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Abstract

Disagreements about normative aspects of social time preferences have led to

estimates of the Social Cost of Carbon (SCC) that differ by orders of magnitude. We

investigate how disagreements about the SCC change if planners are non-dogmatic,

i.e., they admit the possibility of a change in their normative views, and internalise

the preferences of future selves. Although non-dogmatic planners may disagree about

all the contentious aspects of social time preferences, disagreements about the SCC

reduce dramatically. Admitting the possibility of a change in views once every 40

years results in a five-fold reduction in the range of recommended SCCs.
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1 Introduction

Disagreements about social time preferences are a major source of contention in climate

change economics. The Social Cost of Carbon (SCC) – the welfare cost of a ton of car-

bon dioxide (CO2) emissions – is perhaps the most important indicator of the optimal

intensity of climate policy, but is highly sensitive to parameters of social time preferences

that capture e.g. social impatience and aversion to intertemporal consumption inequali-

ties. While one might hope that new data or improved estimation methods could resolve

disagreements about their values, estimates of these parameters from market observables

are of questionable use due to a variety of factors, including market failures, and the fact

that most of those who will be affected by climate policies are not yet born (see Millner

& Heal, 2021, for further discussion). Indeed, disagreements about social time preferences

have an irreducibly normative character (Dasgupta, 2008; Drupp et al., 2018).

This paper examines how disagreements about the SCC might change if advocates

of diverse normative theories of intertemporal social welfare were non-dogmatic (Millner,

2020). Non-dogmatic planners favour idiosyncratic theories of intertemporal social welfare,

but exhibit some humility; they admit the possibility of a change in their normative views,

and internalise the preferences of their future selves. We show that although such planners

may disagree on all the contested aspects of social time preferences, disagreements about

the SCC would decrease dramatically if they were even mildly non-dogmatic. Even if each

planner admitted the possibility of a change in their views only once every 40 years on

average, the range of recommended SCC values shrinks by almost a factor of five. Thus,

2



even a small amount of humility about normative judgements can help to reduce seemingly

intractable disagreements about the appropriate level of climate policy.

The theory of non-dogmatic social time preferences was developed in Millner (2020).

That paper motivated non-dogmatism as a normative principle in its own right, arguing

that planners should exhibit a degree of humility when forming their normative judgments.

It then showed that although non-dogmatic planners may disagree about every free param-

eter of their intertemporal welfare functions, they all agree on the long-run social discount

rate, i.e., the rate of decline of the social value of marginal payoffs at long maturities. Since

current CO2 emissions cause persistent warming that lasts for significantly more than one

hundred years (Ricke & Caldeira, 2014), intuition might suggest that non-dogmatism will

reduce disagreement about climate policy variables like the SCC. However, it is not at

all obvious how much reduction in disagreement can be expected, and it turns out that

even the direction of the change is not certain.1 While Millner (2020) used a calibrated

version of his model to demonstrate a substantial reduction in disagreements about long-

run social discount rates, his analysis focussed on evaluating exogenous, marginal, policies.

By contrast, this paper focusses on endogenous, optimal, policies. Since SCCs are calcu-

lated along optimal consumption paths they are complex functions of the distribution of

non-dogmatic planners’ preferences, and of the variation in the stochastic trajectory of the

1The intuition that non-dogmatism will reduce disagreements on the SCC often holds, but is not correct
in general. This is a consequence of the fact that there is a many-to-one mapping between conventional
(i.e., dogmatic) social time preferences and a given value of the SCC. Consider two dogmatic planners
with different preferences who happen to agree on the SCC. If we then require these planners to be a little
non-dogmatic, this will introduce novel variation across their social discount rates at shorter maturities.
This will drive their a priori identical SCC values apart – non-dogmatism increases disagreement in this
case. Assessing the effect of non-dogmatism on the SCC is thus a fundamentally empirical question that
requires a detailed calibrated model.
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economy associated with that distribution. A new modelling approach is thus required

in order to assess the consequences of non-dogmatism for endogenous policy choices, and

disagreements about the SCC.

Operationalising the formalism developed in Millner (2020) in a fully optimising climate-

economy model raises several challenges. First, the formalism developed in Millner (2020)

must be generalised to a model of preferences over state-contingent consumption plans;

this is a non-trivial extension, as we discuss below. Second, since non-dogmatic plan-

ners’ preferences may change over time one might expect them to be time inconsistent,

potentially complicating the computation of equilibrium policies. We show however that

the Millner (2020) model admits preference changes with time consistency, and thus focus

our attention on the time consistent version of the model. Third, since climate-economy

models usually have a number of endogenous state variables, and future preferences are

uncertain in the non-dogmatic paradigm, curse of dimensionality problems familiar from

numerical stochastic-dynamic optimisation raise their head. Fourth, since we need to solve

the model repeatedly from the perspective of many different non-dogmatic planners, the

computational demands multiply. We show that these last two computational difficulties

can be overcome with judicious simplifications of the problem.

Related literature

Disagreements about social time preferences are at the heart of the extensive debate

about optimal climate policy that followed the publication of the Stern Review on the
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Economics of Climate Change (Stern, 2008; Nordhaus, 2007; Dasgupta, 2008; Weitzman,

2007). The extent of these disagreements has been documented in a recent survey of

economists (Drupp et al., 2018). It is well known that the SCC is highly sensitive to these

disagreements (see e.g. Nordhaus, 2008; Heal & Millner, 2014; Anderson et al., 2014, and

Figure 2 below).

Alternative approaches to resolving disagreements about social time preferences in the

context of climate policy include Dietz & Matei (2016); Heal & Millner (2014). The former

paper focusses on an incomplete dominance relation (which does not admit calculations of

the SCC) in a non-optimising model, while the latter studies utilitarian aggregation of time

preferences, also in a non-optimising model. By contrast, the formalism we develop here

delivers a set of complete social preference relations, and we use this model to investigate

the effects of non-dogmatism on the distribution of SCCs in a fully optimising climate-

economy model.

