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Landslides and slope failures represent critical hazards for both the safety of local

communities and the potential damage to economically relevant infrastructure such as

roads, hydroelectric plants, pipelines, etc. Numerous surveillance methods, including

ground-based radar, InSAR, Lidar, seismometers, and more recently computer vision, are

available to monitor landslides and slope instability. However, the high cost, complexity,

and intrinsic technical limitations of these methods frequently require the design of

alternative and complementary techniques. Here, we provide an improved

methodology for the application of image-based computer vision in landslide and

rockfall monitoring. The newly developed open access Python-based software, Akh-

Defo, uses optical flow velocity, image differencing and similarity index map techniques to

calculate land deformation including landslides and rockfall. Akh-Defo is applied to two

different datasets, notably ground- and satellite-based optical imagery for the Plinth Peak

slope in British Columbia, Canada, and satellite optical imagery for theMud Creek landslide

in California, USA. Ground-based optical images were processed to evaluate the capability

of Akh-Defo to identify rockfalls and measure land displacement in steep-slope terrains to

complement LOS limitations of radar satellite images. Similarly, satellite optical images

were processed to evaluate the capability of Akh-Defo to identify ground displacement in

active landslide regions a few weeks to months prior to initiation of landslides. The Akh-

Defo results were validated from two independent datasets including radar-imagery,

processed using state of the art SqueeSAR algorithm for the Plinth Peak case study

and very high-resolution temporal Lidar and photogrammetry digital surface elevation

datasets for the Mud Creek case study. Our study shows that the Akh-Defo software

complements InSAR by mitigating LOS limitations via processing ground-based optical

imagery. Additionally, if applied to satellite optical imagery, it can be used as a first stage

preliminary warning system (particularly when run on the cloud allowing near real-time

processing) prior to processing more expensive but more accurate InSAR products such

as SqueeSAR.
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1 INTRODUCTION

Numerous monitoring approaches, including ground-based

radar (e.g., Rosenblad et al., 2015), InSAR (e.g., Ferretti et al.,
2007; Ferretti, 2014), Lidar (e.g., Lin et al., 2013; Tortini et al.,
2015; Kromer et al., 2017; Williams et al., 2018; Williams et al.,
2019; Holst et al., 2021), seismometers (e.g., Suriñach et al., 2005),
and more recently computer vision (O’Donovan, 2005; Zach
et al., 2007; Wedel et al., 2009; Javier et al., 2013; Sánchez
Pérez et al., 2013; Kim et al., 2020; Hermle et al., 2022), have
been used to study landslides and slope instability. However, the
elevated cost, complexity, and intrinsic technical limitations of
these methods frequently necessitates the development of
alternative and complementary techniques.

At the regional scale, due to its ability to measure sub-
millimetre deformation over large areas, InSAR has become
one of the most powerful remote sensing monitoring
techniques. However, a technical limitation is the restricted
detection of measurement points over steep slopes as InSAR
measures deformation along the line of sight (LOS) relative to the
satellite orbit (i.e., ascending or descending) (Ferretti, 2014). In
the case of more detailed and real-time monitoring of targeted
mountain slopes, ground-based Radar, and Lidar (Kromer et al.,
2017) can provide high resolution slope deformation monitoring
(e.g., Tarchi, 2003; Vallee, 2019), but the relatively high

operational costs of such techniques often limit their
implementation, particularly in isolated areas with rugged
topography. Hence, introducing a lower cost technique
comparable to ground-based Lidar and Radar is of great interest.

Geophysical tools such as seismometers and infrasound
sensors can also record signals generated by rockfalls and
landslides. However, the applicability of such techniques
strongly depends on the quality of the recording network,
magnitude of the events, and the presence of technical
expertise to properly interpretate the signals. An important
limitation of these sensors is their inability to forecast

landslides and rockfalls before their occurrence (e.g., Zimmer
and Sitar, 2015; Ulivieri et al., 2020). Recently, a number of
studies have been undertaken using computer vision codes and
surveillance video cameras to forecast landslides (Amaki et al.,
2019) and monitor and assess rockfalls (Kim et al., 2020); they
have mainly focused on processing video frames with very short
time lapse sequences. In remote and rugged mountainous areas,
the challenges of providing both sufficient power and an effective
means of transmitting continuous video, limits the use of real-
time video datasets. These power and telemetry challenges can be
addressed by collecting and processing daily static images with
longer time-intervals (from hours to daily) while still enabling

continuous monitoring.
In this paper, we provide an improved methodology for the

application of computer vision in landslide and rockfall
monitoring. The newly developed open access Python-based
software, Akh-Defo (available via GitHub repository), uses
optical flow velocity, image differencing and similarity index
map techniques (Kim et al., 2020) to calculate land
deformation (land displacement and rock fall) from a triplet of
images (ground-based and satellite). Stacking of the processed

triple image sets allows us to calculate the average displacement
velocity over an extended period of time. Here, Akh-Defo is
applied to two different datasets in British Columbia (BC),
Canada and in California, United States of America (USA).

The datasets include: 1) Ground-based camera images, with
hourly to daily acquisitions, collected during the summer 2021
for the Plinth Peak slope of the Mount Meager Volcanic Complex
(MMVC) in BC (Figure 1); and 2) Daily orthorectified satellite
images, provided by Planet Labs, for the Plinth Peak slope (July
28–13 August 2021) and the 20 May 2017, Mud Creek Landslide
in California (April 5–31 May 2017) (Figure 1).

1.1 Research Objectives
This work has two main objectives:

1) Test whether the Akh-Defo software can complement

InSAR LOS limitations via processing of ground-based optical
imagery to identify rockfalls and measure land displacement in
steep-slope terrain. To achieve this, we chose to apply Akh-Defo
on the Plinth Peak slope of MMVC due to the presence of steep
slopes and the rugged alpine mountain setting. Independent
multi-temporal radar imagery processed by TRE-Altamira
scientists using SqueeSAR software (Ferretti et al., 2011)
provides high precision measurements of ground displacement
for validation.

2) Test whether the Akh-Defo software applied to satellite
optical images can identify ground displacement in active

landslide regions a few weeks to months prior to initiation of
landslides. To achieve this, we investigate the 20 May 2017, Mud
Creek catastrophic landslide which has been very well studied and
includes very high-resolution pre-, syn-, and post-landslide Lidar
and photogrammetry digital surface elevation datasets (Warrick
et al., 2019 and references therein).

