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Abstract

We use a Bayesian vector autoregression with stochastic volatility to forecast government bond

yields. We form the conjugate prior from a no-arbitrage affine term structure model. The model

improves on the accuracy of point and density forecasts from a no-change random walk and an affine

term structure model with stochastic volatility. Our proposed approach may succeed by relaxing the

no-arbitrage affine term structure model’s requirements that yields obey a factor structure and that

the factors follow a Markov process. In the term structure model, its cross-equation no-arbitrage

restrictions on the factor loadings appear to play a marginal role in forecasting gains.
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1 Introduction

Producing accurate forecasts of the term structure of interest rates is crucial for bond portfolio manage-

ment, derivatives pricing, and risk management. In the recent literature several papers have analyzed

the forecasting performance of different methods, e.g. Almeida and Vicente (2008), Ang and Piazzesi

(2003), Carriero (2011), Carriero, Kapetanios, and Marcellino (2012), Christensen, Diebold, and Rude-

busch (2011), Diebold and Li (2006), and Duffee (2002). All of these contributions have focused on

point forecasts of the yield curve, but assessing the whole predictive density of the yield curve is more

important for the success of portfolio and risk management strategies. Hong, Li, and Zhao (2004) make

a relevant contribution in this context, finding that modeling changes in the variance is important for

interest rate density forecasting. Shin and Zhong (2017) find a similar result using realized volatility.

In this paper we focus on both point and density forecasting of government bond yields, using a

vector autoregression (VAR henceforth) with two key features. First, based on the observation that both

yields and their volatilities strongly co-move over time, we assume that the conditional volatilities of the

yields are time varying and driven by a latent common volatility factor. Second, conditionally on the

volatilities, the VAR is Gaussian, which permits specifying a conjugate prior on the VAR coefficients.

We choose to parameterize the conjugate prior in a way that reflects the term structure model, by

centering it around a specific theoretical model for the yield curve. Specifically, we use the canonical

affine term structure model of Duffie and Kan (1996), in its equivalent but computationally more stable

representation developed by Joslin, Singleton, and Zhu (2011).

The rationale for using an affine term structure model (ATSM henceforth) as a prior on a more

general model lies in the somewhat disappointing performance that ATSMs have shown in forecasting

yields out of sample, documented in contributions such as Duffee (2002) and Ang and Piazzesi (2003),

which both show that these models cannot beat a random walk forecast. One reason behind this finding

might be that beyond the mere assumption of the absence of arbitrage — which is per se reasonable in

well-developed markets — these models require a set of additional specification assumptions, which do

not necessarily hold in the data and therefore introduce misspecification (see, e.g., Hamilton and Wu

(2014)). For example, yields are assumed to follow a factor model, with the factor loadings obeying a

set of complex nonlinear restrictions, and with the factors following a Markov process (i.e., they depend

exclusively on their own value in the previous period).

Using the no-arbitrage model restrictions to form a prior for a VAR rather than imposing the
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restrictions sharply allows us to take into account its potential misspecification. The prior will shrink the

estimated coefficients of the VAR — and in turn the density forecasts — in an economically meaningful

direction, which might (and in our application does) improve the forecasting performance with respect

to both a no-arbitrage model and an unrestricted VAR. This can be achieved in a homoskedastic setting

by using the hierarchical prior approach proposed in Del Negro and Schorfheide (2004).1,2

This paper extends the methodology of Del Negro and Schorfheide (2004) to the case of VARs

featuring stochastic volatility. As the volatilities of a panel of yields move closely together, we impose

a factor structure where the volatility of each yield is related to a common stochastic volatility factor,

as in Carriero, Clark, and Marcellino (2016). Hence, our approach shrinks point and density forecasts

toward values consistent with a no-arbitrage term structure model, while also allowing for time variation

in the volatilities. Our approach is also an extension of that of Giannone, Lenza, and Primiceri (2015)

to the case in which a hierarchical specification is used in not just the prior mean but also the prior

variance. Our results show that a hierarchical specification for the prior means does help in forecasting,

suggesting that not only shrinkage per se but also the direction of shrinkage can be helpful.

Estimation of the VAR model using US data on government bond yields covering the period from

January 1985 to December 2018 shows that the proposed approach produces better density forecasts

than a affine term structure model with time-varying volatility along the lines of Hautsch and Ou (2012).

Compared to a random walk, which is typically a very strong benchmark in forecasting the yields, the

proposed model fares consistently better at the short and medium end of the curve, and equally well at

the long end of the curve.

Further analysis reveals that the approach we propose might work better than a term structure

model because it relaxes the requirements that yields obey a strict factor structure and that the factors

follow a Markov process. Instead, we find that the cross-equation no-arbitrage restrictions on the factor

1In the Del Negro and Schorfheide (2004) approach all model coefficients and latent variables — both of the VAR and of
the economic model used as a prior — are estimated jointly, and their posterior distributions are shrunk in the economically
meaningful direction. The approach is, in spirit, similar to the relative entropy procedures of Robertson, Tallman, and
Whiteman (2005) and Giacomini and Ragusa (2014). In the entropy approach, the forecasts are “tilted” toward an
economic model of reference after estimation of a baseline (atheoretical) model has taken place, and the parameters of the
economic model of reference need to be estimated separately.

2Carriero (2011) conducts this exercise in a homoskedastic setting and shows that once the misspecification of the model
is properly taken into account, the point forecasting performance can improve substantially. However, he works under the
hypotheses of homoskedasticity of the yields, a mild assumption for point forecasting but likely inadequate for density
forecasting. Moreover, while Carriero’s (2011) prior specification is based on the model by Ang and Piazzesi (2003), here
we consider the new canonical form of no-arbitrage models introduced by Joslin, Singleton, and Zhu (2011), which presents
important advantages in the computation of the likelihood, providing the MCMC sampler with better mixing properties
and faster computation time.
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loadings only play a marginal role, in line with Duffee (2011a).3

A number of papers have carried out Bayesian estimation of dynamic term structure models. Exam-

ples include Ang, et al. (2011), Bauer (2018), Chib and Ergashev (2009), Chib and Kang (2014), Creal

and Wu (2015, 2017), and Hautsch and Ou (2012). This paper contributes to this literature. Still, the

method proposed can be applied to a wide range of alternative models, the only requirement being that

they admit a Gaussian linear state-space representation.

The paper is organized as follows. Section 2 describes the no-arbitrage model used as a prior. Section

3 discusses the proposed approach, derives the conditional posteriors, and describes an MCMC sampler

for estimation (with details in the appendix). Section 4 presents our US-based evidence, including both

a full-sample evaluation and an out-of sample forecasting assessment. Section 5 summarizes the main

results and concludes. Additional details and results can be found in the online appendix.

2 The affine term structure model

Since the seminal work of Vasicek (1977) a large part of research has focused on Gaussian affine term

structure models (ATSMs henceforth). Prominent contributions in this tradition include Ang and

Piazzesi (2003), Dai and Singleton (2000), Duffee (2002), and Duffie and Kan (1996). Traditional

ATSMs entail a high level of nonlinearity that makes the estimation extremely difficult and often

unreliable, an issue discussed extensively in Duffee and Stanton (2012) and Hamilton and Wu (2012).

Some recent literature has successfully addressed this problem. Hamilton and Wu (2012) proposed a

strategy to estimate such models using a series of transformations and OLS estimation. Christensen,

Diebold, and Rudebusch (2011) proposed a model based on the Nelson and Siegel (1987) exponential

framework, which still imposes no arbitrage but can be estimated more reliably.

In this paper we use the representation proposed by Joslin, Singleton, and Zhu (2011) (JSZ hence-

forth), which is equivalent to the canonical representation of Duffie and Kan (1996), but parameterized

in such a way that estimation is considerably simplified. Let yt denote an N -dimensional vector of yields

on a set of zero-coupon bonds of maturity τ = 1, ..., N . In the JSZ representation yields are driven by

an n-dimensional vector of unobservable risk factors Pt:

yt = AP +BPPt + Σyε
y
t , (1)

3Duffee (2011a) shows that the loadings of a Gaussian affine term structure model can be estimated with extremely
high precision without imposing the no-arbitrage restrictions.
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Pt = KP
0P + (KP

1P + In)Pt−1 + ΣP ε
P
t , (2)

where AP and BP are N × 1 and N × n coefficient matrices, KP
0P is an n× 1 vector, KP

1P is an n× n

matrix, and Σy and ΣP are lower triangular Cholesky factor matrices. The disturbance vectors εyt , ε
P
t

contain, respectively, N and n univariate, mutually independent, i.i.d. N(0, 1) stochastic processes. The

subscript P indicates that an object belongs to the JSZ model, which is based on the factors Pt. The

superscript P indicates an object specified under the physical (i.e., real world) measure of probability.

The advantage of the JSZ representation stems from the fact that the unobservable factors Pt can

be easily approximated by an observable portfolio of yields P ot = Wyt where W contains the loadings

of the first n principal components of yt. The approximation is such that a least squares regression of

P ot on P ot−1 will recover the maximum likelihood estimates of KP
0P and KP

1P , which means that these

parameters can be estimated in a preliminary step and concentrated out of the likelihood.4 Moreover,

the observable P ot provides a straightforward initial condition for the filtering of the unobservable states

Pt and the estimation of ΣP . Details on how the representation (1)-(2) is equivalent to the representation

of Duffie and Kan (1996) can be found in the online appendix section A.