The notion of ‘non-dogmatic’ social time preferences builds on and reinterprets a prior

literature in which altruistic agents internalise others’ preferences (see e.g. Ray (1987);

Saez-Marti & Weibull (2005); Galperti & Strulovici (2017), and the discussion in Millner

(2020)). Alternative approaches to dealing with disagreements about intertemporal social

preferences are explored in Gollier & Zeckhauser (2005); Feng & Ke (2018); Chambers &

Echenique (2018); Millner & Heal (2018).2 While these papers examine a variety of aggrega-

2At a high level of abstraction, the analysis of Weitzman (1998, 2001) can be seen as a precursor to
some of this work. It has some technical features in common with papers that study utilitarian aggregation
rules (Weitzman considers linear aggregation across exogenous exponentially declining discount factors),
but lacks a formal welfare analytic foundation, and delivers different results. See Freeman & Groom (2015);
Millner & Heal (2021) for further discussion.

5



tion techniques, non-dogmatism makes no attempt to aggregate preferences; disagreements

are left intact, but each planner is required to exhibit some humility when forming his/her

normative judgements. We show that this is enough to dramatically reduce disagreements

about the SCC.

2 Non-dogmatic social time preferences

We begin with a description of non-dogmatic social time preferences and their properties.

Our presentation builds on the analysis in Millner (2020), but extends it to the context of

the present paper. While Millner (2020) considers preferences over exogenous determinis-

tic consumption paths, we consider preferences over state-contingent consumption plans,

which may be endogenous. This additional complexity is necessary, as we aim to study

optimal paths in a stochastic-dynamic economy in this paper. We show that under mild

conditions the main result in Millner (2020), i.e., that all non-dogmatic planners agree

on long-run consumption discount rates, can be extended to this setting. While it has

a similar flavour, the result we prove in this section is a non-trivial extension of that in

Millner (2020). Incorporating state-dependent consumption requires us to use different

mathematical methods, and leads to a different formula for the consensus value of long-run

discount payoffs.3

The primitives of the model are a set of N normatively plausible social time preferences,

indexed by i = 1, . . . , N . The key novelty in our approach is that at each time τ , a planner

3See footnote 8 for a discussion of the differences between the results in these two papers.

6



who currently adheres to preference i admits the possibility that she may adopt preference

j at time τ + 1. Moreover, current planners anticipate this possibility, and incorporate the

preferences of future selves into their current preferences in a way we will make precise

below. Our model thus allows for the possibility of normative humility – at any given time

planners still advocate a single normative paradigm unequivocally, but they recognise the

possibility of a future change of heart, and their current preferences are constructed with

that possibility in mind. This approach allows planners to retain sovereignty over their

ethical judgements, while recognising the potential legitimacy of alternative normative

paradigms.

Let wij ≥ 0 denote the probability that a planner switches from social preference i

to j in the next time period, where we assume that
∑N

j=1wij = 1 for all i. The N × N

matrix of switching probabilities w = (wij) defines a time homogeneous Markov chain on

the set of preferences. When there is no possibility for confusion we use w to refer to the

transition matrix, and to the Markov chain itself. The physical state of the economy (e.g.,

capital, CO2) at time τ is given by a vector of state variables Sτ , and this state is assumed

to evolve according to

Sτ+1 = F (Sτ , cτ ) (1)

where F is an arbitrary continuous function, and cτ is the value of a choice variable at

time τ . For expositional simplicity we will think of cτ as a one dimensional consumption

measure; our presentation is easily extended to the case where cτ is a vector of choice

variables, at the expense of more cumbersome notation. As the model in (1) and the
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preference switching process w are both Markovian, and the preferences we will study are

history independent, the decision-relevant history of events at time τ is captured by the

ordered pair (Sτ , iτ ), where iτ ∈ {1, . . . , N} tells us which of the N preferences the planner

holds at τ . A state-contingent plan c = c(S, i) is a function with domain equal to the set

of all possible states {(S, i)} that takes values in some choice set, which may depend on

the physical state S.

Denote the preferences of a planner who adheres to theory i in physical state S by �(S,i);

these preferences rank all state-contingent plans c. We study the following representation

of planner preferences:

c �(S,i) c′ ⇐⇒ V (S,i)(c) ≥ V (S,i)(c′),

where

V (S,i)(c) = U i(c(S, i), S) + βi
N∑
j=1

wijV
(F (S,c(S,i)),j)(c) (2)

and βi ∈ (0, 1). When wij > 0 for all i, j, planners with preferences (2) will be said to be

non-dogmatic.4 We allow the utility functions U i(c, S) to depend directly on the state S,

which could include e.g. population size. Given a fixed value of the physical states Sτ at the

current time τ , the set {V (Sτ ,i)(c)}i=1,...,N is the plurality of values that our hypothesised

non-dogmatic planners assign to a plan c. Note that we use the word ‘preferences’ to

refer to the ranking of plans induced by V (Sτ ,i) for a particular value of i. The set of such

4This condition is stronger than is necessary for the result in Theorem 1 to hold, but is normatively
intuitive. See Millner (2020) for further discussion of this point.
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rankings is referred to as the ‘set of non-dogmatic preferences’.

The interpretation of the preference representation in (2) is as follows: a planner who

advocates normative theory i in physical state S favours her own idiosyncratic theory of

intertemporal social welfare V (S,i), associated with the utility function U i(·), the discount

factor βi, and the weights wij. However, this planner admits the possibility that her

normative views may change in the next period; she believes that her future self at time

τ + 1 will advocate theory j with probability wij. The planner is non-dogmatic – she

internalises the possible preferences of the self at time τ + 1 into her current preferences,

i.e., current welfare depends directly on the welfare measure that a future self may advocate.

