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ABSTRACT 1 

The West-Palearctic Colobopsis ant populations have long been considered a single species 2 

(Colobopsis truncata). We studied the diversity of this species by employing a multidisciplinary 3 

approach and combining data from our surveys, museum and private collections, and citizen science 4 

platforms. As a result, we have revealed the existence of a second species, which we describe as 5 

Colobopsis imitans sp. nov., distributed allopatrically from C. truncata and living in the Maghreb, 6 

Sicily and Southern Iberia. While the pigmentation of C. truncata is reminiscent of Dolichoderus 7 

quadripunctatus, that of C. imitans sp. nov. is very similar to Crematogaster scutellaris, with which 8 

C. imitans sp. nov. lives in close spatial association, and whose foraging trails it habitually follows, 9 

similarly to Camponotus lateralis and other ant-mimicking ants. The isolation between C. imitans sp. 10 

nov. and C. truncata seems to have occured relatively recently because of the significant, yet not 11 

extreme morphometric differentiation, and to mtDNA polyphyly. Both C. imitans sp. nov. and C. 12 

truncata appear to employ mimicry of an unpalatable or aggressive ant species as an important 13 

defensive strategy; this ‘choice’ of a different model species is motivated by biogeographic reasons 14 

and appears to act as a critical evolutionary driver of their diversification. 15 

ADDITIONAL KEYWORDS: ADAPTATION – BATESIAN MIMICRY – COI MTDNA – 16 

DISCRIMINANT-FUNCTION ANALYSIS – MEDITERRANEAN – MULTIVARIATE 17 

STATISTICS – NORTH AFRICA –  SIBLING SPECIES – SPECIATION. 18 
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INTRODUCTION 30 

Ants (Insecta: Formicidae) are a hyperdiverse group of organisms which counts about 13,860 species 31 

(Bolton, 2021) and is extraordinarily successful in most terrestrial ecosystems (Hölldobler & Wilson, 32 

1990; Gibb et al., 2017; Seifert, 2017). Such high diversification stems from several evolutionary 33 

strategies and lifestyles, and enables even hundreds of different ant species to coexist in the same 34 

habitat (Hölldobler & Wilson, 1990; 2008). However, only one or very few dominant species 35 

generally characterize even the most species-rich ant communities: these species form very populous 36 

colonies, with large, often permanent foraging trails, and they defend territories that may extend over 37 

hectares (Hölldobler & Wilson, 1990; Andersen, 1995; 1997; Grasso et al., 1998; 1999; 2005; Arnan 38 

et al., 2018). These ants are exposed to higher predation risk compared the ones whose workers forage 39 

solitarily or in small groups, and are accordingly equipped with effective defensive mechanisms 40 

(Buschinger & Maschwitz, 1984; Hölldobler & Wilson, 1990; Dornhaus & Powell, 2010; Seifert, 41 

2018). Most ant species live in small colonies and forage solitarily or in small groups, only 42 

occasionally form trails, and develop evasive anti-predatory strategies (e.g. Hölldobler & Wilson, 43 

1990; Tautz et al., 1994; Andersen, 1995; Dornhaus & Powell, 2010; Helms et al., 2014; Larabee & 44 

Suarez, 2015; Seifert, 2018; Grasso et al., 2020). Of the species that live in small colonies, the only 45 

ones armed with dangerous defences are some predatory ants which retain the primitive feature of a 46 

powerful functional stinger to hunt (Buschinger & Maschwitz, 1984; Hölldobler & Wilson, 1990; 47 

Dornhaus & Powell, 2010). 48 

Well-armed ant species, in particular the ones that build large colonies, are a very good model for 49 

several mimicking organisms, mostly arthropods. Some of these mimics are myrmecophilous 50 

organisms: commonly ant predators or parasites, they have adapted to live within or close to ant 51 

colonies by relying on chemical or acoustic mimicry (e.g. Geiselhardt et al., 2007; Barbero et al., 52 

2009; Cushing, 2012; Parker & Grimaldi, 2014; Parker, 2016; Scarparo et al., 2019). On the other 53 

hand, myrmecomorph species resemble their ant model thanks to morphological and/or behavioural 54 

adaptations (e.g. Komatsu 1961; Jackson & Drummond, 1974; Oliveira & Sazima, 1984; Oliveira 55 

1988; Cobben, 1986; McIver, 1987; McIver & Stonedahl, 1993; Trjapitzin & Trjapitzin, 1995; Cassis 56 

& Wall, 2010; Chandler, 2010; Durkee et al., 2011; Huang et al., 2011; Cushing, 2012; Pekár, 2014; 57 

Corcobado et al., 2016; Pekár et al., 2017; Harvey et al., 2018; de L. Nascimento & Perger, 2018; 58 

Gnezdilov, 2019). The main aim of myrmecomorphism is predation avoidance: compared to the 59 

mimics, models usually possess superior defensive mechanisms and are also more numerous. As 60 

such, they are usually interpreted as Batesian mimics (e.g. Jackson & Drummond, 1974; McIver, 61 

1987; Durkee et al., 2011; Huang et al., 2011; Cushing, 2012; Harvey et al., 2018), whose evolution 62 

can be favoured by model abundance (Kikuchi & Pfenning, 2010). 63 



Many ant mimics are ants themselves. Some are parasites (e.g. inquilines) that act similarly to 64 

myrmecophilous organisms (Buschinger, 2009), relying on chemical adaptations to interact with the 65 

host species. However, there are some free-living ant species that act as mimics of more aggressive 66 

or dominant ant species and are therefore interpreted as Batesian mimics. Nonetheless, solid empirical 67 

evidence to reject the alternative hypothesis of Müllerian mimicry (see Müller, 1879; Pasteur, 1982; 68 

Ritland, 1991) is rarely available (Ito et al., 2004; Wagner, 2014). In these species, chromatic mimicry 69 

is the prevalent mechanism, while behavioural or morphological adaptations are more rarely 70 

documented (Emery, 1886; Forel, 1886; Santschi, 1919; Gobin et al., 1998; Merril & Elgar, 2000; Ito 71 

et al., 2004; Ward, 2009; Gallego-Ropero & Feitosa, 2014; Powell et al., 2014; Pekár et al., 2017; 72 

Rasoamanana et al., 2017; Seifert, 2019a). In addition, recurrent behaviour among mimicking ant 73 

species is interspecific trail-following, which consists in the mimics regularly infiltrating into the 74 

foraging trails of the model and may lead to parasitic behaviour with regard to food resources (Emery, 75 

1886; Santschi, 1919; Gobin et al., 1998; Ito et al., 2004; Menzel et al., 2010; Powell et al., 2014). 76 

Unlike specialized parasites (e.g. Visicchio et al., 2001; Buschinger, 2009; de la Mora et al., 2020), 77 

no advanced mechanisms of chemical deception exist in most of these cases, so in the eventuality of 78 

direct encounters the model species recognizes and attacks the mimic, which however is well-79 

equipped to escape (Goetsch, 1942; 1951; Kaudewitz, 1955; Gobin et al., 1998; Ito et al., 2004; 80 

Menzel et al., 2010). The vast majority of the hitherto well-documented cases come from the tropics: 81 

mimics mainly belong to diverse lineages from the Formicinae tribe Camponotini (mostly 82 

Camponotus Mayr, 1861), while their models are phylogenetically scattered, including 83 

Ectatomminae, Myrmeciinae, Myrmicinae (Crematogastrini and Stenammini) and 84 

Pseudomyrmecinae. Only one case of ant-mimicking ant species is well-documented in the West-85 

Palearctic zone, i.e. Camponotus lateralis (Olivier, 1792). It chromatically mimics the similar 86 

Crematogaster species Cr. ionia Forel, 1911, Cr. scutellaris (Olivier, 1792) and Cr. schmidti (Mayr, 87 

1853), and follows their trails (Emery, 1886; Baroni Urbani, 1969; Menzel et al., 2010; Wagner, 88 

2014; Seifert, 2018; 2019a). The three species are closely related with neighbouring geographic 89 

ranges and differ slightly chromatically (Blaimer, 2012). Interestingly, there seems to be a geographic 90 

trend in the chromatic pattern of Ca. lateralis, allowing it to better resemble these three 91 

Crematogaster species in the regions of sympatric occurrence (Wagner, 2014; Seifert, 2019a).  92 

The ant genus Colobopsis Mayr, 1861 (Formicinae: Camponotini), recently separated from 93 

Camponotus (Ward et al., 2016), currently counts 95 valid species and 21 subspecies (Bolton, 2021). 94 

It is distributed across the Holarctic, Indomalayan and Australasian regions, and is most diversified 95 

in the latter two regions (Janicki et al., 2016; Guénard et al., 2017). Colobopsis species are usually 96 

arboreal ants that nest in dead wood, form small-sized colonies and behave timidly towards other ants 97 