Equations (1)-(2) constitute a factor model in which the yields depend linearly on the factors Pt

through the intercept vector AP and the factor loadings BP . The assumption of the absence of arbitrage

entails an internal consistency across yields of different maturities, which in turn implies that the ele-

ments AP and BP must obey a set of (highly) nonlinear restrictions. Let AP = (I−BPW )AS and BP =

BS(WBS)−1, where AS and BS are an n×1 vector and an n×n matrix, and let AS(τ) and BS(τ) denote

the elements in the τ -th row of these objects (recall that τ denotes the maturity). The no-arbitrage

restrictions are:

AS(τ) = −Aτ/τ , Aτ+1 = Aτ +KQ′
0SBτ + 0.5B′τΣSΣ′SBτ , (3)

BS(τ) = −Bτ/τ , Bτ+1 = Bτ +KQ′
1SBτ − i, (4)

with initial condition A0 = 0 and B0 = 0. In the expressions above, KQ
0S = (kQ∞, 0, ..., 0) is an n × 1

vector, KQ
1S = J(λQ) is an n × n matrix in Jordan form with eigenvalues λQ, ΣS is a lower triangular

Cholesky factor, and i is an n× 1 vector of ones.

4That is, we estimate these parameters in a preliminary step using a OLS regression and observable factors estimated
with the principal components P ot . Strictly speaking, this concentration is exact only if one assumes that the Pt is
observable without error. However, as noted by JSZ, the choice of principal components weights ensures that P ot ≈ Pt,
and the concentration is nearly exact.
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The subscript S indicates that an object belongs to the equivalent Duffie and Kan (1996) canonical

representation of the model, which is the one in which (3) and (4) are expressed, and which is based on

an alternative set of factors St. The factors St are a rotation of the factors Pt, but they do not have a

straightforward observable counterpart.5

The Riccati equations (3)-(4) are expressed as a function of the matrices KQ
0S and KQ

1S , which

are matrices describing the evolution of the state variables under the so-called equivalent martingale

measure Q. This is a probability measure corresponding to a hypothetical situation in which investors

are risk neutral, as opposed to being risk averse as happens in the physical world described by the

measure P. Recall that the matrices KP
0P , K

P
1P appearing in (2) describe the evolution of the state

variables under the physical measure P. Under the physical measure, agents’ risk aversion implies that

prices need to be predictable to some extent, producing the expected returns necessary to compensate

investors for bearing risks.

The existence of the equivalent martingale measure Q is a necessary and sufficient condition for

the absence of arbitrage. Conversion from the P to the Q measure can be achieved using a variable

transformation described by a Radon-Nikodym derivative.6

It is important to distinguish the assumption of the absence of arbitrage and the additional spec-

ification restrictions inherent in an ATSM. For example, additional restrictions include the choice of

modeling the yields with a factor structure as in (1) and the assumption that the factors follow the

process in (2), which only features one lag and therefore is a Markov process. There is no guarantee that

these additional assumptions are satisfied, and contributions such as Duffee (2011b), Joslin, Priebsch,

and Singleton (2014) and Joslin, Le, and Singleton (2013a, 2013b) have shown evidence to the contrary.7

The model at hand is a linear Gaussian state-space system with unobservable states Pt. As we

have mentioned above, the JSZ representation makes it possible to concentrate out of the likelihood

the coefficient matrices KP
0P and KP

1P appearing in (2) by estimating them via ordinary least squares.

Moreover, the coefficient matrices KQ
0S = (kQ∞, 0, ..., 0) and KQ

1S = J(λQ) appearing in (3)-(4) are

5The relation between the factors of the two representations is Pt = WAP +WBPSt.
6In particular, under the Q measure the price of an asset Vt that does not pay any dividends at time t+ 1 satisfies Vt =

EQ
t [exp(−rt)Vt+1], where rt is the short-term rate. Under the P measure the price is Vt = EP

t [(ξt+1/ξt) exp(−rt)Vt+1],
where ξt+1 is the Radon-Nikodym derivative.

7Duffee (2011b) shows that it is entirely possible for the factors to follow richer dynamics and that this translates to
the presence of hidden factors that — while not useful in explaining the cross-section of yields — can help in explaining
their dynamics. Similarly, Joslin, Priebsch, and Singleton (2014) and Joslin, Le, and Singleton (2013a, 2013b) show that a
more general model for the factors, including measures of real economic activity and inflation or more lags, better captures
the dynamics of the term structure.
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parameterized by the scalar kQ∞ and the eigenvalue vector λQ.8 Therefore, the model is parameterized

by:

θ = (λQ, kQ∞,ΣP ,Σy). (5)

For future reference it is convenient to compute the moments of the yields for a given parameterization

θ. Conditional on a given θ, the moments of yt implied by the state-space system (1)-(2) are:

E[yty
′
t] = (Ap +BpP̄ )(Ap +BpP̄ )′ +BpΣfB

′
p + ΣyΣ

′
y, (6)

E[yty
′
t−h] = (Ap +BpP̄ )(Ap +BpP̄ )′ +Bp(K

P
1P + I)hΣfB

′
p, (7)

where P̄ = E[Pt] = −KP
1P
−1KP

0P and Σf solves the Lyapunov equation Σf = (KP
1P + I)Σf (KP

1P + I)′ +

ΣPΣ′P . See the online appendix section B for a derivation. Importantly, the system (6) and (7) is linear

and Gaussian, with mean and variance being sufficient statistics, and this is what permits using it to

form a conjugate prior.

The next section will illustrate how the moments (6) and (7) can be used to form a prior for

a VAR. Since the JSZ model is Gaussian and homoskedastic, the prior will also be Gaussian and

homoskedastic. Alternatively, one could think of using a prior that is already based on a model featuring

drifting volatilities. To that end, there are broad classes of no-arbitrage models with stochastic volatility

available, which could be potentially used as a prior. However, without Gaussianity the moments (6)

and (7) would no longer be sufficient statistics. While using a heteroskedastic model as the prior is in

principle possible in our setup, the implementation would require repeated simulation of artificial data

sets, which is in practice unmanageable.

3 The full hierarchical model

As discussed in the previous section, any ATSM needs additional specification assumptions — beyond

the mere absence of arbitrage — in order to be estimated and made operational. Therefore, it will

suffer from misspecification to some degree. Enough misspecification may overwhelm any gains from

parsimony and harm forecast accuracy. Instead, a VAR — provided its dynamics are sufficiently rich

— is more likely to offer an accurate representation of the data. We model the yields using a VAR,

8The subscript ∞ emphasizes the long-run interpretation of this parameter. When the model is stationary under the
Q measure, kQ∞ is proportional to the risk-neutral long-run mean of the short rate, and the model can be equivalently
parameterized in terms of either parameter.
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while at the same time shrinking the VAR parameters in the direction implied by the JSZ model. This

pushes the estimates toward the reference model, but it is less likely to create enough misspecification to

harm forecast accuracy. In this section we first describe the baseline general VAR model with common

stochastic volatility. Then we discuss the likelihood, priors, and conditional posteriors.

3.1 A VAR model with common stochastic volatility

Consider the autoregression of the N × 1 vector of observable yields yt:

yt = Φ0 + Φ1yt−1 + ...+ Φpyt−p + ut. (8)

where Φ0 is an N × 1 vector of intercepts, and Φ1, ...,Φp are N ×N matrices of lagged coefficients. The

N × 1 vector of disturbances ut is a mixture of normals:

ut = λ0.5t εt, εt ∼ N(0, V ), (9)

where λ0.5t is a scalar latent variable evolving according to the log-normal process

log(λt) = φ0 + φ1 log(λt−1) + νt, νt ∼ iid N(0, φ2). (10)

We group the parameters governing the dynamics of λt in the vector φ = [φ0, φ1, φ2] and we set the initial

condition λ1 = 1 in order to achieve identification of the error variance matrix V ar(ut) ≡ Σt = λtV .

The model described in (8)-(10) is a VAR with common stochastic volatility (VAR-CSV). Each

variable in the model is a yield with a different maturity, but there is a single stochastic volatility

process λt that is common to all yields, and drives the time variation in the entire variance-covariance

matrix of the disturbances. This specification was proposed by Carriero, Clark, and Marcellino (2016)

for macroeconomic variables.

The assumption of common stochastic volatility is predicated on the fact that the volatilities of yields

feature a strong factor structure, with the first principal component explaining most of the variation in

the panel. For example, in the data set we use in our empirical application there is a strong commonality,

with the first principal component explaining 89 percent of the individual volatilities of the yields.9 As

9The estimates of the individual volatilities to which we refer here are based on univariate autoregressive models with
stochastic volatility.
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we shall see, the assumption of a single factor makes it possible to use a conjugate prior and to adapt the

approach proposed by Del Negro and Schorfheide (2004). Of course, such an assumption does not come

without a cost, and there are some reasons to believe that the assumption of a single factor might be

too restrictive.10 However, even with one factor only, the proposed model is more general and improves

over homoskedastic specifications, such as the one of Carriero (2011).

3.2 Likelihood

Consider the equations for all observations t = 1, ..., T and let Y be the T ×N matrix with rows y′t, let

X be the T × k matrix with rows x′t = [1, y′t−1, y
′
t−2, ..., y

′
t−p], letU be the T ×N matrix with rows u′t,

Φ = [Φ0, Φ1, ...,Φp]
′, and Λ = diag(λ1, ..., λT ). The VAR in (8) can be expressed as Y = XΦ + U with

likelihood function:

p(Y |Φ, V,Λ) ∝ |V |−0.5T exp{−0.5tr[V −1(Y ′Λ−1Y − Φ′X ′Λ−1Y (11)

−Y ′Λ−1XΦ + Φ′X ′Λ−1XΦ]}.

