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A Distributed Mixed-Integer Framework to
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Abstract— This article deals with distributed control of
microgrids composed of storages, generators, renewable energy
sources, and critical and controllable loads. We consider a
stochastic formulation of the optimal control problem associated
with the microgrid that appropriately takes into account the
unpredictable nature of the power generated by renewables.
The resulting problem is a mixed-integer linear program and
is NP-hard and nonconvex. Moreover, the peculiarity of the
considered framework is that no central unit can be used to
perform the optimization, but rather the units must cooperate
with each other by means of neighboring communication. To solve
the problem, we resort to a distributed methodology based on
a primal decomposition approach. The resulting algorithm is
able to compute high-quality feasible solutions to a two-stage
stochastic optimization problem, for which we also provide a
theoretical upper bound on the constraint violation. Finally,
a Monte Carlo numerical computation on a scenario with a large
number of devices shows the efficacy of the proposed distributed
control approach. The numerical experiments are performed
on realistic scenarios obtained from Generative Adversarial
Networks (GANs) trained an open-source historical dataset of
the EU.

Index Terms— Distributed optimization, mixed-integer linear
programming (MILP), stochastic microgrid control.

I. INTRODUCTION

IN THE last decade, the use of renewable energy sources
is soaring and is creating new challenges in the field of

microgrid control. These important structural changes in the
power grid call for novel approaches that must appropriately
take into account the stochastic nature of the energy pro-
duced by renewables. To this end, optimization-based control
techniques are increasingly used. However, they typically
employ centralized approaches that require the collection of
the problem data at each node, which may lead to a single
point of failure. Distributed optimization approaches are a
promising alternative that allows for the solution of optimiza-
tion problems with spatially distributed data while preserving
the locality of the data and even resilience of the network in the
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case of failures [1]–[3]. We first review optimal control tech-
niques, and then, we recall approaches based on mixed-integer
programming and, finally, move to distributed approaches.
Optimal control techniques allow for shaping input trajec-
tories that take into account energy consumption/production
costs and user comfort. In recent times, they are increasingly
achieved with moving horizon techniques, such as Model
Predictive Control (MPC), since it flexibly allows one to tackle
several challenges (see [4]–[6]). Stochastic optimization-based
approaches are also being developed. In [7], a stochastic
optimization method for energy and reserve scheduling with
renewable energy sources and demand-side participation is
considered. The work [8] studies a stochastic unit commit-
ment and economic dispatch problem with renewables and
incorporates the battery operating cost. Another prominent
approach is mixed-integer linear programming (MILP), which
is gathering significant attention due to its ability to model
logical statements that often occur within microgrids. In [9],
an MILP optimal control approach of residential microgrid
is proposed. In [10], a mixed-integer nonlinear programming
formulation is considered with experimental validation for
islanded-mode microgrids. In [11], an MILP is formulated to
achieve optimal load shifting in microgrids. The MPC and the
MILP approaches have been combined in [12], which proposes
a receding horizon implementation of the MILP approach on
an experimental testbed. A stochastic version of this work is
considered in [13], which further takes into account renew-
able energy sources and aims at an environmental/economical
operation of microgrids. While these works take into account
more and more aspects of microgrids, they are all based on
centralized optimization techniques that require one of the
nodes to be chosen as master, thus introducing scalability and
privacy issues. As energy networks are intrinsically distrib-
uted, there is often the need to devise distributed approaches
that exploit the graph structure. The recent survey [14] pro-
vides an overview of distributed control methods for micro-
grids. The work [1] reviews distributed methods for optimal
power flow problems, while [15] surveys distributed control
approaches for autonomous power grids. In [16], a distributed
approach to optimal reactive power compensation is proposed.
Causevic et al. [17] and Belluschi et al. [18] propose
distributed algorithms for optimal energy building manage-
ment, while Cavraro et al. [19] investigate a distributed
feedback control law to minimize power generation cost in
prosumer-based networks. However, none of the mentioned
works formulates a comprehensive stochastic scheduling
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problem involving the demand-side in a distributed way. Novel
distributed methods relying on MILPs can take advantage of
the latest progress in distributed optimization methods. MILPs
are nonconvex and NP-hard; therefore, large-scale instances
can be solved within acceptable time windows only subop-
timally. In this regard, the recent works [20], [21] propose
distributed algorithms to compute feasible solutions of MILPs
over networks. Specifically, the work [20] is based on a dual
decomposition approach with an iterative restriction mecha-
nism, while Camisa et al. [21] consider a primal decomposi-
tion scheme with a fixed restriction on the coupling constraints.
However, both approaches require bounded constraint sets and
may be severely penalized by the restriction of the coupling
constraints.

The contributions of this article are given as follows.
We consider a distributed stochastic microgrid control problem
consisting of several interconnected power units, namely,
generators, renewable energy sources, storages, and loads.
We begin by recalling the microgrid model. We then show
that the optimal control problem can be recast as a distributed
MILP. We apply a two-stage stochastic programming approach
to the distributed MILP and show that also this problem can be
cast as a distributed MILP. The considered problems are both
large-scale (i.e., with a large number of optimization variables)
and mixed-integer (i.e., with some of the variables constrained
to be an integer). Furthermore, we are considering a scenario
where the problem has to be solved with a distributed algo-
rithm, that is, with a peer-to-peer protocol without a central
coordinator. From an algorithmic point of view, these three
assumptions make the problem very challenging. We propose
to tackle this distributed MILP using an approach inspired by
recent approaches proposed in the literature, which are suitably
modified to deal with the stochastic scenario. In order to
adapt state-of-the-art distributed mixed-integer schemes for the
control of microgrids, it will be necessary to extend the scope
of such approaches to deal with unbounded constraint sets
arising from the two-stage stochastic optimization approach.
The proposed algorithm provides a feasible solution to the
two-stage stochastic problem at each iteration while preserving
sensible data at each node. As the algorithm progresses, the
cost of the provided solution improves, and the expected
violation of the power balance constraint decreases. For the
asymptotic solution provided by the algorithm, we formally
prove an upper bound on the violation of the power balance
constraint. We then apply the developed approach to a simu-
lation scenario with a large number of devices. We perform
realistic simulations by using open-source historical data,
taken from the EU platform Open Power System Data [22],
on energy generation/consumption in South Italy. We train a
Generative Adversarial Network (GAN) based on these data
and use it to generate sample energy generation/consumption
profiles. The generated data are used to perform a Monte
Carlo numerical experiment on the Italian HPC CINECA
infrastructure to show the efficacy of the distributed algorithm.
Throughout this article, we assume that primary and secondary
controls of the microgrid are already performed by some
suitably designed low-level controllers. Thus, we implicitly
assume that the stability of the microgrid is maintained through

such controllers. We, instead, aim at computing the power
set-points at a slower time scale, i.e., we focus on tertiary
control.