Finally, non-dogmatism is persistent: planners are always non-dogmatic – they never rule

out the possibility of a future switch to another plausible normative theory of social welfare.

Preference internalisation and persistence together yield a recursive preference system in

which current preferences depend on future preferences, each of which is in turn recursively

defined.

Let (x, c) denote a plan that chooses x in the current state, followed by the continuation

of plan c in future states. We say that a set of non-dogmatic preferences is time consistent

if for all states (S, i), all current choices x, and all plans c, c′,

(x, c) �(S,i) (x, c′) ⇐⇒ ∀j ∈ {1, . . . , N} c �(F (S,x),j) c′. (3)

It is straightforward to verify by inspection that, although the model in (2) allows for the

possibility that utility functions and discount factors may change over time, preferences
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over state-contingent plans are nevertheless time consistent. This follows since current

values V (Sτ ,iτ ) are increasing functions of future values V (Sτ+1,iτ+1). Millner (2020) considers

a more general model of non-dogmatic preferences, where values at τ may depend not just

on future values at τ + 1, but also on values adopted at τ + 2, τ + 3, . . .. In Appendix A we

show that the model in (2) is the only such model that is time consistent. Time consistency

is an attractive normative property of preferences, and also significantly simplifies the

analysis of equilibrium policies. In addition, the model in (2) has the desirable feature

that it reduces to a set of standard exponential discounted utilitarian time preferences

when wij = 0 for j 6= i. Thus (2) is a natural generalisation of the social preferences that

are commonly used in models of optimal climate policy, including the DICE model that

will be the focus of our numerical work. For these reasons, we focus on the time consistent

model in this paper.

Given a consumption plan c = c(S, i), the Markov chain w on the set of preferences

induces a Markov process on the full state space. The transition function for this process

is

T (S ′, j|S, i) = wijδ(S
′ − F (S, c(S, i))) (4)

where δ(·) is the Dirac delta function,5 and
∑

j

∫
T (S ′, j|S, i)dS ′ = 1 for all i. We say

that a pair (c,w) is ergodic if the Markov process it induces in (4) has a unique globally

5In one dimension the Dirac delta function is defined by δ(x) = 0 for x 6= 0, and
∫∞
−∞ δ(x)dx = 1,

with the obvious generalisation to higher dimensions. We use the Dirac delta function, rather than simply
defining the transition function piecewise, since in the t→∞ limit we will need to integrate over S.
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asymptotically stable stationary distribution, which we denote by p∞(S, i). When this is

the case the long-run distribution of states that the Markov process (4) visits is independent

of the initial state. We will discuss when this occurs in equilibrium below. When it exists,

the expected value of a function h(S, i) with respect to the stationary distribution on state

space will be denoted by E∞h(S, i).6

Given an initial state (Sτ , iτ ), define a trajectory of the dynamical system in (4) as any

sequence {(Sτ+t, iτ+t)}t=0,...,∞, where for each time τ + t, (Sτ+t+1, iτ+t+1) is in the support

of the transition function T (S ′, i|Sτ+t, iτ+t) in (4). We will denote a generic trajectory by

χ. It is convenient for what follows to write preferences (2) in terms of expectations over

trajectories. The value of a trajectory χ = {(Sτ+t, iτ+t)}t=0,...,∞ is defined recursively as

V (Sτ ,iτ )
χ (c) = U iτ (c(Sτ , iτ ), Sτ ) + βiτV (Sτ+1,iτ+1)

χ (c). (5)

This is the value planner iτ would obtain if she knew for sure that the trajectory of the

economy, and future preferences, would be χ. Clearly we have

V (Sτ ,iτ )(c) = Eχ|(Sτ ,iτ )V
(Sτ ,iτ )
χ (c)

where the expectation Eχ|(Sτ ,iτ ) is taken with respect to the measure on the space of tra-

6Note that the variables in (4) may be measured in efficiency units. For notational simplicity we
don’t draw an explicit distinction between the consumption variable that enters the state equation (which
may be in efficiency units) and the consumption variable that enters the utility function (i.e., per capita
consumption). Our main results below apply to all cases by allowing for an arbitrary growth process for
per capita consumption in the stationary distribution.
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jectories induced by the transition probability law (4), given the initial condition (Sτ , iτ ).
7

Denote the consumption variable at maturity t along trajectory χ by cχt . We define the

consumption discount rate at maturity t along χ as

r(t|χ) =

 ∂V
(Sτ ,iτ )
χ

∂cχt

∣∣∣
χ

∂V
(Sτ ,iτ )
χ

∂cχ0

∣∣∣
χ


− 1
t

− 1. (6)

Consider a marginal project πππ with consumption payoffs π(S ′, j) in state (S ′, j), and let

πχt be this project’s payoffs at maturity t along a trajectory χ. The project is welfare

improving according to the planner at time τ if and only if

Eχ|(Sτ ,iτ )

∞∑
t=0

(1 + r(t|χ))−tπχt > 0. (7)

We denote the expected present value of this project at maturity t, according to a planner

who currently advocates theory i in state S, by

∆πππ(t|S, i) = Eχ|(S,i)(1 + r(t|χ))−tπχt

where the expectation Eχ|(S,i) is over all trajectories that emanate from the initial state

(S, i).

We are interested in the dependence of ∆πππ(t|S, i) on the initial state (S, i) at large

maturities, i.e., as t→∞. To simplify the exposition we make two additional assumptions.

7See Section 8.2 of Stokey et al. (1989) for a detailed discussion of how this measure is constructed.
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First, we specialise to the case where social utility functions are classical utilitarian and

iso-elastic in consumption – we maintain these assumptions in our numerical work below.

