Dirichlet boundary conditions, namely A = 1/(\=n - 1)2 \cdot (T \otimes 
I\=n + I\=n \otimes T ), T = tridiag(1, - 2, 1) \in \BbbR \=n\times \=n, n = \=n2. The vector B \in \BbbR n is such that
the matrix BBT corresponds to the discrete indicating function related to the square
[0.2, 0.8]2. Similarly, CTC with C \in \BbbR 1\times n amounts to the discrete indicating function
of [0.1, 0.9]2. We select R = 1 and x0 = 1/(\=n  - 1) \cdot 1n, where 1n \in \BbbR n is the vector
of all ones.

We compare the Qm-less rational Lanczos and Arnoldi methods for the compu-
tation of the approximate optimal control um(t) in (3.19). Both schemes are stopped
as soon as the value in (3.20) for s = 4 is smaller than 10 - 8. The results in Ta-
ble 3.5 show that the two methods perform similarly in terms of convergence trend
and computational efficiency. Figure 3.3 also reports the convergence history of the
two schemes for different values of n, illustrating that the lack of a full orthogonal-
ization procedure does not affect the convergence of the rational Lanczos method for
this example. See section 4 for a broader discussion on this topic.

Table 3.5
Example 3.6. Number of iterations of the rational Lanczos/Arnoldi method needed to achieve

the prescribed accuracy along with the dimension of the computed subspace and the running time in
seconds.

n It. dim
\bigl( 
\scrK m+1(A,CT , \bfitxi m+1)

\bigr) 
Method Time (secs)

40 000 25 26
Qm-less Lanczos 2.7
Rat. Arnoldi 2.6

160 000 29 30
Qm-less Lanczos 11.7
Rat. Arnoldi 11.8

360 000 29 30
Qm-less Lanczos 28.3
Rat. Arnoldi 27.3D
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Fig. 3.3. Example 3.6. Convergence history of the rational Lanczos and Arnoldi methods for
different values of n and s = 4.

4. Considerations on finite precision arithmetic computations. The po-
lynomial Lanczos iteration is known to be prone to numerical instabilities, which cause
loss of orthogonality in the computed basis. This fact has been deeply investigated by
Paige in his seminal Ph.D. thesis [46] and successive works; see, e.g., [47]. Quoting [54,
p. 108], loss of orthogonality can be viewed as the result of an amplification of each
local error after its introduction into the computation, and its growth is determined
by the eigenvalue distribution of A and by the starting vector v.

The rational Lanczos sequence is tightly related to its polynomial counterpart,
with the added difficulty of the system solves, whose finite precision arithmetic com-
putations may significantly increase the perturbation induced by round-off, even as-
suming a stable direct solver is employed. Notably, to the best of our efforts, we
could not find in the literature a round-off error analysis for rational Krylov subpace
computations within the considered applications. In this section we introduce very
preliminary considerations on the round-off perturbation that may occur in the com-
puted quantities during the iteration. We also report on our numerical experience,
showing that the type of loss of orthogonality in the basis seems to be similar to
that analyzed in the polynomial Lanczos method over several decades. We are con-
scious that performing a satisfactory quantitative analysis requires sophisticated tools
that go beyond our current presentation. Hopefully, these preliminary results may be
useful in a deeper analysis.

At iteration j, the generation of the rational Krylov orthonormal basis requires
the following computations:

\widetilde r = Aqj  - \beta j - 1(I  - \xi  - 1
j - 2A)qj - 1, \widetilde s = (I  - \xi  - 1

j - 1A)qj

r = (I  - \xi  - 1
j A) - 1\widetilde r, s = (I  - \xi  - 1

j A) - 1\widetilde s
q = r  - \alpha js, with \alpha j =

rT qj
sT qj

qj+1 = q/\beta j , \beta j = \| q\| .

Using standard assumptions on finite precision arithmetic computations, and assum-
ing a backward stable method is used for solving with the symmetric and positive
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definite matrix I  - \xi  - 1
j A, we conjecture that an Arnoldi-type relation similar to that

in the results of [47] holds, that is,

AQjKj = QjHj + (I  - \xi  - 1
j A)qj+1e

T
j + Fj ,

where the matrix Fj collects all round-off terms during the iteration. Here we envision
that the columns of Fj will have an increasing norm as j grows, in accordance with the
error accumulation argument known for the polynomial Lanczos. We stress that Kj

and Hj are not the same as those computed in exact arithmetic, and that the columns
of Qj are no longer exactly orthonormal; however, we can assume that v = Qje1.
Although our conjecture seems to be confirmed by numerical experiments, a rigorous
analysis leading to upper bounds for the elements in Fj would be desirable, though
it goes beyond the aim of this work. A different approach to the understanding of
the finite precision arithmetic behavior could also follow the backward error analysis
introduced by Greenbaum for the Lanczos method [30]. In particular, this approach
may enlighten the interplay between the distribution of the eigenvalues of A and
the shifts \xi j , leading to a better understanding of the rational Lanczos convergence
behavior in finite precision arithmetic.