(Wheeler, 1904; Ward et al., 2016). In the Western-Palearctic region, Colobopsis truncata (Spinola, 98 

1808) is the only recognized species of its genus. The queen caste was described by Spinola (1808) 99 

from north-western Italy (Liguria region), while the other castes were described later (Dufour & 100 

Perris, 1840; Forel, 1874; Emery, 1916). Another species, Co. fuscipes (Mayr, 1853) was described 101 

from Austria by Mayr (1853), but was later reclassified as a junior synonym of Co. truncata (Emery 102 

& Forel, 1879). Colobopsis truncata is therefore considered to have a wide geographic distribution, 103 

from the Caucasus to Iberia and from Central Europe to the Maghreb (Seifert, 2018; Janicki et al., 104 

2016; Guénard et al., 2017). It is an arboreal-nesting species, as is typical of the genus, and it 105 

preferably nests on broadleaved trees, where it lives in monogynous and often polydomous colonies, 106 

rarely exceeding 500 workers (Seifert, 2018). Queens and soldiers are specialized for phragmosis, 107 

and soldiers may also function as repletes (living containers of liquid food), seldom leaving the safety 108 

of the nests they guard (Brun 1924; Goetsch, 1950; 1953; Seifert, 2018). Minor workers are usually 109 

active outside the nest during both day and night, forage solitarily, do not recruit nest mates to food 110 

sources, and perform very quick evasive movements when encountering other ants (Seifert, 2018).  111 

During field observations across Italy we encountered marked divergences between Colobopsis 112 

colonies: workers of some colonies resembled Cr. scutellaris and followed its trails, while others 113 

resembled Dolichoderus quadripunctatus (Linnaeus, 1771), two species having remarkably different 114 

appearance. This is reflected by several contradictory reports which however contain no comment on 115 

these incongruences. Forel (1874) first referred to Swiss ants by considering Co. truncata a Batesian 116 

mimic of D. quadripunctatus. He later suggested that the two species show pre-adaptations to 117 

parabiotic nest-sharing (Forel, 1903). Zimmermann (1934) instead studied ants in Croatia and 118 

considered the occasional relationship between Co. truncata and Cr. scutellaris similar to the one 119 

between Ca. lateralis and Cr. scutellaris. Goetsch (1942) stated that in Spain Co. truncata behaves 120 

similarly to Ca. lateralis, following the trails of Cr. scutellaris, , yet is also chromatically very 121 

different and shows no adaptation to mimicry. Baroni Urbani (1971) reported on a case of trail-122 

following between a Co. truncata queen and a Cr. scutellaris trail from central Italy. More recently, 123 

Tinaut (1991) claimed that in southern Iberia Co. truncata can be easily confused with D. 124 

quadripunctatus during field surveys due to their similarity. However, working in the same area, 125 

Carpintero et al. (2001; 2005) instead affirmed that Co. truncata is a visual mimic of Cr. scutellaris 126 

and follows its trails, and even speculated that after nuptial flights Co. truncata queens specifically 127 

choose trees occupied by Cr. scutellaris to found their colony. In reviewing the distribution of 128 

Colobopsis in Iberia, García (2020) mentioned possible chromatic similarity of C. truncata with Cr. 129 

scutellaris and its mimic Ca. lateralis, but also D. quadripunctatus. More recently, there have been 130 

reports on trail-following by Co. truncata on Cr. scutellaris ants in Italy (mentioned by Seifert 2018, 131 



no locality specified; Lake Garda according to Wagner HC, personal communication). Wagner (2019) 132 

described a close association between Co. truncata and D. quadripunctatus in Austria (Vienna), 133 

highlighted morphological and chromatic similarity between the two, and reported trail-following of 134 

D. quadripunctatus trails by Co. truncata. 135 

We aimed to test whether the abovementioned diversity of traits represented intraspecific variation 136 

or indicated the existence of multiple Colobopsis species in the West-Palearctic. In order to address 137 

the different biological dimensions of this problem, we used a multidisciplinary approach which 138 

involves the description of the patterns of diversity within the traditional notion of Co. truncata. We 139 

relied on the principles of integrative taxonomy (Schlick-Steiner et al., 2010), involving 140 

morphological, genetic, ecological, ethological and biogeographical data. 141 

MATERIALS AND METHODS 142 

We combined qualitative morphology through chromatic pattern evaluation, quantitative morphology 143 

through the multivariate analysis of morphometric data and genetics in the form of mtDNA (COI) 144 

sequencing, ecological surveys to study the association between Colobopsis and its putative model 145 

species and recorded ethological data to document cross-species trail following. Finally, we compared 146 

our results with the known biogeographic patterns of other ant species. We chose this quantitative 147 

morphological approach as it is widely regarded as the most practical and reliable single source of 148 

evidence for cryptic ant species delimitation, and as a cornerstone in integrative approaches on cryptic 149 

species complexes of ants (Seifert, 2009; 2018; Seifert et al., 2014; Wagner et al., 2017; Steiner et 150 

al., 2011; 2018; Csősz et al., 2020). Moreover, mtDNA sequencing represents a widespread and cost-151 

effective method to gain preliminary information on species identification, biogeography and cryptic 152 

speciation (Hebert et al., 2003; 2016; Ratnasingham & Hebert, 2007), which has developed into an 153 

aid to myrmecological faunistic, biogeographic and taxonomic studies (Steiner et al., 2005; 2018; 154 

Csősz et al., 2015; Seifert et al., 2017; Schär et al., 2018; 2020; Blatrix et al., 2020). Ecological data 155 

on species associations and ethological data are rarely used in ant taxonomy but appear to be highly 156 

relevant to the specific case we are investigating, while biogeography is important to understand 157 

species diversity. 158 

For our morphological and molecular analyses, we gathered type material of Co. truncata and Co. 159 

fuscipes as well as additional non-type material of Colobopsis from the Mediterranean region, and 160 

relied on our own efforts and the generous contribution of colleagues to achieve a satisfactory 161 

geographic coverage. In particular, the type series of Co. truncata consists in a single queen with the 162 

label “Polyergus (?) | F.ca truncata | Spin. in Ligur. | Genova || 6571”. This queen could be safely 163 

identified as the type since it is the sole Colobopsis queen in the Spinola collection at the Museo di 164 



Scienze Naturali  in Turin (Italy), and matched the description given by the author (Spinola, 1808). 165 

Concerning Co. fuscipes, at least two syntypes are stored in the Museum für Naturkunde, University 166 

of Berlin (Germany), and their pictures are available on AntWeb (AntWeb.org, codes FOCOL2496 167 

and FOCOL2497): these are labelled “Oesterreich | Coll. Rhd || Colobopsis fuscipes Mayr || Type || 168 

29812 || GBIF-D/FoCol | 2496 | specimen + label | data documented” and “Oesterreich | Coll. Rhd || 169 

Colobopsis fuscipes Mayr || Type || GBIF-D/FoCol | 2497 | specimen + label | data documented”. 170 

Although the label is unlikely to be an original by Gustav Mayr (B. Seifert, pers. comm.), we deem 171 

their status as types credible. We also retrieved a worker labelled Co. fuscipes in Mayr’s collection at 172 

the Natural History Museum of Vienna, but with no explicit indication ensuring its type status. In 173 

order to gather information on chromatic variation of Euro-Mediterranean Colobopsis, we relied on 174 

AntWeb pictures, images from scientific papers or monographs (Glaser, 2009; Wagner, 2014; 2019; 175 

Lebas et al., 2016; Seifert, 2018; Scupola, 2018; García, 2020; Salata et al., 2020; Tăușan et al. 2020), 176 

and on georeferenced photographs uploaded on citizen science platforms (iNaturalist.org, 177 

biodiversidadvirtual.org) and on biodiversity-related Facebook groups. A complete list of the material 178 

examined, their depositories and collecting data is available as a Supplementary Material file to this 179 

paper. Ecological and behavioural data were obtained through field surveys across Italy. 180 

PIGMENTATION: CHROMATIC MIMICRY 181 

Preliminary observations highlighted that chromatic pattern provides the most evident difference 182 

between allopatric Colobopsis populations which resemble two different model ant species in Italy. 183 

We preemptively described the two chromatic forms and investigated whether these were consistently 184 

able to represent Colobopsis diversity across the Mediterranean basin, and whether they occurred 185 

intracolonially or sympatrically, and also checked for the possible existence of third forms. The two 186 

Colobopsis model patterns were pre-emptively established by observing ten workers per each form 187 

(10 from Sicily and 10 from mainland Italy), and all subsequent investigations were carried out by 188 

inspecting specimens of well-preserved pigmentation primarily belonging to the worker caste. 189 

Queens and soldiers were also examined and identified only if closely resembling one worker model 190 

pattern, while males were not considered due to their very different pigmentation. Furthermore, to 191 

better describe the differences between the two models, a ratio was calculated between head color 192 

and mesosoma color by taking dorsal pictures of specimens and calculating the average value of red 193 