2 SITE OVERVIEW

2.1 Plinth Peak Slope, Mount Meager
The slope of interest is located on the NNW flank of the MMVC
in the Garibaldi Volcanic Belt of British Columbia, Canada, an
area characterized by temperate rainforests, alpine glaciers, and
recently observed volcanic fumaroles. The topography consists of
steep, highly altered, and unstable volcanic rock slopes which are
at least partially covered with snow; visibility is often limited due
to fog or low-lying cloud (Figure 1). The MMVC consists of
overlapping volcanoes with a protracted history of basaltic to
rhyodacitic volcanism generating lava flows and domes,
pyroclastic deposits, and associated rock avalanche deposits
from >1.9 Ma to present; these sit on Triassic to Tertiary

Coastal Plutonic Complex intrusions and metasedimentary
units (e.g., Read, 1990; Russell et al., 2021). The MMVC has
erupted explosively at least twice in the past 25,000 years with the
most recent event in 2360 B.P. (Russell et al., 2021); pyroclastic
density currents from these eruptions were sourced at high
elevation near the present-day Plinth Peak and since 2016, low
level fumarolic degassing has been observed through
glaciovolcanic caves on the west flank of Plinth Peak (e.g.,
Warwick et al., 2022).

Frontiers in Earth Science | www.frontiersin.org June 2022 | Volume 10 | Article 9090782

Muhammad et al. Computer Vision for Slope Stability

https://github.com/mahmudsfu/AkhDefo
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


The most recent and largest historic landslide in Canada
occurred during the summer 2010 from the southern flank of
Mount Meager; less than 3 km South of the current study area
(Mokievsky-Zubok, 1977; Guthrie et al., 2012; Hetherington,
2014; Roberti et al., 2017; Roberti et al., 2018). Previous
remote sensing and geomorphologic studies of the MMVC
indicate that it hosts numerous historical and recent landslide
deposits and numerous unstable areas have been identified, many

of which are believed to be susceptible to future landslide events
(e.g., Mokievsky-Zubok, 1977; Friele and Clague, 2004; Guthrie
et al., 2012; Roberti et al., 2017; Roberti et al., 2018; Roberti et al.,
2021). Hetherington (2014 and references therein) identify
unstable areas on the western side of Plinth Peak and note
that the eastern flank appears to have a very low factor of
safety that can be presumed to be at the point of failure. The
failure surface is described as being deep (Hetherington, 2014;
Roberti, 2018; Roberti et al., 2021) such that should a landslide

occur in this location, a major bulk of Plinth Peak could fail.
Consequently, as with the 2010 landslide, it could dam the
Lillooet River and cause widespread flooding downstream.

2.2 Mud Creek Landslide
The Mud Creek Landslide is located between Monterey and
Morro Bay on the Big Sur coast of California, USA (Figure 1).
Geomorphologically, Mud Creek coincides with the rugged Big

Sur coast at the western edge of the Santa Lucia Mountains. This
area includes numerous peaks higher than 1,000 m elevation,
many of which are located less than 10 km from the coast.
Geologically, the Mud Creek and surrounding mountain
bedrock is composed of Mesozoic granitic and pre-Cretaceous
metamorphic rocks, Miocene marine sedimentary rocks, and
heterogeneous Mesozoic rocks which form the Franciscan
Assemblage mélange overlying unconsolidated colluvial
deposits (Warrick et al., 2019). Structurally, these rugged

FIGURE 1 | Location of the study areas. (A) Regional basemap showing the locations of Mount Meager and Mud Creek relative to western North America. (B)

Hillshademap showing the location of important peaks, fumaroles, and installed camera station in the MMVC; the red inset represents the approximate area captured by

the installed camera; the red square with black arrow indicates location and orientation of the camera view; the blue inset shows the area of Figure 2. (C) Example of

optical image on 10 August 2021, captured at 11 a.m. by the camera station. (D) Hillshade map show location of Mud Creek landslide and the surrounding

mountain peaks. (E) Hillshade map showing the topography of the Mud Creek area before the failure. (F) Hillshade map showing the topography of the Mud Creek area

after the failure. (G)Oblique aerial view of Mud Creek 1 day before the failure derived from a photogrammetry model (after Warrick, et al., 2019). (H)Oblique aerial view of

Mud Creek 7 days after the failure derived from a photogrammetry model (after Warrick, et al., 2019).
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mountains are related to the Big Sur Bend of the San Gregorio-
Hosgri fault system, a region of transpression along the region’s
transform plate boundary (Warrick et al., 2019). This coastal

mountain landslide is in an active landslide region, with coastal
retreat rates during the 20th century averaging ~0.3 m/year
(Warrick et al., 2019).

FIGURE 2 |SqueeSAR results show deformation rate inmm/year North of theMount Meager massif; see blue inset in Figure 1B for the location. Note the impact of

Line of Sight (LOS) limitation to capture slope deformation for both ascending and descending satellite orbits. The graphs show the temporal deformation rate for 1) East-

wall Job Creek. 2) Affliction Creek 3) Mosaic Creek slope in the ascending orbit, and 4) Plinth Peak slope, and 5) East-wall Affliction Creek in the descending orbit.
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Knowledge of morphology and movement patterns was
obtained from previously studied Lidar and Structure from
Motion (SfM) photogrammetry for the pre-20 May 2017
landslide of Mud Creek (Warrick et al., 2019) (Figure 1). The
pre-failure slope was identified as steep and planar and bisected
by a large steep valley. Warrick et al. (2019) used Lidar- and SfM-
derived digital elevation surfaces from 1967 to 2017 data.
Although topographic changes from 2010 to 2016 were not
significant, horizontal displacement calculated from hillshade

surfaces range between 2 and 10 m for the same time period
(Warrick et al., 2019). Between 2016 and 2017, these differences
increased to over 10 m betweenMarch 8 and 19May 2017, during
which time large head scarps formed on the northern and
southern portions of the slide (Figure 1).

3 DATA COLLECTION

3.1 Ground-Based Optical Images
At Mount Meager, with support from Weir-Jones Engineering,

we installed a Stardot SD500BN camera, solar power, satellite
telemetry, and weather station (all donated by Nupoint Systems
Inc.), on a ridge approximately 1.5 km from the slope of interest
(Figure 1). The camera, facing the west-side of Plinth Peak, has a
maximum resolution of 5 MP, 2,592 × 1,944 at 30 frames per
second (fps). This was remotely programmed to take one image

per hour during the daytime for a total of 12 images per day and
data (both weather data and images) was transmitted via satellite
to the Nupoint Systems and SFU data portals.

