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Heat stress (HS) compromises the yield and quality of poultry products and

endangers the sustainability of the poultry industry. Despite being

homeothermic, chickens, especially fast-growing broiler lines, are particularly

sensitive to HS due to the phylogenetic absence of sweat glands, along with the

artificial selection-caused increase in metabolic rates and limited development of

cardiovascular and respiratory systems. Clinical signs and consequences of HS are

multifaceted and include alterations in behavior (e.g., lethargy, decreased feed

intake, and panting), metabolism (e.g., catabolic state, fat accumulation, and

reduced skeletal muscle accretion), general homeostasis (e.g., alkalosis,

hormonal imbalance, immunodeficiency, inflammation, and oxidative stress), and

gastrointestinal tract function (e.g., digestive and absorptive disorders, enteritis,

paracellular barrier failure, and dysbiosis). Poultry scientists and companies have

made great efforts to develop effective solutions to counteract the detrimental

effects of HS on health and performance of chickens. Feeding and nutrition have

been shown to play a key role in combating HS in chicken husbandry. Nutritional

strategies that enhance protein and energy utilization aswell as dietary interventions

intended to restore intestinal eubiosis are of increasing interest because of the

markedeffects ofHSon feed intake, nutrientmetabolism, andguthealth.Hence, the

present review series, divided into Part I and Part II, seeks to synthesize information

on the effects of HS on physiology, gut health, and performance of chickens, with

emphasis on potential solutions adopted in broiler chicken nutrition to alleviate

these effects. Part I provides introductory knowledge on HS physiology to make

good use of the nutritional themes covered by Part II.
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Introduction

Heat stress (HS) affects performance, health, and welfare of

commercially-reared birds (Renaudeau et al., 2012; Rostagno,

2020) and alters their meat (Song and King, 2015; Wang et al.,

2017; Zaboli et al., 2019) and egg quality (Mack et al., 2013;

Barrett et al., 2019), thereby endangering the sustainability of the

poultry industry. This environmental stressor has commonly

impacted poultry flocks raised in tropical and subtropical regions

of the world. However, as a result of global warming, high

environmental temperatures have become a large-scale issue

that severely threatens poultry producers located in temperate

areas as well (Renaudeau et al., 2012). Extreme heatwaves have

already caused devastating events for the poultry industry, such

as the sudden death of more than 700,000 birds in California

(Nienaber and Hahn, 2007). St-Pierre et al. (2003) reported that

the financial burden of HS amounts to $128–165 million per year

for the US poultry industry alone. Although this figure still

represents a general reference, recent estimates cannot be

easily found in the literature.

In addition to causing evident changes in chicken behavior

(Wang W. C. et al., 2018), HS negatively acts upon metabolism

and general homeostasis (Rhoads et al., 2013) and impairs the

functionality of the digestive system (Rostagno, 2020).

Interestingly, several physiological and pathophysiological

responses to HS are evolutionary conserved across different

animal species (Lambert et al., 2002; Pearce et al., 2012; Koch

et al., 2019; Kaufman et al., 2021), including humans (Snipe et al.,

2018). For instance, the reduction in feed intake is one of the

most common HS reactions because it is an effective way to limit

the generation of metabolic heat due to digestion, absorption,

and nutrient metabolism (Baumgard and Rhoads, 2013).

Given its tremendous relevance to the whole sector, poultry

scientists and companies have been committed to developing

reliable tools against HS. Engineering solutions and equipment

intended to optimize the environmental control of poultry

houses, along with management measures and genetic

selection, can undoubtedly aid poultry producers in

counteracting hot conditions (Lin et al., 2006b; Naga Raja

Kumari and Narendra Nath, 2018; Saeed et al., 2019; Liang

et al., 2020; Wasti et al., 2020; Goel, 2021; Nawaz et al., 2021;

Vandana et al., 2021). Feeding strategies and dietary

interventions can also help relieve HS effects on poultry

(Gous and Morris, 2005; Lin et al., 2006b; Wasti et al., 2020;

Vandana et al., 2021). For instance, increasing energy and

nutrient density of the diet can counterbalance the decreased

feed consumption of birds exposed to HS (Wasti et al., 2020).

Moreover, researchers dealing with HS have been testing feed

supplements aimed at promoting gastrointestinal (GI) health

(Lian et al., 2020), which is a mainstay for the modern animal

science and livestock industry (Kogut and Arsenault, 2016). Gut

health is multifaceted and simultaneously influenced by

composition and properties of the diet, digestion and

absorption processes, integrity of the GI epithelium, plasticity

and resilience of the GI immune system, and dynamics of the GI

microbiota (Brugaletta et al., 2020). Pioneering studies conducted

in the 1980s revealed that the GI microbiota is a main target of

HS and that dietary supplementation of probiotic blends can

attenuate HS in chickens (Suzuki et al., 1983, 1989). Probiotics

have been shown to drive the formation of a desirable and

protective GI microbiota (Baldwin et al., 2018), while properly

reestablishing eubiosis following environmental stress, such as

the exposure to elevated temperatures (Sugiharto et al., 2017).

Along with probiotics, other GI microbiota modulators and

potentially gut health-enhancing additives have been tested in

poultry nutrition to promote eubiosis under HS conditions, such

as prebiotics, synbiotics, postbiotics, phytochemicals, and amino

acids, to name but a few (Lian et al., 2020; He et al., 2021).

Over the last years, HS-mediated alterations of physiology

and gut health of chickens have received considerable attention.

Therefore, this review series composed of Part I and Part II, was

conceived to summarize relevant knowledge about these topics

and examine some feeding and nutritional interventions that

have been proposed to mitigate HS in broiler chickens. The

present Part I discusses the effects of HS on physiology and gut

health of chickens, while Part II (Teyssier et al., 2022a) provides

an overview of potential solutions employed in broiler chicken

nutrition to minimize the detrimental effects of HS.