Compared to the works [20], [21], the algorithm pro-
posed in this article is also based on a primal decompo-
sition approach as [21]; however, different from these two
approaches, our algorithm deals with a stochastic problem,
can handle unbounded constraint sets, and does not employ a
restriction mechanism. Note that Camisa et al. [21] employ
suitable optimization variables to handle violations of the
coupling constraints. In this article, we will reinterpret this
idea by considering similar variables that will instead play the
role of second-stage variables in the stochastic scenario.

This article is organized as follows. In Section II,
we describe the mixed-integer microgrid model and the sto-
chastic optimal control problem. In Section III, we refor-
mulate the problem as a distributed MILP and apply the
two-stage stochastic programming approach. In Section IV,
we describe the proposed distributed algorithm and provide
theoretical results on the worst case constraint violation, while,
in Section V, we discuss Monte Carlo numerical simulations
on a practical scenario with a large number of devices and
realistic synthesized data.

II. STOCHASTIC MIXED-INTEGER MICROGRID

CONTROL WITH RENEWABLES

Let us begin by introducing the mixed-integer microgrid
model. For ease of exposition, we consider a fairly general
model inspired by the one in [13] without taking into account
some specific aspects (see Remark 1). This allows us to better
highlight the main features of the proposed approach while
keeping the discussion not too technical. Compared to other
approaches, the main advantage of using the mixed-integer
framework is that it allows to efficiently model logical state-
ments [23] typically arising in microgrids. A microgrid con-
sists of N units, partitioned as follows. Storages are collected
in ISTOR , generators in IGEN, renewable energy sources in
IREN , critical loads in ILO, controllable loads in ICL, and
one connection with the utility grid in IGRID . In particular,
we consider the point of common coupling to have index
IGRID = {N}, while all the other sets are subsets of the full set
{1, . . . , N}. Therefore, the whole set of units can be written as

I = {1, . . . , N} = ISTOR ∪ IGEN ∪ IREN ∪ ILO ∪ ICL ∪ IGRID

where the sets ISTOR, IGEN , IREN , ILO, ICL, and IGRID are pairwise
disjoint. Throughout the document, we interchangeably refer
to the units also as agents. In Sections II-A–II-E, we describe
each type of unit separately, while, in Section II-F, we will
introduce the optimal control problem. In the following,
we denote the optimal control prediction horizon as K ∈ N.

A. Storages

For storage units i ∈ ISTOR , let zi(k) ∈ R be the stored
energy level at time k, and let ui(k) ∈ R denote the power
exchanged with the storage unit at time k (positive for charging
and negative for discharging). The dynamics at each time
k amounts to zi(k + 1) = zi(k) + ηi ui (k) − zPL

i , where ηi
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TABLE I

LIST OF THE MAIN SYMBOLS AND THEIR DEFINITIONS

denotes the (dis)charging efficiency and zPL
i is a physiological

loss of energy. It is assumed that ηi = ηc
i if ui (k) ≥ 0

(charging mode), whereas ηi = 1/ηd
i if ui(k) < 0 (discharging

mode) with 0 < ηc
i and ηd

i < 1. Thus, the dynamics is
piecewise linear. To deal with this, we utilize mixed-integer
inequalities [23]. Let us introduce additional variables δi(k) ∈
{0, 1} and γi(k) � δi (k)ui(k) ∈ R for all k. Each δi (k) is
one if and only if ui (k) ≥ 0 (i.e., the storage unit at time
k is in the charging state). After following the manipulations
proposed in [12], we obtain the following model for the i th
storage unit:

zi (k + 1) = zi (k) +
(

ηc
i −

1

ηd
i

)
γi (k) + 1

ηd
i

ui (k)−zPL
i (1a)

E1
i δi(k)+E2

i γi(k) ≤ E3
i ui(k) + E4

i (1b)

zMIN
i ≤ zi (k) ≤ zMAX

i (1c)

for all time instants k, and

zi (0) = zi,0 (1d)

where (1a) is the dynamics, (1b) gives mixed-integer inequal-
ities expressing the logical constraints, (1c) gives box con-
straints on the state of charge (with 0 < zMIN

i < zMAX
i ), and (1d)

imposes the initial condition (zi,0 ∈ R is the initial state of
charge of storage i ). The matrices in (1b) are

E1
i =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ci

−(Ci + ε)
Ci

Ci

−Ci

−Ci

⎤
⎥⎥⎥⎥⎥⎥⎦

, E2
i =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
1

−1
1

−1

⎤
⎥⎥⎥⎥⎥⎥⎦

E3
i =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
−1
1

−1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

, E4
i =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ci

−ε
Ci

Ci

0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

where Ci > 0 is the limit output power and ε > 0 is a very
small number (typically machine precision). To each storage
i is associated an operation and maintenance cost, which is
equal to

Ji =
K−1∑
k=0

ζi |ui(k)| =
K−1∑
k=0

ζi(2γi(k) − ui (k)) (2)

where ζi > 0 is the operation and maintenance cost per
exchanged unit of power and 2γi(k) − ui(k) = |ui(k)| is the
absolute value of the power exchanged with the storage.

B. Generators

For generators i ∈ IGEN, let ui (k) ∈ R and ui(k) ≥ 0 denote
the generated power at time k. Since generators can be either
ON or OFF, as done for the storages, we let δi(k) ∈ {0, 1} be
an auxiliary variable that is equal to 1 if and only if ui (k) > 0.
As in the case of storages, we must consider constraints on the
operating conditions of generators. Namely, if a generator is
turned on/off, there is a minimum amount of time for which the
unit must be kept ON/OFF. This logical constraint is modeled
by the inequalities

δi(k) − δi(k − 1) ≤ δi (τ )

τ = k + 1, . . . , min
(
k + T UP

i − 1, K
)

(3a)

δi(k − 1) − δi(k) ≤ δi (τ )

τ = k + 1, . . . , min
(
k + T DOWN

i − 1, K
)

(3b)

for all time instants k, where T UP
i and T DOWN

i are the minimum
up and down time of generator i . The power flow limit and
the ramp-up/ramp-down limits are modeled, respectively, by

uMIN
i δi(k) ≤ ui (k) ≤ uMAX

i δi (k) (3c)

−r MAX
i δi(k) ≤ ui (k) − ui (k − 1) ≤ r MAX

i δi (k) (3d)

for all times k, where uMAX
i ≥ uMIN

i ≥ 0 denote the maximum
and minimum powers that can be generated by generator i and
r MAX

i ≥ 0 denotes the maximum ramp-up/ramp-down.
The cost associated with generator units is composed of

three parts, which are: 1) a (quadratic) generation cost;
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2) a startup/shut-down cost; and 3) an operation and main-
tenance cost. To model the generation cost, we consider a
piecewise linearized version max�(S�

i ui(k)+ s�
i ) for all k with

appropriately defined S�
i , s�

i ∈ R. The startup θU
i and shutdown

cost θD
i at each time k ∈ {0, . . . , K − 1} are equal to

θU
i (k) = max

{
0, κU

i (k)[δi (k) − δi(k − 1)]
}

θD
i (k) = max

{
0, κD

i (k)[δi (k − 1) − δi(k)]
}

where κU
i (k), κD

i (k) > 0 are the startup and shut-down costs
at time k. The operation and maintenance costs are equal to
ζiδi(k), where ζi > 0 is a cost coefficient (we assume that
there is no cost when the generator is turned off). Thus, the
expression for the cost of each generator i is

Ji =
K−1∑
k=0

[
max

�

(
S�

i ui (k) + s�
i

) + ζiδi(k) + θU
i (k) + θD

i (k)

]
.