Denoting population size by P , and assuming that utility U i(c, S) depends on the vector

of physical states S only through P , this assumption amounts to:

U i(c, P ) = P ×


c1−η

i

1−ηi ηi ≥ 0, ηi 6= 1

ln c ηi = 1.

(8)

Second, we assume that project payoffs πππ depend on the physical states S, but not on the

preferences j of the planner, i.e., πππ = π(S). For all practical purposes this assumption is

without loss of generality, since cost-benefit analysis assumes that projects are marginal,

and hence exogenous to planners’ actions. For the sake of completeness we examine the

case where project payoffs depend on j in Appendix B.

Denote population and 1-period pure time discount factors at maturity t along a tra-

jectory χ by P χ
t , and βχt respectively. We also define

λχt =
P χ
t

P χ
t−1

− 1,

gχt =
cχt
cχt−1

− 1,

ρχt = (βχt−1)−1 − 1

for t ≥ 1. λχt is the 1-period growth rate of population, gχt the 1-period growth rate of

consumption, and ρχt the 1-period pure time discount rate at maturity t along trajectory
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χ. Generic values of these quantities in a sequential pair of states {(S, i), (F (S, c(S, i)), j)}

will be denoted by λ̃, g̃, and ρ̃ respectively.

The main result of this section is as follows:

Theorem 1. Suppose that preferences are given by (2) and (8) and that the Markov process

(4) induced by the pair (c,w) is ergodic. In addition, assume that there exists ε > 0 such

that cχt > ε for all trajectories χ that emanate from an initial state (S, i). For a fixed value

of ηj, define

r̂(j) = exp

(
E∞ log

[
(1 + ρ̃)(1 + g̃)η

j

1 + λ̃

])
− 1, (9)

and let

r̂ = min
j
r̂(j). (10)

Then for any marginal project πππ with bounded payoffs π(S) in state S,

lim
t→∞

∆πππ(t|S, i)
(1 + r̂)−tE∞π(S ′)

= 1. (11)

Proof. See Appendix B.

Let’s unpack this result. The limiting formula in (11) says that, regardless of the initial

state S and the planner’s preference i, the long-run present value of a marginal project is

approximately

(1 + r̂)−tE∞π(S ′),

14



where this approximation becomes exact as t → ∞. The expectation E∞ is taken with

respect to the stationary distribution on the physical state space, i.e.
∑N

j′=1 p∞(S ′, j′),

which crucially does not depend on the initial state (S, i). Thus, cost-benefit analysis of

long-run payoffs does not depend on which of the N social preferences a planner advocates

in the current period. Whatever their normative proclivities, all non-dogmatic planners

agree on the value of long-run payoffs.

To understand the expression for the ‘consensus’ long-run discount rate r̂ implied by (9–

10), notice that when the random variables g̃, λ̃, ρ̃ are all small in magnitude this quantity

is well approximated by

r̂ ≈ E∞ρ̃− E∞λ̃+ min
j

{
ηjE∞g̃

}
.

This is a standard Ramsey formula. The first term is the long-run average pure rate of

social time preference. This term simply reflects the average of 1-period pure time discount

factors along an arbitrary trajectory of the economy. Since the economy is ergodic (by

assumption), time averages across almost all trajectories converge to expectations over

state space computed with the stationary distribution. The second term is very similar

– it reflects long-run average population growth, which is again computed by taking a

stationary expectation over population growth rates. Finally, the third term represents a

standard consumption smoothing effect, which in this case depends on the long-run average

consumption growth rate and an extreme value of ηj. Only the lowest (highest) value of the

elasticity of marginal utility is relevant in the t→∞ limit, since marginal utility declines
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(increases) slowest (fastest) for this value when E∞g̃ is positive (negative).8

The proof of Theorem 1 proceeds by using the properties of ergodic dynamical systems

to show that, regardless of which initial condition (S0, i) prevails, the distribution of long-

run discount rates that arises from the stochastic trajectories of the economy is the same.

It is then a relatively straightforward matter to show that this implies that a single discount

rate dominates the computation of long-run present values. It will be important for what

follows to keep this distinction between long-run discount rates, and long-run present values

clear. Under the conditions of Theorem 1 long-run discount rates (i.e., r(t|χ) for large t)

have a common distribution across planners, but do not converge to a single value. By

contrast, long-run present values depend on an expectation over discount factors, and

may be computed using the single value r̂ in (10). In essence, this occurs because long-

run present values can by shown to depend on an expected discount factor of the form

Ej(1+r̂(j))−t ∼t→∞ (1+minj r̂(j))
−t, where the expectation Ej is over the same distribution

for the discount rates r̂(j) for all non-dogmatic planners. Appendix B provides formal

details of these points.

8The formula in (10) is subtly different from that in Millner (2020). In Millner (2020) the consensus
long-run pure rate of time preference is related to the largest eigenvalue of a matrix of intertemporal
weights, whereas here we have an expectation over a stationary distribution. The reason for this differ-
ence is that consumption is not state contingent in Millner (2020), and hence the physical state space
is degenerate; all trajectories of the Markov chain w map to the same future consumption variables. In
that setting one must take expectations over all trajectories of length t when computing the discount rate
associated with consumption at maturity t. This expectation is computed by exponentiating a matrix of
intertemporal weights, an operation that is dominated by the largest eigenvalue of the underlying matrix
at large maturities. By contrast, in the current model future consumption values along different trajecto-
ries are generically unique, since they correspond to different paths on the physical state space. We thus
don’t need to take expectations over many trajectories that end up in the same place when computing
state-contingent discount rates in the current model. Assuming ergodicity, almost all trajectories in our
model have the same statistics at large maturities, given by the stationary distribution. Hence the presence
of the stationary expectation in (10).
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A condition of Theorem 1 is that the Markov process on state space induced by the

pair (c,w) in (4) is ergodic. When does this occur? The most relevant case to consider for

our normative analysis is when the state-contingent plan c is optimal, given preferences

(2) and the physical state equations (1). In this case the conditions for ergodicity have

been studied in a classic contribution by Hopenhayn & Prescott (1992), with more recent

extensions to non-compact state spaces by Kamihigashi & Stachurski (2014).9 When the

elements of the transition matrix w are strictly positive these conditions are quite mild,

and are satisfied in many common economic environments, including models of economic

growth of the kind we study below. A detailed presentation of these conditions is beyond

the scope of the present paper – we refer the reader to the literature for details. Rather

than studying ergodicity analytically in the abstract, we’ll examine it numerically in our

applied model below.