From November 2020 to September 2021, a total 1,315
images were collected (see online GitHub Repository for all
the images). An automatic image-classification system (Bouti
et al., 2020) was used to remove images with significant cloud,
fog, and shadow (Supplementary Material). As the study area
receives >3–4 m of snow during the winter, we were limited to

processing only summer images that include the least amount of
snow coverage. Therefore, during this study, we processed
approximately 3 weeks of images from July 27 to 18 August
2021. For consistency across the dataset, processed images were
taken at four different times (11 a.m., 12 p.m., 1 p.m.,
and 2 p.m.).

3.2 Satellite Optical Images
For both the Plinth Peak and Mud Creek study, high resolution
(3 m spatial resolution) Planet Labs optical satellite images were
acquired through a research and education license (Planet Team,

2017). The level 3B surface reflectance product of PlanetScope
was chosen as it comes orthorectified and corrected for geometric,
radiometric, and atmospheric noise. A total of nine cloud-free
PlanetScope orthorectified images from July 28 to 13 August
2021, were used to calculate land-displacement rates for the
Plinth Peak slope. Ten cloud-free scenes of PlanetScope

TABLE 1 | Semi-quantitative comparison of measured land displacement obtained from Akh-Defo software for Plinth Peak with three independent sources: radar images,

ground-based optical images, and orthorectified optical satellite images.

Case study Dataset type Method Displacement

between July

27 and 18

August 2021

Monthly

displacement rate

Annual

displacement

rate

Location Geometry

Plinth Peak InSAR SqueeSAR 16.9 mm 23 mm 280 mm Figures

2, 9G

Descending LOS

Ground-based

optical image

Akh-Defo 20 mm 27 mm 331 mm Figure 9E Downward relative to

installed camera view

Planet lab

satellite optical

image

Akh-Defo 11 mm 15 mm 182.5 mm Figure 9C Nearly overlooking

(top view)

Percentage difference

(ground-based image vs.

InSAR)

= [(Akh-Defo−SqueeSAR)/SqueeSAR] × 100

Annual difference = 17% [(33.1−28)/28] × 100

Monthly difference

= 17.3%

[(27−23)/23] × 100

Measured 22-day time

window difference

= 18.3%

[(20−16.9)/16.9] × 100

Percentage difference

(satellite-based image vs.

InSAR)

= [(Akh-Defo−SqueeSAR)/SqueeSAR] × 100

Annual difference

= 34.8%

[(182.5−280)/280] × 100

Monthly difference

= 34.7%

[(15−23)/23] × 100

Measured 22-day time

window difference

= 34.9%

[(11−16.9)/16.9] × 100
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orthorectified images from April 5 to 31 May 2017, were used to
bracket the 20 May 2017, Mud Creek event.

3.3 Satellite Radar Images
As part of ongoing collaborations between researchers at the Centre for

Natural Hazards Research at Simon Fraser University (SFU) and TRE-
Altamira, regional landslide and slope stability monitoring has been
conducted since 2019 in the Garibaldi Volcanic Belt with a particular
focus on the MMVC (Figure 1). TRE-Altamira scientists processed
temporal displacement data for the available SAR satellite (ERS,
Sentinel-1, and Radarsat 1 and 2) images from 1992 to 2021 using
the SqueeSAR algorithm (Ferretti et al., 2011). As the data were
collected from different satellite platforms with different spatial and
temporal resolution, we only present data with high temporal and
spatial resolution from May 2019 to September 2021 (Figure 2;
Supplementary Table S1 in supplementary material). A total of 36

ascending and 40 descending Sentinel-1 images were processed to
obtain 1D line-of-sight (LOS) and 2D true vertical and East-West
displacements over the MMVC.

4 METHODOLOGY

The methodology of this paper is twofold (Figure 3). The first
part deals with optical image processing and the second part

discusses processing Radar satellite images using TRE-Altamira’s
SqueeSAR algorithm. The Akh-Defo software developed in this
study (Figure 3) is applied to ground and satellite optical
imagery. The Akh-Defo version for ground based optical
imagery consists of two Jupyter Notebook files which can run

on any Integrated Development and Learning Environment
(IDE) with the ability to read Jupyter Notebook files (e.g.,
Visual Studio Code, Jupyter Lab, Jupyter Notebook). The first
Jupyter Notebook file includes image-preprocessing (discussed in
detail in the Supplementary Material) such as training the Deep-
Learning Convolutional Neural Network (DLCNN) model,
application of the trained model to classify and differentiate
noisy from noise-free images, sorting of images based on
hours of each day, and finally image-alignment analysis for
quality assessment before image processing for change
detection analysis (Figure 3). The second Jupyter Notebook

file includes a simple graphical user interface which performs
the following steps: 1) image enhancement and definition of the
area of interest; 2) static change detection; and 3) dynamic change
detection (static and dynamic change detection described below).

The Akh-Defo version for satellite optical imagery consists of one
Jupyter Notebook file and only processes orthorectified imagery
(Figure 3). The software also includes a simple graphical user
interface that performs the following steps: 1) image enhancement
and definition of the area of interest; 2) static change detection, and

FIGURE 3 | Methodology flow chart showing the sequential data processing and analysis in this study.
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3) dynamic change detection. Unlike the ground-based version, the
satellite version enables geocoding and orthorectification of the final
products to real-world coordinates for use with any GIS platforms.

4.1 Optical Monitoring
4.1.1 Static Change Detection
Static Change detection includes image differencing such as
performing subtraction between two images to identify change

of the visual scene or a similarity map to differentiate areas with
no change from those with change. We call this static change
detection because we can only accurately identify the changes if
material (objects) is removed or added within the visual scene
between two separate images (Figures 4, 5).

4.1.1.1 Image Differencing
This technique consists of a pixel-to-pixel value subtraction of an
image (Im1) at specific time, t, for a given date to the same pixel in
an image for a different date, Im2, but at the same time (Figures
4A,5A):

Image Difference � Im1t − Im2t

This process is performed sequentially for the temporal images from
Plinth Peak. By default, image pixel subtraction produces a significant
amount of noise, and the quality of the results depends on the time
interval between subsequent images as the pixel intensity changes
between images. In this study, the minimum time interval between
images is about 24 h, but we compensate for the relatively long-time
interval by comparing images at a fixed time in subsequent days.