Note that the cost function has internal maximizations and,
as such, is nonlinear. However, since the cost is to be min-
imized, it can be recast as a linear function by introducing
so-called epigraph variables (see [24]) as follows. As regards
the generation cost, we replace it with epigraph variables
νi (k) ∈ R and impose the constraints

νi (k) ≥ S�
i ui(k) + s�

i ∀ � (3e)

for all times k. Similarly, we can treat θU
i , θD

i ∈ R as epigraph
variables and write the constraints

θU
i (k) ≥ κU

i (k)[δi(k) − δi (k − 1)] (3f)

θD
i (k) ≥ κD

i (k)[δi(k − 1) − δi(k)] (3g)

θU
i (k) ≥ 0 (3h)

θD
i (k) ≥ 0 (3i)

for all k. We, therefore, obtain the following expression for
the cost function of generator i :

Ji =
K−1∑
k=0

[
νi (k) + θU

i (k) + θD
i (k) + ζiδi (k)

]
. (4)

C. Renewable Energy Sources

We consider two types of renewables, namely, wind gen-
erators and solar generators. Rather than using a physical or
dynamical model for these generators, we use a predictor to
generate realistic power production scenarios. Indeed, thanks
to the huge amount of historical datasets freely available on
the internet, neural network-based predictors have excellent
accuracy. More details regarding the scenario generation tech-
nique are in Section V-A. We will employ this technique
also to generate power demand predictions. These units only
contribute to the power balance constraint (9) through their
generated power at each time slot k, denoted as Pi (k) ≥ 0,
and do not have associated cost or constraints. Note that
Pi (k) are unknown beforehand and, at this point of the
derivation, must be modeled as stochastic variables having
a certain probability distribution. In principle, the variables
Pi (k) should be regarded as having a continuous probability
distribution. However, from a computational point of view,

it is convenient to approximate the original distribution with
a certain number of scenarios. This approach is known as
sample average approximation (SAA) and enjoys asymptotic
properties, as outlined in [25]. In the subsequent derivation,
we will assume that the distribution of Pi has been already
discretized to a finite number of scenarios. Then, since we will
exploit a two-stage stochastic optimization approach, we will
use the scenario generator to obtain realizations of Pi (k).
We discuss this aspect more in detail in Section III.

D. Loads

We consider two types of loads, namely, critical loads and
controllable loads. For critical loads i ∈ ILO, we will denote
by Di (k) the consumption forecast at time k, and we assume
that it is given. There are no optimization variables (and, thus,
cost functions) associated with this kind of unit; however,
their consumption must be considered in the power balance
(cf. Section II-F).

For controllable loads i ∈ ICL , let Di (k) be the con-
sumption forecast at time k, which is assumed to be given.
In case the microgrid has energy shortages, the consumption
of controllable loads can be curtailed to meet power balance
constraints. This is quantified with a curtailment factor βi(k) ∈
[βMIN

i , βMAX
i ], where 0 ≤ βMIN

i ≤ βMAX
i ≤ 1 are the bounds

on the allowed curtailment. The actual power consumption at
time k is, thus, (1 − βi(k))Di (k), i.e., if βi(k) = 0, there
is no curtailment. The curtailment factor is an optimization
variable and can be freely chosen; thus, in principle, it can be
βi(k) > 0 for some k (even if there are no energy shortages)
if this results in a cost improvement. The following constraint
must be imposed:

βMIN
i ≤ βi (k) ≤ βMAX

i (5)

for all times k. We assume that the microgrid incurs in a cost
that is proportional to the total curtailed power thus, the cost
function associated with controllable load i is

Ji =
K−1∑
k=0

ϕi Di (k)βi (k) (6)

where ϕi > 0 is a penalty weight.

E. Connection to the Utility Grid

For the connection with the utility grid i ∈ IGRID , let
ui(k) ∈ R denote the imported (exported) power level
from (to) the utility grid. We use the convention that imported
power at time k is nonnegative ui (k) ≥ 0. As before, since the
power purchase price is different from the power sell price,
we consider auxiliary optimization variables δi(k) ∈ {0, 1}
and φi (k) ∈ R for all k. The variable δi (k) models the logical
statement δi(k) = 1 if and only if ui(k) ≥ 0 (i.e., power is
imported from the utility grid). The variable φi(k) represents
the total expenditure (retribution) for imported (exported)
energy. Denoting by φP

i (k), φS
i (k) ≥ 0 the price for power

purchase and sell, it holds φi(k) = φP
i (k)ui (k) if δi(k) = 1

and φi(k) = φS
i (k)ui(k) if δi(k) = 0. By denoting by
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PMAX
i ≥ 0 the maximum exchangeable power, the correspond-

ing mixed-integer inequalities are (cf. [12])

E1
i δi(k) + E2

i φi(k) ≤ E3
i (k)ui(k) + E4

i (7)

for all k, where the matrices are defined as

E1
i =

⎡
⎢⎢⎢⎢⎢⎢⎣

PMAX
i−PMAX

i − ε
Mi

Mi

−Mi

−Mi

⎤
⎥⎥⎥⎥⎥⎥⎦

, E2
i =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
1

−1
1

−1

⎤
⎥⎥⎥⎥⎥⎥⎦

E3
i (k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
−1

φP(k)
−φP(k)
φS(k)

−φS(k)

⎤
⎥⎥⎥⎥⎥⎥⎦

, E4
i =

⎡
⎢⎢⎢⎢⎢⎢⎣

PMAX
i−ε
Mi

Mi

0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

with Mi = PMAX
i · maxk(φ

P(k), φS(k)). It is clear that the cost
associated with this unit is

Ji =
K−1∑
k=0

φi(k). (8)

F. Power Balance Constraint and Optimal Control Problem

Electrical balance must be met at each time k, i.e.,

uIGRID
(k) =

∑
i∈ISTOR

ui(k) −
∑

i∈IGEN

ui(k) +
∑
i∈ICL

(1 − βi(k))Di (k)