Equation (7) indicates that the fact that non-dogmatic planners may agree on the

present value of long-run projects could have especially significant consequences for dis-

agreements about the merits of policies with long-run effects, climate policy being an

archetypal example. We turn to this application of the theory next.

3 Application in a DICE-like model

In order to illustrate the implications of non-dogmatic time preferences for disagreements

about the SCC, we investigate their implications in a version of the DICE integrated

9See also Stokey et al. (1989); Ljungqvist & Sargent (2004) for textbook discussions of ergodicity and
its many applications in economics.
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assessment model of climate policy (Nordhaus, 2017). DICE combines a Ramsey-style

growth model with a dynamical climate module. The climate module quantifies the CO2

emissions intensity of economic output, how emissions accumulate in the atmosphere, how

the stock of CO2 changes global average temperatures, and finally how those temperature

changes feed back into the economy via climate change damages. DICE is arguably the

simplest and most widely used model in climate economics, and has been used in a variety

of high-profile policy applications.

The standard version of the DICE model is deterministic. It has 6 endogenous state

variables (capital, two temperature variables, and three carbon cycle variables), 2 control

variables (savings and the emissions control rate), and relies on several exogenous time

series (for TFP, population, non-CO2 forcings, and mitigation costs). DICE uses a dis-

counted utilitarian social welfare function with an iso-elastic utility function to measure

intertemporal social welfare:

V DICE
τ = Pτ

c1−η
τ

1− η
+ βV DICE

τ+1 =
1

1− η

∞∑
s=0

Pτ+sβ
sc1−η
τ+s, (12)

where Pτ is population, cτ is per capita consumption, η ≥ 0 is the elasticity of marginal

utility, and β = (1 + ρ)−1, where ρ > 0 is the pure rate of social time preference. The

parameters ρ and η capture social impatience and aversion to intertemporal consumption

inequalities respectively. Our object is to provide a counterfactual analysis of the SCC that

preserves much of the standard structure of the DICE model, but allows us to investigate

how non-dogmatism might reduce disagreement amongst planners who favour different
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values of ρ and η . While there are other normative choices in the model that could be

interrogated (e.g. its treatment of population ethics and uncertainty (Fleurbaey et al.,

2018)), much of the debate in the literature has focussed on these two parameters. As

our goal is to demonstrate the consequences of non-dogmatism in a well-known benchmark

model, we make minimal changes to the DICE framework itself.

In order to bring the non-dogmatic preferences (2) into contact with the DICE model

in a computationally tractable manner, we make simplifying assumptions on the set of

planner preferences we consider, and on how to model the climate system. We describe

these simplifications in turn. Full details of the model we use are available in Appendix C

3.1 Calibrating preferences

To implement (2) in a quantitative application we need to calibrate preferences to a sample

of plausible normative theories of intertemporal social welfare. We follow Millner (2020),

who calibrates the model to data from a survey of economists who have published papers

on social discounting (Drupp et al., 2018). The survey elicited 173 respondents’ views on

the appropriate values of the parameters ρ and η of the discounted utilitarian intertemporal

welfare function in (12). To demonstrate how non-dogmatism reduces disagreements about

the SCC, we need to solve non-dogmatic versions of the DICE model for each of these

parameter values. That is, we run many versions of the DICE model assuming that a

different planner is in complete control of policy in each run; however, each planner is

non-dogmatic.
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In the version of the model used by Millner (2020) non-dogmatic planners are assumed

to have symmetric switching probabilities wij that take the following form:

wij =


1− x j = i

x
N−1

j 6= i

(13)

Thus, planners stick to their current theory in the next period with probability 1 − x ∈

[1/N, 1]. Conditional on switching (which occurs with probability x ∈ [0, 1 − 1/N ]), they

switch to any of the plausible alternative normative theories with equal probability. The

variable x thus measures the ‘degree’ of non-dogmatism. Note that this model does not

imply that switching probabilities are uniformly distributed over the space of possible

preferences. Regions of (ρ, η) space that are more common in our sample will be switched

to more often, on average, than sparsely populated regions. In the dogmatic case where

x = 0, the preferences in (2) coincide with the standard discounted utilitarian preferences

in (12).

A direct implementation of this calibration methodology leads to 173 different intertem-

poral optimization problems, and 173 different value functions on the space of physical

state variables that must be solved for in each time step of the model.10 Since this problem

is prohibitively costly to implement computationally, we simplify the dataset. We use a

k-means clustering algorithm to assign each data point in the sample of (ρ, η) pairs to

10Since we work with a finite horizon model, value functions depend explicitly on time. One could
alternatively think of this problem as solving for a single (time dependent) value function that depends
on the state (S, i), rather than N value functions that depend on S, but the numerical difficulties are of
course the same in this framing.
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one of M � 173 clusters, in such a way that the within cluster variance is minimised.