(RGB colors) between 5 randomly selected pixels of the head and 5 of the mesosoma via software 194 

ImageJ (Schneider et al., 2012). Calculating a ratio rather than considering the absolute values greatly 195 

reduces the variation produced by different light conditions and camera settings among different 196 

pictures, thereby allowing comparison of pictures from various sources. The same ratio was also 197 

calculated for the two putative model species Cr. scutellaris and D. quadripunctatus. Chromatic ratios 198 



were calculated on 20 workers per chromatic pattern or species from across their respective 199 

geographic range using both directly inspected specimens and images from citizen science platforms. 200 

Any differences were statistically tested by using the software R 4.0.3 and R Studio 1.3.1056 (R Core 201 

Team, 2021), and employing an ANOVA test and subsequent Tukey Post-hoc test for pairwise 202 

comparisons.  203 

The visual examination to verify correspondence to either of the two chromatic models was conducted 204 

on 79 directly observed Colobopsis colonies (76 of which containing workers) plus images of 136 205 

further specimens (including 76 isolated queens), for a total of 310 workers and 79 queens covering 206 

a total of 16 countries from across the W-Palearctic Colobopsis distribution (see supplementary 207 

material).  208 

The two model patterns are defined as follows: 209 

Cr. scutellaris-like pattern (CSL pattern): head, or head and anterior part of the mesosoma (rarely 210 

most of it) uniformly red, rest of the body evidently darker and mostly black. White stripes or dots 211 

on the second gastral tergite often absent or weak (present in 10% of the examined workers). See Fig. 212 

1. 213 

D. quadripunctatus-like pattern (DQL pattern): head, mesosoma and appendages from reddish to 214 

blackish (therefore chromatically more variable than the Cr. scutellaris-like model), head at least 215 

slightly darker than the mesosoma or less frequently concolour, gaster black. White stripes or dots on 216 

the second gastral tergite often present (80% of examined workers) and more obvious. Phragmotic 217 

heads of soldiers or queens are always reddish in their anterior, heavily sculptured part (approximately 218 

one half of the head), while the rest follows the same scheme of workers.  See Fig. 1. 219 



 220 

Figure 1. The model species and the two detected chromatic model patterns of Colobopsis: a) Cr. scutellaris; b) CSL 221 
Colobopsis from Sicily; c) D. quadripunctatus from Tuscany; d) DQL Colobopsis from Tuscany. 222 

NUMERIC MORPHOLOGY: MULTIVARIATE ANALYSES OF MORPHOMETRIC DATA 223 

A total of 12 continuous morphometric traits were defined following Seifert (2018) (Tab. 1) and 224 

measured on 115 Colobopsis workers from 44 nest samples (considering minor workers only, and not 225 

the soldiers). All measurements were made in µm by using a pin-holding stage, which allowed 226 

rotations around the X, Y, and Z axes. An Olympus SZX9 stereomicroscope was used at x150 227 

magnification for each character; however, with characters larger than the field of view x75 228 

magnification was applied. Due to the low number of the much rarer queens, males and soldiers in 229 

our possession, we recorded only a reduced set of 7 morphometric traits aimed at providing a brief 230 

description of these castes without using them in the following statistical analyses. Morphometric 231 

data are provided in µm throughout the whole paper. 232 

Repeatability of the recorded size parameters were evaluated via Intraclass Correlation Coefficients 233 

(ICC) by using Package ICC (Wolak et al., 2012), see Tab. 1. Variables were tested via matrix 234 

scatterplots and Pearson product-moment correlation coefficients for error variance and outliers. Each 235 

character resulted highly repeatable, except for NOL, which was considered moderately repeatable. 236 

Exploratory analyses through NC-PART clustering  237 



The prior species hypothesis was generated based on workers through combined application of NC 238 

clustering (Seifert et al., 2014) and Partitioning Based on Recursive Thresholding (PART) (Nilsen & 239 

Lingjaerde, 2013). The script for NC-clustering combined with PART was written in R and can be 240 

found in Appendix S1 in Csősz & Fisher (2016). Our exploratory data analysis approach follows the 241 

protocol described by Csősz & Fisher (2016) with the following specific settings: bootstrap iterations 242 

in PART were set to ‘b=1000’, and the minimum size of clusters was set to ‘minSize=5’ for both 243 

‘hclust’ and ‘kmeans’. The optimal number of clusters and the partitioning of samples are accepted 244 

as the preliminary species hypothesis in every case in which the two clustering methods, ‘hclust’ and 245 

‘kmeans’ through PART, have yielded the same conclusion.  246 

Exploratory analyses via PCA using allometrically corrected data 247 

An alternative prior species hypothesis has been generated via the ordinating Principal Component 248 

Analysis (PCA) that searches for discontinuities in continuous morphometric data and display plots 249 

in a graphic.  250 

Using raw data (without removal of allometric variance) in PCA may lead to weaker performance in 251 

ordination because the first vector of the PCA often describes the size component, which is a useless 252 

information when cryptic species of similar size have to be separated, hence, in PCA residuals were 253 

used.  Residuals, in which the head length (CL) was used as covariate, were calculated via a linear 254 

regression model according to the following steps: a) scaling properties, intercept and steepness were 255 

calculated for each nest sample separately (note: nest samples constituted by a singleton were not 256 

involved in this phase); b) a grand average for steepness and intercept was calculated from scaling 257 

properties of each nest sample; c) residuals are calculated for every nest sample (including singletons) 258 

based on the grand average. Residuals of every trait calculated against head length (CL) are given 259 

(Tab. 1). In contrast to NC-PART clustering, the PCA has no estimation on the number of clusters 260 

and “classification” of objects has been made based on subjective decision. The coefficients (x any 261 

intercept) for removal allometric variance for each trait are given in supplementary material. 262 

Hypothesis testing by confirmatory analysis 263 

The validity of the prior species hypothesis was tested via Linear Discriminant Analysis (LDA). 264 

Classification hypotheses were imposed for all samples that were congruently classified by 265 

partitioning methods, while wild-card settings (i.e. no prior hypothesis imposed on its classification) 266 

were given to samples that were incongruently classified by the two partitioning methods. Statistical 267 

analyses were conducted through the software R 3.6.3 (R Core Team 2021).   268 

Abbr. Description of the trait ICC (R) 



CL Maximum median length of head capsule. The head must be carefully 
tilted so the maximum length is positioned in the measuring plane.  

0.982 

CW Maximum head with including compound eyes. The largest distance 
between profiles of the two compound eyes in full-face view.  

0.951 

EL Eye length. Maximum diameter of the compound eye.  0.967 
dAN Minimum distance of the inner margins of antennal socket rings. 0.985 
ML Diagonal length of the alitrunk in profile. Measured in lateral view 

from the anteriormost point of anterior pronotal slope to the 
caudalmost point of the lateral metapleural lobe. 

0.969 

MW Maximum width of pronotum. 0.989 
NOL Petiole node length; measured in lateral view, from the center of the 

petiolar spiracle to the posterior profile.  
0.890 

PeW Petiole width. The maximum width of petiole in dorsal view. 0.994 
PreOC Preocular distance. Use a cross-scaled ocular micrometer and adjust 

the head to the measuring position of CL. Frontal measuring point: 
median clypeal margin; caudal measuring point: reference line 
between the frontalmost border of the two compound eyes. 

0.951 

SL Scape length. The maximum straight-line scape length excluding the 
articular condyle. 

0.971 

HTL Hind tibia length. Measured from the distalmost point of the tibia to 
the proximal end where the tibia is narrowest in profile. 

0.968 

PeSH Petiole scale height measured from the center of petiolar spiracle to 
top of the crest. 