Note that the likelihood can be rearranged as follows:

p(Y |Φ, V,Λ) ∝ |V |−0.5k exp{−0.5tr[V −1(Φ− Φ̂)′(X ′Λ−1X)(Φ− Φ̂)]}

× |V |−0.5(T−k) exp{−0.5tr[V −1Ŝ]}, (12)

where Φ̂ = (X ′Λ−1X)−1X ′Λ−1Y and Ŝ = (Y − XΦ̂)′Λ−1(Y − XΦ̂) are the OLS estimator and the

corresponding matrix of the sum of squared residuals. An inspection of the likelihood in (12) reveals

that — conditional on the knowledge of Λ — it contains the kernels of an Inverse Wishart distribution

for V and a matricvariate Normal distribution for Φ. Specifically, (12) is the density of a matricvariate

Normal-Inverse Wishart distribution.11

10For example, in 2005 Greenspan noticed that long-term interest rates became basically unresponsive to changes in
short-term interest rates (see, among others, Bernanke (20 Feb 2004)). While including more than one factor would be a
natural way to proceed, it would imply the loss of conjugacy, which in turn would make the Del Negro and Schorfheide
(2004) approach unfeasible.

11A random variable Z has a matricvariate Normal-Inverse Wishart distribution Z ∼ MNIW (M,P, S, v) when Z|Ψ ∼
MN(M,Ψ⊗ P ) and Ψ ∼ IW (S, v).
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3.3 Priors

In the previous subsection we have shown that the likelihood is matricvariate Normal-Inverse Wishart

(MNIW henceforth). For this case, a conjugate prior for the coefficients Φ and V is viable. The general

form of such a prior is Φ|V ∼ N(Φ0, V⊗Ω0), V ∼ IW (S0, v0), or compactly Φ, V ∼MNIW (Φ0,Ω0, S0, v0).

The fact that the ATSM model described in section 2 is linear and Gaussian ensures that the mean and

variance of the state space (6) and (7) are sufficient statistics and therefore can be used to elicit the

prior objects Φ0,Ω0, S0, v.

In this paper we adopt a hierarchical approach in which the prior moments Φ0,Ω0, S0, v0 are specified

as functions of some hyperparameters: those in the set θ, which collects the coefficients of an underlying

reference model, and the scalar γ, which measures the tightness with which one imposes such a reference

model on the data. In the application, the reference model will be the JSZ model, and θ the one in (5).

Following Del Negro and Schorfheide (2004), consider T ∗ = γT artificial observations from a re-

stricted version of the VAR, which corresponds to an arbitrarily good approximation of some model of

interest. Such a restricted version of the VAR has likelihood

p(Y |Φ∗, V ∗,Λ) ∝ |V |−0.5T ∗ exp{−0.5tr[γTV −1(Γ∗Y ′Y (θ)− Φ′Γ∗X′Y (θ)

−Γ∗Y ′X(θ)Φ + Φ′Γ∗X′X(θ)Φ]}, (13)

where Γ∗Y ′Y (θ) = Eθ[Y
′Λ−1Y ], Γ∗X′Y (θ) = Eθ[X

′Λ−1Y ], and Γ∗X′X(θ) = Eθ[X
′
Λ−1X] are the moments

of the (rescaled) data under the validity of the reference model. Conditionally on Λ, these moments

can be computed from the state-space representation of the reference model using the autocovariance

function (6)-(7) for any given parameterization θ in (5).

A standard way of interpreting a natural conjugate prior is as being the likelihood function from

another sample. To see this point with reference to the density (13), imagine forming a data set by

adding the T ∗ artificial observations to T actual observations and estimate the VAR in (8) using such

an augmented data set. The likelihood of such a model would be the product of (11) and (13), and

the likelihood moments would be a weighted average of the moments based on the artificial data and

the actual data. The higher the ratio of artificial to actual observations (γ = T ∗/T ), the more weight

is given to the restrictions implied by the reference model. Therefore, the artificial data act as prior
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information. Formally, the artificial data likelihood (13) can be rearranged as follows:

p(Y |Φ, V,Λ) ∝ |V |−0.5k exp{−0.5tr[V −1(Φ− Φ̂∗(θ))′Γ∗X′X(θ)(Φ− Φ̂∗(θ))]}

× |V |−0.5(T ∗−k) exp{−0.5tr[V −1Ŝ∗(θ)]}, (14)

where Φ̂∗(θ) = Γ∗−1X′X(θ)Γ∗X′Y (θ), Ŝ∗(θ) = γT (Γ∗Y ′Y (θ) − Γ∗Y ′X(θ)Γ∗−1X′X(θ)Γ∗X′Y (θ)), and can be inter-

preted as a prior distribution for Φ and V :

Φ, V |θ, γ ∼MNIW
(

Φ̂∗ (θ) , [γTΓ∗X′X (θ)]−1, Ŝ∗ (θ) , γT − k
)
. (15)

The prior in (15) is hierarchical, i.e., dependent on a second layer of coefficients: the hyperparameters

in θ and γ. We use weakly informative priors for θ, implementing the belief that the first factor is a

random walk, the second is stationary but very persistent, and the third is moderately persistent. For γ

we use a weakly informative Gaussian prior, truncated to satisfy the restriction γ > (k +N)/T , which

is necessary for p(Φ, V |θ, γ) to be proper. The prior mean for γ is centered on 1, which corresponds

to giving a priori the same weight to the JSZ model and the unrestricted VAR. Finally, the prior

specification is completed by adding a prior for the coefficients φ appearing in the volatility process.12

The joint prior distribution of all the coefficients of the model is:

p(Φ, V, θ, γ, φ) = p(Φ, V |θ, γ)p(θ)p(γ)p(φ). (16)

More details on the distributions and moments will be contingent on the specific application at hand,

and will be spelled out in section 4.2 below.

3.4 Joint density of the full model

The full model is composed of the data Y , the latent states Λ, and the coefficients {Φ, V, θ, γ, φ}. The

joint density of data and states is the product of the likelihood (12) and the density of the log-normal

12Note that we do not need a prior on the first observation of the volatility process λ1 as in Cogley and Sargent (2005),
because in our setup this value is set to 1 to identify the variance matrix of the ut disturbances.
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states (10):

p(Y,Λ|Φ, V, θ, γ, φ) = p(Y |Φ, V, θ, γ, φ,Λ)× p(Λ|Φ, V, θ, γ, φ)

∝ p(Y |Φ, V, θ, γ,Λ)p(Λ|φ), (17)

where the second line follows from omitting any redundant coefficients.

The joint density of data, coefficients, and states is obtained by multiplying (17) by the prior (16):

p(Y,Φ, V, θ, γ, φ,Λ) = p(Y |Φ, V, θ, γ,Λ)p(Λ|φ)× p(Φ, V |θ, γ)p(θ)p(γ)p(φ). (18)

3.5 Conditional posterior distributions and MCMC sampler

Since p(Y,Φ, V, θ, γ, φ,Λ) = p(Φ, V, θ, γ, φ,Λ|Y )p(Y ), the density (18) is also the kernel of the joint

posterior density of parameters and states. This does not correspond to any known distribution; hence

we simulate it via a Markov Chain Monte Carlo (MCMC) algorithm:

1. Draw Φ, V, θ, γ|Y,Λ

(a) Draw γ, θ|Y,Λ (Random Walk Metropolis step)

(b) Draw Φ, V |θ, γ, Y,Λ (direct Monte Carlo step)

2. Draw Λ|Φ, V, φ, Y (Independence Metropolis step)

3. Draw φ|Φ, V,Λ, Y

Conceptually, the algorithm is a Gibbs sampler, as each of the three steps draws from the conditional

posterior distributions of the parameters and the states. Some of the steps are performed using a

Metropolis step. Step 1 is performed via a random walk Metropolis step followed by direct Monte Carlo

sampling, while Step 2 is performed via a sequence of Independence Metropolis steps. Note that this

algorithm encompasses the one of Del Negro and Schorfheide (2004) as a special case.13 This of course

reflects the fact that the approach presented in this paper is a generalization of their approach to the

case of a heteroskedastic VAR. We now turn to describing the steps in more detail.

13In Del Negro and Schorfheide (2004), Steps 2 and 3 are absent (since there is no time variation in volatility) and Step
1a involves only θ (since the hyperparameter γ is fixed and not estimated).
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3.5.1 Conditional posteriors of hyperparameters and VAR coefficients (Step 1)

The density of interest can be factorized as p(Φ, V, θ, γ|Y,Λ) ∝ p(Φ, V |θ, γ, Y,Λ)p(θ, γ|Y,Λ), and draws

can be obtained by 1a) drawing from θ, γ|Y,Λ and 1b) drawing from Φ, V |θ, γ, Y,Λ.

In step 1a, draws from θ, γ|Y,Λ can be further blocked into draws from γ|θ, Y,Λ and θ|γ, Y,Λ. The

conditional posterior densities p(γ|θ, Y,Λ) and p(θ|γ, Y,Λ) are proportional to the product of the priors

p(γ) and p(θ) and the marginal data density:

p(Y |θ, γ,Λ) = p(Y |Φ, V,Λ)p(Φ, V |θ, γ,Λ)/p(Φ, V |Y,Λ) (19)

=

∣∣γTΓ∗X′X(θ) +X ′Λ−1X
∣∣− q2 ∣∣∣S̃(θ)

∣∣∣− (γ+1)T−k
2

∣∣γTΓ∗X′X(θ)
∣∣− q2 ∣∣∣S̃∗(θ)∣∣∣− γT−k2

× (2π)
−qT
2

2
q((γ+1)T−k)

2 Πq
i=1Γ[((γ + 1)T − k + 1− i)/2]

2
q(γT−k)

2 Πq
i=1Γ[(γT − k + 1− i)/2]

,

where Γ[·] denotes the gamma function. The kernels p(Y |θ, γ,Λ)p(γ) and p(Y |θ, γ,Λ)p(θ) are then used

as target density in a random walk Metropolis step.