All points within a cluster are identified with the centroid of that cluster, and a weight

mi =
# points in cluster i

N
is assigned to cluster i. The switching probabilities between

clusters, denoted wCij , are then assumed to be proportional to their weight, so that the

uniform switching probabilities at the individual level in (13) are reflected at the level of

clusters:

wCij =


1− x+ xmi j = i

xmj j 6= i

. (14)

Figure 1 illustrates the dataset, and its partition into 10 clusters. Our main analysis

works with these preference clusters, and uses the formula in (14) to define the switching

probabilities wij. In Appendix E we present results for a different specification of the

switching probabilities in which planners are more likely to switch to an alternative theory

that is ‘close’ to their current preferred theory; the results are qualitatively similar in this

case.

3.2 Simplifying the climate dynamics

Our second simplification relates to the way DICE represents climate dynamics, i.e., the

relationship between CO2 emissions and temperature change. As we observed above, DICE

uses 5 state variables to represent the climate system. The climate model in DICE builds on

an early simple climate model (Schneider & Thompson, 1981), which aimed to represent the

lags between emissions and warming that were thought to occur because of the dynamics

of heat transfer between the atmosphere and the oceans (Nordhaus & Boyer, 2000). More
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Figure 1: Recommended values for the pair of parameters (ρ, η) from the Drupp et al.
(2018) survey. Points with the same colour are assigned to the same cluster by a k-means
clustering algorithm, and cluster centroids are marked with a cross. Ten clusters are used
in this example. Note that cluster sizes are not fully represented in this figure as there
may be several data points at the same value of (ρ, η).



recent work with sophisticated earth system models has however shown that the inertia

in the climate system as represented in DICE is overstated, largely because it neglects

feedbacks in the climate system, and the saturation of carbon sinks in particular. To a

very good approximation over time scales of a century or more, emitting a ton of CO2

causes an almost immediate,11 permanent, increase in temperature that is independent of

initial CO2 concentrations (Matthews et al., 2009; Ricke & Caldeira, 2014). With the 10

year time step that DICE uses, the relationship between temperature Tτ and emissions eτ

in successive time steps is very well approximated by:

Tτ+1 − Tτ = µeτ

for some µ > 0. Summing this relationship, we find

Tτ − T0 = µ
τ∑
t=0

et.

The Intergovernmental Panel on Climate Change’s central estimate is that 1 trillion tons of

CO2 emissions will cause approximately 2◦C of warming (Collins et al., 2013) – this allows

us to calibrate the value of µ. Dietz & Venmans (2019) provide a valuable discussion of the

scientific literature that demonstrates the linear relationship between temperature change

and cumulative emissions, and of the deficiencies of the climate model in DICE on this

11Peak warming after an emissions pulse occurs after about 10 years in modern earth system models.
The falloff in temperature response after the peak is very small over a period of 100 years (Ricke & Caldeira,
2014). Dietz & Venmans (2019) consider a simple two state model that allows one to fit the short-run
peak in the temperature response curve, but show that such a model is virtually indistinguishable from a
one state model in which warming is immediate.

23



dimension.

Using this simple ‘cumulative carbon’ model of the climate system allows us to reduce

the number of climatic state variables in DICE from five down to one – cumulative CO2

emissions. Although this is undeniably a simplification of reality, this model is more

representative of the state of the art in climate science than the more complex climate

model that DICE employs.

3.3 Numerics

Other than the changes to the climate model and social time preferences described above,

the version of the DICE model we work with is virtually identical to that in Nordhaus

(2017).12 Given our simplifications, the model depends on the pair of physical state vari-

ables Sτ = (Kτ ,CO2,τ ), where Kτ is the capital stock, and CO2,τ is cumulative carbon

dioxide emissions. Letting Zτ denote the pair of controls (i.e., consumption and the emis-

sions control rate) at time τ , our modified DICE model can now be written as a set of

equations of motion of the form:

Sτ+1 = H(Sτ , Zτ , τ).

These equations depend explicitly on time τ through the exogenous time series in the DICE

model, although all these time series tend to constant steady state values at large times.

12There are two other minor differences. We do not include exogenous non-CO2 forcings – these have
only small effects on the SCC. In addition, unlike the version of DICE in Nordhaus (2017), we constrain
the emissions control rate to lie in [0,1].
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The model can now be solved using methods from numerical stochastic dynamic program-

ming (see Appendix D for further details). Formally, we find numerical approximations to

the M time dependent functions of S, {Vτ (S, i)}i=1,...,M , defined through

Vτ (S, i) = max
Z

PτU
i(Z) +

1

1 + ρi

M∑
j=1

wCijVτ+1(H(S,Z, τ), j).

The SCC is the welfare cost of an additional ton of CO2 emissions in consumption units.

According to planner i at time τ in state Sτ , the SCC is given by13

SCCτ (Sτ , i) =

∣∣∣∣∂Vτ (S, i)/∂CO2|Sτ
∂Vτ (S, i)/∂K|Sτ

∣∣∣∣ . (15)

Each run of the model with a different planner ‘in charge’ starts out with the same initial

values of the state variables S0. In the initial period τ = 0 the SCC is a single number

for each planner. However, the trajectories of state variables from τ = 1 onwards are

endogenous to planners’ preferences, and stochastic (due to the possibility of a change in

preferences). Thus SCCs for τ ≥ 1 are random variables, which are computed at different

values of Sτ for each planner.

4 Results

Our first main result – Figure 2 below – plots the distribution of SCCs in the initial period

of the model as a function of the ‘non-dogmatism’ parameter x in (14). We work with

13To facilitate comparison to Nordhaus (2017) the units of our SCC are 2010$/tCO2. Multiply by 44/12
to convert to 2010$/tC.