Heat stress effects on physiology of
chickens

Chickens are homeotherms that can keep their body

temperature tightly regulated across a wide range of external

temperatures. However, high environmental temperatures can

overwhelm the thermoregulatory mechanisms, causing an

imbalance between the amount of metabolic heat produced by

chickens and their own capacity to dissipate body heat to the

environment. This alteration results in an abnormal increase in

body temperature (hyperthermia) and triggers HS (Renaudeau

et al., 2012; Rostagno, 2020). In addition to being potentially

lethal, HS has a broad-spectrum effect on behavior, physiology,

gut health, welfare, and productive performance of chickens. It is

worth pointing out that fast-growing and highly efficient broiler

chickens (Havenstein et al., 1994, 2003b; Zuidhof et al., 2014;

Tallentire et al., 2018), the outcome of about 70 years of genetic

progress, are even less thermotolerant and more susceptible to

HS than slow-growing lines due to extremely high metabolic

rates and poorly developed cardiovascular and respiratory

systems (Cahaner and Leenstra, 1992; Yunis and Cahaner,

1999; Havenstein et al., 2003a; Gous and Morris, 2005; Lu

et al., 2007; Yahav, 2009; Xu et al., 2018). In this regard,

Gogoi et al. (2021) recently proved that the physiological

response to HS is more severe and heat tolerance is lower in

heavy broilers than in lighter birds of the same line and age.
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Heat stress and behavior

“Cooling behaviors” (Wang W. C. et al., 2018) are the most

prominent HS-caused modifications in chicken behavior. As

their name suggests, these abnormal behaviors are intended to

cool the body down to restore normothermia. Chickens lack

sweat glands, which would facilitate latent heat loss by

evaporation of the perspiration, and have relatively limited

unfeathered body surface areas to provide an effective loss of

sensible heat through conduction, radiation, and convection

(Nichelmann et al., 1986; Yunis and Cahaner, 1999; Renaudeau

et al., 2012; Rostagno, 2020). As the ambient temperature rises,

the thermal gradient between the body surface and the

surrounding environment lessens while the dissipation of

sensible heat becomes decreasingly effective. Therefore,

chickens suffering from environment-induced hyperthermia

increase their respiratory rate (thermal tachypnea/polypnea

or panting) to maximize the loss of latent heat via

evaporation of water from the respiratory tract (Jukes, 1971;

Teeter et al., 1985). While sensible heat loss is restricted by the

body-to-environment thermal gradient, relative humidity

imposes a ceiling on water evaporation and, therefore, on

latent heat dissipation (Renaudeau et al., 2012). Thus,

elevated ambient temperature associated with high relative

humidity considerably limit heat removal from the body and

magnify the injurious effects of HS on chickens (Rajaei-

Sharifabadi et al., 2017; Goel, 2021). Under persistent HS

conditions, thermal polypnea turns into a slower and deeper

panting phase, also called thermal hyperpnea (Hales, 1973;

IUPS Thermal Commission, 1987; Renaudeau et al., 2012).

Even though panting improves evaporative cooling through

latent heat dissipation, it has some drawbacks for chickens

(Marder and Arad, 1989). Dehydration, the most intuitive

panting-related disadvantage, usually results in higher water

requirement and consumption (Wang W. C. et al., 2018).

Panting also increases CO2 exhalation leading to hypocapnia

and, eventually, to respiratory alkalosis, a disorder of the acid-

base balance (Richards, 1970; Marder and Arad, 1989;

Renaudeau et al., 2012; Beckford et al., 2020; Wasti et al.,

2020). Alkalosis poses a risk to the egg industry because it

reduces blood ionized calcium and therefore negatively affects

eggshell mineralization (Odom et al., 1986). However, HS-

induced respiratory alkalosis is a great threat to broiler

growers as well (Teeter et al., 1985; Borges et al., 2007).

Chickens subjected to HS frequently lift their wings (Wang

W. C. et al., 2018) to expose body areas uncovered by feathers in

an attempt to enhance the sensible heat flow toward the

environment. Despite being fundamental to preserving or

reestablishing euthermia, panting and raising wings are

energy-intensive activities (Brackenbury and Avery, 1980;

Dale and Fuller, 1980) which deplete the amount of calories

that would be allocated to productive purposes (Yahav et al.,

2004; Baumgard and Rhoads, 2013).

Chickens kept at high temperatures become lethargic,

spending more time resting (e.g., squatting close to the

ground) and less time feeding and walking. This unfavorably

affects feed intake (Wang W. C. et al., 2018) and skeletal health

(Hester et al., 2013). Limiting feed consumption is a highly

conserved survival mechanism employed by animals to reduce

the thermogenesis from digestive, absorptive, and nutrient

utilization processes (Baumgard and Rhoads, 2013). Reduced

performance of heat-stressed chickens have traditionally been

attributed to reduced feed intake (Dale and Fuller, 1980; Teeter

et al., 1985). However, pair-feeding models—adopted to

minimize the confounding effects of dissimilar feed

consumption between birds under thermoneutral conditions

and their heat-stressed counterparts—revealed that up to 40%

of body weight gain loss of broilers subjected to HS are unrelated

to anorexia (Dale and Fuller, 1980; Geraert et al., 1996a; Ain

Baziz et al., 1996; Lu et al., 2007; Zuo et al., 2015; Lu et al., 2018;

Teyssier et al., 2022b). Readers are referred to Part II of this

review series for more information on the effects of HS on feed

intake (Teyssier et al., 2022a). Table 1 provides an overview of

heat stress effects on chicken behavior.

Heat stress and lipid metabolism

Direct effects of HS upon physiology, other than reduced feed

intake, remarkably contribute to impair chicken performance

(Dale and Fuller, 1980; Geraert et al., 1996a; Renaudeau et al.,

2012). Heat-stressed animals paradoxically show a restricted fat

mobilization notwithstanding their negative energy balance and

catabolic state (Baumgard and Rhoads, 2013). Indeed, not only

chickens (Bobek et al., 1997; Lu et al., 2018), but also pigs (Pearce

et al., 2013a; Victoria Sanz Fernandez et al., 2015), and dairy

cattle (Rhoads et al., 2009) kept in warm environments show a

progressive reduction in circulating non-esterified (free) fatty

acids (NEFA)—a reliable indicator of lipid

metabolism—suggesting a limited use of fat energy stores.