+
∑
i∈ILO

Di (k) −
∑

i∈IREN

Pi (k). (9)

Recall that the length of the prediction horizon is K ∈ N. The
optimal control problem, which is an MILP, can be posed as

min
u

K−1∑
k=0

⎡
⎣φGRID(k) +

∑
i∈IGEN

(
ζiδi(k) + νi (k) + θU

i (k) + θD
i (k)

)

+
∑
i∈ICL

ϕi Di (k)βi(k) +
∑

i∈ISTOR

(ζi(2γi(k) − ui(k)))

⎤
⎦

s.t. storage constraints (1)

generator constraints (3)

constraints (5), (7), (9). (10)

In the formulation of problem (10), the presence of the renew-
ables is taken into account by the power balance constraint (9).
Indeed, constraint (9) contains the terms Pi(k), i ∈ IREN ,
which represents the power generated by renewable i at the
time step k of the prediction horizon. Note that problem (10)
is a stochastic optimization problem. Indeed, the equality
constraint (9) is stochastic since it depends on Pi (k). Next,
we show how to handle this level of complexity.

Remark 1: Note that the microgrid model can also be
extended to additionally consider thermal loads and combined
heat and power (CHP) units, which would additionally require
a thermal balance constraint. The architecture proposed in the
following can be easily adapted to deal with this scenario

by making only minor changes. However, in order not to
complicate too much the notation, we prefer not to introduce
this further level of complexity, which nevertheless can be
handled by the proposed framework. �

Remark 2: An important fact of the model described so
far is that, as also done in [13], we explicitly consider the
dynamics only for storages in order to keep the computational
complexity of the problem low. This is due to the fact that,
given the considered time scale, it is not worth considering
oscillatory behaviors of generators or of other units, which
happens at a much smaller time scale. For the same reason,
as regards renewables, we prefer to have an external tool
generate a plausible 24-h trajectory based on historical data,
rather than modeling all the dynamics of the unit. In this
way, essential features of both generators and renewables are
appropriately taken into account while keeping a low number
of optimization variables. Instead, for storages, we need to
explicitly keep track of the amount of stored energy at each
time slot. �

III. DISTRIBUTED CONSTRAINT-COUPLED

STOCHASTIC OPTIMIZATION

To handle the stochastic quantities Pi (k), we follow the
ideas of Parisio et al. [13] and utilize a two-stage stochastic
optimization approach. As we are interested in a distrib-
uted algorithm, instead of applying the two-stage stochastic
approach directly to problem (10), we rather apply it to a dis-
tributed reformulation of problem (10). In this section, we first
introduce the distributed reformulation of the problem and then
formalize the two-stage stochastic optimization approach. The
distributed approach to be introduced shortly will allow us
to compute a feasible (in general suboptimal) solution to the
problem, with guaranteed performance bounds, as discussed
in Section IV-B.

A. Constraint-Coupled Reformulation

The optimal control problem (10) can be reformulated in
such a way that the distributed structure of the problem
becomes more evident. Formally, problem (10) is equivalent
to the stochastic constraint-coupled MILP

min
x1,...,xN

N∑
i=1

c�
i xi

s.t.
N∑

i=1

Ai xi = b

xi ∈ X MILP
i , i = 1, . . . , N (11)

where, for all i ∈ {1, . . . , N}, the decision vector xi has
ni = pi + qi components (thus, ci ∈ R

ni ) with pi , qi ∈ N,
and the local constraint set is of the form

X MILP
i = Pi ∩ (

Z
pi × R

qi
)

for some nonempty compact polyhedron Pi ⊂ R
pi +qi .

Moreover, the matrices Ai ∈ R
K×ni and the vector

b ∈ R
K model coupling constraints among the variables.

We recall from Section II that the set of agents consists of
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I = {1, . . . , N} = ISTOR ∪ IGEN ∪ IREN ∪ ILO ∪ ICL ∪ IGRID . The
term “constraint-coupled” that we associate to problem (11)
is due to the fact that the constraints

∑N
i=1 Ai xi = b create

a link among all the variables x1, . . . , xN , which otherwise
could be optimized independently of each other. To achieve
the mentioned reformulation, we now specify the quantities xi ,
ci , X MILP

i , and Ai for each type of device and the right-hand
side vector b.

1) Storages: We assume that each storage unit i ∈ ISTOR

is responsible for the optimization vector xi consisting of the
stack of zi (k), ui(k), γi(k) ∈ R, and δi(k) ∈ {0, 1} for all k ∈
{0, . . . , K − 1} plus the variable zi(K ) ∈ R. The constraints
in X MILP

i are given by (1), while the cost function is c�
i xi =∑K−1

k=0 ζi (2γi(k) − ui (k)).
2) Generators: Each generator i ∈ IGEN is responsible

for the optimization vector xi consisting of the stack of
ui(k), νi (k), θU

i (k), θD
i (k) ∈ R, and δi(k) ∈ {0, 1} for all

k ∈ {0, . . . , K − 1}. The constraints in X MILP
i are given by

(3a)–(3i), while the cost function is c�
i xi = ∑K−1

k=0 (ζiδi(k) +
νi (k) + θU

i (k) + θD
i (k)).

3) Critical Loads: For the critical loads i ∈ ILO, there are
no variables to optimize, but they must be taken into account
in the coupling constraints.

4) Controllable Loads: For each controllable load i ∈ ICL,
the optimization vector xi consists of the stack of βi(k) ∈
R, for all k ∈ {0, . . . , K − 1}, with constraints given
by (5). Note that, for this class of devices, the local con-
straint set is not mixed-integer. The cost function is c�

i xi =∑K−1
k=0 ϕi Di (k)βi(k).
5) Connection to the Utility Grid: For this device i ∈

IGRID , the optimization vector xi consists of the stack of
ui(k), φi (k) ∈ R and δi(k) ∈ {0, 1} for all k ∈ {0, . . . , K − 1}.
The local constraints are (7), while the cost function is c�

i xi =∑K−1
k=0 φi (k).
6) Coupling Constraints: Finally, the coupling constraints

are given by (9), which can be encoded in the form∑N
i=1 Ai xi = b by appropriately defining the matrices Ai and

the vector b. In particular, the matrices Ai ∈ R
K×ni are such

that

[Ai xi ]k = ui(k) ∀i ∈ ISTOR (12a)

[Ai xi ]k = −ui(k) ∀i ∈ IGEN (12b)

[Ai xi ]k = −βi(k)Di (k) ∀i ∈ ICL (12c)

[Ai xi ]k = −ui(k) ∀i ∈ IGRID (12d)

for all times k, while the right-hand side vector b ∈ R
K is

equal to

b = −
∑
i∈ICL

Di −
∑
i∈ILO

Di +
∑

i∈IREN

Pi (12e)

where Di ∈ R
K and Pi ∈ R

K denote the stack of Di (k) and
Pi (k) for all times k. Note that the power generated by the
renewables introduces a stochasticity in the right-hand side
vector b appearing in problem (11).