In step 1b, the conditional posterior density kernel of p(Φ, V |θ, γ, Y,Λ) is given by the product of

the likelihood (12) and the prior density (15), which gives

P (Y |Φ, V,Λ) ∝ |V |−0.5k exp{−0.5tr[V −1(Φ− Φ̃(θ))′Γ∗X′X(θ)(Φ− Φ̃(θ))]}

× |V |−0.5(T+T ∗−k) exp{−0.5tr[V −1S̃(θ)]}, (20)

with Φ̃(θ) = (γTΓ∗X′X(θ) + X ′Λ−1X)−1(γTΓ∗X′Y (θ) + X ′Λ−1Y ), S̃(θ) = [(γTΓ∗Y ′Y (θ) + Y ′Λ−1Y ) −

(γTΓ∗Y ′X(θ) + Y ′Λ−1X)(γTΓ∗X′X(θ) +X ′Λ−1X)−1(γTΓ∗X′Y (θ) +X ′Λ−1Y )]. The above is the kernel of

an MNIW density:

Φ, V |Y,Λ, V, θ, γ ∼MNIW
(

Φ̃ (θ) , [γTΓ∗X′X (θ) +X ′Λ−1X]−1, S̃ (θ) , (γ + 1)T − k
)
. (21)

When γ → 0 the posterior mean of Φ approaches the OLS estimator. On the other hand, when

γ → ∞, the posterior mean of Φ approaches the prior mean Φ∗(θ), i.e., the value consistent with the

JSZ model. Draws from (21) can be obtained by drawing from V ∼ IW (S̃(θ), (γ + 1)T − k) and then

from Φ|V ∼MN(Φ̃(θ), V ⊗ [γTΓ∗X′X(θ) +X ′Λ−1X]−1).
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3.5.2 Conditional posterior of latent states and their dynamics (Step 2 and Step 3)

Step 2 and Step 3 of the algorithm produce draws from the volatility process Λ and its law of motion

parameters φ, conditional on the VAR coefficients. Note that in these steps conditioning on the hyper-

parameters θ and γ is redundant because under knowledge of Φ and V these hyperparameters do not

yield any additional information.

To draw from the conditional posterior of Λ, we modify the approach of Cogley and Sargent (2005) to

allow for a single stochastic volatility factor. Defining the orthogonalized residuals wt = (w1t, ..., wNt) =

V −1/2ut the kernel of p(Λ|Y,Φ, V, φ) is given by:

p(Λ|Y,Φ, V, θ, γ, φ) ∝
T∏
t=2

p(λt|λt−1, λt+1, φ, wt). (22)

By choosing an appropriate proposal density, this kernel can be used as a basis for an Independence

Metropolis step with acceptance probability

a = min

λ∗−N×0.5t

∏N

i=1
exp(−0.5w2

it/λ
∗
t )

λ−N×0.5t

∏N

i=1
exp(−0.5w2

it/λt)
, 1

 . (23)

Note this differs from Cogley and Sargent (2005), as in their case the volatility process λit for each

variable i is drawn separately conditional on the remaining N − 1 terms, which means that N − 1

elements in the products ΠN
i=1 exp(−0.5w2

it/λ
∗
t ) and ΠN

i=1 exp(−0.5w2
it/λt) would cancel out. Details on

the derivation are provided in the online appendix section C.

Finally, step 3 is straightforward since (10) is a linear regression model and conditionally on Λ the

conditional posterior distributions of φ are readily available.

3.6 Homoskedastic version

In our forecasting exercise we will also consider a homoskedastic version of the model. This is simply

obtained by setting λt = 1 for all t, yielding:

yt = Φ0 + Φ1yt−1 + ...+ Φpyt−p + εt; εt ∼ N(0, V ). (24)

This model is nested in the more general JSZ-VAR-CSV shown in equations (8)-(10), the only difference

being that the volatility is assumed to be constant over time, and therefore, the parameters φ and the
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volatility λt drop out of the analysis. We label this version JSZ-VAR. For estimation, the JSZ-VAR

requires a simplified algorithm:

1. Draw Φ, V, θ, γ|Y,Λ

(a) Draw γ, θ|Y,Λ (Random Walk Metropolis step)

(b) Draw Φ, V |θ, γ, Y,Λ (direct Monte Carlo step)

This algorithm coincides with step 1 of Algorithm 1, and it is very similar to the one of Del Negro

and Schorfheide (2004), the only difference being that in their paper the coefficient γ is not estimated,

so step 1a only involves θ.

3.7 Zero lower bound treatment and shadow rates

Since the 2007-2008 financial crisis, interest rates decreased to a point that a zero lower bound (ZLB)

cannot be ignored. A natural way to include the ZLB restriction would be to directly modify the term

structure model in order to implement the constraint and allow for estimation of shadow rates. This

approach has been pursued in the shadow rate term structure models of studies such as Krippner (2013)

and Wu and Xia (2016).

In our approach, the imposition of a ZLB in the reference model would break down Gaussianity,

which in turn would imply that the moments of the state-space system would not be sufficient statistics

and could not be used to form a prior on the VAR coefficients. More importantly, introducing a ZLB in

the reference model would not be sufficient to ensure that the ZLB is satisfied in the posterior estimates,

nor would it allow filtering out a shadow rate. In order to effectively implement the ZLB, we need to

impose it on the entire VAR system.

To do so, we follow the approach of Johannsen and Mertens (2019) and frame the issue as a censored

data problem. The observed yield of maturity τ is defined as yτt = max(sτt , 0), where sτt is a shadow

yield that can be either positive or negative. The shadow yield is the — possibly negative — yield that

one would observe if the ZLB constraint didn’t exist. In normal periods yτt = sτt > 0, but in periods in

which the ZLB is binding, yτt = 0 and sτt is negative and unobservable.

With this extension, the MCMC sampler needs an additional step involving a draw from the con-

ditional posterior of the shadow yields sτt . This draw of sτt is then used as data in place of yτt in the

remaining steps of the algorithm, in any time period t and for any maturity τ in which the yield yτt hits
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the lower bound. More details can be found in Johannsen and Mertens (2019), who show how to filter

out the shadow yields in a general VAR.

In the forecasting exercise, the shadow yields sτt are used instead of the actual yields yτt to produce

forecasts of the shadow yields sτt+h. Then we impose the ZLB by truncating all of the forecast paths

going below zero, i.e., we set yτt+h = max(sτt+h, 0). This strategy is implemented for all yields at all

forecast origins, and it truncates the entire predictive density of the model(s) in such a way that the

ZLB is satisfied, while using all of the additional information contained in the shadow rates.

4 Empirical application

We now turn to the application of our method using US data. All of the results in the paper are based

on four independent MCMC chains.14 Table A1 in the online appendix shows that the algorithm has

good mixing properties and has achieved convergence.

4.1 Data

Data are zero-coupon yields, at monthly frequency, for maturities 1 and 3 months and 1, 2, 3, 4, 5, 7,

and 10 years. We obtained the yields from maturities of 1 month through 5 years from the US Treasuries

Daily and Monthly database of the Center for Research in Security Prices (CRSP), the University of

Chicago Booth School of Business. We took the 7- and 10- year yields from the Gürkaynak, Sack, and

Wright (2007) data published by the Federal Reserve Board of Governors Board. Our sample extends

from January 1985 through December 2018. The data are displayed in Figure 1. We estimate all of our

VAR specifications using 3 lags, chosen via the Bayesian information criterion.

4.2 Specifics on priors

Recall the prior in (16):

p(Φ, V, θ, γ, φ) = p(Φ, V |θ, γ)p(θ)p(γ)p(φ). (25)

The priors on the VAR coefficient matrices p(Φ, V |θ, γ) are set up hierarchically, using the MNIW

distribution set out in (15). Therefore, we only need to specify priors for γ, θ, φ.

14Each chain is composed of 15,000 draws. We eliminate the first 2500 as burn-in, and we perform skip-sampling,
retaining each 25-th draw, for a total of 500 clean draws per chain. This provides 2000 clean draws in total. We initialize
each chain using the posterior mode of the model, conditional on a maximum likelihood estimate of the common volatility
factor, plus a random error, so that each chain has a different initial condition.
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For the parameter γ, which is measuring the degree with which JSZ-consistent moments are imposed

on the VAR, we set a normal prior centered on 1, with a standard deviation of 0.25. We truncate the

posterior draws by requiring them to be above (k + N)/T , as this is the minimum value necessary for

the priors on V and Φ to be proper. The prior mean of 1 reflects the belief that the JSZ model and an

unrestricted VAR are equally likely descriptions of the data. The standard deviation of 0.25 is rather

large and implies that our prior is only weakly informative.15

For the JSZ structural parameters θ we set either a flat or a weakly informative prior. In particular,

for the 3 coefficients in λQ we set a normal prior λQ1 ∼ N(−0.002, 0.0012), λQ2 ∼ N(−0.02, 0.012),

λQ3 ∼ N(−0.2, 0.12). These prior means imply that under the Q measure the first factor is virtually

a random walk (it features an autoregressive coefficient of 0.998), the second is stationary but very

persistent (with an autoregressive coefficient of 0.980), and the third factor is moderately persistent

(with an autoregressive coefficient of 0.800). All draws of λQ implying non-stationary behavior are

discarded, as well as all those for which the condition λQ1 > λQ2 > λQ3 does not hold.16 For the

coefficients ΣP we set a normal prior centered on the vector autoregression of the observable factors

P ot .17 We set the standard deviations to half of the prior means, which ensures that a 95 percent credible

interval for each coefficient is marginally above 0. For the remaining coefficients kQ∞ and Σy we set a

uninformative flat prior. Finally, for the parameters governing the dynamics of the volatility factor φ

we set φ0 ∼ N(0, 0.025), φ1 ∼ N(0.96, 0.025), and φ2 ∼ IG(3 · 0.05, 3).

The priors described above are only weakly informative, and the resulting posterior estimates are a

fair amount away from them. To check for robustness we have also computed results for a more diffuse

prior in which the standard deviation of γ is set to 1 and the prior on θ is flat. This changed somewhat

the estimates of γ, making them higher. This is driven by the fact that the flat prior on θ is imposing

the JSZ model more blandly than before, and therefore the overall level of misspecification of the model

decreases, which makes γ increase. However, the overall mass of the posterior of γ is unchanged, and

the posterior means of all of the remaining parameters were very similar.