Extensive research has also revealed that heat-stressed

chickens deposit more visceral (abdominal), subcutaneous,

and intramuscular fat (Kleiber and Dougherty, 1934; Kubena

et al., 1972; Ain Baziz et al., 1996; Yunianto et al., 1997; He et al.,

2015; Lu et al., 2018, 2019). A greater lipid retention at the

peripheral body sites can further hinder the dissipation of

sensible heat (Renaudeau et al., 2012), increasing the risk of

severe hyperthermia. The hampered fat mobilization is a

metabolic adaptation likely due to hyperinsulinemia triggered

by HS, at least in pigs and cattle (Baumgard and Rhoads, 2013).

In contrast to mammals, however, heat-stressed chickens do not

usually show a spike in blood insulin levels (Geraert et al., 1996b;

Tang et al., 2013; Belhadj Slimen et al., 2016), although Lu et al.

(2019) reported an increase and a decrease in circulating insulin

at 7 and 14 days of HS, respectively. Moreover, avian insulin lacks

a powerful antilipolytic effect, while the importance of its
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signaling cascades in the adipose tissue of chickens is still unclear

and a matter of debate (Dupont et al., 2012, 2015). Therefore,

several questions about the role of insulin in fat metabolism of

chickens undergoing HS remain unanswered at present. It is

worth noting, however, that the altered lipid metabolism is not

limited to a reduced utilization of fat storages because heat-

challenged chickens also show an overexpression of proteins

involved in the hepatic de novo lipogenesis, along with fat

accumulation in the liver (Flees et al., 2017; Lu et al., 2019).

HS effects on chicken lipid metabolism are summarized in

Table 2.

Heat stress and skeletal muscle protein
metabolism

In addition to an increase in fat content, HS has been

demonstrated to alter the carcass composition of broiler

chickens by lowering the lean tissue proportion, especially the

breast yield (Howlider and Rose, 1989; Geraert et al., 1996a; Ain

Baziz et al., 1996; Temim et al., 2000; Zuo et al., 2015; Lu et al.,

2018; Qaid and Al-Garadi, 2021; Zampiga et al., 2021). First

molecular insights suggested that HS-mediated depression in

muscle protein deposition is mostly attributable to a reduced

protein synthesis rather than a more pronounced protein

breakdown (Temim et al., 2000). Zuo et al. (2015) showed,

however, that the cause for the diminished lean mass

accretion can be muscle-specific, with the breast showing a

decreased protein synthesis while the thigh an augmented

protein degradation. They also associated the impaired protein

synthesis with a lower expression of insulin-like growth factor 1

(IGF-1), phosphatidylinositol 3-kinase (PI3K), and p70S6 kinase

(S6K) and the higher protein degradation with an upregulation of

muscle atrophy F-box (MAFbx or atrogin-1). Ma et al. (2021)

recently confirmed the modifications in S6K and MAFbx

expression caused by HS. S6K is indispensable in controlling

TABLE 1 Overview of heat stress effects on chicken behavior.

Class Heat stress effect Pros Cons Referencesa

Behavior ↑ respiratory rate (thermal
polypnea or panting) →
thermal hyperpnea

↑ latent heat dissipation
(evaporative heat loss through
the respiratory tract)

Dehydration→ higher water requirement and
consumption

Richards (1970), Jukes (1971), Brackenbury
and Avery (1980), Dale and Fuller (1980),
Teeter et al. (1985), Odom et al. (1986),
Marder and Arad (1989), Yahav et al. (2004),
Borges et al. (2007), Renaudeau et al. (2012),
Rhoads et al. (2013),WangW. C. et al. (2018),
Beckford et al. (2020), Wasti et al. (2020)

↑ CO2 loss → hypocapnia → respiratory
alkalosis (acid-base imbalance) → ↓ blood
calcium for eggshell mineralization and ↓
growth performance

↑ energy expenditure to maintain euthermia
→ ↓ performance

Wing lifting ↑ exposition of unfeathered
body surfaces → ↑ sensible
heat loss

↑ energy expenditure to maintain euthermia
→ ↓ performance

Dale and Fuller (1980), Baumgard and
Rhoads (2013), Wang W. C. et al. (2018)

Lethargy → ↓ feeding and
walking

↓ metabolic heat from
digestion, absorption, and
nutrient utilization

↓ performance Dale and Fuller (1980), Teeter et al. (1985),
Geraert et al. (1996a), Baumgard and Rhoads
(2013),Hester et al. (2013),WangW. C. et al.
(2018)

↓ bone/skeletal health

Upward arrow (↑), increase; downward arrow (↓), decrease; rightward arrow (→), consequence/degeneration.
aInclude studies on non-avian species that have exhibited comparable heat stress effects and responses to those observed in chickens. Studies with the focus on chickens or poultry are

highlighted in bold.

TABLE 2 Overview of heat stress effects on chicken lipid metabolism.

Class Heat stress effect Pros Cons Referencesa

Lipid
metabolism

↓ fat mobilization and ↑ hepatic lipogenesis→↑
fat retention and deposition

— ↑ carcass adiposity Kleiber and Dougherty (1934), Kubena et al. (1972), Ain Baziz et al.
(1996),Geraert et al. (1996a),Yunianto et al. (1997),Bobek et al. (1997),
Rhoads et al. (2009), Renaudeau et al. (2012), Baumgard and Rhoads
(2013), Pearce et al. (2013a), Victoria Sanz Fernandez et al. (2015), He
et al. (2015), Flees et al. (2017), Lu et al. (2018), Lu et al. (2019)

↓ sensible heat
dissipation

Upward arrow (↑), increase; downward arrow (↓), decrease; rightward arrow (→), consequence/degeneration.
aInclude studies on non-avian species that have exhibited comparable heat stress effects and responses to those observed in chickens. Studies with the focus on chickens or poultry are

highlighted in bold.
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protein synthesis and muscle development in chickens (Bigot

et al., 2003; Duchêne et al., 2008; Everaert et al., 2010).