Remark 3: It should be noted that, thanks to its general
formulation, problem (11) allows for the presence of new units
in the grid, which can be always added and treated as new
agents. �

In the considered distributed context, we assume that each
agent i does not know the entire problem information. In par-
ticular, we assume that it only knows the local cost vector ci ,
the local constraint X MILP

i , and its matrix Ai of the coupling
constraint. The exchange of information among N agents
occurs according to a graph-based communication model.
We use G = (V , E) to indicate the undirected, connected
graph describing the network, where V = {1, . . . , N} is the
set of vertices and E is the set of edges. If (i, j) ∈ E , then
agent i can communicate with agent j and vice versa. We use
Ni to indicate the set of neighbors of agent i in G, i.e.,
Ni = { j ∈ V |(i, j) ∈ E}.

B. Two-Stage Stochastic Optimization Approach

In its current form, problem (11) cannot be practically
solved due to the right-hand side vector b being unknown.
To deal with this, the approach consists of considering a set
of possible scenarios that may arise and then to formulate and
solve a so-called two-stage stochastic optimization problem,
which we now introduce. The scheme described in the next is
inspired by the approach introduced in [13], which we suitably
adapt in order to deal with our distributed scenario.

Intuitively, in this uncertain scenario, one has to “a priori”
(i.e., without knowing the actual value of the random vector b)
choose a set of control actions ui (k), such as generated/stored
power or power curtailments, in order to minimize a certain
cost criterion in an expected sense. However, these control
actions will inevitably result in a violation of the power
balance constraint (9) “a posteriori” (i.e., when the actual
power production of renewables, and hence the value of the
random vector b, becomes known). To compensate for this
infeasibility, recourse actions must be taken. These actions
are associated with a cost and will have an impact on the final
performance achieved by the whole control scheme. In the
jargon of two-stage stochastic optimization, the first-stage opti-
mization variables are those associated with the control actions
[i.e., x1, . . . , xN in problem (11)], while the second-stage
optimization variables (to be introduced shortly) are those
associated with recourses.

Formally, we denote by ω the random vector collecting all
the renewable energy generation profiles. We assume a finite
discrete probability distribution for ω, and we denote by πr

the probability of each ωr , i.e., πr = P(ω = ωi) for all
r ∈ {1, . . . , R}. To keep the notation consistent, we denote
the renewable energy profile corresponding to ωr as Pir (k).
We denote by br the realization of b associated with the
scenario ωr . Using these positions, the two-stage stochastic
MILP can be formulated as (see [26])

min
x1,...,xN

N∑
i=1

c�
i xi + Eω[Q(x1, . . . , xN , ω)]

s.t. xi ∈ X MILP
i , i = 1, . . . , N (13)

where x1, . . . , xN are the first-stage variables modeling the
(a priori) control actions and Q(x1, . . . , xN , ω) is the optimal
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value of the second-stage problem

Q(x1, . . . , xN , ω) = min
ηω+,ηω−

K−1∑
k=0

(
q+ηω

k+ + q−ηω
k−

)

s.t. − ηω
r− ≤

N∑
i=1

Ai xi − bω ≤ ηω
r+

ηω
+, ηω

− ≥ 0. (14)

Here, ηω+, ηω− ∈ R
K are the two-stage variables modeling the

(a posteriori) recourse actions, which are penalized in the cost
with q+ ≥ 0 and q− ≥ 0, which are the costs related to
energy surplus and shortage, respectively. Thus, the function
Q(x1, . . . , xN , ωr ) appearing in problem (13) models the cost
of the recourse when the first-stage variables are chosen as
x1, . . . , xN and the realization of the random variable is a
certain ωr . Since the distribution of ω is discrete, it holds

Eω[Q(x1, . . . , xN , ω)] =
R∑

r=1

πr Q(x1, . . . , xN , ωr ) (15)

and, thus, we can reformulate the stochastic problem (13) as
the equivalent deterministic formulation

min
x1,...,xN
η+,η−

N∑
i=1

c�
i xi +

K−1∑
k=0

R∑
r=1

πr (q+ηkr+ + q−ηkr−)

s.t. − ηr− ≤
N∑

i=1

Ai xi − br ≤ ηr+, r = 1, . . . , R

η+, η− ≥ 0

xi ∈ X MILP
i , i = 1, . . . , N. (16)

In problem (16), we denoted by ηkr+ the variable associated
with positive recourse for scenario r at time k. We also use
the symbol ηr+ to denote the stack of ηkr+ for all k. The stack
of ηkr+ for all k and r is denoted by η+. A similar notation
holds for η−.

At a first glance, it may seem that the two-stage prob-
lem (16) loses the constraint-coupled structure of the dis-
tributed optimization problem (11). However, with a bit a
manipulation, it is still possible to arrive at a similar result.
We begin by streamlining the notation. Define η ∈ R

2K R,
η ≥ 0 as the stack of η+ and η−, and the vector d ∈ R

2K R

such that d�η = ∑K−1
k=0

∑R
r=1 πr (q+ηkr++q−ηkr−). Moreover,

define Hi ∈ R
2K R×ni and h ∈ R

2K R with

Hi = 1 ⊗ [
A�

i −A�
i

]� =[
A�

i −A�
i · · · A�

i −A�
i

]�

h = [
b�

1 −b�
1 · · · b�

R −b�
R

]�

where 1 ∈ R
R is the vector of ones and ⊗ denotes the

Kronecker product. Thus, problem (16) is equivalent to

min
x1,...,xN

η

N∑
i=1

c�
i xi + d�η

s.t.
N∑

i=1

Hi xi−h ≤ η

η ≥ 0, xi ∈ X MILP
i , i = 1, . . . , N. (17)

By defining η1, . . . , ηN ∈ R
2RK such that

∑N
i=1 ηi = η and

each ηi ≥ 0, we see that problem (17) is, finally, equivalent to

min
x1,...,xN
η1,...,ηN

N∑
i=1

(
c�

i xi + d�ηi
)

s.t.
N∑

i=1

(Hi xi − ηi ) ≤ h

ηi ≥ 0, xi ∈ X MILP
i , i = 1, . . . , N (18)

in the sense that any solution of (17) can be reconstructed
from a solution of (18) by using η = ∑N

i=1 ηi . Note that
problem (18) has an unbounded feasible set (because of the
variables ηi ), but it always admits an optimal solution due to
the terms d�ηi minimized in the cost (recall that d ≥ 0).

IV. DISTRIBUTED ALGORITHM AND ANALYSIS

We now propose a distributed algorithm to compute a
feasible solution to problem (18) and provide the convergence
results.