15The values of γ range from 0.3 to 1.2 throughout the recursive samples.
16This is required because λQ1 , λ

Q
2 , λ

Q
3 are ordered eigenvalues of the matrix KQ

1S , which is in Jordan form.
17In principle, one should not use likelihood information to calibrate the prior, but doing so for error variances using

an auxiliary model is standard practice; see, e.g., Doan, Litterman, and Sims (1984), Litterman (1986), Sims (1993),
Robertson and Tallman (1999), Sims and Zha (1998), Kadiyala and Karlsson (1997), Banbura, Giannone, and Reichlin
(2010), Koop (2013), and Carriero, Clark, and Marcellino (2015).
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4.3 In-sample results

We start with in-sample estimation of the baseline model, the JSZ-VAR-CSV given in (8)-(10), with

the JSZ prior described in section 3.3.

Table 1 contains estimates of the hyperparameters θ shown in (5). These are the coefficients of the

underlying JSZ model. Under the heteroskedastic JSZ-VAR-CSV model, the estimated posterior means

of the coefficients λQ1 , λ
Q
2 , λ

Q
3 , are -0.00307, -0.03533, and -0.07549, respectively.18 These are broadly

in line with the values -0.00245, -0.0472, and -0.0739, reported by JSZ in their RKF specification.19

Our estimate of kQ∞ is 0.00037, which corresponds to a value for the long-run mean of the short-term

rate under the risk neutral measure of −kQ∞/λ
Q
1 =11.9, which is somewhat off the value reported by

JSZ in their RKF specification (8.45) but very close to the value of 11.2 they obtain with some other

specifications (RCMT and RCMT1). The tightness hyperparameter γ (not in the table) is estimated at

0.358, signaling that the optimal ratio between artificial and actual observations is about 36 percent,

which means that the data are given about twice the weight of the prior.

Table 1 also reports results based on the homoskedastic JSZ-VAR specification, which are very

similar. In this case the hyperparameter γ (not in the table) is estimated at 0.314, which is slightly

lower than in the heteroskedastic case. With this model, more weight is given to the data and less to

the prior (compared to the JSZ-VAR-CSV specification), which is a sign that the JSZ prior based on

the non-rescaled data has a slightly higher degree of misspecification.

Finally, to ascertain the stability of the estimates before and after the financial crisis, the table

reports results based on a sample ending in December 2007. The estimated coefficients are broadly

stable, with a few exceptions, notably the coefficients ΣP (2,1) and ΣP (3,2) changing sign, which points

to a change in the direction of correlation among the factors. The coefficient λQ3 signals an increase in

the persistence of the third factor in the second half of the sample, but the change is small relative to

the precision of the estimate so it might be insignificant.

Turning to the VAR model estimates, Figure 2 displays the posterior distribution of the common

stochastic volatility factor λt, and Figure 3 displays the implied time series of the stochastic volatilities

for each of the yields in the VAR, i.e., the diagonal of the variance matrix of the disturbances ut (see

equation (9)). As is well known, there have been periods of high and of low volatilities throughout the

18To improve readability, Table 1 reports results for 100× θ.
19JSZ present results for various specifications. The RKF specification is based on a model with all yields measured

with errors, and is the closest to our reference model. Results for the other specifications are all in the same ballpark. Of
course our data set is different, both in the time series and in the cross-sectional dimension.
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sample under examination, and this is captured in our estimates.

4.4 Forecasting exercise

4.4.1 Models

We will compare the out-of-sample forecasting performance of the baseline JSZ-VAR-CSV model with

several alternatives, some taken from the literature and others variations on the JSZ-VAR-CSV speci-

fication. As the benchmark to which all forecasts are compared, we use a simple random walk forecast,

which is simple but nonetheless has proven extremely strong in forecasting the term structure of govern-

ment bond yields.20 Another previously developed model we will consider is a fully fledged affine term

structure model with time-varying volatility. Specifically, we use the dynamic Nelson-Siegel specifica-

tion of Diebold and Li (2006) with the addition of time-varying volatility in the factors, as in Hautsch

and Ou (2012).21,22

Our baseline model is the JSZ-VAR-CSV model, featuring 3 lags, time variation in volatility, and

shrinkage toward the JSZ representation, which entails both the assumption that yields follow a factor

model and some restrictions on the loadings. To assess the contribution of each of these ingredients to

forecast accuracy, we consider alternative models in which some of these features are removed.

First, in order to assess whether any forecast gains come from shrinkage per se rather than from

the specific direction of shrinkage, we include in the comparison an alternative VAR with common

stochastic volatility that shrinks toward some other direction than the JSZ model. Specifically, we set

the prior mean and variances of a Minnesota-style prior, in which the yields follow univariate random

walks.23 For implementation, we compute the relevant moment matrices based on this alternative

20Term structure models have a hard time improving on the accuracy of a simple random walk forecast, as documented
in several studies, including Duffee (2002), Diebold and Li (2006), Christensen, Diebold, and Rudebusch (2011), and
Carriero, Kapetanios, and Marcellino (2012).

21While extending the JSZ model to allow for time-varying volatility is possible (and has been done by Creal and Wu
(2015)), the complications inherent in its estimation are such that it is prohibitive to estimate such a model repeatedly
for an out-of-sample forecasting exercise the size of ours. Moreover, several contributions have shown that models with
unspanned stochastic volatility such as Hautsch and Ou (2012) are preferable as they tend to fit the yields better than
models with spanned stochastic volatility.

22In line with the JSZ specification, we depart from Hautsch and Ou (2012) in using a VAR (not AR) for factor dynamics.
23The Minnesota-style prior we implement is the same as that in Kadiyala and Karlsson (1997), augmented with the “sum

of coefficients” and “dummy initial observation” priors proposed in Doan, Litterman, and Sims (1984) and Sims (1993),
with the hyperparameter choice of Sims and Zha (1998). Both priors are in line with the belief that macroeconomic data
typically feature unit roots, and the latter prior favors cointegration. This prior is similar to that of Sims and Zha (1998),
with the subtle difference that in the original implementation the prior is elicited on the coefficients of the structural
representation of the VAR rather than on the reduced form as it is here. This prior has been widely used in the literature,
which documented its competitiveness in forecasting macroeconomic data; see e.g., Carriero, Clark, and Marcellino (2015),
Giannone, Lenza, and Primiceri (2015), Robertson and Tallman (1999), and Waggoner and Zha (1999).
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prior and we use them in (15). Besides the use of these alternative prior moment matrices, all of the

remaining characteristics of the model are left unchanged and the model is estimated using the same

MCMC sampler as the baseline. In particular, the overall tightness on this prior is optimally chosen by

estimating the parameter γ via a Metropolis step. We label this model BVAR-CSV in the tables.

Second, in order to ascertain the role of time variation in volatility, we consider the homoskedastic

version of the model described in section 3.6, labeled JSZ-VAR. This version features shrinkage toward

the JSZ restrictions, but the volatilities are kept constant over time. Moreover, while our baseline model

does feature time variation in the volatilities of the yields, it is a Bayesian VAR with a prior based on

an ATMS and not itself simply an ATSM.

Third, a relevant difference between our baseline model and a typical term structure model is the

lag length. Term structure models typically use only one lag, but research has shown that yields aren’t

necessarily first-order Markov (Joslin, Le, and Singleton (2013a, 2013b)). For this reason, we include

in the comparison a version of the baseline model with only 1 lag, in order to gauge the effect that the

richer dynamics have on the forecasts. We label this version of the model JSZ-VAR-CSV (1 lag).

Finally, as we have discussed, the JSZ representation entails both the imposition of a factor model

for the yields and a set of restrictions on the factor loadings. We want to disentangle the role played

by these two elements in the forecasting outcome. In order to do so, we have re-estimated the model

using a reference prior that only implements the factor structure for the yields, without also imposing

the restrictions on the loadings. This can be done by simply concentrating out, via an OLS regression

on the principal component of the yields, the coefficients in the vector Ap and the matrix Bp appearing

in (2), which implies that these coefficients are no longer obeying the Riccati equations and therefore

they do not necessarily reflect the absence of arbitrage.24 We label this model F-VAR-CSV.

4.4.2 Design

We perform an out-of-sample forecasting exercise. We start with an estimation window ranging from

January 1985 to December 1994, we estimate the model, and we produce forecasts for the period January

1995 to December 1995 (i.e., up to 12 steps ahead). Then we add one data point to the sample, namely

January 1996, and we re-estimate the model and again produce forecasts up to 12 steps ahead. We

proceed in this way until we obtain forecasts for the period January 2018 to December 2018.

24We could also estimate these coefficients within the MCMC algorithm. We choose the simpler route since our goal is
simply to establish the relative importance of the cross-equation restrictions.

19



We obtain forecast distributions by sampling as appropriate from the posterior distributions of the

considered models. For example, in the case of the JSZ-VAR-CSV model, for each set of draws of

parameters, we: (1) simulate volatility time paths over the forecast interval using the AR(1) structure

of log volatility; (2) draw shocks to each variable over the forecast interval with variances equal to the

draw of Vt+h; and (3) use the VAR structure of the model to obtain paths of each variable. For all of the

models described above we impose a zero lower bound by using the method of Johannsen and Mertens

(2019) briefly described in section 3.7. We form point forecasts as means of the draws of simulated

forecasts and density forecasts from the simulated distribution of forecasts. Conditional on the model,

the posterior distribution reflects all sources of uncertainty (latent states, parameters, hyperparameters,

and shocks over the forecast interval). For the random walk, point forecasts are set to the value of the

yields in the previous period. Density forecasts are produced by simulating yields over the forecast

interval using a random walk specification with innovations variance equal to the variance of changes

in yields over the estimation sample.