25



data1

data2

data3

data4

data5

data6

data7

data8

data9

data10

0 1.25 2.5 5 10

Non-dogmatism parameter x (%/yr)

S
o

c
ia

l 
C

o
s
t 

o
f 

C
a

rb
o

n
 (

2
0

1
0

$
/t

C
O

2
)

0

50

100

150

 = 0.3%,  = 1.0

 = 0.2%,  = 1.8

 = 2.3%,  = 0.8

 = 0.4%,  = 0.4

 = 1.5%,  = 1.8

 = 0.6%,  = 2.9

 = 4.4%,  = 0.7

 = 0.8%,  = 4.7

 = 7.5%,  = 0.8

 = 6.0%,  = 4.0

450

500

Figure 2: SCCs in the initial model year (2015) as a function of the degree of non-
dogmatism. Marker sizes are proportional to cluster sizes.

the values x = {0, 1.25%, 2.5%, 5%, 10%}/yr, which correspond to a change in normative

views once every {∞, 80, 40, 20, 10} years on average. We take the value x = 2.5%/yr as a

reasonable baseline specification, and present some results in more detail in this case. Even

for this arguably conservative value of x non-dogmatism gives rise to a dramatic reduction

in disagreement about the SCC. Dogmatic SCCs (x = 0) fall in the range 3-459$/tCO2,

while non-dogmatic SCCs fall in the range 27-126$/tCO2 when x = 2.5%/yr, a 4.6-fold

reduction in disagreement. For x = 10%/yr, the range of SCCs shrinks to 46-96$/tCO2, a

ninefold reduction in disagreement.
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Although a lot of this reduction in disagreement comes from the planner with preference

parameters ρ = 0.4%/yr, η = 0.4, this planner represents the fourth largest cluster. While

this planner’s dogmatic SCC value is an outlier, the preference parameters that underlie

it are not. Indeed, if we exclude outliers the results become even more dramatic. To

demonstrate this, let I90(x) denote the smallest SCC interval that contains 90% of the

sample when the switching rate is x.14 This interval excludes SCC values associated with

outlying preference parameters, which in practice means the very low SCC values that

obtain due to very large values for ρ, η, or both (i.e., the yellow, dark blue, black, or light

green clusters in Figure 1). Table 1 records the values of I90(x). Excluding outliers, we

find a 7.7-fold reduction in the range of SCCs when x = 2.5%/yr, with substantially bigger

reductions in disagreement as x increases. Although our results are not driven by extreme

preferences, the fact that non-dogmatism has a very substantial effect on extreme SCCs

illustrates the value of a little normative humility in the context of the climate debate,

or conversely, how inflexible adherence to a dogmatic normative paradigm can hold up

agreement.

To begin to understand the results in Figure 2, note that while all non-dogmatic plan-

ners agree on the social cost of marginal climate damages in the distant future (under the

conditions of Theorem 1), the SCC sums discounted marginal damages over all maturities.

Non-dogmatic planners’ discount rates still differ at shorter maturities, so they do not fully

agree on the SCC, even for high values of the switching rate x.15

14In detail, let Ω be an arbitrary subset of cluster indices such that
∑
i∈Ωmi ≥ 0.9, and let SCCi[x] be

the initial SCC in cluster i when the non-dogmatism parameter is x. Let Ω∗ = argminΩ(max{SCCi[x]|i ∈
Ω} −min{SCCi[x]|i ∈ Ω}). Then we define I90(x) = [min{SCCi[x]|i ∈ Ω∗},max{SCCi[x]|i ∈ Ω∗}].

15As we use a 10 year time step, even with an annual switching rate of 100% a planner’s preferences
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Table 1: Reduction in disagreement excluding outlying 10% of sample

x (%/yr) I90(x) (2010$/tCO2) |I90(0)|/|I90(x)|

0 13-459 1

1.25 61-166 4.2

2.5 68-126 7.7

5 72-105 13.6

10 76-96 22.4

Consider the case x = 10%/yr in Figure 2; this case represents rapid mixing of prefer-

ences over time. SCCs in this case are broadly ordered by the pure rate of time preference

(ρ): planners with a low ρ have a high SCC, while planners with a high ρ have lower SCCs.

Notice that SCC values for the low ρ planners are clustered close together. These planners

put a lot of weight on the long run, and they also agree on how to value long-run marginal

payoffs; this gives rise to substantial agreement on the SCC. The high ρ planners are more

separated from each other. They regard short-run outcomes as more important, and they

also disagree about the value of these short-run outcomes.

Now consider lower values of the switching probability x, e.g. x = 1.25%/yr or 2.5%/yr.

The low ρ planners’ SCC values still exhibit significant convergence in these cases. This

is again because they put a lot of weight on the long run, where they agree on how to

value marginal payoffs. In effect, low ρ planners ‘see’ more of the temporal region where

preferences (and hence discount rates) are well mixed.

change only after 10 years. This can also limit our estimates of the convergence of SCCs, especially for
high switching rates.
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Notice that the ranking of the SCCs of two planners may reverse when x is increased

from zero. A planner with a low ρ but a high η may have a high consumption discount

rate when they are dogmatic;16 their corresponding SCC may be well below that of a

planner with a higher ρ but lower η. But with even a modest degree of non-dogmatism,

a planner with a low ρ puts a lot of weight on distant future times where preferences

are well mixed, and where, by Theorem 1, the lowest value of η dominates present value

calculations (assuming positive expected consumption growth). Such a planner’s SCC may

thus increase substantially when x is increased from zero. By contrast, a high ρ and low η

planner places less weight on the distant future where preferences are well mixed, and her

‘effective’ long-run value of η also has less far to fall when x is increased from zero. This

results in a more modest adjustment of her SCC. Non-dogmatism also affects planners’

expected values of η in the medium run. A modest increase in x from zero leads high η

planners to account for the possibility of a switch to a more linear utility function in the

medium run. Their response is to save more, including in terms of ‘natural capital’ (i.e., the

CO2 stock). Thus, planners with above average η (red, pink, light green and dark green)

see a sharper increase in their SCC with the introduction of non-dogmatism. Conversely,

this ‘medium run’ effect of non-dogmatism causes the SCC of the planner with the lowest

η (cyan) to fall: the possibility of switching implies expected medium run marginal utility

falls for this planner.