4.1.1.2 Similarity Indices
The Mean Square error (MSE) and the Structural Similarity
Index Mean (SSIM) are two Similarity indices that are
frequently used to measure the quality of images (e.g.,
Palubinskas, 2014; Kim et al., 2020). MSE is considered as a
measure of signal fidelity which compares two signals (images)
and provides a quantitative score that measures the degree of
similarity between them. We assume x � {xi | i � 1, 2,/, N}

and y � {yi | i � 1, 2,/, N} in which N denotes the number

FIGURE 4 | Static change detection timestamp results for theMudCreek landslide. Column (A) shows the image differencing results; negative values indicate areas

with material being removed, and positive values indicate area with material being added. (B) shows the Structural Similarity Index Map, similarity map scaled between 0

= no similarity and 100 = strongly similar (no change).
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of signal samples (i.e., the number of pixels in an image) such
that xi and yi are values of pixels at locations x and y. Therefore,

MSE can be calculated as follows (Wang and Bovik, 2009, and
references therein):

MSE(x| y) � 1

N
∑N
i�1

(xi − yi)2.
The SSIM technique is based on the human visual system which is
particularly powerful in extracting structural information within

visual scenes. Hence, to measure similarity, the preservation of
signal (image) structure is essential, and it helps to measure the

structural distortion (here the distortion related to deformation of
the slope). Therefore, SSIM helps to distinguish between structural
and nonstructural distortions. Nonstructural distortions include
those from the ambient natural environment and instrumental
conditions during image acquisition such as 1) Change of
luminance or brightness, 2) Change of contrast, 3) Gamma
distortion, and 4) Spatial shift of pixels (Palubinskas, 2014; Kim
et al., 2020). The structural distortions caused by camera lens and

FIGURE 5 | Static change detection timestamp results for the Plinth Peak slope. Column (A) shows the image difference results, with negative values indicating

areaswithmaterial being removed and positive values being added. Column (B) shows the Structural Similarity IndexMap, similarity map scaled between 0 = no similarity

and 1 = strongly similar (no change).
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FIGURE 6 |Mud Creek landslide precursor changes. (A) Elevation change calculated from SfM digital surface model between March 8 and May 19, 2017 (1 day

before failure). (B) Elevation change before and after the catastrophic failure. (C) Dynamic change detection showing horizontal displacement rates in cm per day from

May 1 to May 16, 2017 (4 days before failure). (D) Displacement vector r (direction) for panel (C). (E) Average horizontal displacement rate in cm for the 41 days

calculated from stacked triplets between April 5 and May 16, 2017 (4 days before the failure). (F) Displacement vector (direction) for panel (E). (G) Oblique

Unmanned Aerial Vehicle (UAV) photograph taken 1 day before the May 20, 2017, failure. (H)Oblique UAV photograph taken 7 days after the May 20, 2017, failure. UAV

photographs from Warrick et al. (2019). (I) Horizontal displacement map of the Mud Creek site between 2010 and 2016. Locations of observed and mapped head and

lateral scarps(blue lines). The head scarp of the May 20, 2017, failure is shown for comparative purposes (yellow line). The approximate boundaries between no

displacement and measurable displacement are shown with dashed lines. Shaded relief base-layer map is the May 2016 Lidar (after Warrick et al., 2019).
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camera mount vibration have been corrected at the image
alignment stage (Figure 3); images were only left with
distortions related to change in the visual scene.

The SSIM measures similarities of images based on the

combination of three independent elements, i.e., the brightness

values, the contrast values, and the structure of the visual image

scene. Assuming that x and y are the locations of two areas within

two images of the same size, the similarity of brightness value

becomes l(x,y), the similarity of contrast is c(x,y), and the similarity

of the area structures is s(x,y) (Palubinskas, 2014; Kim et al., 2020):

SSIM(x, y) � l(x, y) · c(x, y) · s(x, y) � ⎛⎝ 2μxμy + C1

μ2x + μ2y + C1

⎞⎠

·⎛⎝ 2σxσy + C2

σ2x + σ2y + C2

⎞⎠ · ( σxy + C3

σxσy + C3

)
where μx and μy are local sample means of x and y areas,
respectively. σx and σy are local standard deviations of x and

y areas; σxy allocates the sample cross-correlation of x and y after
removing the means of x and y areas. To avoid numerical
instability in calculating sample means, variances and
correlations, small positive constants C1, C2, and C3 were
introduced. The SSIM map is produced by computing a
sliding window moving pixel-by-pixel across the entire image
(Palubinskas, 2014; Kim et al., 2020). A single SSIM score for the
whole image is then calculated by averaging the SSIM values
across the entire image (Figures 4B,5B).

4.1.2 Dynamic Change Detection
Dynamic Change detection involves calculating optical flow
velocity between triplets of images. The temporal period

between each image can be anywhere from intervals of 1 day
to several days but the images must be taken at the same time of
day in order to minimize the effects of ambient change (e.g.,
shadows). Subsequently, we can calculate temporal and dynamic
change detection from a stack of calculated triplets. We call this
dynamic change detection because we can identify the change
before (pre-cursor of rockfall and landslide), during (e.g., tracing

FIGURE 7 | Timestamp (number of days before the failure) horizontal displacement rate (cm per days) before the May 20, 2017, landslide. Note the location of the

failure surface before and after the landslide.
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rockfall and landslide flow path) and after (post-failure) material

being removed or added within the scene between a number of
subsequent images (Figures 6C–F, 7, 8).

4.1.2.1 Optical Flow Velocity
Optical flow is represented as the apparent motion of objects
and surfaces between two different timeframes caused by
relative motion between the observer (camera) and the
scene (e.g., objects, surfaces, and edges) (O’Donovan, 2005;
Zach et al., 2007; Wedel et al., 2009; Hermle et al., 2022). The
most important assumption in optical flow velocity
calculations is constancy in image brightness. This

assumption requires that for a short time interval, t1 to t2,
an object may change position, while the reflectivity and
illumination will remain constant.

Here we process images using an interval of 24 h to a few days,
however, it is more difficult to fulfill the assumption of brightness
constancy without proper image preprocessing and appropriate
image selection for processing. Longer time intervals were
compensated by processing images at a fixed time as it helps
to remove impact of the angular change in Sun illumination
(Figures 7, 8). For processing optical satellite images, while
repeated image acquisition is not possible at the same exact

time for each day, the images acquired are near vertical
(i.e., similar Sun illumination) and we used orthorectified
images that have been pre-processed and corrected for
atmospheric and geometric noise.