4.4.3 Forecast evaluation

We evaluate both point and density forecasts of the examined models. For point forecasts, we evaluate

our results in terms of root mean squared forecast errors (RMSFE) for a given model. Let ŷ
(i)
t+h|t(M)

denote the h-step-ahead point forecast (mean of the predictive density) made by model M at time

t, for the i-th yield. The RMSFE made by model M in forecasting the i-th yield at horizon h is

RMSFEMi,h =

√
P−1

∑(
ŷ
(i)
t+h|t(M)− y(i)t+h

)2
, where the sum is computed over all of the P forecasts.

To provide a rough gauge of whether the RMSFE ratios are significantly different from 1, we use

the Diebold and Mariano (1995) t-statistic for equal MSE, applied to the forecast of each model relative

to the benchmark. Our use of the Diebold-Mariano test with forecasts that are, in some cases, nested

is a deliberate choice. Monte Carlo evidence in Clark and McCracken (2011, 2015) indicates that,

with nested models, the Diebold-Mariano test compared against normal critical values can be viewed

as a somewhat conservative (conservative in the sense of tending to have size modestly below nominal

size) test for equal accuracy in the finite sample. As our proposed model can be seen as nesting the

benchmarks we will compare it against, we treat the tests as one-sided, and only reject the benchmark

in favor of the null (i.e., we don’t consider rejections of the alternative model in favor of the benchmark).

The overall accuracy of the density forecasts can be measured with average log predictive density

scores, motivated and described in such sources as Geweke and Amisano (2010), given by SCOREMi,h =
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P−1
∑

log p(y
(i)
t+h|yt,M), where the sum is computed over all of the P forecasts and where log p(y

(i)
t+h|yt,M)

is the log predictive score obtained by model M , at forecast origin t, when making the h-step-ahead

forecast of the i-th yield. We compute the log predictive scores using the quadratic approximation of

Adolfson, Linde, and Villani (2007).25

To provide a rough gauge of the statistical significance of differences, we use the Amisano and

Giacomini (2007) t-test of equal means, applied to the log score for each model relative to the benchmark

random walk forecast. We view the tests as a rough gauge because, with nested models, the asymptotic

validity of the Amisano and Giacomini (2007) test requires that, as forecasting moves forward in time,

the models be estimated with a rolling, rather than an expanding, sample of data. As our proposed

model can be seen as nesting the benchmarks we will compare it against, we treat the tests as one-sided,

and only reject the benchmark in favor of the null (i.e., we don’t consider rejections of the alternative

model in favor of the benchmark).

4.5 Out-of-sample results

We now turn to the empirical evidence on the forecasting performance of the proposed model. The

forecast evaluation period goes from January 1995 to December 2018, and forecasts are produced as

described in section 4.4.2.

Table 2 and Table 3 present results for point and density forecasts, respectively. In the tables, the

first panel contains the RMSFEs and SCOREs obtained by the random walk forecasts of the yields (the

units are basis points). The remaining panels display — for the remaining models — the RMSFEs ratios

and SCOREs differences relative to the random walk; hence, a figure below 1 in the RMSFE ratio, or

above 0 in the SCORE difference, shows that a model is outperforming the random walk benchmark in

point and density forecasting, respectively.

We will organize the discussion of the results around the following points: (i) comparison with bench-

mark models (a random walk no-change forecast, and an affine term structure model with stochastic

volatility); (ii) the role of the no-arbitrage prior; (iii) the role of time variation in volatility; (iv) the role

of dynamics (lags); and (v) the role of the factor structure. The section concludes with a discussion of

the stability of our results in different subsamples.

25We obtained very similar results using a kernel density approximation, except that these ran into numerical problems
in a couple of forecast origins.
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4.5.1 Comparison with benchmarks

Comparison with random walk For point forecasts, our results broadly confirm that the RW is

a strong forecasting model for US yields, especially so at the long end of the curve. At the short end

of the curve (1- and 3-month yields) the models shrinking toward the JSZ-VAR-CSV outperform the

RW systematically, with gains up to 17.5 percent for the 1-month yield and up to 5.5 percent for the

3-month yield. In some cases, some other specifications based on the JSZ prior (discussed in more detail

below) perform even better. Notably the F-VAR-CSV outperforms the RW also at the 1-year yield.

These gains are statistically significant at the shorter forecast horizons. As the maturity of the yields

increases, the RW produces better point forecasts, even though the differences are generally small and

never significant, ranging between 0 and 8 percent.

For density forecasts, the JSZ-VAR-CSV produces more accurate forecasts than the RW in most

cases. Again, the best results are obtained at the short end of the curve, but positive gains are still

present for the medium-term maturities. For the 1- and 3-month yields the gains in the score are large

and significant, ranging from 19 to 45 percent (note that the difference in log-score can be interpreted

as a percentage gain in the score). At the 1-year maturity, the gains range between 10 and 20 percent.

At the 2- and 3-year maturities, the gains are typically positive but insignificant. At the long end

of the curve the relative scores are negative but small and insignificant, signaling that the forecasting

performance is virtually the same as that of the RW.

Comparison with the DNS-SV affine term structure model We assess to what extent the

JSZ-VAR-CSV model improves forecast accuracy relative to the dynamic Nelson-Siegel specification of

Diebold and Li (2006) with the addition of time-varying volatility in the factors. This model is labelled

DNS-SV.

For both point and density forecasts, the DNS-SV model does not fare well compared to the RW

benchmark at any horizon. In all cases, the JSZ-VAR-CSV achieves much better forecast accuracy.

This finding confirms the difficulty that affine term structure models have in outperforming the random

walk in forecasting the yield curve originally documented in Duffee (2002). An inspection of the density

forecasts over time reveals that the DNS-SV tends to revert to the mean too quickly compared to the

other models, which especially hampers its forecasting performance in the final part of the sample that

is characterized by very low yields.26

26In unreported results based on the same sample of the original Diebold and Li (2006) paper, the model performs much
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4.5.2 The role of no-arbitrage priors

Arguably, shrinkage can help in forecasting regardless of the direction in which it is applied, simply

because it reduces the problem of over-parameterization. It is natural to ask whether the forecasting

gains of the JSZ-VAR-CSV model are coming because the coefficients are shrunk toward the JSZ

representation, or simply because shrinking per se reduces noise in estimation. To check this, one can

compare the forecasting performance of the JSZ-VAR-CSV with that of the BVAR-CSV, i.e. the VAR

with a Minnesota-style prior and common stochastic volatility. These two models have the same form

(they are both VARs with stochastic volatility) and dynamics (they have the same number of lags).

Hence, they also have the same likelihood function. The only difference between these two models is in

the priors, that is, in the direction in which shrinkage takes place.

For point forecasts, the JSZ-VAR-CSV produces the best forecasts at the 1-month maturity, at

all forecast horizons. For the remaining maturities, the BVAR-CSV performs better at short forecast

horizons (with gains versus the JSZ-VAR-CSV up to 4 percent) while the JSZ-VAR-CSV performs

better at long forecast horizons (with gains versus the BVAR-CSV up to 11 percent). Overall, the

differences are small.

Turning to density forecasts, the evidence in favor of using the JSZ prior as opposed to the Min-

nesota prior becomes starker. The JSZ-VAR-CSV outperforms the BVAR-CSV at most horizons and

maturities. The only cases in which the Minnesota prior performs better are the 1-step-ahead forecasts

for yields with maturity of 2 years or more, and the 6- and 12-steps-ahead forecasts of the 10-year yields.

In these few cases, the largest gain of the BVAR-CSV versus the JSZ-VAR-CSV is of only 2.4 percent

(1-step-ahead forecast of the 1-year yield). In all of the remaining cases the JSZ-VAR-CSV performs

better than the BVAR-CSV, especially at the long-end of the curve and at longer forecast horizons,

with gains up to 32.5 percent (12-steps-ahead forecast of the 3-month yield). In general the gains are

smaller as we move toward the long end of the curve, and one should also note that at the long end of

the curve, the RW still outperforms both of these models, albeit by a very small, insignificant margin.

In summary, these results provide evidence that the forecasting gains do not merely come from the

use of shrinkage. The direction of shrinkage is just as important.

better.
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4.5.3 The role of stochastic volatility

We now turn to analyzing the role of the assumption of time variation in volatility, by comparing the

forecasts from the homoskedastic version (JSZ − V AR) with the heteroskedastic version (JSZ-VAR-

CSV) of our model.

It is evident that the addition of stochastic volatility greatly improves the density forecasts, with

scores from the heteroskedastic model being in all instances well above those of the homoskedastic

version. This pattern changes at the long forecast horizons, but note that this result is driven by

a few observations at the beginning of the 2007 financial crisis: at the beginning of this period, the

JSZ-VAR-CSV features an extremely low estimated volatility, because most data in this period belong

to the Great Moderation and it takes time for the model to learn that the regime has changed (this

effect is much more pronounced if one considers 1-year-ahead forecasts). Instead, around this period the

JSZ-VAR fares better because the very fact that it is homoskedastic means it “remembers” the periods

of high volatility in the 1980s and 1990s, and this in turn implies wider credible bounds around its point

forecasts. The JSZ-VAR produces generally better point forecasts than the JSZ-VAR-CSV, but formal

tests of equal accuracy (not reported) reveal that such differences are never statistically significant.

4.5.4 The role of dynamics

As shown in equations (1)-(2), a specification assumption in the JSZ model (and any other typical

ATSM) is for the factors — and consequently the yields — to be a Markov process. We tried to assess

how big of a role this constraint plays. The model JSZ-VAR-CSV (1 lag) in the tables is a version of

the JSZ-VAR-CSV model in which the VAR lag-length is set to 1, rather than the optimally selected

length of 3. For point forecasts, the JSZ-VAR-CSV (1 lag) model produces virtually identical forecasts

compared to the baseline model with 3 lags.