A. Distributed Algorithm Description

Let us begin by describing the proposed distributed algo-
rithm to solve problem (18). The basic idea behind the
distributed algorithm is to compute a mixed-integer solution
starting from an optimal solution of the convex relaxation of
problem (17) obtained by replacing X MILP

i with their convex
hull conv(X MILP

i )

min
z1,...,zN
η1,...,ηN

N∑
i=1

(
c�

i zi + d�ηi
)

s.t.
N∑

i=1

(Hi zi − ηi ) ≤ h

ηi ≥ 0, zi ∈ conv(X MILP
i ), i = 1, . . . , N (19)

where we denote by zi the continuous counterpart of the
mixed-integer variable xi . To do so, each agent i maintains an
auxiliary variable yt

i ∈ R
2RK , which represents a local allo-

cation of the coupling constraints (cf. Appendix A). At each
iteration t , the vector yt

i is updated according to (20) and (21).
After T f > 0 iterations, the agent computes a tentative
mixed-integer solution based on the last computed allocation
estimate [cf. (22)]. Algorithm 1 summarizes the steps from the
perspective of agent i .

Let us briefly comment on the algorithm structure. As it will
be clear from the analysis, the first two steps (20) and (21) are
used to compute an optimal solution of problem (19), while the
last step (22) reconstructs a mixed-integer solution. Note that
problem (20) is an LP, and problem (22) is an MILP. From a
computational point of view, in order to solve the optimization
problems appearing in Algorithm 1, a Lagrange multiplier of
problem (20) can be found by each agent by running either
a dual subgradient method or a dual cutting-plane method
(cf. [21]), while an optimal solution to problem (22) can
be found with any MILP solver. As regards the computa-
tional complexity of the algorithm, we highlight that, due
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Algorithm 1 Distributed Stochastic Mixed-Integer Microgrid
Control

to the update (21), the amount of computation performed
by each agent grows linearly with the number of neighbors
|Ni | and is independent of the overall number of agents N .
In Section IV-B, we will prove a worst case violation of the
power balance constraints.

Remark 4: An important fact is that the computed
mixed-integer solution always satisfies the coupling constraint
appearing in problem (17) with a possibly high ηi , i.e.,

N∑
i=1

(
Hi x

T f

i − η
T f

i

)
≤

N∑
i=1

y
T f

i = h

where the inequality follows by construction and the equality
follows by the forthcoming Lemma 2. Thus, the algorithm
can be stopped at any iteration T f ≥ 0, and the resulting
solution will be feasible for the two-stage MILP (17). The
greater the number of iterations, the higher is the optimality of
the computed solution, and the lower is the expected violation
of the original power balance constraint. �

B. Theoretical Results

In this subsection, we provide theoretical results on
Algorithm 1. In particular, we will prove a bound for the worst
case violation of the asymptotically computed mixed-integer
solution. Indeed, as we will prove shortly, the algorithm
enjoys asymptotic convergence; however, it also provides a
feasible solution at each iteration, and therefore, it can be
safely stopped prematurely. We will then consider the coupling
constraints

∑N
i=1 Hi xi−h ≤ η appearing in problem (17), and

we will derive an upper bound for the value of η. In other
words, we will derive an upper bound for the maximum
component of the vector

∑N
i=1 Hi xi − h, where the maximum

is taken with respect to both the prediction horizon and the
scenarios.

To begin with, we recall some preliminary lemmas, where
we remind that K denotes the prediction horizon and R is
the total number of scenarios in the stochastic problems.
We highlight that the results to be proved next are true
regardless of the value of K and R. As a matter of fact,
we assume that these parameters have been fixed a priori
appropriately.

Lemma 1 [21]: Let problem (19) be feasible, and let
(z̄1, . . . , z̄N , η̄1, . . . , η̄N ) be any vertex of its feasible set. Then,
there exists an index set IZ ⊆ {1, . . . , N}, with cardinality
|IZ| ≥ N − 2RK , such that z̄i ∈ X MILP

i for all i ∈ IZ. �
The consequence of Lemma 1 is that at least N − 2RK

blocks of the mixed-integer solution computed asymptot-
ically by Algorithm 1 are equal to the corresponding
blocks of optimal solution of (19). Next, we recall conver-
gence of the steps (20) and (21). To this end, we denote
as (zLP

1 , . . . , zLP
N , ηLP

1 , . . . , ηLP
N ) an optimal solution of prob-

lem (19), together with the allocation vector (yLP
1 , . . . , yLP

N )
associated with the primal decomposition master problem
(cf. Appendix A), which is a vector satisfying

Hi z
LP
i − ηLP

i ≤ yLP
i for all i ∈ {1, . . . , N} (23a)

and
N∑

i=1

yLP
i = h. (23b)

The following assumption is made on the step-size sequence.
Assumption 1: The step-size sequence {αt }t≥0, with each

αt ≥ 0, satisfies
∑∞

t=0 αt = ∞,
∑∞

t=0(α
t )2 < ∞. �

The following proposition summarizes the convergence
properties of the steps (20) and (21).

Lemma 2 [21]: Let problem (19) be feasible, and let
Assumption 1 hold. Consider the allocation vector sequence
{yt

1, . . . , yt
N }t≥0 generated by steps (20) and (21) of

Algorithm 1 with the allocation vectors y0
i initialized such that∑N

i=1 y0
i = h. Then, the following holds.

1)
∑N

i=1 yt
i = h for all t ≥ 0.

2) limt→∞ ‖yt
i − yLP

i ‖ = 0 for all i ∈ {1, . . . , N}. �
Because of Lemma 2, from now on, we concentrate on the

asymptotic mixed-integer solution computed by Algorithm 1.
In particular, we denote by (x∞

i , η∞
i ) the optimal solution of

problem (22) with allocation equal to yLP
i , i.e.,

min
xi ,ηi

c�
i xi + d�ηi

s.t. Hi xi ≤ yLP
i + ηi

ηi ≥ 0, xi ∈ X MILP
i . (24)

We also define the lower bound of resources �i ∈ R
2RK

�i � min
xi ,ηi

Hi xi − ηi

s.t. xi ∈ conv(Xi)

0 ≤ ηi ≤ M1

where min is componentwise and M > 0 is a sufficiently large
number. Thus, it holds �i ≤ yi for all admissible allocations yi ,
and in particular, �i ≤ yLP

i . Operatively, since the constraints
on xi and ηi are disjoint, the vector �i can be computed by
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replacing xi ∈ conv(Xi ) with xi ∈ Xi . In the next theorem,
we formalize the bound on the worst case violation.