0.959 

Table. 1 Abbreviation (Abbr.) of morphometric characters, definition of measurements, and ICC (R) a metric for 269 
repeatability parameter are given. Definitions of morphometri characters follow Seifert (2018). 270 

GENETICS: MITOCHONDRIAL COI SEQUENCES 271 

Total genomic DNA was extracted from leg tissues using the NuceloSpin DNA Insect kit (Macherey-272 

Nagel, Düren, Germany), following the manufacturer’s protocol. A 700 bp region of mitochondrial 273 

gene cytochrome c oxidase subunit I (COI) was amplified using the primer couple 274 

LCO1490/HCO2198 (Folmer et al., 1994). PCR was carried out in 25 µL reactions using the 275 

following profile: initial denaturation step at 95 °C for 5 minutes, 35 amplification cycles 276 

(denaturation at 95 °C for 30 seconds, annealing at 52 °C for 30 seconds, elongation at 72 °C for 45 277 

seconds), final elongation at 72 °C for 7 minutes. PCR products were sent to Macrogen Europe 278 

(Amsterdam, Netherlands) for Sanger sequencing. Chromatograms were checked and edited using 279 

SeqTrace (Stucky, 2012). Sequences were aligned using the MUSCLE (Edgar, 2004) algorithm as 280 

implemented in AliView (Larsson, 2014).  Model selection and Maximum Likelihood phylogenetic 281 

analysis were performed on the IQ-TREE web server (Trifinopoulos et al., 2016) using the Eastern-282 

Palearctic Co. nipponica (Wheeler, W.M., 1928) and Co. shohki (Terayama, 1999) and the 283 

Indomalayan Colobopsis nr. saundersi (Emery, 1889) (GenBank accession numbers AB019417, 284 

AB019418 and KU975365, respectively) as outgroups. Ten separate runs were launched, each with 285 

1000 replicates of ultrafast bootstrap, and the tree with the best likelihood value out of the ten was 286 



chosen. Twenty-three colony samples were sequenced, consisting in 41 workers from 6 countries and 287 

18 localities. Obtained sequences have been submitted to Genbank, under accession numbers 288 

MW462045–MW462085 (see supplementary material). 289 

ECOLOGY: COEXISTENCE WITH MODEL SPECIES 290 

Field surveys were conducted in the Italian Peninsula (Emilia-Romagna, Tuscany; n sites = 5, DQL 291 

pattern) and Sicily (n sites = 8, CSL pattern) to test whether the local Colobopsis populations, showing 292 

a DQL and a CSL phenotype respectively, actually lived in close proximity with either of the two 293 

species indicated as probable mimicry models (see Supplementary material). In each site, we searched 294 

for the presence of Colobopsis workers on trees until a tree occupied by a Colobopsis colony was 295 

detected. Then, we performed a 10 minutes-long continuous sampling within a 1.5 m radius of the 296 

point of the tree trunk where Colobopsis was firstly observed, recording the eventual presence of Cr. 297 

scutellaris or D. quadripunctatus workers. 298 

Occurrences of Cr. scutellaris or D. quadripunctatus on trees occupied also by  Colobopsis according 299 

to the different DQL and CSL models were statistically tested by using the software IBM SPSS 300 

statistics, Italian version 24 and the chi-squared test. All data are presented in the Supplementary 301 

Material. 302 

ETHOLOGY: INTERSPECIFIC TRAIL-FOLLOWING BEHAVIOUR 303 

Field surveys were conducted in the Italian Peninsula (Emilia Romagna, Tuscany) and Sicily (sites 304 

as in the section before, also see supplementary material) with the aim of quantifying the occurrence 305 

of trail-following behaviour performed by Colobopsis ants in relation to Cr. scutellaris or D. 306 

quadripunctatus trails. We selected trees where Colobopsis colonies coexisted with either Cr. 307 

scutellaris, D. quadripunctatus or both. In accordance with the relevant literature (Gobin et al., 1988; 308 

Ito et al., 2004; Menzel et al., 2010; Powell et al., 2014), trail-following was defined as the event of 309 

Colobopsis workers moving along an established pheromone trail of Cr. scutellaris or D. 310 

quadripunctatus within 1 cm from the trail itself. A 10 minutes continuous sampling was used to 311 

record the presence or absence of this behaviour on each of the examined tree. 312 

To study trail-following on Cr. scutellaris trails, we selected a total of 59 trees inhabited by this 313 

species: 29 trees hosted Colobopsis colonies exhibiting the CSL pattern (Sicily, 4 sites) and 30 hosted 314 

Colobopsis with the DQL pattern (Emilia-Romagna and Tuscany, 5 sites). Observations on D. 315 

quadripunctatus trails could be performed only in 23 Colobopsis colonies exhibiting the DQL pattern 316 

(Emilia-Romagna and Tuscany): since no D. quadripunctatus colonies could be found in the studied 317 

sites in Sicily (where the species is known to be very rare, see Schifani & Alicata, 2018), no 318 



Colobopsis colonies exhibiting the CSL pattern could be tested in this regard. All data are summarized 319 

in the supplementary material. 320 

SPECIES CONCEPT 321 

Integration of the evidence provided by different complementary disciplines into an evolutionarily 322 

credible species hypothesis is performed according to the principles emphasized by Schlick-Steiner 323 

et al. (2010), i.e. resolving eventual disagreements by invoking solid evolutionary explanations. 324 

Biogeography is here treated as an additional source of information, holding an important advisory 325 

role to the formation of the final species-hypothesis. We abide by the universal Gene and Gene 326 

Expression (GAGE) species concept proposed by Seifert (2020), which, although recently 327 

formulated, convincingly summarizes the main theoretical and practical formulae most commonly 328 

adopted during the last few decades as a rigorous approach on alpha taxonomy of cryptic ants, 329 

especially in Europe.  330 

RESULTS 331 

PIGMENTATION: CHROMATIC MIMICRY 332 

All the examined colonies are safely assignable to one of the two models and no transitional or third 333 

forms are detected (see Supplementary Material). No intracolonial coexistence of the two models is 334 

detected either. The type series of both Co. truncata and Co. fuscipes show the DQL pattern (Fig. 2). 335 

The two models occur strictly allopatrically according to the examined material. Samples from the 336 

south-western Mediterranean basin, namely Algeria, Sicily (Italy), Morocco, southern Portugal and 337 

Andalusia (southern Spain) are assigned to the CSL pattern. All the rest is assigned to the DQL 338 

pattern, that is samples from Austria, Bulgaria, Croatia, Czech Republic, France, Germany, Greece, 339 

Hungary, Israel, Italian peninsula (Apulia, Campania, Emilia-Romagna, Liguria, Tuscany), Romania, 340 

Serbia, Slovenia, Switzerland, the rest of Spain (Aragon, Catalonia, Balearic Islands, Castilla-La 341 

Mancha), and Turkey. In addition, photographs of Co. truncata specimens present in the European 342 

ant fauna guides by Lebas et al. (2016) and Seifert (2018), regional faunistic guides by Glaser (2009) 343 

(Liechtenstein), Wagner (2014) (Austria’s Carinthia), Scupola (2018) (Italy’s Veneto) as well as in 344 

the Crete’s ant fauna monograph by Salata et al. (2020) and in the papers by Wagner (2019) (Austria), 345 

García (2020) (Spain) and Tăușan et al. (2020) (Romania) all show the DQL pattern. 346 



 347 

Figure 2. Type material of the so far described West-Palearctic Colobopsis, all adhering to the “D. quadripunctatus-348 
like” pattern. a) holotype queen of Colobopsis truncata from Liguria, Italy, preserved at the Turin Natural History 349 
Museum (Italy). b) syntype worker of Colobopsis fuscipes from Austria (picture from AntWeb.org, FOCOL2496; 350 
photographer: Christiana Klingenberg), preserved at the Museum für Naturkunde der Humboldt-Universität Berlin 351 

(Berlin, Germany). Note that the queen’s red color in the anterior heavily sculptured part of the phragmotic head is not 352 
relevant to evaluate its chromatic pattern.  Scale bars: 0.5 mm. 353 

The head red/mesosoma red ratio is statistically different among the two Colobopsis patterns and their 354 

models (F3,76 = 152.4, p < 0.001) (also see supplementary material). Pairwise comparisons show no 355 

statistically significant difference between CSL Colobopsis and Cr. scutellaris (p = 0.817; mean ± sd 356 

= 1.96 ± 0.36 for CSL Colobopsis; mean ± sd = 2.05 ± 0.38 for Cr. scutellaris) and between DQL 357 

Colobopsis and D. quadripunctatus (p = 0.299; mean ± sd = 0.60 ± 0.27 for DQL Colobopsis; mean 358 

± sd = 0.43 ± 0.20 for D. quadripunctatus), while all other comparisons are significantly different (p 359 

< 0.001) (Fig. 3). 360 



 361 

Figure. 3. Chromatic ratios calculated from pictures of the Colobopsis CSL and DQL patterns and from pictures of the 362 
two putative model species Cr. scutellaris and D. quadripunctatus (N =2 0 for each species or chromatic form). Boxplots 363 
show mean and standard deviation, while whiskers represent minimum and maximum values. Dots are measured 364 
individuals. Their dispersal on the x-axis is a randomized graphical effect to avoid overlaps. 365 

NUMERIC MORPHOLOGY: MULTIVARIATE ANALYSES OF MORPHOMETRIC DATA 366 

Two morphological clusters are identified via NC-clustering combined with “kmeans”, and “hclust” 367 

(Figs. 4). These two clusters correspond to the CSL pattern and DQL pattern specimens, respectively. 368 

All but two samples are congruently classified via both partitioning methods. The two incongruently 369 

placed samples (ITA:Mondello-VillaMercadante_col-12, ITA:Mondello-VillaMercadante_col-16; 370 

both CSL pattern from Sicily) are classified as belonging to the CSL cluster (posterior p = 0.85 and 371 