Interestingly, Boussaid-Om Ezzine et al. (2010) detected a

limited response of the S6K signaling pathway to anabolic

stimuli in heat-stressed broiler chickens. Lu et al. (2018)

measured an increase in blood uric acid, urea, and

proteinogenic amino acids (AA)—in spite of a marked

decrease in feed intake and breast yield—along with a

reduction in glucose and NEFA. Consequently, they

postulated that heat-exposed chickens mobilize protein

reservoirs of skeletal muscles, particularly the breast, to

compensate for the inability to extract energy from stored fat.

In this regard, plasmatic levels of creatine, 3-methylhistidine, and

urea have been used as biomarkers to assess muscle protein

breakdown induced by HS (Rhoads et al., 2013). The hypothesis

formulated by Lu et al. (2018) has been supported by Ma et al.

(2021) who found that HS reduces plasmatic glucogenic AA,

increases AA uptake of the liver and its glucogenic potential, and

enhances the activity of hepatic transaminases that deaminize

AA to make them precursors for gluconeogenesis. Furthermore,

Zampiga et al. (2021) observed that heat-stressed broilers exhibit

a drop in blood glucogenic precursors and breast muscle free AA,

despite a rise in circulating protein-building AA concomitant

with a substantial feed intake reduction. Table 3 presents a

summary of heat stress effects on skeletal muscle protein

metabolism of chickens.

Heat stress and hormonal levels

Chickens subjected to HS share numerous hormonal

variations with mammalian species. HS activates the

hypothalamic-pituitary-adrenal axis, leading to a marked

increase in circulating glucocorticoids, particularly

corticosterone (Geraert et al., 1996b; Yunianto et al., 1997;

Quinteiro-Filho et al., 2010, 2012; Rajaei-Sharifabadi et al.,

2017; Lu et al., 2019; Beckford et al., 2020; Ma et al., 2021). In

chickens, high levels of corticosterone have been reported to

decrease growth potential, induce proteolysis and suppress

protein synthesis in skeletal muscles, and increase fat

deposition (Decuypere and Buyse, 1988; Dong et al., 2007;

Yuan et al., 2008), all of which are typical HS consequences

(Rhoads et al., 2013). It has been proposed that corticosterone

impairs muscle protein metabolism by inducing the

abovementioned changes in S6K and MAFbx expression (Ma

et al., 2021), while also exerting a lipogenic effect by promoting

the expression of fatty acid synthase (FASN) in hepatocytes and

adipocytes (Gonzalez-Rivas et al., 2020). However, a recent

investigation demonstrated that treating heat-stressed chicken

myotubes with corticosterone does not intensify proteolysis and

does not increase the expression of MAFbx compared to the HS

treatment alone (Furukawa et al., 2021). The latter interesting

results have been obtained in vitro, and therefore further research

may be needed to elucidate the role of corticosterone in the

altered protein metabolism of heat-stressed chickens.

Additionally, since hypercorticosteronemia is

immunosuppressive (Quinteiro-Filho et al., 2010), heat-

challenged chickens have a compromised immunocompetence

and are more prone to infectious diseases (Renaudeau et al., 2012;

Farag and Alagawany, 2018; Chauhan et al., 2021). In this regard,

Hirakawa et al. (2020) detected serious immunological disorders

in heat-stressed broilers, such as a decrease in immunoglobulin

production against a prototype antigen as well as atrophy and

dysfunction of primary and secondary lymphoid tissues

accompanied by lymphocyte depression. The authors

mentioned hypercorticosteronemia among the plausible

reasons for these anomalies in the immune system.

Corticosterone-related immune dysfunctions of chickens have

thoroughly been described by Shini et al. (2010).

Reductions in hematic triiodothyronine (T3) and thyroxine

(T4) have also been observed in laying hens (de Andrade et al.,

1977; Bobek et al., 1997) and broiler chickens (Geraert et al.,

1996b; Yunianto et al., 1997; Sohail et al., 2010; Rajaei-

Sharifabadi et al., 2017; Beckford et al., 2020) undergoing HS.

These variations, which might be caused by decreased size and

activity of the thyroid (Huston and Carmon, 1962; Dale and

Fuller, 1980; Yunianto et al., 1997), have also been measured in

heat-stressed dairy cattle (Chen et al., 2018). It has commonly

been assumed that the thyroid response to high environmental

temperatures is an adaptive mechanism that allows animals to

lower their basal metabolism and thermogenesis in order to

prevent overheating (Renaudeau et al., 2012; Chen et al., 2018;

TABLE 3 Overview of heat stress effects on skeletal muscle protein metabolism of chickens.

Class Heat stress effect Pros Cons Referencesa

Protein
metabolism

↓ protein synthesis and ↑ protein
breakdown in skeletal muscles

Supply of glucogenic
precursors to the liver

↓ lean tissue yield
(especially breast yield)

Howlider and Rose (1989), Ain Baziz et al. (1996), Geraert
et al. (1996a), Temim et al. (2000), Boussaid-Om Ezzine
et al. (2010), Rhoads et al. (2013), Zuo et al. (2015), Lu et al.
(2018), Ma et al. (2021), Qaid and Al-Garadi (2021),
Zampiga et al. (2021)

Upward arrow (↑), increase; downward arrow (↓), decrease; rightward arrow (→), consequence/degeneration.
aInclude studies on non-avian species that have exhibited comparable heat stress effects and responses to those observed in chickens. Studies with the focus on chickens or poultry are

highlighted in bold.
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Gonzalez-Rivas et al., 2020). The hypothyroid-like condition can

partly justify growth depression (McNabb and Darras, 2015),

increased carcass adiposity (Decuypere and Buyse, 1988; Geraert

et al., 1996b), and decreased egg production and shell quality (de

Andrade et al., 1977) observed during HS. Table 4 briefly

illustrates the effects of heat stress on chicken hormonal levels.

Heat stress effects on gut health of
chickens

Gut health should be addressed in a holistic way (Oviedo-

Rondón, 2019) by taking into consideration the major elements that

synergistically affect it, namely the GI epithelium, the GI immune

system, and the GI microbiota (Kogut et al., 2017). Being the largest

body surface exposed to the environment, the gastrointestinal tract

(GIT) is repeatedly threatened by a wide variety of harmful factors

(Yegani and Korver, 2008), like noxious feed-derived compounds

and pathogenic microorganisms. Applegate and Troche (2014)

emphasized that the GIT accomplishes conflicting tasks, that is

maximizing nutrient uptake while recognizing multiple antigenic

stimuli and tolerating the resident microbiota. Hence, integrity and

proper morpho-functionality of the GIT are of utmost importance

in ensuring optimal health and productivity for chickens.