Remark 4.1. In finite precision it no longer holds that Jj = QT
j AQj , and one

could even question the symmetry of the computed Jj . However, since we are mainly
concerned with the loss of accuracy in the computation of the length-n vectors, we can
assume that K - 1

j and Jj := HjK
 - 1
j  - weTK - 1

j are computed accurately, with w as

in the discussion after (2.6), so that wT = uT\beta j/\xi j = \beta j/\xi j(\alpha j+1  - \eta \beta j/\xi j)e
T
j K

 - 1
j =:

\upsilon je
T
j K

 - 1
j . We thus have

Jj = (Hj  - \upsilon jK
 - T
j eje

T
j )K

 - 1
j = HjK

 - 1
j  - \upsilon jK

 - T
j eje

T
j K

 - 1
j ,

with HjK
 - 1
j symmetric. Hence, Jj remains symmetric also in finite precision arith-

metic, as long as all quantities are determined using the computed coefficients.

According to Remark 4.1, we thus assume that Jj = HjK
 - 1
j  - \upsilon jK

 - T
j eje

T
j K

 - 1
j

and K - 1
j are computed exactly. We can then write the perturbed relation as

AQj = QjHjK
 - 1
j + (I  - \xi  - 1

j A)qj+1e
T
j K

 - 1
j + FjK

 - 1
j

= QjJj + [Qj\upsilon jK
 - T
j ej + (I  - \xi  - 1

j A)qj+1]e
T
j K

 - 1
j + FjK

 - 1
j

=: QjJj + zje
T
j K

 - 1
j + FjK

 - 1
j .

Subtracting \zeta Qj for \zeta \in \BbbC such that A - \zeta I and Jj  - \zeta I are nonsingular, we obtain

(A - \zeta I)Qj = Qj(Jj  - \zeta I) + zje
T
j K

 - 1
j + FjK

 - 1
j .

Multiplying by (A  - \zeta I) - 1 and (Jj  - \zeta I) - 1, and rearranging the relation above we
obtain

(A - \zeta I) - 1Qj = Qj(Jj  - \zeta I) - 1  - (A - \zeta I) - 1(zje
T
j K

 - 1
j + FjK

 - 1
j )(Jj  - \zeta I) - 1.

We analyze the effect of this computation in the approximation of the quadratic form
vT f(A)v, for which the short-term recurrence seems to work particularly well (see
section 3.1); see, e.g., [20] for a related analysis of the polynomial Lanczos method.
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Using f(A) =
\int 
\Gamma 
f(\zeta )(A - \zeta I) - 1d\zeta we can write

vT f(A)v =

\int 
\Gamma 

f(\zeta )vT ((A - \zeta I) - 1Qj)e1d\zeta 

=

\int 
\Gamma 

f(\zeta )vTQj(Jj  - \zeta ) - 1e1d\zeta 

 - vT
\int 
\Gamma 

f(\zeta )(A - \zeta I) - 1(zje
T
j + Fj)K

 - 1
j (Jj  - \zeta I) - 1e1d\zeta .

Therefore,

vT f(A)v = eT1 Q
T
j Qjf(Jj)e1  - vT

\int 
\Gamma 

f(\zeta )(A - \zeta I) - 1(zje
T
j + Fj)K

 - 1
j (Jj  - \zeta I) - 1e1d\zeta .

In exact arithmetic it would hold that QT
j Qj = Ij so that the quantity eT1 f(Jj)e1

would correspond to the classical approximation in the given subspace. In finite
precision arithmetic the distance from the ideal quantity can be estimated as follows:

| vT f(A)v  - eT1 f(Jj)e1| \leq | eT1 f(Jj)e1  - qT1 Qjf(Jj)e1| 

+

\bigm| \bigm| \bigm| \bigm| \int 
\Gamma 

f(\zeta )vT (A - \zeta I) - 1zje
T
j K

 - 1
j (Jj  - \zeta I) - 1e1d\zeta 

\bigm| \bigm| \bigm| \bigm| 
+

\bigm| \bigm| \bigm| \bigm| \int 
\Gamma 

f(\zeta )vT (A - \zeta I) - 1FjK
 - 1
j (Jj  - \zeta I) - 1e1d\zeta 

\bigm| \bigm| \bigm| \bigm| 
=: \scrI + \scrI \scrI + \scrI \scrI \scrI .