0.81, geometric means of 3 workers each). Without running samples as wild-cards, the overall 372 

classification success is 96.3% using all variables in the analysis. 373 



 374 

Figure 4. Figure 4. Dendrogram comparing the results of “kmeans”, and “hclust” in NC Clustering of Colobopsis 375 
morphometric raw data. Two samples (4.5% of the total) are misplaced by both the dendrogram and one of the 376 

partitioning analyses, NC-part.kmeans; partially different samples being affected in each of the three analyses. The 377 



other partitioning analysis, NC-part.hclust returned the same sample assignment as the LDA did.378 

 379 

Figure 5. Principal Component Analyses of morphometric data of analyzed Colobopsis nest samples according to the 380 
two clusters evidenced by NC-PART Clustering. Each small dot represents a colony sample. Large dots represent 381 

centroids. 382 

T-tests were calculated to assess significant differences (p) of body size ratios between specimens of 383 

the two different clusters, resulting in significant differences for 7 ratios (Tab. 2). Unfortunately, there 384 

is not a single numeric body size ratio available for reliable separation of these clusters on individual 385 

level (Tab. 2): the most reduced multivariate function that can reach the goal of attaining an 386 

acceptably high rate of classification success (>95%) requires a minimum 6 morphometric characters 387 

achieved via backward stepwise method.  388 

The most simple D(6) function that yields 4.3% of error rate at the individual level is as follows:  389 

D(6) = 0.03501 *CW - 0.03384 * SL - 0.03144 * HTL - 0.01762 * ML + 0.03653 * PeSH + 390 
0.07458 * EL + 16.61469 391 

D(6) scores for CSL pattern cluster (n = 55) = mean - 1.59 [- 4.17, + 0.66] ± 1.05 392 

D(6) scores for DQL pattern cluster (n = 60) = mean - 1.54 [- 0.37, + 3.76] ± 0.96 393 

 394 

 395 



 396 

character CSL (n = 55) p DQL (n = 60) 

CS 897 ± 51 0.924 898 ± 55 

 [725, 1025] 
 

[803, 1042] 

PreOc/CL 0.546 ± 0.01 0.000 0.537 ± 0.01 

 [0.517, 0.571] 
 

[0.517, 0.570] 

CL/CW 1.152 ± 0.02 0.052 1.145 ± 0.02 

 [1.113, 1.198] 
 

[1.106, 1.189] 

dAN/CS 0.387 ± 0.01 0.128 0.391 ± 0.02 

 [0.345, 0.431] 
 

[0.358, 0.426] 

SL/CS 0.872 ± 0.03 0.000 0.846 ± 0.02 

 [0.798, 0.931] 
 

[0.798, 0.906] 

MW/CS 0.682 ± 0.02 0.476 0.680 ± 0.02 

 [0.648, 0.717] 
 

[0.648, 0.723] 

PeW/CS 0.332 ± 0.02 0.257 0.336 ± 0.02 

 [0.268, 0.372] 
 

[0.306, 0.395] 

HTL/CS 0.931 ± 0.02 0.000 0.902 ± 0.02 

 [0.888, 0.978] 
 

[0.845, 0.957] 

ML/CS 1.485 ± 0.03 0.000 1.460 ± 0.02 

 [1.395, 1.543] 
 

[1.410, 1.526] 

NOL/CS 0.139 ± 0.01 0.008 0.134 ± 0.01 

 [0.117, 0.165] 
 

[0.112, 0.157] 

PeSH/CS 0.239 ± 0.02 0.000 0.253 ± 0.02 

 [0.193, 0.284] 
 

[0.203, 0.293] 

EL/CS 0.312 ± 0.01 0.000 0.321 ± 0.01 

 
[0.290, 0.335] 

 
[0.304, 0.343] 

Table 2. Mean of morphometric ratios calculated for CSL pattern and DQL pattern clusters based on individuals (raw 397 
data). Morphometric traits are divided by cephalic size (CS), namely the arithmetic mean of CL and CW. The upper row 398 
in each data field gives arithmetic mean ± standard deviation, the lower one, in square brackets, lower and upper extremes. 399 
Significant differences are highlighted in bold. 400 

GENETICS: MITOCHONDRIAL COI SEQUENCES 401 

The Maximum Likelihood phylogenetic analysis on mtDNA COI sequences identifies four main 402 

clusters with good nodal support (Fig. 6). The clade A is formed by specimens exhibiting the CSL 403 

pattern and collected from Andalusia (Spain) and Morocco. The specimens of the clade B exhibited 404 

the DQL pattern and were sampled from Bulgaria, Castilla La Mancha (Spain), Hungary, the Italian 405 



Peninsula, and the Occitanic region of France. The clade C groups specimens with the DQL pattern, 406 

sampled in the Spanish regions of Aragona and Catalonia, and from the Balearic Islands. Finally, the 407 

clade D is formed by all specimens from Sicily, showing the CSL pattern, and one of the Spanish 408 

specimens from Catalonia actually exhibiting the DQL pattern. 409 

 410 

Figure 6. Maximum likelihood phylogenetic tree based on the barcode fragment of the mtCOI gene from the sequenced 411 
Colobopsis specimens. 412 

ECOLOGY: COEXISTENCE WITH MODEL SPECIES  413 

Crematogaster scutellaris is present in 97% of the investigated trees occupied by CSL Colobopsis 414 

and in 20% of those occupied by DQL Colobopsis, the difference is statistically significant (χ21 = 415 

26.23, p < 0.001). Dolichoderus quadripunctatus was never detected in trees occupied by CSL 416 

Colobopsis. On the other hand, D. quadripunctatus occurrs on 40% of the investigated trees occupied 417 

by DQL Colobopsis (6% of which also hosted Cr. scutellaris). Results are illustrated in Fig. 7, and 418 

detailed data is provided in the supplementary material. 419 



 420 

Figure 7. Coexistence between Colobopsis and their putative model species on the same tree. 421 

ETHOLOGY: INTERSPECIFIC TRAIL-FOLLOWING BEHAVIOUR 422 

During field observations, trail-following behaviour was never performed by Colobopsis colonies 423 

exhibiting the DQL pattern (neither to Cr. scutellaris nor D. quadripunctatus trails). Conversely, 77% 424 

of the observed Colobopsis colonies exhibiting a CSL pattern had workers following the Cr. 425 

scutellaris trails (Fig. 8). Detailed data are shown in the supplementary material. 426 

CSL Colobopsis followed trails of Cr. scutellaris by either walking directly on them (more scarcely 427 

populated worker trails with considerable gaps) or slightly sideways (crowded trails without or with 428 

very small gaps only). If coming into contact with a Cr. scutellaris worker, they immediately 429 

performed sudden accelerations and evasive movements. Trail-following often began a few moments 430 

after the Colobopsis worker left its nest and encounter a Cr. scutellaris trail on the tree trunk and 431 

ended with the Colobopsis worker leaving the trail and directing towards some specific twigs, no 432 

longer following Cr. scutellaris workers. 433 



 434 

Figure 8. Trail-following behaviour on Crematogaster scutellaris trails by other ants (indicated with arrows). On the 435 
left (a,c,e) CSL Colobopsis, on the right (b,d,f) Camponotus lateralis observed in the same locality performing the same 436 

behaviour (photos taken in Palermo (Sicily) during field surveys). 437 

BIOGEOGRAPHY, EVIDENCE DISCUSSION AND FINAL SPECIES HYPOTHESIS 438 

CSL and DQL chromatic patterns are found to effectively split into two the Mediterranean Colobopsis 439 

into two populations, occurring allopatrically and each covering a vast geographic region (Fig. 9). 440 

The DQL pattern characterizes almost the entire European distribution of Colobopsis in addition to 441 



Western Asia, while the CSL pattern occurs mainly in the Maghreb region (North-Western Africa), 442 

a well-recognized ant biodiversity hotspot (Borowiec, 2014), and in the European regions of greater 443 

biogeographic proximity to it (Sicily and Southern Iberia) (e.g. Alicata & Schifani, 2019; Tinaut & 444 

Ruano, 2021). In particular, this distribution mirrors strikingly well those of some camponotine ant 445 

species such as Camponotus barbaricus Emery, 1905, Ca. micans (Nylander, 1856) and Ca. ruber 446 

Emery, 1925 (Fig. 9; for their distribution see de Haro et al., 1996; Forel, 1890; 1905; Santschi, 1925; 447 

Finzi, 1940; Menozzi, 1940; Cagniant, 1968; 1996; Collingwood & Yarrow, 1969; Baroni Urbani, 448 

1971; Cagniant & Espadaler, 1993; Schembri & Collingwood, 1995; Janicki et al., 2016; Guénard et 449 

al., 2017; Schär et al., 2020) and to a slightly lesser extent the distribution of myrmicine ants as the 450 