Heat stress and gastrointestinal epithelium

The GI epithelium, arranged in a single-cell layer, takes

an active part in the integrated gut immune system, forming a

barrier reinforced by tight junction (TJ) proteins,

secreting mucus and antimicrobial/host defense peptides

(AMP/HDP), and expressing pattern recognition

receptors (PRR) that orchestrate the enteral immune

response (Smith et al., 2014; Chen et al., 2015; Broom and

Kogut, 2018a).

TJs, the uppermost component of the apical junctional

complex, seal the interstice between adjoining columnar

epithelial cells (Farquhar and Palade, 1963) and encompass

transmembrane (claudins and occludin) and scaffolding/

peripheral/plaque proteins (zonula occludens—ZO). Through

their binding domains, ZO anchor to claudins and occludin

on one side and to the perijunctional actomyosin ring on the

other side, thereby making a bridge between transmembrane TJs

and the cytoskeleton (Ulluwishewa et al., 2011). TJs are primarily

responsible for controlling the paracellular pathway that, unlike

the pump- and channel-dependent transcellular transports,

allows a passive transepithelial diffusion via two main routes,

known as the pore pathway and the leak pathway (Dokladny

et al., 2016). The pore pathway relies on claudins and limits the

passage of charged and large molecules (greater than 4 Å), while

the leak pathway, governed by occludin and ZO, can be crossed

by big solutes, including bacterial lipopolysaccharides (LPS)

(Anderson and Van Itallie, 2009; Dokladny et al., 2016;

France and Turner, 2017). Under HS, the cardiovascular

system responds in another evolutionary-preserved adaptation

whereby a large volume of blood is shunted from the splanchnic

tissues to peripheral areas of the body to maximize the

dissipation of sensible heat (Hales, 1973; Lambert, 2009). This

occurs to the detriment of the GIT because the altered blood

TABLE 4 Overview of heat stress effects on chicken hormonal levels.

Class Heat stress effect Pros Cons Referencesa

Hormonal
levels

Hypothalamic-pituitary-adrenal
axis activation → ↑ circulating
glucocorticoids (e.g., corticosterone)

— ↓ growth potential Decuypere and Buyse (1988), Geraert et al.
(1996b), Yunianto et al. (1997), Dong et al.
(2007), Yuan et al. (2008), Quinteiro-Filho
et al. (2010), Quinteiro-Filho et al. (2012),
Renaudeau et al. (2012), Rhoads et al. (2013),
Rajaei-Sharifabadi et al. (2017), Lu et al.
(2019), Beckford et al. (2020),
Gonzalez-Rivas et al. (2020), Hirakawa et al.
(2020), Wasti et al. (2020), Chauhan et al.
(2021), Ma et al. (2021)

↓ protein synthesis and ↑ protein
breakdown in skeletal muscles → ↓
lean tissue yield

↑ fat deposition

↓ immunocompetence→↑ infectious
susceptibility and health care costs

↓ GI barrier

Hypothyroid-like state ↓ basal metabolism and
thermogenesis → ↓
metabolic heat generation

↓ growth potential Huston and Carmon (1962), de Andrade
et al. (1977), Dale and Fuller (1980),
Decuypere and Buyse (1988), Geraert et al.
(1996b), Yunianto et al. (1997), Sohail et al.
(2010), Renaudeau et al. (2012),McNabb and
Darras (2015); Rajaei-Sharifabadi et al.
(2017), Chen et al. (2018), Beckford et al.
(2020), Gonzalez-Rivas et al. (2020)

↑ carcass adiposity

↓ egg production and eggshell quality

Upward arrow (↑), increase; downward arrow (↓), decrease; rightward arrow (→), consequence/degeneration.
aInclude studies on non-avian species that have exhibited comparable heat stress effects and responses to those observed in chickens. Studies with the focus on chickens or poultry are

highlighted in bold.
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pressure is mostly compensated by a sympathetically driven

vasoconstriction of viscera (Table 5). The resulting

hypoperfusion implicates a reduced supply of nutrients and

oxygen to the GIT, which prompts deleterious effects on the

intestinal mucosa (Lambert, 2009; Baumgard and Rhoads, 2013;

Rostagno, 2020). In light of the remarkable energy and protein

demands of the digestive system, a sub-optimal trophism of the

GI epithelium negatively affects cell turnover and the

maintenance of a robust intestinal barrier (Koutsos and Arias,

2006). On the other hand, the inadequate oxygenation leads to

hypoxia, a condition that profoundly alters the cellular

bioenergetic pathways and promotes the generation of reactive

oxygen and nitrogen species (ROS and RNS, respectively) (Hall

et al., 1999). Moreover, hyperthermia triggers ROS and RNS

production per se (Hall et al., 2001) and impairs the enzymatic

antioxidant systems (Farag and Alagawany, 2018), directly

contributing to the establishment of a pro-oxidative scenario.

Lin et al. (2006a) proved that elevated ambient temperatures

provoke oxidative stress in chickens, while Tan et al. (2010)

suggested that HS can depress the mitochondrial respiratory

chain activity with consequent overproduction of ROS and

oxidative injury. Worthy of mention is also the research on

oxidative damage affecting the skeletal muscles, particularly the

Pectoralis major, of heat-stressed broilers. Several authors

demonstrated a rise in mitochondrial membrane potential, a

high production of mitochondrial superoxide and ROS, and a

considerable increase in malondialdehyde level (marker of lipid

peroxidation) in breast muscles of broilers exposed to HS

(Mujahid et al., 2006; Wang et al., 2009; Azad et al., 2010;

Kikusato and Toyomizu, 2013). On the other hand, studies

focused on the GIT have reported that oxidative stress

destabilizes the TJ-regulated paracellular barrier and increases

intestinal permeability (Rao, 2008; Bischoff et al., 2014). Myosin

light-chain kinase (MLCK) is involved in this cascade of events

because it regulates the circumferential contractions of the

actomyosin ring and, indirectly, the TJ-controlled paracellular

pathway (France and Turner, 2017). The actomyosin ring

contractions can be triggered by several physiological and

pathological stimuli. Oxidative stress has been shown to cause

such contractions and, consequently, to affect the MLCK-

regulated localization of ZO proteins and downregulate their

expression, contributing to the deterioration of the paracellular

barrier (González-Mariscal et al., 2011).