Theorem 1: Let problem (19) be feasible and consider
the asymptotic mixed-integer solution (x∞

i , η∞
i ) computed by

each agent i ∈ {1, . . . , N}. Then, the worst case violation of
the power balance constraint is

N∑
i=1

Hi x
∞
i − h ≤

∑
i∈IZ

ηLP
i +

∑
i /∈IZ

c�
i

(
x L

i − x∞
i

) + d�ηL
i

dMIN
1

where dMIN = min j∈{1,...,2RK } d j , IZ denotes the set of agents
(satisfying |IZ| ≥ N − 2RK ) for which zLP

i ∈ X MILP
i , and

(x L
i , ηL

i ) is an optimal solution of problem (29). �
The proof is provided in Appendix B. Note that, since this

bound is the sum of contributions of the agents, it can be
computed a posteriori in a distributed way using a consensus
scheme. To do so, they first need to detect whether they belong
to IZ or not by computing the primal solution zLP

i of (20)
and by checking whether it satisfies zLP

i ∈ X MILP
i . Then, they

run the consensus scheme using as initial condition either
NηLP

i (if zLP
i ∈ X MILP

i ) or N((c�
i (x L

i − x∞
i ) + d�ηL

i )/dMIN)1
(if zLP

i /∈ X MILP
i ).

V. NUMERICAL EXPERIMENTS

In this section, we validate the proposed framework through
large-scale numerical computations. All the simulations are
performed with the DISROPT package [27] and are performed
on the Italian HPC CINECA infrastructure. In order to make
the simulations realistic, we run Algorithm 1 on a generated
problem with data synthesized using a deep GAN [28]. In the
next subsections, we first provide details regarding the scenario
generation for renewable energy sources; then, we show aggre-
gate results on Monte Carlo simulations. Finally, we show in
more detail one specific simulation. We point out that the algo-
rithm is specifically tailored for the considered scenario and,
as such, cannot be compared numerically with other distributed
approaches in the literature for MILPs, such as [20] and [21].
Indeed, both of them would require the constraint sets of the
local variables xi , ηi in problem (18) to be bounded, which
does not hold in our case due to the variables ηi ≥ 0.

A. Scenario Generation With Generative Adversarial
Networks

Recall that b ∈ R
K is a random variable that depends on the

total energy produced by the renewables (12e). The variable b
has its own probability distribution, and b1, . . . , bR ∈ R

K are
randomly drawn samples [cf. (16)]. In order to generate such
samples, we utilize a GAN trained with an open historical
dataset from the EU. To train the neural network, we used
the data series provided by Open Power System Data [22].
In particular, we used the generation data of renewable energy
sources in South Italy. To guarantee a certain uniformity of
the data, we narrowed the dataset by concentrating only on
summer months and discarded days with missing information.
Each sample is a vector in R

24 and contains information on
the power produced during a day with an hourly resolution.

As for the utilized neural networks, the generative networks
have a 10-D input with the following layers:

Fig. 1. Five examples of power generation profiles generated by the GANs.
Left: solar energy. Right: wind energy.

Fig. 2. Five examples of power generation profiles extracted by historical
data. Left: solar energy. Right: wind energy.

1) a dense layer with 1536 units, batch normalization, and
leaky ReLU activation function;

2) a layer that reshapes the input to the shape (6, 256);
3) a transposed convolution layer with 128 output filters,

kernel size equal to 5, stride 1, batch normalization, and
leaky ReLU activation function;

4) a transposed convolution layer with 64 output filters,
kernel size equal to 5, stride 2, batch normalization, and
leaky ReLU activation function;

5) a transposed convolution layer with 1 output filter, kernel
size equal to 5, stride 2, and tanh activation function.

The output of the generative network is a 24-D vector con-
taining the power produced by the renewable unit at each time
slot of the day. The discriminator networks have a 24-D input
with the following layers:

1) a convolution layer with 64 output filters, kernel size
equal to 5, stride 2, and leaky ReLU activation function;

2) a dropout layer with the rate of 0.3;
3) a convolution layer with 128 output filters, kernel size

equal to 5, stride 2, and leaky ReLU activation function;
4) a dropout layer with rate 0.3;
5) a layer that flattens the input;
6) a dense layer with one output unit.

The output of the discriminator networks is a scalar that
denotes the probability that the evaluated input is a real one
or a generated one.

We used neural networks to generate samples of solar
energy and wind energy. We used TENSORFLOW 2.4 to model
the networks and we performed the training with 104 epochs
using the ADAM algorithm. In Fig. 1, we show example
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Fig. 3. Daily spot prices from Open Power System Data [22].

Fig. 4. Evolution of the cost yielded by Algorithm 1. The solid line is the
mean value of the Monte Carlo trials, while the dashed area represents one
standard deviation.

profiles of solar and wind energy generated by the networks.
For comparison, in Fig. 2, we provide examples of profiles
extracted from historical data. It can be noted that generated
trajectories of solar energy production have a maximum at
midday, while one of the trajectories has lower values than
the others and may be associated, for instance, with a cloudy
day. In any case, the power generated outside the time window
5 A.M.–8 P.M. is close to zero, consistently with real profiles.

B. Monte Carlo Simulations

To test the proposed framework, we performed 100 Monte
Carlo simulations in which we run Algorithm 1 on different
realizations of the energy generation scenarios (i.e., different
realizations of b).

We considered a microgrid control problem with the fol-
lowing units: 20 generators, 20 storages, 60 controllable loads,
20 critical loads, 40 solar generators, 15 wind generators, and
the connection to the main grid. For each instance of the prob-
lem, we extracted R = 5 scenarios and fixed a 24-h prediction
horizon and a 1-h sampling time. The initial conditions of
storages and generators are generated randomly. As regards
the load profiles and the daily spot prices, we utilized the
data provided by [22], which are shown in Fig. 3. We then
executed Algorithm 1 for 500 iterations with a piecewise
constant step size that we initialize to 3.0 and multiply by
0.5 every 100 iterations.

The results of the simulations are shown in Figs. 4 and 5.
In Fig. 4, we plot the cost of the mixed-integer solution
computed by the algorithm throughout its evolution [in par-
ticular, the cost function of the two-stage problem (16)]. The
picture highlights how the algorithm improves the cost at each

Fig. 5. Evolution of the coupling constraint value throughout the evolution of
Algorithm 1. The blue line represents the average value of the power balance
constraint (the dashed area corresponds to one standard deviation). The upper
and lower lines are the maximum positive and negative two-stage violations
of the constraints.

Fig. 6. Computation times when running Algorithm 1 on a single instance
of the Monte Carlo simulation.

iteration, i.e., the more the iterations are performed, the more
the solution performance improves.

In Fig. 5, we show the value of the coupling constraints
for the two-stage problem (16). The red and green lines
correspond to the maximum value of η+ and η− (with changed
sign), respectively, where the maximum is taken with respect
to the scenarios, the components of the constraint, and the
Monte Carlo trials. The blue line represents the average value
of the power balance constraint, while the dashed area cor-
responds to one standard deviation of the Monte Carlo trials.
At each time step, the power balance constraints are always
in between the upper and lower lines, while the uncertainty
range reduces as the algorithm progresses.