Aphaenogaster crocea species group, A. sardoa Mayr, 1855 or the Temnothorax algiricus-451 

mediterraneus complex (see Mayr, 1853; Emery, 1880; Forel, 1909; Santschi, 1929; Galkowski & 452 

Cagniant, 2017; Alicata & Schifani, 2019). Ecological and behavioural field surveys across different 453 

Italian regions suggest that the two chromatic patterns are related to quite different lifestyles: the CSL 454 

pattern often coexists with Cr. scutellaris and very often follows its trails, while the DQL pattern is 455 

associated with D. quadripunctatus without the involvement of frequent trail-following. The CSL 456 

pattern characterized specimens from the Spanish locality where mimicry, close nesting association 457 

and extensive trail-following of Cr. scutellaris were described by Carpintero et al. (2001; 2005). On 458 

the other hand, the DQL pattern characterized samples from the Austrian region where Wagner (2019) 459 

based his suggestions of close association and mimicry between Colobopsis and D. quadripunctatus. 460 

A survey conducted in the region of Vienna (Austria) employing similar methodologies to ours 461 

estimated that 36% of the investigated Colobopsis colonies (n = 110) nested on trees occupied by D. 462 

quadripunctatus, confirming the trend observed in our study (Wagner, pers. comm.). However, 463 

interspecific trail-following between DQL pattern Colobopsis and either D. quadripunctatus or Cr. 464 

scutellaris as reported in Wagner (2019; personal communication) was never observed during our 465 

surveys and seems to represent a considerably less frequent phenomenon. Such differences between 466 

the two groups in chromatic pattern, biogeography and life history traits could arguably be sufficient 467 

to suggest a separation of the West-Palearctic Colobopsis into two species even according to a 468 

conservative classical taxonomical approach. Moreover, examined specimens from the two chromatic 469 

patterns are also classified into two morphometric clusters, whose separation reaches a significant 470 

threshold indicating heterospecificity according to the current procedures of cryptic ant species 471 

separation (Seifert, 2020). At the same time, the morphometric separation between the two clusters 472 

is relatively narrow, possibly indicating that the two species may have separated quite recently. 473 

Concerning the mtDNA phylogenetic analysis, each clade is unambiguously monophyletic with 474 

respect to morphometric and chromatic evidences (A and D = CSL pattern; B and C = DQL pattern), 475 



with only one misplaced DQL specimen (a 2.4% error rate). On the other hand, with respect to 476 

mtDNA, CSL and DQL patterns resulted in polyphy. This can be explained with possible retention 477 

of ancestral polymorphisms and/or introgression of mtDNA (see Chan & Levin, 2005; Willis et al., 478 

2013). These phenomena appear, in fact, largely responsible for the actual estimate of paraphyly 479 

emerging from mtDNA phylogenies analyses in about 20% of animal species (Funk & Omland, 2003; 480 

Ross, 2014). Mitochondrial DNA introgression is, like in other eukaryotic groups, quite frequent in 481 

ants (e.g. Darras & Aron 2015; Beresford et al. 2017; Seifert, 2018), and coalescence during 482 

speciation commonly results in species undergoing through phases of polyphyly and paraphyly – 483 

averagely longer in arthropods than in other groups – before normally reaching monophyly due to the 484 

stochastic process of complete lineage sorting (Avise, 2004; Ross 2014). In the presently analyzed 485 

taxa, this would support the hypothesis of the recent divergence. Due to their geographic origins, the 486 

ambiguous placement of a few specimens during morphometric or genetic analyses also seems better 487 

supported by this hypothesis than by hybridization (despite the latter being relatively frequent in 488 

European ants, e.g. Steiner et al., 2011; Seifert, 2018; 2019b).  489 

In conclusion, the CSL and DQL Colobopsis clusters are considerable separate species in accordance 490 

with the good practices of ants’ alpha-taxonomy: all available sources of evidence suggest monophyly 491 

with the exception of mtDNA, whose advisory role to infer species boundaries may be relatively 492 

weak in comparison with nuclear genes or nuclear genes’ expression products for the arguments given 493 

by Seifert (2020). As a result, the formal naming of CSL and DQL Colobopsis species holds a key 494 

informative value over their biology and life history traits. The type material of Co. truncata, 495 

consisting of a single queen, could not be part of the morphometric or genetic analyses, but shows 496 

very clearly the DQL pattern and its geographic origin is unambiguous (with the type locality at 497 

mountains of Orero, near Genoa, in Italy’s Liguria, placed in the middle of a highly investigated area 498 

within the DQL Colobopsis geographic range and about 780 km away from the closest area inhabited 499 

by CSL Colobopsis). The same arguments of safe chromatic identification apply for Co. fuscipes, and 500 

in this case they are supplemented by an even stronger biogeographic argument.As a result, the 501 

Colobopsis characterized by the CSL pattern is an undescribed species. Accordingly, a formal 502 

description is provided below. 503 



 504 

Figure 9. Above: distribution map of examined Colobopsis samples – countries where Colobopsis presence is known 505 
from literature are highlighted in grey. Below: approximate distributions of other Camponotini (Camponotus 506 

barbaricus, of C. micans and of C. ruber) which resemble that of CSL Colobopsis.  507 

DESCRIPTION OF COLOBOPSIS IMITANS SP. NOV. 508 

Etymology: imitans is the present participle of the latin verb imitor, meaning “imitating”, and is here 509 

used in apposition. It refers to the interpretation that this species resembles Cr. scutellaris. 510 

Type series: 1 holytpe worker (Figure 10) and 14 paratype workers from Mondello, Sicily (Italy), 511 

38.1953, 13.3354, 5 m, 14.X.2018, E. Schifani leg. The holotype is stored in the Hungarian Natural 512 

History Museum collection.  513 

Worker description: Morphometric indexes are shown in Tab. 2. Head subrectangular, on all sides 514 

rounded. A straight, central furrow runs from the frontal triangle to the level at which the frontal 515 

carinae end. Eyes large, ocelli extremely reduced. Antennae of 12 segments, without a distinct 516 

antennal club. Pronotum significantly wider than the rest of the mesosoma. In lateral profile, 517 

pronotum and mesonotum gently convex, propodeum profile often showing a central concavity thus 518 



having a saddle-like appearance. Petiolar scale profile anteriorly roundly concave and posteriorly 519 

straight, its dorsal crest excavated in frontal view.  Promesonotal and mesoepinotal sutures as well as 520 

metathoracic and propodeal spiracles well-visible. All legs with well-developed tibial spurs, but more 521 

so in the anterior legs which are characterized by strikingly large femurs (identical to Co. truncata, 522 

function unknown). Pigmentation as described in the CSL model. Very fine alveolate to areolate 523 

sculpture covering the whole body and appendages. Few erect hairs near the posterior margin of the 524 

vertex, between the frons and on the clypeus, and few others on the gaster tergites. See Figs 1, 8, 10, 525 

13. 526 

Soldier (= phragmotic major worker) description: Measurements (2 specimens from Sicily): CL 527 

= 1327, 1419; CW = 1262, 1470; SL = 865, 942; ML = 1752, 1774; MW = 921, 1103; EW = 264, 528 

331; EL = 409, 459; CS = 1294, 1444; CL/CW = 0.96, 1.05; SL/CS = 0.65, 0.67; ML/CS = 1.23, 529 

1.35. Large phragmotic head with a cylindrical shape, and a flattened anterior part formed by the 530 

mandibles, part of the clypeus and of the genae. In the distalmost half, it is characterized by a strong 531 

areolate-rugose sculpture and a dense coverage of thick and short erect hairs. Rest of the shape, 532 

sculpture and pigmentation generally similar to the worker but white dots or stripe on the first gastral 533 

tergite sometimes very evident. See Fig. 10. 534 



 535 

Figure 10. Colobopsis imitans sp. nov.: a,b,e) worker (holotypus), c,d,f,g) soldier (specimen from the type 536 

locality). Scale bars: 0.5 mm. Pictures also available on AntWeb.org database, specimen codes: 537 

ANTWEB1041481 and ANTWEB1041482. 538 

Queen description: Measurements (3 specimens from Sicily): CL = 1437-1531; CW = 1281-1406; 539 

SL = 1156-1218; ML = 2687-3031; MW = 1281-1312; EW = 325-362; EL = 525-537; CS = 1359-540 

1468; CL/CW = 1.08-1.11; SL/CS = 0.83-0.87; ML/CS = 1.93-2.22. Large phragmotic head very 541 

similar to the soldier not only in shape but also in size (despite larger body size), but well-developed 542 

ocelli, eyes much larger and much longer scapi. Immediately distinguishable by the larger, dorsally 543 

flatter mesosoma, which is largely unsculptured and shiny. Propodeum profile similar to the end of 544 

soldiers’ propodeum. Head red as in the worker, but the mesosoma is brownish and the white dots or 545 

stripe on the first gaster tergite are/is evident. See Fig. 11. 546 

Male description: Measurements (3 specimens from Sicily): CL = 875-1093; CW = 781-1000; SL 547 