We next analyze the right-hand side terms. Let qT1 Qj = e1+\bfitepsilon j , where we can assume
that eT1 \bfitepsilon j = 0 (exact normalization) while the quantity | eTk \bfitepsilon j | may grow with k. Then

| eT1 f(Jj)e1  - qT1 Qjf(Jj)e1| = | \bfitepsilon Tj f(Jj)e1| 

=

\bigm| \bigm| \bigm| \bigm| j\sum 
\ell =1

(\bfitepsilon j)\ell (f(Jj)e1)\ell 

\bigm| \bigm| \bigm| \bigm| \leq j\sum 
\ell =1

| (\bfitepsilon j)\ell | | (f(Jj)e1)\ell | .(4.1)

In exact arithmetic, it has been proved that | eT\ell f(Jj)e1| shows a decaying behavior---
which is possibly exponential---as \ell grows, and the slope depends on the spectral
properties of the coefficient matrix [49]. If this property is maintained in finite pre-
cision arithmetic, then each term | (\bfitepsilon j)\ell | is allowed to grow as long as the product
| (\bfitepsilon j)\ell | | (f(Jj)e1)\ell | remains small.

Assuming that Kj is computed exactly, the term \scrI \scrI does not involve perturba-
tion matrices; therefore its magnitude is related to the quality of the rational Krylov
space approximation in exact precision arithmetic. Last, the term \scrI \scrI \scrI shows that the
columns of the round-off error matrix are weighted by the components of the vector
K - 1

j (Jj - \zeta I) - 1e1. By using the definition of Jj and Kj , it follows that (Jj - \zeta I)Kj =

Hj  - \zeta Kj  - wje
T
j , which is a tridiagonal plus a rank-one matrix acting on the last

column. Setting Gj = Hj  - \zeta Kj with Gj = Gj(\zeta ) and using the Sherman--Morrison
formula, we get K - 1

j (Jj  - \zeta I) - 1e1 = G - 1
j e1+G - 1

j wj(e
T
j G

 - 1
j e1)/(1 - eTj G

 - 1
j w). If Gj

has convenient spectral properties, then the components of the vector G - 1
j e1 have a

decaying magnitude, while the magnitude of the second term in the formula depends
on eTj G

 - 1
j e1, the last component of the first vector. Hence, in this case the propa-

gated errors contained in the rightmost columns of Fj are weighted by small values.
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As a consequence, the round-off effect appears to be mitigated. Although we have
experimental evidence that round-off errors seem to only slightly affect computations,
a thorough analysis is needed to make more definitive statements.

Remark 4.2. For f(z) = z - 1 the polynomial Lanczos analysis is closely related
to that of the conjugate gradient (CG) method for solving linear systems. We refer
the reader to the monograph [41] and its references for a thorough discussion.

0 10 20

10
-10

10
0

0 20 40 60
10

-20

10
-10

10
0

Fig. 4.1. Example 4.3. Convergence history of approximation to vTA1/2v. Left: \rho = 0.45.
Right: \rho = 0.85.

Example 4.3. We consider an example first introduced in [57]. The matrix is
diagonal with eigenvalues equal to \lambda i = \lambda 1+(i - 1)/(n - 1)(\lambda 1 - \lambda n)\rho 

n - i, i = 1, . . . , n;
the parameter \rho is used to control the eigenvalue distribution in the spectral interval,
so that a value of \rho close to one distributes the eigenvalues almost uniformly in the
interval. We considered n = 900, \lambda 1 = 0.01, and \lambda n = 100, together with f(\lambda ) = \lambda 1/2.
Moreover, we analyzed two values of \rho , that is, \rho = 0.45 and \rho = 0.85. The plots in
Figure 4.1 show the error | vT f(A)v - eT1 f(Jj)e1| together with the loss of orthogonality
\| I - QT