The optical flow equation includes:

I(x + Δx, y + Δy, t + Δt) � I(x, y, t)
where I(x, y, t) is the intensity of the image at position (x, y) for time
t and the change in position is indicated by Δx andΔy at change of
time Δt. After applying a Taylor series expansion to the left hand
side of the equation, it can be rewritten as follows (O’Donovan,
2005; Zach et al., 2007; Wedel et al., 2009; Hermle et al., 2022):

I(x + Δx, y + Δy, t + Δt) � I(x, y, t) + zI

zx
Δx +

zI

zx
Δy +

zI

zt
Δt

By solving the above equation, we obtain the optical flow
constraint equation:

∇I · v + It � 0

where ∇I is the spatial intensity gradient (Ix, Iy), v = (u, v) is the

flow vector for Δx and Δy and It is gradient through time.
Additionally, to better compensate for the image time interval,

we calculate the optical flow for triplets of images (frames) instead
of pairs of images. The sequence of image triplets is chosen in
order to provide overlap among subsequent processed triplet
datasets (Figure 7). For instance, (imagen, imagen+1, and imagen,
imagen+2) forms the first triplet set; the second triplet set is equal
to (imagen+1, imagen+2, and imagen+1, imagen+3) and so on for the
rest of the image sequences. The calculated optical flow

FIGURE 8 | Example of dynamic change detection at 2 p.m. daily for the Plinth Peak slope. Refer to the GitHub repository for temporal dynamic change detection

results at 11 a.m., 12 p.m., and 1 p.m.
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movements are then stacked for the horizontal Δx
Δt
, and vertical

Δy
Δt
,

obtained from each set of processed triplets. The stacking process

allows us to calculate more accurate optical flow motion because
it uses larger number of images and averages the results of the
calculated triplet optical velocities. Additionally, it provides
measurements over a longer time interval of months to even
multiple years depending on the number of available processed
triplets and the time-window of the triplet datasets (Figures
6C–F, 7, 8).

4.1.3 Radar Monitoring
4.1.3.1 Synthetic Aperture Radar
Synthetic Aperture Radar (SAR) satellites acquire images of

the Earth’s surface by emitting electromagnetic waves and
analyzing the reflected signal. As SAR satellites are
continuously orbiting the globe, a stack of SAR images can
be collected for the same area over time to extract information
about changes of the Earth’s surface. Each SAR acquisition

contains two fundamental properties: amplitude and phase.
The amplitude is related to the energy of the backscattered

signal and is used in Speckle/Pixel Tracking applications and
change detection mapping. Phase is related to the sensor-to-
target distance, and it is this which is used in interferometric
applications.

4.1.3.2 InSAR
Interferometric Synthetic Aperture Radar (InSAR), also
referred to as Interferometric SAR, is the measurement of
signal phase change or interference over time. When a point on
the ground moves, the distance between the sensor and the

ground target changes affecting the phase value recorded by
the SAR sensor. Figure 2 shows the relationship between
ground movement and the corresponding shift in signal
phase between two SAR signals acquired over the same
area. This relationship is expressed as:

FIGURE 9 | Comparison between Plinth Peak slope displacement from InSAR and average displacement rate calculated from stacked optical velocity triplets for

the period from July 27 to 18 August 2021. (A) Sliced-time window of SqueeSAR results between July 24 and 17 August 2021; red dashed rectangle is zoom in location

for panels (B,D,F). (B,C) are close ins of stacked optical flow velocity calculated from orthorectified optical satellite images. (D,E) are close ins of stacked optical flow

velocity calculated from ground-based optical images. (F,G) are close ins of processed time-series radar images using SqueeSAR. (H) InSAR displacement

timeseries for the yellow polygon in (G) See Figure 1 to locate the extent of Figure 9. The colour bar for panels (D,E) represented as logarithmic scale.
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Δφ �
4π

λ
ΔR

where Δφ is the change in signal phase, λ is the wavelength andΔR
is the displacement. Consequently, any displacement of a radar
target along the satellite Line of Sight (LOS) creates a phase shift
in the radar signal that can be detected by comparing the phase values
of two SAR images acquired at different times. Due to the acquisition

geometry, any phase variation is detected along the satellite LOS. In
general, due to the known parameters of SAR satellite orbits and
acquisition geometry (approximate North-South orbital direction and
side and tilted view), InSAR can detect motion components
predominantly in E-W and vertical directions. In contrast, the
sensitivity to N-S motion is minimal, even in the presence of
strong movement. The comparison of the phase of two SAR
images can only be used when the normal baseline (i.e., distance
between the satellite tracks during the first and second acquisitions) is
no more than the so-called “critical baseline”, a parameter depending
on the SAR sensor in use.

4.1.3.3 SqueeSAR
SqueeSAR™ is the proprietary multi-interferogram technique
developed by TRE Altamira which provides high precision

measurements of ground displacement by processing multi-
temporal SAR images acquired over the same area.
SqueeSAR™ typically needs a dataset of at least 15–20 SAR

images to be applied, acquired over the same area with the
same acquisition mode and geometry. By statistically
exploiting the image stack, SqueeSAR™ singles out
measurement points (MP) on the ground that display stable
amplitude and coherent phase throughout every image of the
dataset (Ferretti et al., 2011). The MPs belong to two different
families: 1) Permanent Scatterers (PS) point-wise radar targets
characterized by high stable radar signal return (e.g., buildings,
rocky outcrops, linear structures, etc.) and 2) Distributed
Scatterers (DS) such as areas of ground exhibiting a lower but
homogenous radar signal return (e.g., uncultivated land, debris,

deserted areas, etc.). The density and distribution of the MP is
related to the resolution of the SAR images used and the local
surface characteristics and topography.

In general, the MP density increases with the satellite
resolution and the presence of man-made structures and
decreases with the presence of vegetation. The highest
density is reached over urban and bare areas, while it is
lower over areas heavily vegetated areas, affected by strong
reflectivity changes with time (Figure 2 and Supplementary

FIGURE 10 | (A) Number of observed rockfalls during four daily time periods (11 a.m., 12 p.m., 1 p.m., and 2 p.m.) between July 27 and 18 August 2021. (B) Total

number of rockfalls during these time periods. (C) Hourly rainfall data between July 27 and 18 August 2021. (D) Hourly temperature data between July 27 and 18

August 2021.
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Table S2 in supplementary material) or where the satellite
visibility is limited. No measurement points are identifiable
over water. For each MP identified, SqueeSAR™ provides the
following basic information: 1) The ground target’s position and
elevation; 2) Annual average displacement rate measured along

the LOS, expressed in mm/year; calculated over the observation
period and related to the reference point; 3) Displacement time
series (TS) representing the evolution of the MP’s displacement
for each acquisition date, expressed in millimeters, and
measured in the LOS direction.