Along with oxidative stress, the aforementioned increment in

corticosterone levels further weakens the intestinal barrier

(Quinteiro-Filho et al., 2012). Transepithelial electrical

resistance (TEER)—i.e., the epithelium resistance to ion

passage—and mucosa-to-serosa flux of marker probes (e.g.,

fluorescein isothiocyanate-dextran) have commonly been used

to evaluate the paracellular barrier stability and integrity (Shen

et al., 2011; Bischoff et al., 2014; Awad et al., 2017; Ma et al., 2018;

Gilani et al., 2021). A steady paracellular pathway shows high

values of TEER and effectively obstructs the flux of markers,

whereas low TEER and highmarker passage indicate poor barrier

functions. HS has been shown to considerably reduce TEER and

significantly increase the migration of marker tracers across the

intestinal epithelium in numerous animal models (Dokladny

et al., 2016), pigs (Pearce et al., 2013b), and broiler chickens

(Song et al., 2014; Tabler et al., 2020). These variations are

indicators of a “leaky gut” that barely holds noxious luminal

compounds (Shen et al., 2011; Awad et al., 2017; Ma et al., 2018;

Ruff et al., 2020). Translocation of pathogen-associated

molecular patterns (PAMP) from the intestinal lumen to the

underlying lamina propria is a major consequence of an

increased paracellular permeability. The gut contains a

massive amount of PAMPs, mainly LPS of Gram-negative

bacteria (Wassenaar and Zimmermann, 2018), which can bind

to a class of PRRs known as Toll-like receptors (TLR). Intestinal

TLRs are particularly differentiated in chickens (Keestra et al.,

2013) and have been shown to play a pivotal role in maintaining

gut homeostasis and evoking inflammatory responses in the case

of infections or other insults, such as hypoxia and tissue injury

(Gribar et al., 2008). These receptors are also involved in

epithelial cell proliferation, wound healing, stability of TJs,

and modulation of immunoglobulin A (IgA) production and

AMP expression (Abreu, 2010; Iizuka and Konno, 2011).

Furthermore, TLRs are rather non-responsive to the multitude

of commensal microorganisms inhabiting the GIT, yet are

constantly responsive to PAMPs and host indicators of cell

damage (Harris et al., 2006; Kogut et al., 2017; Madsen and

Park, 2017). The ability to distinguish between useful microbes

and those undesirable—or that can become such, like

TABLE 5 Overview of heat stress effects on the cardiovascular system of chickens.

Class Heat stress effect Pros Cons Referencesa

Cardiovascular
system

Peripheral vasodilatation and
GIT vasoconstriction

↑ sensible heat
dissipation

GIT hypoperfusion → Hales (1973), Hall et al. (1999), Koutsos and Arias (2006),
Rao (2008), Lambert (2009), Baumgard and Rhoads (2013),
Bischoff et al. (2014), Rostagno (2020)

↓ nutrient supply to the GIT→↓GI
barrier and functionality

GIT hypoxia → oxidative stress →
↓ GI barrier and functionality

Upward arrow (↑), increase; downward arrow (↓), decrease; rightward arrow (→), consequence/degeneration.
aInclude studies on non-avian species that have exhibited comparable heat stress effects and responses to those observed in chickens. Studies with the focus on chickens or poultry are

highlighted in bold.
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pathobionts (Round and Mazmanian, 2009)—is one of the most

fascinating properties of the GI immune system (Mowat, 2018).

At the basolateral membrane of the intestinal epithelium, LPS are

recognized by the TLR4–MD-2 receptor complex (Shimazu et al.,

1999; Abreu, 2010; Keestra et al., 2013) whose activation initiates

an intracellular signaling cascade upregulating the expression of

several pro-inflammatory cytokines (Vaure and Liu, 2014). The

latter signaling molecules, also released by LPS-stimulated innate

immune cells, foster a vicious cycle that deteriorates the intestinal

barrier (Lambert, 2009). Tumor necrosis factor alpha (TNF-α),
interleukin 1 beta (IL-1β), and interferon gamma (IFN-γ) have
been reported to ruin the paracellular barrier, thereby increasing

LPS leakage (Turner et al., 2014; Dokladny et al., 2016; Awad

et al., 2017; Ma et al., 2018). Specifically, TNF-α has been shown

to initiate the actomyosin ring contractions and, subsequently, to

cause occludin internalization and TJ disassociation (Turner

et al., 2014). Pro-inflammatory cytokines evoke a local

inflammatory response aggravating the damages to the enteric

mucosa. Quinteiro-Filho et al. (2010, 2012) reported that heat-

stressed broilers manifest mild multifocal enteritis. Enteral

inflammation has been shown to shorten the lifespan of

enterocytes and cause crypt hyperplasia and villus atrophy

(Smith et al., 2014). These alterations in intestinal epithelium

morphology (microarchitecture), along with increased cell

apoptosis and reduced cell proliferation, have recently been

observed in broiler chickens exposed to HS (He et al., 2018a,

2018b; Liu et al., 2020, 2022; Nanto-Hara et al., 2020). In their

pair-feeding study with broilers, Nanto-Hara et al. (2020)

evidenced that intestinal morphological damage and increased

intestinal permeability are direct consequences of HS rather than

of feed intake reduction induced by HS itself. The resultant

nutrient malabsorption and energy expenditure to sustain the GI

immune response severely impact chicken performance and can

be a predisposing factor for additional health problems (Broom

and Kogut, 2018b).