For density forecasts, results are more mixed. At the short end of the curve, the model with 1 lag

slightly underperforms the baseline model with 3 lags. For example, using the 3-lags model to forecast

the 1-month yield at the 12-steps-ahead horizon provides a gain of 7.4 percent. At the medium and

long end of the curve, the forecasts are virtually identical.

This indicates that the Markov assumption may be good for the yields at the long end of the curve,

less so for those at the short end, and that the gains we documented at the short end of the curve

come at least in part from the fact that the VAR has richer dynamics than the typical 1-lag dynamics
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assumed in term structure models.

4.5.5 The role of the factor structure

We discussed how shrinking the coefficients toward the JSZ reference model provides forecasting gains.

However, note that the JSZ model entails both the assumption of a factor model for the yields, given

in equations (1)-(2) and a set of restrictions on the intercepts and factor loadings of the model, i.e.,

the Riccati equations (3)-(4). Here we want to evaluate the relative importance of these alternative

restrictions on forecast accuracy. In order to do so, we have considered a VAR with a prior that only

implements the factor structure assumption, without imposing the restrictions on the loadings (the

F-VAR-CSV model).

Looking at the corresponding panels in Table 2 and Table 3, it is clear that this model actually

has a very good performance, often obtaining the best overall results compared with other variants

of the model. For example, the F-VAR-CSV is the only model consistently outperforming the RW at

the 1-year maturity in point forecasting. It performs generally better (albeit not by much) than the

JSZ-VAR-CSV in point forecasting. In density forecasting, it is overall the best model at the short end

of the curve.

This clearly indicates that the cross-equation no-arbitrage restrictions on the loadings only play

a minor role in improving forecast accuracy, while most gains come from the imposition of a factor

structure. These results are in line with the argument of Duffee (2011a), who makes the case that

since the loadings of the model can be estimated with extremely high precision even if no-arbitrage

restrictions are not imposed, the Gaussian no-arbitrage model, absent additional restrictions on risk

premia, offers no advantages over a simple unrestricted factor model.

4.5.6 Subsample analysis

In order to assess the stability of our results throughout the sample, we have computed the loss functions

(RMSFE and SCORE) recursively. Results of this exercise are displayed in Figure 4 and Figure 5 for

point and density forecasts, respectively. In order to avoid cluttering the graphs, we focus only on three

maturities (1-month, 3-months, and 10-years) and two forecast horizons (1-step and 12-steps-ahead).

Unreported results for the remaining combinations show patterns that are in between the ones displayed

in these figures.

In Figure 4, the relative RMSFE against the RW is reported. A value below 1 signals that the
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JSZ-VAR-CSV is outperforming the RW benchmark. Also, as the series depicted is a recursive mean,

whenever the series is trending downward the forecasting performance of the JSZ-VAR-CSV is improving

(relative to the RW), while when it is trending upward, the forecasting performance is deteriorating.

From an inspection of the picture several conclusions can be drawn.

At the 1-step-ahead forecast horizon, the JSZ-VAR-CSV is outperforming the RW throughout the

sample, but the relative gains are not stable. Consider, for example, the 3-month yield. The JSZ-

VAR-CSV performs well at the beginning of the sample, then the forecasting performance deteriorates

starting from the end of the 1990s until the first few years of the 2000s, with the RMSFE ratio vs

the RW reaching a value just below 1 around 2002. Then there is a sharp improvement, after which

the RMSFE ratio vs the RW remains steady at around 0.6 for several years, until the 2007 financial

crisis ensues, bringing the ratio up again, just below 1. A broadly similar pattern can be found for the

1-month rate, even though the ratios do not deteriorate as much during the first part of the sample. The

point forecasts of the 10-year yield show a slow deterioration in forecasting performance, without major

jumps. At the long forecast horizon, the relative gains are stable. The JSZ-VAR-CSV underperforms

the RW at the beginning of the sample, but then it starts improving around 1999, and the improvements

continue steadily and the ratios eventually stabilize.

Turning to density forecasts, results are displayed in Figure 5. In this figure we report the difference

in the average SCORE between the JSZ-VAR-CSV and the RW. A value above 0 signals that the JSZ-

VAR-CSV is outperforming the RW. Also, as the series depicted is a recursive mean, whenever the

series is trending upward the forecasting performance of the JSZ-VAR-CSV is improving (relative to

the RW), while when it is trending downward, the forecasting performance is deteriorating. In general,

relative SCOREs show more instability than relative RMSFEs; however, it is important to note that

they are almost always positive, signaling that the JSZ-VAR-CSV produced the best density forecasts

throughout the sample. Interestingly, the 1-step-ahead forecasting performance generally improves after

the financial crisis, while the 12-steps-ahead performance worsens.

5 Conclusions

In this paper we proposed a way to impose a no-arbitrage affine term structure model as a prior on a

VAR while also allowing for time variation in the error volatilities. As the volatilities of yields move

closely together, we imposed a factor structure in which the volatility of each yield is related to a common
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stochastic volatility factor, as in Carriero, Clark, and Marcellino (2016). To shrink the VAR coefficients

toward the values implied by an underlying affine term structure model, we adapted the methodology

put forward by Del Negro and Schorfheide (2004). The model toward which VAR coefficients are shrunk

is the canonical no-arbitrage model of Joslin, Singleton, and Zhu (2011).

We provided the conditional posterior distribution kernels of the coefficients and states of the model

and developed an MCMC algorithm to draw from their joint posterior. While we applied the proposed

model to term structure forecasting, the same approach can be applied to a wide range of alternative

models, including DSGE models, and can be considered an extension of the method of Del Negro and

Schorfheide (2004) to VARs featuring drifting volatilities with a common factor structure.

By estimating the model using US data on government bond yields covering the period from January

1985 to December 2018, we provided evidence that this method produces competitive forecasts. Com-

pared to a fully fledged affine term structure model with time-varying volatility, the proposed model

consistently produced better point and density forecasts. Compared to a random walk, which is typi-

cally a very strong benchmark in forecasting the yields, the model fared consistently better at the short

and medium end of the curve, and equally well at the long end of the curve.

We have further investigated which of the assumptions that we relaxed are most important to the

out-of-sample forecast accuracy of affine term structure models. Our findings show that the forecasting

gains mainly stem from the partial relaxation of some restrictions that are typical of affine term structure

models. In particular, we found that the VAR representation might work better because it relaxes the

requirement that yields obey a strict factor structure and that the factors follow a Markov process.

Instead, we found that the cross-equation no-arbitrage restrictions on the loadings only have a marginal

role, in line with Duffee (2011a).
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Table 1: Structural Coefficient Estimates

JSZ-VAR-CSV JSZ-VAR (homoskedastic)
Coefficient (x 100) 1985:1-2018:12 1985:1-2007:12 1985:1-2018:12 1985:1-2007:12

λQ
1 -0.307 -0.234 -0.265 -0.243

0.087 0.077 0.082 0.078

λQ
2 -3.533 -2.829 -3.227 -2.719

0.582 0.353 0.514 0.374

λQ
3 -7.549 -10.825 -7.639 -10.707

1.43 1.493 1.620 1.826

κQ 0.037 0.034 0.015 0.036
0.010 0.006 0.008 0.006

ΣP (1,1) 0.637 0.603 0.600 0.665
0.074 0.081 0.042 0.048

ΣP (2,1) 0.225 -0.180 0.147 -0.148
0.034 0.030 0.028 0.026

ΣP (2,2) 0.263 0.243 0.257 0.274
0.034 0.036 0.020 0.022

ΣP (3,1) -0.086 -0.078 -0.068 -0.065
0.015 0.014 0.014 0.012

ΣP (3,2) -0.025 0.049 -0.038 0.059
0.016 0.015 0.014 0.014

ΣP (3,3) 0.139 0.099 0.123 0.106
0.020 0.015 0.011 0.010

Σy(1,1) 0.172 0.184 0.188 0.216
0.024 0.027 0.015 0.017

Σy(2,2) 0.047 0.047 0.048 0.043
0.015 0.015 0.014 0.018

Σy(3,3) 0.060 0.056 0.055 0.059
0.008 0.009 0.005 0.005

Σy(4,4) 0.030 0.027 0.030 0.031
0.004 0.005 0.003 0.003

Σy(5,5) 0.021 0.020 0.021 0.024
0.004 0.004 0.003 0.003

Σy(6,6) 0.022 0.019 0.024 0.022
0.003 0.003 0.002 0.002

Σy(7,7) 0.027 0.026 0.028 0.031
0.004 0.004 0.002 0.003

Σy(8,8) 0.004 0.004 0.004 0.005
0.003 0.003 0.003 0.003

Σy(9,9) 0.026 0.022 0.024 0.025
0.004 0.004 0.003 0.003

Estimates of the structural coefficients θ of the reference JSZ model. The entries are posterior means and standard deviations
(in smaller size) computed from the MCMC output. To improve readability, the table reports results for 100× θ.
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Table 2. Evaluation of Point Forecasts. Sample 1995:2018