When considering the Distributed Scatterer family of MPs, the
information provided by SqueeSAR™ does not refer to a single
target, but rather to the effective area associated to each DS.
SqueeSAR™ does not provide the exact shape of the DS area only
its dimension. As for any other InSAR analysis, all displacement
measurements are carried out along the sensor’s LOS to target

direction. SqueeSAR™measures the projection of real movement
along the LOS and provides 1D measurements. Displacement
measurements provided by SqueeSAR™ are differential in space
and time. They are spatially related to a reference point and
temporally to the date of the first available satellite acquisition.
The reference point is assumed to be motionless and selected for
its radar properties and motion behavior. This corresponds to a
radar target with low phase noise in all the scenes of the imagery,
not affected by displacement rate variations (non-linear
movement or cyclical deformations) in the covered period. As
such, the reference point can still be affected by a linear

movement related to regional deformation phenomena. Any
regional component can be identified via an independent
check with other surface monitoring techniques, such as a
GPS network. The selection of the reference point is imagery
dependent: if the imagery changes (e.g., number of scenes in the
stack or time span), the MP selected as the reference point can
consequently change.

5 RESULTS

5.1 Plinth Peak, Mount Meager, Canada
Results from the high temporal and spatial resolution InSAR data
(summer 2019–2021), processed with SqueeSAR, identified at
least five highly unstable regions on the North flank of the Mount
Meager massif. These regions were observed with the ascending
SAR satellite geometry and show annual average deformation
rates of 5.2, 2.2 and 3.8 cm for Mosaic Glacier slope, Affliction
Creek, and East-Wall Job Creek, respectively (Figure 2). The

unstable regions observed via descending SAR satellite geometry
show annual average deformation rates of 7.8 and 7.3 cm for East-
Wall Affliction Creek and Plinth Peak slopes, respectively
(Figure 2).

We processed both ground-based optical images and

orthorectified satellite images for Plinth Peak within the same
time-window. Ground-based imagery processed with the Akh-
Defo dynamic change detection technique measured monthly
deformation rates on Plinth Peak from 27 July to 18 August 2021,
of between 7 and 27 mm (Table 1; Figure 9). Low velocity
rockfall (less than 600 mm/day) (Figure 8) but frequent
(Figure 10) were observed during the four different daily time
periods between 27 July and 18 August 2021. The total detected
rockfalls at each time window are as follows: 15 events at 11 a.m.,
15 events at 12 p.m., seven events at 1 p.m., and 10 events at 2 p.m.
(Figure 8). A small landslide was identified on 11 August 2021,

with an area of more than 3,500 m2 (Figure 9). By contrast,
PlanetLab orthorectified imagery processed with the Akh-Defo
dynamic change detection was unable to quantify the rockfall
activity on Plinth Peak. This is particularly related to the
geometry of the camera viewing angle.

The land displacement results are validated from the
calculated displacement rates from SqueeSAR for the
equivalent period (Table 1) and at a location where we have
active displacement data available from both techniques. The
validation includes normalization of SqueeSAR annual
displacement rates to match displacement rates for the same

period of Akh-Defo dataset of 22 days (Table 1). At the location
shown in Figure 9E, for the 22 days between 27 July and 18
August 2021, Akh-Defo stacked processing obtained a total
displacement of 20 mm (equivalent 27 mm per month)
(downward relative to the camera view; see Figure 1 for the
camera orientation and location). Comparatively, at the same site
and time window (Figure 9G), the SqueeSAR deformation results
obtained a ground displacement of 16.9 mm (22.5 mm per
month), along SAR satellite LOS (Descending Orbit).
Additionally, the PlanetLab.

Our ground-based imagery results show that the Plinth Peak
slope is subject to active and frequent rockfalls albeit with slow

slope displacement and that the rockfalls are mainly concentrated
along very-steep channels within the slope (Figure 10 rockfall
frequency and Figure 11 for sources of rockfalls). Rockfall
trajectories were validated from the animated image time-lapse
(see the online GitHub in the gif_dir folder dataset).

The Akh-Defo static change detection (using Image
Differencing and Structural Similarity Index Map) was

TABLE 2 | Average displacement from two independent datasets prior to the 20 May 2017, Mud Creek landslide.

Case

study

Dataset type Method Location Geometry/Source Time Average

displacement

(cm)

Mud

Creek

Lidar and photogrammetry digital

elevation models

Hillshade map

comparison

Figure 6I Topography change/elevation

difference from DEM

2010–2016 600

Satellite optical image Akh-Defo (this

study)

Figures

6E,F

Oblique to nadir view April 5–16 May

2017

92
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effective in identifying one small landslide (rockslide) on the

Plinth Peak slope, approximately 30-m-wide and 120-m-long (at
least 3,600 m2) between 10 and 11 August 2021, although with

different sensitivities (Figure 12). For the same landslide, the

SSIM visually produced clearer results compared with those using
Image Differencing (Figure 12). In fact, we also captured a

FIGURE 11 | Average displacement rate and average magnitude velocity of rockfalls calculated from a stack of processed image triplets for four different times of

the day for the Plinth Peak slope. Note that the rockfall region areas show average magnitude velocity of rockfalls ranging between 20 and 60 cm.
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FIGURE 12 | Small landslide identification with Akh-Defo using combined static and dynamic change detection methods for the Plinth Peak slope. (A) Image taken

on 10 August 2021, at 11 a.m. (B) Image taken on 11 August 2021, at 11 a.m. (C) Zoomed window of panel (A) focused on the unstable region before the rockslide

failure occurred on 10 August 2021. (D) Zoomed window of panel (B) focused on the unstable region after the rockslide failure occurred on 11 August 2021. (E) Results

of the structural similarity index map. Note the rockslide and change identification obtained from structural similarity map compared to image differencing. (F)

Results of image differencing showing areas of change and rockslide events. (G) Displacement rate for the Plinth Peak slope calculated from triplets of images 7 days

before the 11 August 2021, rockslide event. (H) Reconstructed trajectory path of the rockslide. The colour bar for panels (G,H) is log scale. (I) High resolution Google

Earth imagery showing the least stable part of Plinth Peak slope. (J) Zoomed window of panel (I) show approximate size and location of the failing rock mass on 11

August 2021.
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precursor of this event using dynamic change detection 7 days
before failure where the total displacement ranged from 1 to
10 cm from 3 to 10 August 2021 (Figure 12G). Additionally, we
reconstructed the rockslide trajectory and velocity of the rockslide
at >60 cm/day between 10 and 12 August 2021 (Figure 12H).