j Qj\| and the true approximation error | vT f(A)v - qT1 Qjf(Jj)e1| as the number
j of iterations increases. Plots are reported for \rho = 0.45 (left) and \rho = 0.85 (right).
The eigenvalue residual norm \| Ax(j) - x(j)\lambda (j)\| /| \lambda (j)| is also shown, where (\lambda (j), x(j))
is the Ritz eigenpair with \lambda (j) closest to \lambda n. Similarly to the polynomial Lanczos
method, for both values of \rho loss of orthogonality is related to the convergence of the
Ritz eigenpair to the corresponding eigenpair of A. Concerning the bilinear form, we
first remark that the convergence to vT f(A)v is not consistently related to that of
the Ritz eigenpair, and in addition, convergence seems to be insensitive to the fact
that qT1 Qj \not = e1, that is, \bfitepsilon j \not = 0. Though convergence is slower for \rho = 0.85 than for
\rho = 0.45, the last property is maintained in both cases.
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In the previous example we illustrated that the accuracy obtained by qT1 Qjf(Jj)e1
is similar to that of eT1 f(Jj)e1, and this is related to the role of | 

\sum j
\ell =1(\bfitepsilon j)\ell (f(Jj)e1)\ell | 

in the discussion above. The next example investigates this issue further.

0 10 20 30

10
-20

10
-10

10
0

0 10 20 30

10
-20

10
-10

10
0

Fig. 4.2. Example 4.4. Magnitude of components at iteration j = 30 in the approximation to
vTA1/2v. Left: \rho = 0.45. Right: \rho = 0.85.

Example 4.4. With the same data as in Example 4.3, we focus on iteration j = 30
and inspect the magnitude of the components of the vectors f(Jj)e1 and qT1 Qj , which

give the factors in the sum | 
\sum j

\ell =1(\bfitepsilon j)\ell (f(Jj)e1)\ell | . The two plots in Figure 4.2 (\rho =
0.45 on the left and \rho = 0.85 on the right) report the quantities | f(Jj)e1| \ell , | qT1 Qj | \ell ,
and | qT1 Qj | \ell | f(Jj)e1| \ell for \ell = 1, . . . , 30. The two figures consistently report that the
increasing pattern of | qT1 Qj | \ell inversely matches the decreasing one of | f(Jj)e1| \ell , so
that the product of each component remains at the level of 10 - 15. If Jj were exact,
the decay pattern of | f(Jj)e1| \ell would be expected, thanks to the theoretical results
reported in [49]. The fact that the round-off error does not seem to significantly alter
the interplay between | qT1 Qj | \ell and | f(Jj)e1| \ell could be related to the theory developed
by Greenbaum [30]. For the polynomial Lanczos method, Greenbaum showed that the
computed projected matrix can be expressed as the output of the Lanczos iteration
applied in exact arithmetic not to A but to a matrix \~A of larger dimensions. In
particular, the eigenvalues of \~A cluster around those of A. If an analogous result could
be derived for the projected matrix Jj computed by the rational Lanczos method, then
the result in [49] would ensure that the decay pattern of | f(Jj)e1| \ell also holds in finite
precision. This would justify the persistency of the interplay between | qT1 Qj | \ell and
| f(Jj)e1| \ell in finite precision arithmetic. We will address this intriguing issue in future
research.
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4.1. Stability of the LU factorization of \bfitK \bfitj . In section 2.1 it was stated
that the LU factorization Kj = LjUj with no pivoting exists. In this section we
analyze its stability properties. Assuming that Kj is computed exactly, the stability
of the LU factorization will ensure that the recurrences (2.8) and (2.9) are backward
stable. To this end, we write

Kj =

\biggl[ 
1 0
\beta 1

\xi 1
\widetilde Kj

\biggr] 
with \widetilde Kj = \widetilde D - 1

j - 1
\widetilde Tj , \widetilde Tj :=

\left[       
\xi 1+\alpha 2 \beta 2

\beta 2 \xi 2+\alpha 3
. . .

. . .
. . . \beta j - 1

\beta j - 1 \xi j - 1+\alpha j

\right]       ,

where \widetilde Tj \in \BbbR (j - 1)\times (j - 1) and \widetilde Dj - 1 := diag(\xi 1, . . . , \xi j - 1).

Lemma 4.5. Let j\ast \leq n be the first index such that \beta j\ast = 0, giving subspace
invariance in (2.3). Using the notation of section 2.1, let A be symmetric and positive
definite, and let the shifts \xi 1, . . . , \xi j\ast  - 1 all be negative. Then the symmetric matrices

Hj and \widetilde Tj are both positive definite for j \leq j\ast . Conversely, if A is symmetric and

negative definite with positive shifts, then Hj is negative definite while \widetilde Tj is positive
definite.