= 937-1001; ML = 2281-2437; MW = 1062-1218; EW = 300-387; EL = 462-525; CS = 828-1046; 548 

CL/CW = 1.09-1.17; SL/CS = 0.92-1.20; ML/CS = 2.32-2.75. Small, subrectangular head with large 549 

ocelli and very large eyes protruding laterally. Toothless mandibles. Relatively large mesosoma, 550 



propodeum more gently rounded than in queens or workers. Petiolar node very low and round. 551 

Sculpture very weak, mesosoma shiny. Mandibles very hairy, other hairs on clypeus and gaster. Entire 552 

body ferruginous or brownish, gaster blackish. See Fig. 11. Genitalia as in Fig. 12. 553 

 554 

Figure 11. Colobopsis imitans sp. nov.: a,b,e,f) queen, c,d,g) male. Specimens from the type locality. Scale 555 

bars: 0.5 mm. Pictures also available on AntWeb.org database, specimen codes: ANTWEB1041483 and 556 

ANTWEB1041484. 557 



 558 

Figure 12. Male genitalia of Colobopsis imitans sp. nov. in ventral and dorsal view, specimen from the type 559 

locality. Scale bars = 0.25 mm. 560 

Diagnosis: Generally easy to determine on the basis of worker material due to strong chromatic 561 

differentiation from Co. truncata and allopatric distribution (although further investigation is required 562 

for possible contact regions in southern Iberia and southern Italy). Some very small worker specimens 563 

may appear almost completely black, therefore lacking the typical chromatic pattern, and workers 564 

with entirely red mesosoma can seldom be observed. Tentative identifications of isolated soldier or 565 

queen specimens should be much more cautious, although their chromatic appearance may sometimes 566 

appear to be very explicit. The low number of males and the lack of particularly evident distinctive 567 

characters from Co. truncata do not allow a safe species-level identification of this caste based on 568 

morphology. In respect to workers, the morphometric linear discriminant function provided in the 569 

results section should be helpful to determine dubious cases including decolored specimens. Finally, 570 

DNA barcoding, which can be used for the same purpose and also be employed on the other castes, 571 

shows a relatively low error rate but may present some risks due to the polyphyletic pattern that we 572 

observed. 573 

Biological, ecological and phenological notes: Relatively thermophilous, in Sicily occurring from 574 

few meters above the sea level to at least 1015 m a.s.l., in Morocco ascending up to 1290 m a.s.l. and 575 

in Spain so far known from coastal lowland areas. Probably very common but also heavily under-576 

recorded due to cryptic arboreal lifestyle, low colony population (most-likely monogynous), effective 577 

mimicry and long periods of inactivity during the most arid and coldest times of the year. Workers 578 

and soldiers are unlikely to descend to the ground but were observed to do so at least once, following 579 

a sparsely populated Cr. scutellaris trail. Soldiers in general are very difficult to be found outside the 580 

nest and usually seen acting as gatekeepers of the nest entrance. Founding queens were observed to 581 

do the same. Nests are hidden in minute holes on the dead parts of arboreal trunks, where Co. imitans 582 



sp. nov. often seems to act as a secondary user of cavities excavated by xylophagous insects. It 583 

exploits Andricus quercustozae (Bosc, 1792) oak galls as nests (occupying about 15% of galls 584 

collected in Sicily’s Bosco della Ficuzza in a recent survey, authors’ unpublished data), in a similar 585 

way to Co. truncata (see Giannetti et al., 2019; 2021; Fürjes-Mikó et al., 2020). Polydomy appears 586 

probable due to repeated findings of groups of workers without queens within oak-galls. Observed 587 

nesting on several and diverse plant species, including at least: Citrus reticulata Blanco, 1837, Ci. 588 

sinensis (L.) Osbeck, 1765, Laurus nobilis L., Olea europaea L., Quercus ilex L., Q. pubescens-589 

group, Q. suber L., Pyrus communis L., Pittosporum tobira (Thunb.) W.T.Aiton. Apparently dense 590 

populations were found in old Citrus orchards and relatively sparse Q. suber woods, but also in 591 

deciduous oak forests. However, it occurs in a broad range of habitats from cities to agricultural lands 592 

to natural forest habitats, but information available so far is  insufficient to depict a satisfactory picture 593 

of habitat preferences. Despite the earlier claim by Carpintero et al. (2005), there is currently no 594 

evidence backing the fascinating hypothesis that C. imitans sp. nov. foundress queens prefer trees 595 

hosting Cr. scutellaris to found their colonies. A focused investigation on this topic would be 596 

interesting. Nuptial flights for Co. imitans sp. nov. occur approximately in the same period of Co. 597 

truncata (alates in Sicily observed from June 30 to July 13, n = 5, see supplementary material). 598 

Winged queens and males were repeatedly seen attracted by artificial lights at night. 599 

FINAL REMARKS 600 

Body pigmentation pattern is the only qualitative character that makes Co. imitans sp. nov. 601 

identifiable without recurring to quantitative data, as it is otherwise morphologically extremely 602 

similar to Co. truncata up to a significant level of crypsis (see Wagner et al., 2018). These 603 

pigmentation differences among West-Palearctic Colobopsis so far went completely unnoticed, the 604 

sole exception being a brief statement by Santschi (1929) noting that the chromatic aspect of the 605 

Moroccan Co. truncata is different than the typus one by its lighter head color. The case we 606 

documented can be considered one of the few where such element is important for species 607 

discrimination in European ants. While body pigmentation has been used without scientific rigor by 608 

some past ant taxonomists (see the example described by Boer, 2008), it can be important for the 609 

morphological identification of species such as Formica clara Forel, 1886 and F. cunicularia 610 

Latreille, 1798 or even fundamental for many Temnothorax spp. (Seifert & Schulz, 2009; Seifert, 611 

2018) and should not be overlooked in multi-character approaches for taxonomic purposes. Under 612 

these conditions, checking pictures uploaded on citizen science platforms and social media proved to 613 

be significantly helpful to obtain data on these species distribution, evidencing once more the 614 

uncovered potentials of citizen science in the study of ant distribution (e.g. Lucky et al., 2014; Zhang 615 



et al., 2019; Castracani et al., 2020; Sheard et al., 2020) and more in general of platforms hosting 616 

these kind of data in the study of insect distribution (e.g. Schifani & Paolinelli 2018; Hochmair et al., 617 

2020; Ruzzier et al., 2020; Winterton, 2020). Moreover, behavioural data are seldom considered in 618 

integrative taxonomic approaches dealing with ants, but they may prove valuable in some cases (see 619 

also Ronque et al., 2016). Finally, while mtDNA has a decent identification performance, our data 620 

clearly support the idea that it should not be used as the primary source of information to take 621 

taxonomic decision on species delimitation (see Seifert 2020). 622 

The taxonomic status of the West-Palearctic Colobopsis populations appears now well-resolved. Still, 623 

our analyses missed data from what the existing literature describes as the easternmost distribution 624 

of Co. truncata east to the Mediterranean region, which reaches to the Kopet Dag in Turkmenistan 625 

(Dlussky et al., 1990; Gratiashvili & Barjadze, 2008; Dubovikoff & Yusupov, 2018; Bračko, 2019; 626 

Samin et al., 2020). In biogeographic terms, they are extremely unlikely to represent a disjunct Co. 627 

imitans sp. nov. population, while conspecificity with Co. truncata appears likely due to the existence 628 

of several ant species with similar distributions (e.g. Wagner et al., 2017; Seifert, 2018). Within the 629 

Mediterranean, the range limits of Co. imitans sp. nov. and Co. truncata or their eventual sympatry 630 

in contact zones should be appropriately investigated in areas of biogeographic transition (southern 631 

Iberia, Sicily, Calabria and perhaps Sardinia, see Alicata & Schifani, 2019; García, 2020; Schifani et 632 

al., 2020; 2021; Tinaut & Ruano, 2021). 633 

The fact that Co. imitans sp. nov. and Co. truncata greatly differ chromatically is interesting if one 634 

considers that phylogenetics and morphometry suggest a recent differentiation. In evolutionary terms, 635 

the most likely interpretation is to link such differentiation to a shared strategy based on ant-mimicry 636 

modulated according to the presence or absence of certain good models across different 637 

Mediterranean regions. Both D. quadripunctatus and Cr. scutellaris have much more populous 638 

colonies than Co. imitans sp. nov. and Co. truncata, while both are likely less palatable for predators 639 

and armed with effective toxic substances (Cavill & Hinterberger, 1960; Wagner, 2019). Therefore, 640 

even though only Cr. scutellaris is truly recognized as an aggressive and dominant species (Santini 641 

et al., 2007; Frizzi et al., 2015; Castracani et al., 2017; Seifert, 2018), both appear to possess the 642 

required traits to be considered good Batesian models to the non-aggressive and relatively unarmed 643 