Maturity → 0.083-yrs 0.25-yrs 1-yrs 2-yrs 3-yrs 4-yrs 5-yrs 7-yrs 10-yrs

step-ahead ↓
RW point forecasting performance

1 27.648 20.036 21.165 24.470 26.233 27.695 27.426 27.323 26.827

2 38.344 31.311 33.485 37.693 39.504 41.003 40.484 39.889 38.841

3 47.200 42.635 45.029 48.417 49.363 50.123 49.182 46.834 44.608

6 74.254 72.084 72.649 72.540 71.143 70.866 69.667 65.050 61.360

12 125.407 126.882 120.670 109.451 99.858 94.040 89.856 81.825 76.100

DNS-SV vs Random Walk

1 1.068 1.141 1.094 1.080 1.109 1.155 1.185 1.045 1.094

2 1.072 1.138 1.074 1.116 1.133 1.152 1.174 1.066 1.021

3 1.111 1.141 1.094 1.142 1.161 1.174 1.195 1.104 1.025

6 1.140 1.150 1.146 1.207 1.236 1.239 1.249 1.181 1.077

12 1.115 1.103 1.140 1.252 1.336 1.377 1.400 1.359 1.241

BVAR-CSV vs Random Walk

1 0.941 *** 0.930 *** 0.983 1.004 1.008 1.008 1.007 1.001 0.998

2 0.922 *** 0.915 *** 0.995 1.029 1.027 1.023 1.019 1.010 1.002

3 0.937 ** 0.948 * 1.026 1.047 1.041 1.032 1.024 1.012 1.002

6 0.965 0.997 1.093 1.112 1.097 1.078 1.062 1.032 1.007

12 0.998 1.030 1.137 1.180 1.183 1.168 1.149 1.090 1.029

JSZ-VAR vs Random Walk

1 0.852 *** 0.909 *** 1.008 1.058 1.040 1.045 1.043 1.039 1.052

2 0.816 *** 0.867 ** 0.991 1.081 1.066 1.065 1.062 1.054 1.059

3 0.835 ** 0.887 * 0.995 1.080 1.072 1.065 1.062 1.055 1.055

6 0.839 * 0.901 1.011 1.073 1.074 1.059 1.043 1.031 1.025

12 0.844 0.885 0.973 1.043 1.073 1.073 1.056 1.043 1.031

JSZ-VAR-CSV vs Random Walk

1 0.840 *** 0.967 1.001 1.046 1.036 1.046 1.039 1.028 1.037

2 0.825 *** 0.945 1.005 1.069 1.053 1.051 1.044 1.028 1.029

3 0.865 ** 0.958 1.005 1.062 1.051 1.043 1.040 1.026 1.024

6 0.903 0.972 1.039 1.080 1.066 1.049 1.032 1.012 1.005

12 0.911 0.947 1.014 1.072 1.084 1.079 1.058 1.032 1.014

JSZ-VAR-CSV (1 Lag) vs Random Walk

1 0.829 *** 0.984 1.018 1.061 1.037 1.043 1.041 1.028 1.032

2 0.831 *** 0.962 1.016 1.074 1.052 1.049 1.042 1.020 1.016

3 0.867 ** 0.971 1.023 1.083 1.067 1.060 1.049 1.022 1.010

6 0.904 0.967 1.037 1.087 1.077 1.060 1.039 1.010 0.993

12 0.921 0.951 1.015 1.074 1.085 1.074 1.045 1.002 0.968

F-VAR-CSV vs Random Walk

1 0.845 *** 0.925 ** 0.986 1.039 1.037 1.042 1.040 1.032 1.042

2 0.805 *** 0.874 ** 0.963 1.053 1.049 1.046 1.043 1.034 1.036

3 0.818 *** 0.881 * 0.958 1.043 1.045 1.039 1.039 1.033 1.034

6 0.840 * 0.899 0.988 1.056 1.056 1.048 1.036 1.026 1.023

12 0.859 0.892 0.973 1.036 1.054 1.057 1.042 1.026 1.013

The first panel contains the RMSFEs obtained by using the random walk forecasts, with units in basis points. The remaining
panels display the relative RMSFEs of the competing models relative to the random walk. A figure below 1 in the relative
RMSFEs signals a model that is outperforming the random walk benchmark. Gains in accuracy that are statistically different
from zero are denoted by *, **, ***, corresponding to significance levels of 10 \%, 5 \% and 1 \% respectively, evaluated using
the Diebold and Mariano (1995) t-statistics computed with a serial correlation-robust variance, using a rectangular kernel, h− 1
lags (h denotes the forecast horizon), and the small-sample adjustment of Harvey, Leybourne, and Newbold (1997).
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Table 3. Evaluation of Density Forecasts. Sample 1995:2018

Maturity → 0.083-yrs 0.25-yrs 1-yrs 2-yrs 3-yrs 4-yrs 5-yrs 7-yrs 10-yrs

step-ahead ↓
RW density forecasting performance

1 -4.857 -4.470 -4.552 -4.662 -4.718 -4.778 -4.759 -4.746 -4.729

2 -5.184 -4.884 -4.962 -5.059 -5.107 -5.146 -5.128 -5.113 -5.099

3 -5.391 -5.181 -5.235 -5.300 -5.328 -5.344 -5.331 -5.283 -5.252

6 -5.800 -5.737 -5.698 -5.690 -5.691 -5.690 -5.669 -5.600 -5.562

12 -6.259 -6.476 -6.230 -6.100 -6.033 -5.992 -5.945 -5.884 -5.826

DNS-SV vs Random Walk

1 0.061 -0.072 0.013 -0.033 -0.106 -0.205 -0.334 -0.191 -0.285

2 0.068 -0.077 -0.015 -0.133 -0.211 -0.316 -0.444 -0.332 -0.251

3 0.028 -0.088 -0.070 -0.205 -0.288 -0.390 -0.513 -0.405 -0.245

6 -0.114 -0.155 -0.266 -0.431 -0.503 -0.588 -0.705 -0.572 -0.319

12 -0.403 -0.230 -0.565 -0.810 -0.919 -0.996 -1.082 -0.874 -0.525

BVAR-CSV vs Random Walk

1 0.349 *** 0.250 *** 0.199 *** 0.083 *** 0.027 0.018 -0.012 -0.020 -0.008

2 0.322 *** 0.219 *** 0.148 *** 0.039 0.006 -0.007 -0.035 -0.056 -0.055

3 0.284 *** 0.160 *** 0.091 ** 0.017 -0.002 -0.025 -0.034 -0.069 -0.073

6 0.187 *** 0.097 0.010 -0.018 -0.006 -0.001 -0.012 -0.017 0.004

12 -0.013 0.050 -0.107 -0.139 -0.119 -0.093 -0.097 -0.041 -0.000

JSZ-VAR vs Random Walk

1 0.301 *** 0.210 *** 0.096 *** -0.006 -0.017 -0.004 -0.015 -0.012 -0.011

2 0.367 *** 0.247 *** 0.099 *** -0.032 -0.044 -0.041 -0.044 -0.032 -0.016

3 0.365 *** 0.244 *** 0.101 ** -0.027 -0.046 -0.050 -0.044 -0.042 -0.024

6 0.367 *** 0.281 ** 0.101 -0.013 -0.028 -0.031 -0.030 -0.034 -0.013

12 0.314 *** 0.473 * 0.163 0.029 0.004 -0.003 -0.009 0.001 0.003

JSZ-VAR-CSV vs Random Walk

1 0.448 *** 0.301 *** 0.202 *** 0.059 ** 0.009 0.015 -0.019 -0.022 -0.011

2 0.453 *** 0.291 *** 0.185 *** 0.042 0.012 0.008 -0.020 -0.032 -0.032

3 0.405 *** 0.250 *** 0.155 *** 0.036 0.012 -0.003 -0.015 -0.046 -0.058

6 0.305 *** 0.233 * 0.106 0.023 0.019 0.017 0.008 -0.013 -0.011

12 0.192 ** 0.375 0.116 0.008 -0.008 -0.005 -0.017 -0.011 -0.014

JSZ-VAR-CSV (1 Lag) vs Random Walk

1 0.441 *** 0.265 *** 0.191 *** 0.063 ** 0.017 0.016 -0.015 -0.017 -0.002

2 0.441 *** 0.256 *** 0.187 *** 0.045 0.019 0.007 -0.019 -0.030 -0.025

3 0.381 *** 0.200 ** 0.152 *** 0.030 0.006 -0.016 -0.021 -0.040 -0.039

6 0.272 ** 0.206 * 0.108 0.024 0.019 0.017 0.012 0.002 0.014

12 0.118 0.307 0.083 -0.009 -0.017 -0.004 -0.007 0.010 0.010

F-VAR-CSV vs Random Walk

1 0.441 *** 0.338 *** 0.195 *** 0.050 * -0.001 0.004 -0.028 -0.027 -0.011

2 0.479 *** 0.348 *** 0.191 *** 0.038 0.006 0.001 -0.027 -0.039 -0.038

3 0.458 *** 0.319 *** 0.167 *** 0.036 0.009 -0.007 -0.017 -0.046 -0.055

6 0.360 *** 0.285 ** 0.108 0.018 0.012 0.008 0.000 -0.020 -0.016

12 0.219 *** 0.401 0.116 0.012 -0.002 -0.001 -0.012 -0.007 -0.010

The first panel contains the average SCOREs obtained by using the random walk forecasts. The remaining panels display
the differences in SCOREs of the competing models relative to the random walk. A figure above 0 in the SCORE differences
signals that a model is outperforming the random walk benchmark. As the SCOREs are measured in logs, a score difference of
e.g. 0.05 signals a 5 \% gain in terms of density forecast accuracy. Gains in accuracy that are statistically different from zero
are denoted by *,**,***, corresponding to significance levels of 10 \%, 5 \% and 1 \% respectively, evaluated using the Amisano
and Giacomini (2007) t-statistics computed with a serial correlation-robust variance, using a rectangular kernel, h − 1 lags (h
denotes the forecast horizon), and the small-sample adjustment of Harvey, Leybourne, and Newbold (1997).
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Figure 1: US zero coupon yields, January 1985-December 2018

Figure 2: Posterior distribution of the common stochastic volatility process λt

Figure 3: Volatilities for each yield (posterior medians)
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Figure 4: Recursive relative RMSFE of the JSZ-VAR-CSV versus the random walk. Recursive means are computed starting
from January 1996.

Figure 5: Recursive difference in SCORE of the JSZ-VAR-CSV versus the random walk. Recursive differences are computed
starting from January 1996.
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