Proof. We prove the result for A negative definite; the positive definite case follows
similarly. We have Jj\ast = Hj\ast K

 - 1
j\ast 

so that Jj\ast Kj\ast = Jj\ast + Jj\ast D
 - 1
j\ast  - 1Hj\ast = Hj\ast , from

which

Hj\ast = (Ij\ast  - Jj\ast D
 - 1
j\ast  - 1)

 - 1Jj\ast = (J - 1
j\ast 

 - D - 1
j\ast  - 1)

 - 1.

Since Jj\ast = QT
j\ast 
AQj\ast is symmetric and negative definite, and the shifts are all positive,

it follows that Hj\ast is a negative definite matrix. Moreover, the eigenvalues of Kj\ast 

are positive since Kj\ast = Hj\ast J
 - 1
j\ast 

is the product of two symmetric negative definite
matrices.

For any j \leq j\ast , the eigenvalues of Hj are contained in the spectral interval of Hj\ast ,

so that Hj is positive definite. To derive the positive definiteness of \widetilde Tj , we observe
that for any j \leq j\ast , the spectrum of Kj is composed of 1 and all the eigenvalues of

the submatrix \widetilde Kj = \widetilde D - 1
j - 1

\widetilde Tj , with j \leq j\ast . For j = j\ast , the positivity of the eigenvalues

of Kj\ast ensures that of the eigenvalues of \widetilde Kj\ast . In particular, since \widetilde Dj\ast  - 1 > 0, this

implies that \widetilde Tj\ast is positive definite. Hence, all principal j\times j matrices of \widetilde Tj\ast are also
positive definite, with j \leq j\ast .

We can prove the backward stability of the Gaussian elimination procedure as-
sociated with Kj , thus proving Proposition 2.3. Here | M | is the matrix obtained by
taking the elementwise absolute values of the matrix M .

Proposition 4.6. Under the assumptions of Lemma 4.5, if the unit roundoff u

is small enough, then the Gaussian elimination for the system Kjy = ej succeeds, and
the computed solution \^y satisfies

(Kj +\Delta Kj)\^y = ej , | \Delta Kj | < h(u)| Kj | , h(u) =
4u+ 3u2 + u3

1 - u
.

The same holds for the system KT
j t = ej.
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Proof. Following the argument in [35, section 9.6], it is sufficient to prove that
the LU factorization Kj = LjUj satisfies | Lj | | Uj | = | LjUj | with Uj having positive
diagonal elements, and the result will follow from [35, Theorem 9.14] and its proof.

We restrict our attention to the matrix \widetilde Kj , as the first row and column of Kj are
already in the desired form.

For A negative definite, from Lemma 4.5 it follows that the matrix \widetilde Tj = \widetilde Dj - 1
\widetilde Kj is

positive definite. In particular, Theorem 9.12 in [35] ensures that the LU factorization\widetilde Tj = \widetilde Lj
\widetilde Uj satisfies the condition | \widetilde Lj | | \widetilde Uj | = | \widetilde Lj

\widetilde Uj | . Therefore, the matrix \widetilde Kj can

be factorized as \widetilde Kj = \widetilde D - 1
j - 1

\widetilde Lj
\widetilde Uj . Note that the matrix \widehat Lj := \widetilde D - 1

j - 1
\widetilde Lj

\widetilde Dj - 1 is lower
bidiagonal with all the diagonal entries equal to 1. Then

\widetilde Kj = \widehat Lj
\widetilde D - 1
j - 1

\widetilde Uj = \widehat Lj
\widehat Uj

is the unique LU factorization of \widetilde Kj , with \widehat Uj := \widetilde D - 1
j - 1

\widetilde Uj . Note that the diagonal

elements of \widehat Uj are positive. Since \widetilde Dj - 1 has positive diagonal entries, we get the
following equalities:

| \widehat Lj | | \widehat Uj | = | \widehat Lj | | \widetilde D - 1
j - 1

\widetilde Uj | = | \widehat Lj
\widetilde D - 1
j - 1| | \widetilde Uj | = | \widetilde D - 1

j - 1
\widetilde Lj | | \widetilde Uj | = | \widetilde D - 1

j - 1| | \widetilde Lj | | \widetilde Uj | 

= | \widetilde D - 1
j - 1| | \widetilde Lj

\widetilde Uj | = | \widetilde D - 1
j - 1

\widetilde Lj
\widetilde Uj | = | \widehat Lj

\widehat Uj | .