In addition to initiating a local inflammation, luminal LPS

can permeate the portal circulation whereby they reach and

compromise the liver (Wang et al., 2015). Once exceeding the

hepatic detoxification potential, LPS can diffuse throughout the

bloodstream causing endotoxemia (Baumgard and Rhoads, 2013;

Alhenaky et al., 2017; Epstein and Yanovich, 2019; Nanto-Hara

et al., 2020). The resulting systemic inflammatory reactions force

the organism to adjust nutrient partition and divert energy to

support the immune system; this substantially depresses chicken

performance (Broom and Kogut, 2018b; Ruff et al., 2020). At the

worst, endotoxemia can lead to multi-organ failure and lethal

septic shock (Wassenaar and Zimmermann, 2018).

According to Rostagno (2020), anomalies in the transcellular

transport are another reason for intestinal permeability problems of

chickens under HS. Indeed, a loss of epithelial integrity can

degenerate into cell damage and consequent opening of TJ-

independent pathways (France and Turner, 2017). Enteric

bacteria can cross the altered and more permeable intestinal

epithelium and, eventually, reach the liver or even migrate to

other organs or tissues. For example, heat-stressed broilers

showed a greater hepatic Salmonella invasion due to increased

intestinal permeability (Alhenaky et al., 2017). This event,

commonly called “bacterial translocation”, can be prelude to

extraintestinal issues, such as deteriorations of liver functionality

and health (Ilan, 2012; Ducatelle et al., 2018) as well as bacterial

chondronecrosis with osteomyelitis (BCO) (Wideman, 2016). HS

effects on the GI epithelium of chickens are summed up in Table 6.

TABLE 6 Overview of heat stress effects on the GI epithelium of chickens.

Class Heat stress effect Pros Cons Referencesa

GI
epithelium

Altered GI epithelium morphology
(microarchitecture) and enterocyte lifecycle

— Digestive and absorptive
dysfunctions → ↓ performance

Lambert (2009), Song et al. (2014), Vaure and Liu
(2014), Wang et al. (2015), Wideman (2016),
Dokladny et al. (2016), Alhenaky et al. (2017),
Awad et al. (2017), France and Turner (2017), Ma
et al. (2018), Wassenaar and Zimmermann (2018),
Ducatelle et al. (2018), He et al. (2018a), He et al.
(2018b), Epstein and Yanovich (2019),Nanto-Hara
et al. (2020), Ruff et al. (2020), Tabler et al. (2020),
Liu et al. (2020), Liu et al. (2022)

↑ paracellular permeability (↓ transepithelial electrical
resistance and ↑mucosa-to-serosa flux of markers)→
“leaky gut”

↓ GI epithelium integrity LPS/endotoxins leakage →
↑ pro-inflammatory cytokines →
GI inflammation and ↓ GI barrier

↓ liver health and functionality
Endotoxemia → systemic
inflammation, multi-organ failure,
and septic shock

“Bacterial translocation” →
↓ liver health and functionality
bacterial chondronecrosis with
osteomyelitis

Upward arrow (↑), increase; downward arrow (↓), decrease; rightward arrow (→), consequence/degeneration.
aInclude studies on non-avian species that have exhibited comparable heat stress effects and responses to those observed in chickens. Studies with the focus on chickens or poultry are

highlighted in bold.

Frontiers in Physiology frontiersin.org08

Brugaletta et al. 10.3389/fphys.2022.934381

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.934381


Heat stress and gastrointestinal
microbiota

Microbiota and microbiome are similar-sounding words that

are often used interchangeably. However, the microbiota represents

a cluster of microorganisms residing in a specific environment

(Marchesi and Ravel, 2015), such as an area of human or animal

bodies (Clavijo and Flórez, 2018), while the microbiome unifies the

metagenome of a microbiota (i.e., the collection of microbial

genomes) and its surrounding environment (Marchesi and Ravel,

2015). The alimentary canal of chickens harbors an extremely

complex microbial population that consists of bacteria, archea,

protozoa, fungi, and viruses (Yeoman et al., 2012). The GI

microbiota extends the genome of the host and substantially

influences its physiology (Koutsos and Arias, 2006), almost

acting as a supplementary—or “neglected” (Bocci, 1992)—organ.

It is a widely held view that the GI microbiota is instrumental in

programming and modulating both the gastroenteric (Iyer and

Blumberg, 2018; Cheng et al., 2019) and systemic (Belkaid and

Hand, 2014; Zheng et al., 2020) immune system of humans and

animals, including poultry (BroomandKogut, 2018c). This notion is

supported by gnotobiotic models in which germ-free mice (Round

andMazmanian, 2009; Belkaid andHand, 2014; Iyer and Blumberg,

2018) and chickens (Dibner et al., 2008) have been reported to suffer

from severe developmental deficiencies and dysfunctions of the GI

immunity. In addition to its immunogenic and immunoregulatory

roles, the GI microbiota considerably influences growth,

morphology, and function of the intestine in chickens (Dibner

et al., 2008; Pan and Yu, 2014).

A myriad of host- and environment-related variables affects the

GI microbiota (Kers et al., 2018). For instance, data from several

studies indicate that high ambient temperatures can dramatically

shape the GI microbiota. Specifically, it has been demonstrated that

HS perturbs the GI microbiota in rats (Suzuki et al., 1983, 1989),

poultry (Suzuki et al., 1983, 1989; Lan et al., 2004; Burkholder et al.,

2008; Song et al., 2014; Wang X. J. et al., 2018; He et al., 2019b; Shi

et al., 2019; Xing et al., 2019; Zhu et al., 2019; Liu et al., 2020; Wang

et al., 2020; He et al., 2021; Liu et al., 2022), dairy cattle (Chen et al.,

2018), and pigs (He et al., 2019a; Le Sciellour et al., 2019; Xiong et al.,

2020), pushing it to dysbiosis. Dysbiosis (dysbacteriosis) is an

alteration in the gut microbiota with an overgrowth of harmful

microorganisms, or a depletion of beneficial bacteria, which can

weaken the fragile equilibrium between the host and its GImicrobiota

(Walker, 2017; Ducatelle et al., 2018). A dysbiotic state is often

associated with depression in nutrient digestion, loss of intestinal

barrier function, and GI inflammation (Chen et al., 2015; Ducatelle

et al., 2018), whereas eubiosis, referred to as a balanced microbial

ecosystem (Iebba et al., 2016), can enhance health, productivity, and

ability of chickens to withstand environmental stressors (Kogut,

2019). Although cutting-edge analytical techniques are currently

available to study the GI microbiota (Borda-Molina et al., 2018),

the modifications in structure, composition, and functions of the GI

microbiota of heat-stressed chickens are still to be fully understood

(He et al., 2021; Liu et al., 2022). However, changes inGImorphology,

TABLE 8 Overview of heat stress effects on the inflammatory state of chickens.