The mechanism of the rockfalls and the rockslide can be
further quantified based on the morphology of the Plinth Peak

slope. The slope is composed of a large talus cone (Rapp and
Fairbridge, 1997) formed due to the accumulation of rock-debris
at its base (Figure 11). The bedrock of the slope is composed of
rhyodacite lavas which may have facilitated relatively uniform
weathering across the West part of the Plinth Peak resulting in a
single talus slope rather than a series of cones. According to Rapp
and Fairbridge (1997), rates of creep movement in active talus
cones can be ~10 cm/year on the upper part of the cone
decreasing to zero towards the base. These rates are similar to
the SqueeSAR displacement rates for Plinth Peak of 7.3 cm/year
(Figure 2).

The rockfalls detected by Akh-Defo on the Plinth Peak slope
can be categorized into two types of talus deposits, rockfall talus
and talus creep (Rapp and Fairbridge, 1997). Rockfall talus related
to individual block failing, such as the 11 August rockslide, are
characterized by shattering, rolling, and bouncing caused by
freeze-thaw, and heavy rain (Figures 10C,D, 11, 12). One
week before the 11 August 2021, rockslide, the camera
weather station recorded a sharp drop in temperature as well
as heavy rainfall (Figure 10).

Although, at this time there is no published information
regarding the structural and kinematic behavior of the Plinth

Peak slope, we performed a preliminary assessment in order to
map linear features from the Lidar-based hillshade map. The

Plinth Peak slope encompasses at least three sets of lineaments,
striking NW-SE, ESE-WNW, and NNE-SSW. Our results show
that most of the rockfalls and slope deformation occur within and
along the trends of mapped lineaments (Figure 13) with rockfalls
particularly concentrated along the NNE-SSW striking
lineaments.

5.2 Mud Creek Landslide, California
Akh-Defo processing of orthorectified PlanetScope satellite imagery
identified displacement between 50 and 300 cm (Figures 6, 7),
41 days prior to the 20 May 2017, Mud Creek landslide. The
timestamp-sequential displacement (Figure 7) and average
displacement (Figure 6) show two main unstable zones. The
upper zone (referred to as the depletion zone by Warrick et al.,
2019) showed amaximumof 100 cmdisplacement on 10April 2017,
40 days before the catastrophic landslide failure. In comparison, the
lower zone (referred to as the accumulation zone by Warrick et al.,
2019) showed displacement rates of as little as 60–80 cm for the same

time period 40 days before the failure (Figure 6).
This failure event was followed by accelerating displacement in

the lower zone from 80 cm to more than 300 cm at 35 and 6 days,
respectively, before the catastrophic failure (Figure 7). Four days
before the event, both the upper and lower zones became
extremely unstable and showed displacement of more than
300 cm. The above pattern of accelerating displacement in the
lower zone at days 35 to 6, preceding the upper zone, might have
facilitated the occurrence of the catastrophic failure. This would
kinematically validate the loss of slope piedmont support for
material from the upper slope zone. Warrick et al. (2019) show

that although the lateral flank of the failure moved significantly
during the failure, it did not fail completely (Figures 6G,H). We

FIGURE 13 | High resolution ESRI satellite image overlayed on top of the lidar-based hillshade map; shown are three sets of lineaments that most likely structurally

control the Plinth Peak slope deformation. The dashed red polygon represents areas of frequent rockfall.
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were able to measure average displacement of 80 cm for the lateral
flank 41 days before the catastrophic failure (Figures 6E,F;
Table 2) which increased to a few meters between May 1 and
16, 2017, just 4 days before the catastrophic failure (Figure 7).

Although there is limited data and information available
regarding the cause of the Mud Creek 2017 landslide,
according to Handwerger et al. (2019), the region underwent a

5-year drought before 2017 and the failure occurred following a
period of persistent rainfall lasting several days. Simple 1D
hydrological modelling suggests that significant increases in
pore-fluid pressure led to rapid destabilization of the slope
resulting in the catastrophic Mud Creek landslide.

6 DISCUSSION

Aside from data preprocessing, the main task of Akh-Defo is to
perform static and dynamic change detection. Dynamic change
detection is a powerful method for slope deformation monitoring
as it provides pre-failure warning signals—for example, 7 days
before the 11 August 2021, rockslide on Plinth Peak, the software
measured >2 cm of slope movement at the rockslide source area
(Figures 12G,H); additionally, 41 days before the 20 May 2017,
Mud Creek landslide, the Akh-Defo software measured more
than 50 cm of slope movement (Figures 6, 7).

Static change detection consists of image difference maps
through subtraction of subsequent images and similarity maps

through measuring image similarities based on the combination
of three independent elements: 1) brightness values, 2) contrast
values, and 3) structure of the visual image scene. Unlike
similarity maps, image differencing solely relies on pixel
intensity change between subsequent images; hence, it is
sensitive to light conditions and produces relatively more
noise (Figure 14). For instance, changes in solar elevation
angle produce different Sun illumination patterns and different

shade patterns on ground surfaces at different hours of the day.
We minimized light condition variability related to daily change
of Sun elevation angle and Sun azimuth at different hours of the
day by processing images acquired at the same time of the day
(Figure 14).

The Dynamic Change-Detection approach can detect slow (sub-
cm) and fast (more than a few metres) slope movement. The user

needs to apply other complementary techniques to differentiate the
source of calculated displacement such as rockfall, rockslide or slow
slope deformation. In this study we used a number of methods to
distinguish and interpret the source of slow and fast displacement
rates including SqueeSAR, Static Change-Detection and visual
observation of the time-lapse images. SqueeSAR (InSAR) is a
valuable independent method to validate slow slope displacement
(Table 1; Figure 9). Static change detection and visual observation of
the image time-lapse both are important to quantify fast slope
movement such as rockfalls and rockslides (Figures 10, 12).

Through installation of a low-cost fixed camera and telemetry

system, we were able to collect more frequent images (daily to
hourly) of the Plinth Peak slope compared to exclusively relying on
InSAR (Figures 9G,E). Statistical comparison between SqueeSAR
results and Akh-Defo shows less than 20% difference in
displacement rate from Akh-Defo relative to InSAR (Table 1).
SqueeSAR processes radar images and relies on the change of
distance between the SAR satellite and the target on the ground.
SqueeSAR can processes data collected at all times and under
various weather conditions such as cloud, fog, and rain. However,
SqueeSAR cannot calculate sufficient measurement points in very
steep slopes or if the target invisible to the LOS.