Colobopsis (which still possess some formic acid). However, across the distribution range of Co. 644 

imitans sp. nov., D. quadripunctatus is almost completely absent: it does not inhabit the Maghreb, its 645 

Iberian distribution is concentrated to the North and in Sicily it is considered to bevery rare (Schifani 646 

& Alicata, 2018; Cabanillas et al., 2019). Yet it is interesting to note that the opposite is not true for 647 

Co. truncata: the latter is not only sympatric with D. quadripunctatus along its entire range (including 648 

in the hypothesis that easternmost Colobopsis are Co. truncata: see Reznikova, 2003; Ghahari et al., 649 



2015), but also sympatric with Cr. scutellaris in south-western Europe and with Cr. schmidti in the 650 

east. Finally, it is worth noting that the white dots or stripe that have been linked to mimicry of D. 651 

quadripunctatus in Co. truncata (Forel, 1886; Wagner, 2019) are/is absent or hardly visible in Co. 652 

imitans sp. nov. workers but at the same time well-visible in at least a few soldiers and especially 653 

queens that we inspected. Following the mimicry interpretation of the chromatic patterns, it is 654 

imaginable that this character is an ancestral remnant but that selective (predatory) pressures leading 655 

to perfect mimicry are stronger on workers than on queens or soldiers which rarely leave the safety 656 

of their nest.  657 

Mimicry may be considered as a third defensive strategy of Colobopsis unique or very rare among 658 

ants after suicidal authothysis and phragmosis (Emery, 1925; Maschwitz & Maschwitz, 1974; 659 

Davidson et al., 2012; Shorter & Rueppel, 2012; Ward et al., 2016; Laciny et al., 2018). Apart from 660 

the two species we treated, the only existing claims of mimicry in the genus come from 661 

morphologically very different and likely unrelated species from Fiji Islands (Santschi 1928; Wheeler 662 

1934). However, since several other Palearctic Colobopsis species share a general morphological 663 

similarity with Co. imitans sp. nov. and Co. truncata, likely belonging to the same evolutionary 664 

lineage, it is possible that some of them represent yet undiscovered mimics. It also appears that 665 

mimicry may have played a powerful role driving phenotypic diversification of West-Palearctic 666 

Colobopsis: Co. imitans sp. nov. and Co. truncata can be considered as the only well-documented 667 

example among ants that suggests mimicry-driven phenotypic divergence of sister species. In 668 

comparison, the intraspecific case of mimicry pattern divergence in Ca. lateralis is one of much more 669 

modest differentiation (Wagner, 2014; Seifert, 2019a). Similar accounts are not particularly common 670 

in other organisms either, but recently an interesting scenario of strong diverging aposematic patterns 671 

coupled with minimal genetic differentiation was described by for a group of frogs (Tarvin et al., 672 

2017).  673 

It is still unknown which visual predators may have been responsible for determining the selective 674 

pressures that lead to the emergence of ant-mimicry across different ant lineages. Birds and lizards 675 

appear to be good candidates to start with (Ito et al., 2004; Wagner, 2014). Our surveys around the 676 

colonies and trails of Cr. scutellaris and D. quadripunctatus led us to find several possible mimics of 677 

either species that belong to different insect and spider groups already known for ant mimicry (Fig. 678 

13). In particular, Santschi (1919) suggested in the the Canarian relative of Ca. ruber (Ca. guanchus 679 

Santschi, 1908) the existence of an association similar to that between Ca. lateralis and Cr. 680 

scutellaris, while Harvey et al. (2018) described the anti-predatory function of ant-mimicry in Gelis 681 

spp., Komatsu (1961) reported on Phrurolithus-ant associations, Corcobado et al. (2016) reported on 682 

Leptorchestes-ant associations, and finally Chandler (2010) mentions myrmecomprhism among 683 



Anthicidae. Although some of these findings may have been coincidental and deserve further 684 

investigation, it is imaginable that Co. imitans sp. nov. and Co. truncata are each part of a larger 685 

cohort of different arthropods that evolved mimicry to resemble Cr. scutellaris or D. quadripunctatus 686 

in response to visually hunting generalist insectivores, similarly to the “golden mimicry complex” 687 

described by Pekár et al. (2017). Further investigation is also required to understand whether the 688 

advantages of mimicry for Co. imitans sp. nov. and Co. truncata may lay in a dilution effect, if 689 

Batesian mimicry is truly implied and if Müllerian mimicry also plays a role (see Speed, 1999; Pekár 690 

et al., 2017) –, keeping in mind that different evolutionary relations may exist between the same prey 691 

and different predators. 692 



 693 

Figure 13. Above Cr. scutellaris and species showing a very similar chromatic pattern that were collected near Cr. 694 
scutellaris trails in Sicily (Italy): a) Co. imitans sp. nov. (worker from Mondello), b) Ca. lateralis (worker from Monte 695 
Pellegrino), c) Gelis sp. (Hymenoptera: Braconidae) from Monte Petroso, d) Cr. scutellaris from Levanzo island, e) 696 
Phrurolithus sp. (Araneae: Phrurolitidae) from Mondello, f) Ca. ruber (worker from Monte Pellegrino) and g) 697 
Leptorchestes sp. (Araneae: Salticidae) from Monte Petroso. Below, D. quadripunctatus and species with a very similar 698 
chromatic pattern that were collected near its trails or in the same trees in the Italian Peninsula: h) Co. truncata (specimen 699 



from Bulgaria, AntWeb code CASENT0280000, photographer Michele Esposito), i) D. quadripunctatus (specimen from 700 
Czech Republic, AntWeb code CASENT0179916, photographer Michele Esposito), j) Formicomus pedestris (Rossi, 701 
1790) (Coleoptera: Anthicidae) from Parma (Italy). 702 

Interspecific but intrageneric trail-following described for some ants is likely relatable to 703 

phylogenetic proximity and morphofunctional and behavioural similarities or similar foraging 704 

strategies among species (e.g. Grasso et al., 2002 and references therein). On the other hand, the 705 

significance of the recorded Colobopsis-Crematogaster trail-following is not yet fully clear to us. 706 

Similar cases (such as that of Ca. lateralis) have often been referred to as parabiosis, but we avoided 707 

this term since quite different interpretations of its meaning coexist creating ambiguity: it is 708 

sometimes used to simply indicate trail-following but in other occasions it implies also nest-sharing 709 

(see Forel, 1898; Swain, 1980; Vantaux et al., 2007; Menzel et al., 2008; 2010; 2014a; 2104b; Seifert, 710 

2018). Outside of Co. imitans sp. nov. and Co. truncata, many other camponotine ants follow 711 

Crematogaster trails without always acting as mimics (Ito et al., 2004; Vantaux et al., 2007; Menzel 712 

et al., 2008; 2014). Baroni Urbani (1969) and Menzel et al. (2014) speculated that the compounds 713 

used as trails pheromones by Crematogaster are generally easily perceived by Camponotus, this 714 

capacity representing an important pre-adaptation to trail-following. During our field surveys, we 715 

unexpectedly observed several workers of Camponotus piceus (Leach, 1825) (a relative of Ca. 716 

lateralis with no resemblance of Cr. scutellaris, see Seifert, 2019a) easily following part of a Cr. 717 

scutellaris trail to the canopy of a tangerine tree while avoiding Cr. scutellaris attacks. It may be 718 

possible that many other similar camponotine ants rarely perform the same without possessing a 719 

specific mimicry adaptation, which can partly explain the occasional observations of trail-following 720 

between Co. truncata and Cr. scutellaris (Zimmermann 1934; Goetsch 1942; Baroni Urbani 1969; 721 

Wagner 2014). Still, in the overwhelming majority of the documented cases inter-specific trail-722 

following is associated either with mimicry (as for Colobopsis imitans sp. nov., see Gobin et al., 723 

1998; Ito et al., 2004; Menzel et al., 2010; Powell et al., 2014) or with nest-sharing (Vantaux et al., 724 

2007; Menzel et al., 2008; 2014). For mimics, it appears to be primarily a way to better hide within 725 

the ranks of the model species, an example of dilution effect (Lehtonen & Jaatinen, 2016), which may 726 

also apply to a certain degree non-mimic ant species as well. However, the trail-followers may be 727 

able to obtain additional benefits in their success of locating trophic resources, sometimes even 728 

establishing somewhat parasitic relationships (see Vantaux et al. 2007; Menzel et al. 2010; 2014a; 729 

2014b). It is unclear whether Colobopsis ants may also benefit from a similar mechanism although a 730 

parasitic aspect of its trail-following behaviour has been suggested by Baroni Urbani (1969). 731 
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