C. Results on a Single Instance

To conclude this section, we show how Algorithm 1 behaves
on a single instance of the Monte Carlo trials. To begin with,
we perform a computational study of the computation times.
Thanks to the fact that we run Algorithm 1 on an HPC, each
agent is assigned to a single processor, and thus, computations
are really performed in parallel. For each unit involved in the
optimization, we recorded the wall time needed for performing
the iterations. Fig. 6 represents the computation time per
iteration. It can be seen that, even though the problem is
large-scale and mixed-integer (cf. the discussion in Section I),
each iteration of the distributed algorithm on this large-scale
problem takes approximately 6 s.

Now, we provide details regarding the solution computed
by Algorithm 1 on a single instance of the Monte Carlo
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Fig. 7. Total consumed power (critical and controllable loads) and curtailed
power (for controllable loads only).

Fig. 8. Total average power exchanged by storage units (left) and level of
total stored power (right).

Fig. 9. Total power exchanged with the utility grid.

trials. In Fig. 7, we show the total consumed power and the
total curtailed power. In Fig. 8, we show the total power
exchanged with storage units (a positive value means that,
overall, the storage units are charging) and the global level
of stored power. The solution provided by the algorithm is
such that storages accumulate as much energy as they can
during the peaks of power produced by the renewables. This
energy is then released during the subsequent hours of the day.
In Fig. 9, we show the total power exchanged with the utility
grid (a positive value means that power is purchased from the
grid). Note that, during the peak of power produced by the
renewables, the microgrid exports energy to the main grid in
order to maximize the income. In Fig. 10, we show where does
the total available power come from. In particular, we highlight
the fraction of power coming from generators, renewables,
and the utility grid. In this simulation, the generators did not
produce any energy.

Fig. 10. Fraction of consumed power coming from generators, renewables,
and utility grid at each time slot.

VI. CONCLUSION

In this article, we considered a microgrid control problem
to be solved over a peer-to-peer network of agents. Each agent
represents a unit of the microgrid and must cooperate with the
other units in order to solve the problem without a centralized
coordinator. We used a challenging stochastic mixed-integer
microgrid model and proposed a distributed algorithm to solve
the problem, for which we provided theoretical guarantees
on the constraint violation. Numerical computations on a
synthesized problem using GANs show the validity of the
proposed approach.

APPENDIX

A. Review of Primal Decomposition

Consider a network of N agents indexed by I = {1, . . . , N}
that aim to solve a linear program of the form

min
x1,...,xN

N∑
i=1

c�
i xi

s.t. xi ∈ Xi ∀i ∈ I
N∑

i=1

Ai xi ≤ b (25)

where each xi ∈ R
ni is the i th optimization variable, ci ∈ R

ni

is the i th cost vector, Xi ⊂ R
ni is the i th polyhedral constraint

set, and Ai ∈ R
S×ni is a matrix for the i th contribution to the

coupling constraint
∑N

i=1 Ai xi ≤ b ∈ R
S . Problem (25) enjoys

the constraint-coupled structure [3] and can be recast into a
master-subproblem architecture by using the so-called primal
decomposition technique [29]. The right-hand side vector b
of the coupling constraint is interpreted as a given (limited)
resource to be shared among the network agents. Thus, local
allocation vectors yi ∈ R

S for all i are introduced such that∑N
i=1 yi = b. To determine the allocations, a master problem

is introduced

min
y1,...,yN

N∑
i=1

pi(yi)

s.t.
N∑

i=1

yi = b

yi ∈ Yi ∀i ∈ I (26)
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where, for each i ∈ I, the function pi : R
S → R is defined as

the optimal cost of the i th (linear programming) subproblem

pi(yi) = min
xi

c�
i xi

s.t. Ai xi ≤ yi

xi ∈ Xi . (27)

In problem (26), the new constraint set Yi ⊆ R
S is the set of yi

for which problem (27) is feasible, i.e., such that there exists
xi ∈ Xi satisfying the local allocation constraint Ai xi ≤ yi .
Assuming that problem (25) is feasible and Xi are compact
sets, if (y�

1, . . . , y�
N ) is an optimal solution of (26), and for all

i , x�
i is optimal for (27) (with yi = y�

i ), then (x�
1, . . . , x�

N )
is an optimal solution of the original problem (25) (see
[29, Lemma 1]).

B. Proof of Theorem 1

By the optimality of (x∞
i , η∞

i ) for problem (24), it holds

c�
i x∞

i + d�η∞
i ≤ c�

i xi + d�ηi (28)

for all xi ∈ Xi and ηi ≥ 0 such that Ai x∞
i ≤ yLP

i + ηi . One
vector satisfying such condition is (x L

i , ηL
i ) optimal solution of

min
xi ,ηi

c�
i xi + d�ηi

s.t. 0 ≤ ηi ≤ M1, xi ∈ Xi

Hi xi ≤ �i + ηi . (29)

Indeed, it holds Hi x L
i ≤ �i + ηL

i ≤ yLP
i + ηL

i , where the first
inequality is by construction, and the second one follows by
the discussion above on �i . Thus, by using (28), we conclude
that

d�η∞
i ≤ c�

i

(
x L

i − x∞
i

) + d�ηL
i . (30)

By explicitly writing the scalar product d�η∞
i and by using

the fact that d, η ≥ 0, we obtain

d�η∞
i =

2RK∑
j=1

d jη
∞
i j ≥

(
min

j∈{1,...,2RK }
d j

)
︸ ︷︷ ︸

dMIN

2RK∑
j=1

η∞
i j .

Moreover, by using the fact that η∞
i j ≤ ∑2RK

k=1 η∞
ik for all k,

we obtain

η∞
i ≤ d�η∞

i

dMIN
1 ≤ c�

i

(
x L

i − x∞
i

) + d�ηL
i

dMIN
1.

Let us now compute an upper bound of the coupling constraint
value, i.e.,

N∑
i=1

Hi x
∞
i − h ≤

N∑
i=1

yLP
i

︸ ︷︷ ︸
b

+
∑
i∈IZ

ηLP
i +

∑
i /∈IZ

η∞
i − h

=
∑
i∈IZ

ηLP
i +

∑
i /∈IZ

η∞
i (31)

where we used the fact that, by Lemma 1, for i ∈ IZ, it holds
Hi x∞

i ≤ yLP
i + ηLP

i , while, for i /∈ IZ, it holds Hi x∞
i ≤

yLP
i + η∞

i . Thus, we, finally, obtain the bound

N∑
i=1

Hi x
∞
i − h ≤

∑
i∈IZ

ηLP
i +

∑
i /∈IZ

c�
i

(
x L

i − x∞
i

) + d�ηL
i

dMIN
1

and the proof is complete. �
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