Alternatively, Akh-Defo processes optical images and relies on the
change of the intensity pattern within the optical image but is restricted
to only data collected during the daytime and under clear weather
conditions. In this study, the Akh-Defo software was applied to the
Planet Labs pre-processed orthorectified optical images to measure the
Plinth Peak slope as well as the pre–Mud Creek landslide movements.

FIGURE 14 | Solar elevation and azimuth change for the Mount Meager area during August 2021. Note the change of solar elevation angle relative to change of

solar azimuth angle during the day. Data from (https://keisan.casio.com/exec/system/1224682277).
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The calculated land movement from orthorectified satellite optical
images are more accurate and easier to project to the real-world
trajectories relative to the ground-based optical images, mainly due to
the geometric characteristics of the satellite images relative to the
ground images. For instance, in the case of orthorectified satellite
images, the pre-processed optical images have already been corrected
(using digital elevationmodels) for external image distortion caused by
the difference in depth of objects within the image scene (i.e., any
distortions caused by topography have been corrected).

Akh-Defo uses optical flow algorithms to calculate slope
movement. The measurement accuracy depends on the data-

collection system such as resolution of the raw image, weather
conditions during capturing the image, stability of the camera
system (in case of ground-based images) and even time of the day
the subsequent images were taken. In our methodology, we were
careful to select images for processing to obtain acceptable results for
validation with other independent systems such as SqueeSAR (Plinth
Peak case study) and Lidar DEM change detection (Mud Creek case
study). For instance, we only processed images taken during clear
weather conditions (no fog, snow, or rain), we performed image

alignment to compensate for the stability of the ground camera system
(see Supplementary Material for image alignment process) and we
only processed images taken at fixed hour of subsequent days. In
addition to careful selection of images and image pre-processing steps
such as image alignment and image enhancement, we also integrated
similarity thresholds (comparable to InSAR coherence thresholds).
The advantage of using this parameter is that it enables calculation of
displacement velocity only for pixels with known stable texture and
light condition (Figures 15B,D).

Current limitations of the Akh-Defo software include the
inability to accurately identify the displacement vector field for

the calculated displacement from the ground-based images
processed for the Plinth Peak slope. This limitation is inherent
to all computer vision optical flow codes and its known as the
Aperture problem (Xue et al., 2015). The significance of the
aperture problem depends on the size of the object of interest; for
instance, if the object of interest is larger than what can be seen
through the camera scene view (such as the Plinth Peak slope), we
can only estimate an approximate vector field for objects within
the slope. In other words, while we cannot identify the movement

FIGURE 15 | Deformation rates in millimeter per month for Plinth Peak slope. (A) Deformation rate calculated from ground-based optical images from July 27 to 18

August 2021; note, the colour-bar is shown as a logarithmic scale, deformation rates larger than 20 mm represents traces of slow but continuous rockfalls within the

processed time window period. (B) Deformation rate calculated from orthorectified optical satellite images from July 28 to 13 August 2021, deformation map processed

with similarity threshold equal to 0.75. (C) Deformation rate calculated from radar images for summer 2019, 2020, and 2021 using TRE-ALTAMIRA SqueeSAR

Software. SqueeSAR by default calculate annual deformation rate, we rescaled to a monthly deformation rate. (D) Deformation rate calculated from orthorectified optical

satellite images from July 28 to 13 August 2021, deformation map processed with similarity threshold equal to 0.2.
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of the entire slope relative to Mount Meager itself, we can
calculate the displacement rate and vector of smaller landslides
and rockfalls withing the field of view of our installed camera.

Another limitation is that the optical flow algorithm can only

measure horizontal displacement in a 2-dimensional image space
such as (left, right, top, and bottom). This becomesmore challenging
in the case of ground-based optical image processing to translate the
calculated displacement magnitude vector into a real-world vector
motion. In contrast, for optical satellite images the solution becomes
relatively more practical by processing orthorectified optical images
(Figure 3); we can then reproject the calculated velocity magnitude
and vector back to the real-world projection using available digital
elevation models (Figures 5C,D).

Our results show that ground-based optical images are
more suitable to monitor rockfalls compared to orthorectified

satellite optical images. This is mainly related to the different
angles of view as the orthorectified satellite images are
acquired at nearly nadir while ground-based optical images
have a nearly horizontal view (Figure 15).

7 CONCLUSION

In this study, we developed software to process ground-based
optical images and orthorectified Planet Lab satellite optical
images. The ground-based optical images were used to test the
capability of the developed software to complement InSAR LOS
limitations for the steep slopes of Plinth Peak. Our ground-based
camera analysis, using stacks of optical images from 27 July to 18
August 2021, gives comparable and complementary results (less
than 20% difference; see Table 1) for the same time-period with
SqueeSAR. In addition to defining deformation rates, we were
able to characterize velocity of rockfall trajectories spatially within
the slope itself. Additionally, we used two techniques, Image

Differencing and Structural Similarity Index (SSIM), to identify
areas of significant slope change such as landslide areas. Results
from ground-based camera monitoring detected movements of
the slope and defined areas of highest rockfall on the western
flank of Plinth Peak. Our results show that ground-based optical
images are more suitable to monitor rockfalls compared to
orthorectified satellite optical images.

We also tested the Akh-Defo program to calculate the pre-failure
movement 41 days before the catastrophic 20 May 2017 Mud Creek
Landslide from the orthorectified Planet Lab satellite imagery and
validated our results with those from Warrick et al. (2019). We
calculated timestamp (Figure 7) and average (Figures 6C–G)

displacement for the period 40 days before the catastrophic
landslide occurred.

In this paper, the following conclusions are presented to
enhance cost-effective and near real-time early warning
landslide and rockfall monitoring:

1) Radar satellite datasets are a highly effective source to identify
unstable areas as a baseline knowledge if followed by less-expensive
but continuous ground-based and optical satellite monitoring.

2) Computer vision codes such as optical-flow velocity are highly
effective for calculating land deformation semi-quantitively if

used with a proper methodological workflow which includes
choosing the appropriate type of image dataset and reasonable
image pre-processing preparation.

3) Structural similarity maps appear to be more effective in

identifying rockfall events and areas of change compared to
classic image differencing.

4) The pre-failure Mud Creek displacement results calculated by
Akh-Defo software indicate that Akh-Defo program (based
on optical flow velocity code) can be used as a first stage
preliminary warning system (particularly if run on the Cloud)
prior to processing more expensive but more accurate InSAR
products such as SqueeSAR.
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