Class Heat stress effect Pros Cons Referencesa

Inflammatory
state

Enteritis and systemic
inflammation

Response to endotoxemia,
microbial infection, and GI tissue
injury

↑ energy expenditure to sustain the
immune system → ↓ performance

Quinteiro-Filho et al. (2010), Quinteiro-Filho
et al. (2012), Broom and Kogut (2018b), Ruff et al.
(2020)

Upward arrow (↑), increase; downward arrow (↓), decrease; rightward arrow (→), consequence/degeneration.
aInclude studies on non-avian species that have exhibited comparable heat stress effects and responses to those observed in chickens. Studies with the focus on chickens or poultry are

highlighted in bold.

TABLE 7 Overview of heat stress effects on the GI microbiota of chickens.

Class Heat stress effect Pros Cons Referencesa

GI
microbiota

Perturbation of the GI ecosystem and
microbial community stability →
dysbiosis

— Positive feedback loop among dysbiosis, GI barrier
dysfunction, and GI inflammation→ ↓ health and
performance

Suzuki et al. (1983), Suzuki et al. (1989), Lan et al.
(2004), Burkholder et al. (2008), Soliman et al.
(2009), Song et al. (2014), Chen et al. (2018), Tsiouris
et al. (2018), Wang X. J. et al. (2018), Wang et al.
(2020), Ducatelle et al. (2018), Shi et al. (2019), Xing
et al. (2019), Zhu et al. (2019), He et al. (2019a), He
et al. (2019b), He et al. (2021), Le Sciellour et al.
(2019), Xiong et al. (2020), Liu et al. (2020), Liu et al.
(2022)

↑ susceptibility to GI pathogen colonization → ↑
GI disorders (e.g., necrotic enteritis) → ↓ health
and performance

Upward arrow (↑), increase; downward arrow (↓), decrease; rightward arrow (→), consequence/degeneration.
aInclude studies on non-avian species that have exhibited comparable heat stress effects and responses to those observed in chickens. Studies with the focus on chickens or poultry are

highlighted in bold.
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mucus quantity and composition, and attachment sites, coupled with

an accumulation of poorly digested or even undigested feed

components, are all plausible reasons for HS-caused dysbiosis.

The commensalmicrobiota is able to hinder the colonization and

proliferation of allochthonous and pathogenic microorganisms in the

GI ecosystem (Schneitz, 2005). This protective mechanism,

conventionally termed competitive exclusion (CE) or “Nurmi

concept”, was firstly observed in newly hatched chicks acquiring

resistance to Salmonella challenges if previously inoculated per oswith

a suspension of crop and intestinal contents collected from healthy

adult chickens (Nurmi and Rantala, 1973). Chichlowski et al. (2007)

specified that CE is a physical blockage of intestinal niches carried out

by beneficial bacteria to the detriment of opportunistic pathogens.

Desirable bacteria can also compete with pathogens for nutrients, and

produce microbiostatic and microbicidal substances, such as organic

acids and bacteriocins (Pan and Yu, 2014; Clavijo and Flórez, 2018).

However, aberrantmicrobiotas of chickens subjected toHS have been

related to an increased susceptibility to intestinal colonization of

Salmonella Enteritidis (Burkholder et al., 2008; Soliman et al., 2009).

Tsiouris et al. (2018) also demonstrated that HS can promote the

expansion of Clostridium perfringens in the chicken intestine,

becoming a predisposing factor for necrotic enteritis outbreak in

flocks reared under hot conditions. C. perfringens can also release

enterotoxins that, together with other harmful bacterial effectors, may

impair TJs and gut barrier functions (Awad et al., 2017). Taken

together, dysbiosis, intestinal barrier disorders, and mucosa

inflammation are interconnected and fuel each other (Ducatelle

et al., 2018), exacerbating the negative effects of HS on gut health,

physiology, and performance of chickens (Tables 7, 8).

Conclusion

Nowadays poultry farmers must deal with HS at almost every

latitude because climate change has made high temperatures a

pressing issue no longer limited to hot countries. Consequently, it

would be advisable to update the estimate of costs and economic

losses caused by HS to realize its actual impact on the global

poultry industry.

According to the literature reviewed here, HS provokes a

wide range of deleterious effects on chickens, especially those

belonging to modern high-performing lines (Figure 1). Firstly,

HS negatively affects immunohomeostasis, hormonal

equilibrium, and inflammatory and oxidative status. More

studies on these physiologic alterations and their

interconnections can help develop multitargeted solutions to

help chickens combat HS more effectively. Secondly, HS

promotes tissue catabolism and a substantial modification in

protein and lipid metabolism. While there is evidence to assert

that HS affects skeletal muscle accretion of chickens via both

FIGURE 1
Summary chart of the main effects of heat stress on modern (broiler) chicken lines. LPS, lipopolysaccharides; BCO, bacterial chondronecrosis
with osteomyelitis.
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protein synthesis inhibition and protein degradation stimulation,

further investigations are needed to clarify the underlying causes

of the blunted fat mobilization in heat-stressed chickens. Lastly,

high temperatures can be deemed to be a “dysbiogenic stressor”

that undermines gut functionality and disrupts the host-

microbiota interrelationship. Reinforcing the intestinal barrier,

restoring digestive and absorptive processes, rebalancing the GI

microbiota, and lowering the GI inflammation and oxidative

stress seem therefore essential to increase HS tolerance and

resilience for chickens.

In conclusion, reversing the homeostatic and metabolic

perturbations induced by HS and conferring enteral

protection appear to be promising approaches to fight against

this growing threat to the poultry industry sustainability.
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