Returning to Kj and using the notation of the proof of Lemma 2.1, we observe that
the first two computed coefficients in the factorization Kj = LjUj are \omega 1 = 1 and
\ell 2 = \beta 1/\xi 1 > 0. Hence, it holds that | Lj | | Uj | = | LjUj | with Uj having positive
diagonal elements, concluding the proof.

The case in which A is positive definite can be proved analogously.

5. Conclusions. We have described a computationally and memory efficient
implementation of the symmetric rational Lanczos method. The algorithm does not
require storing the whole orthonormal basis Qm to proceed with the iterations. We
have illustrated a number of application problems where the proposed Qm-less algo-
rithm can effectively be employed. Very preliminary considerations of finite precision
arithmetic computations seem to indicate that the behavior of the short-term recur-
rence rational method in this context is similar to that of its polynomial counterpart,
although a comprehensive analysis is required to make more definitive statements.

Appendix. In this section we present the block variant of Algorithm 2.1.
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Algorithm A.1. Block rational Lanczos.
\bfi \bfn \bfp \bfu \bft : A \in \BbbR n\times n, V \in \BbbR n\times p, \bfitxi , number of iterations m > 0.

\bfo \bfu \bft \bfp \bfu \bft : Jm \in \BbbR pm\times pm, Jm = QT
mAQm, Range(Qm) = \scrK m(A, V, \bfitxi m).

\bfone Compute a skinny QR factorization of V , \widehat Q \widehat R = V
\bftwo \bfw \bfh \bfi \bfl \bfe j \leq m \bfd \bfo 
\bfthree \bfi \bff j = 1 \bft \bfh \bfe \bfn 

\bffour Set \widetilde R = A \widehat Q and \widetilde S = \widehat Q
\bffive \bfe \bfl \bfs \bfe \bfi \bff j = 2 \bft \bfh \bfe \bfn 

\bfsix Set \widetilde R = A \widehat Q  - \=Q\beta T
j - 1 and \widetilde S = (I  - A/\xi j - 1) \widehat Q

\bfseven \bfe \bfl \bfs \bfe 

\bfeight Set \widetilde R = A \widehat Q  - (I  - A/\xi j - 2) \=Q\beta T
j - 1 and \widetilde S = (I  - A/\xi j - 1) \widehat Q

\bfnine Solve (I  - A/\xi j)[R, S] = [ \widetilde R, \widetilde S]

\bfone \bfzero Compute \alpha j =
\Bigl( \widehat QT S

\Bigr)  - 1 \Bigl( \widehat QT R
\Bigr) 

\bfone \bfone Set Q = R  - S\alpha j

\bfone \bftwo Set \=Q = \widehat Q
\bfone \bfthree Compute a skinny QR factorization of Q, \widehat Q\beta j = Q

\bfone \bffour \bfi \bff j=1 \bft \bfh \bfe \bfn 
\bfone \bffive Set uj = y1 = t1 = Ip and \widehat y1 = \alpha 1

\bfone \bfsix \bfe \bfl \bfs \bfe 

\bfone \bfseven Set uj = \alpha j/\xi j - 1 + Ip  - \beta j - 1\omega 
 - 1
j - 1

\beta T
j - 1/(\xi j - 1\xi j - 2)

\bfone \bfeight Set yj =

\left[   - yj - 1\beta T
j - 1\omega 

 - 1
j

/\xi j - 2

\omega 
 - 1
j

\right]  , tj =

\left[   - tj - 1\beta T
j - 1\omega 

 - 1
j

/\xi j - 1

\omega 
 - 1
j

\right]  , and \widehat yj =

\left[   - \widehat yj - 1\beta T
j - 1\omega 

 - 1
j

/\xi j - 2

\beta T
j - 1ET

j - 1yj + \alpha j\omega 
 - 1
j

\right]  
+ Ej - 1\beta j - 1u

 - 1
j

\bfone \bfnine Compute \eta = \widehat QT A \widehat Q
\bftwo \bfzero Set JjEj = \widehat yj  - tj\beta 

T
j (Ip  - \eta /\xi j)\beta j/\xi ju

 - 1
j

and ET
j Jj = (JjEj)

T

\bftwo \bfone Set j = j + 1
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