These different impacts of non-dogmatism on the ‘impatience’ and ‘consumption smooth-

16Recall that in the dogmatic case the consumption discount rate at maturity t is rt ≈ ρ + ηgt, where
gt is the average consumption growth rate at maturity t.
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ing’ aspects of preferences are further illustrated by the possible non-monotonic effect of

an increase in x on a planner’s SCC value, as occurs for the Red planner with ρ = 0.2%/yr,

η = 1.8, for example. This planner has the lowest value of ρ, and a moderately high η.

When x is increased from zero to say 1.25%/yr, Red’s SCC shoots up due the reduction

in her expected value of η in both the medium- and long-run. Since her dogmatic value

of ρ is so low, her effective impatience increases when x increases from zero, since non-

dogmatic pure time preference rates mix in other preference parameters, and converge to

a stationary average of all rates of time preference at long maturities. As x is increased

further, this mixing happens faster leading to a more substantial increase in this planner’s

effective impatience, which acts to lower her SCC. This effect works against the reduction

in her effective η, which is the dominant contributor to the initial increase in her SCC. The

interaction of these two opposing effects leads to the non-monotonic behaviour we see in

Figure 2 for this planner. The fact that non-dogmatism may have these different impacts

on impatience and consumption smoothing motives leads to ambiguity in the magnitude

of the effect of non-dogmatism on SCC estimates for different planners. We investigate

this in more detail below.

Of course, the previous discussion is premised on the conditions of Theorem 1 – in

particular ergodicity – being approximately satisfied in our numerical model. To investigate

this, as well as the differential impact of non-dogmatism on planners’ impatience and

propensity to smooth consumption, it is useful to rewrite our expression (15) for the SCC.

The SCC is the current value of a small change in cumulative CO2 emissions. A small

change in cumulative emissions can be thought of as leaving the set of trajectories that
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the economy may follow undisturbed, but giving rise to small consumption perturbations

along those trajectories. Denote the consumption change that a kick in CO2 gives rise to

at maturity t along a trajectory χ by πχt . Then, as in (7), we can write the SCC according

to planner i as:

SCC(Sτ , i) = Eχ|(Sτ ,i)(1 + r(t|χ))−tπχt .

where the expectation is over all trajectories that emanate from (Sτ , i).

Because the consumption perturbations πχt are marginal (and hence exogenous to plan-

ner’s choices), they depend only on the trajectory of physical states {Sτ+t}t=0,...,∞; they

don’t vary across future realisations of the planner’s preferences. Thus, all the variation in

the SCC that we observe across non-dogmatic planners can be attributed to variations in

the set of trajectories that the economy follows, and the associated variation in discount

rates r(t|χ) along those trajectories. If our model is (approximately) ergodic, we should

see the statistics of these sets of trajectories converging at long maturities, irrespective

of the initial conditions. As our discussion of the proof of Theorem 1 indicated, this will

manifest in convergence of the distributions of discount rates across non-dogmatic planners

at large maturities. We can investigate whether this occurs in our model by simulating the

trajectory of the economy many times for each of the M initial values of the state (S0, i),

and plotting statistics of the distribution of discount rates r(t|χ) as a function of maturity

t. Figure 3 illustrates the results of this exercise for x = 2.5%/yr.

The vertical lines in the top panel of Figure 3 are the 90% confidence intervals for the

consumption discount rates r(t|χ), plotted at several maturities for each of the M non-
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dogmatic planners at τ = 0. The figure demonstrates several features of the model. First,

it shows that our numerical model is approximately ergodic: the distributions of non-

dogmatic planners’ consumption discount rates exhibit significant convergence at large

maturities. The main factor that prevents our model from being fully ergodic is our use of

a finite time horizon; this prevents full asymptotic mixing of trajectories on state space.17

Nevertheless, because the Markov chain w mixes preferences and optimal policies over

time, we still see substantial convergence of discount rate distributions.

The bottom panels in Figure 3 provide a decomposition of the variability in the dis-

count rates r(t|χ) into a component due to pure time preference and a component due to

consumption smoothing. Equation (20) in Appendix B shows that we can write

r(t|χ) = (1 + ρ̄t|χ)(1 +Gt|χ)(1 + λ̄t|χ)−1 − 1

≈ ρt|χ +Gt|χ − λ̄t|χ when |ρt|χ|, |Gt|χ|, |λ̄t|χ| � 1,

where we define

ρ̄t|χ =
(

Πt−1
l=0β

iχl

)− 1
t − 1, (16)

Gt|χ =

[
(ct|χ)−η

i
χ
t

c−η
i

0

]− 1
t

− 1, (17)

λ̄t|χ =

(
Pt|χ
P0

) 1
t

. (18)

17We use a finite horizon to ensure computational tractability. A second (related) factor that curtails
convergence is that because cumulative emissions don’t depreciate, our simple climate model has a long
memory of ‘transient’ past emissions. A third factor is the presence of exogenous time series for e.g.
population and TFP growth in DICE, which only approach steady state values at large maturities.
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The quantity ρ̄t|χ is the maturity t pure rate of time preference along trajectory χ. To

interpret Gt|χ choose units so that c0 = 1,18 and write ct|χ = (1 + gt|χ)t. Then we have

Gt|χ = (1 + gt|χ)η
i
χ
t − 1 ≈ ηi

χ
t gt|χ when |gt|χ| � 1.

Thus Gt|χ is the standard consumption smoothing term in the Ramsey formula for the

consumption discount rate; it reflects aversion to intertemporal consumption inequalities

along a trajectory χ. Finally λ̄t|χ is the maturity t population growth rate on trajectory χ.

Since population is exogenous in our model, this term does not vary with the trajectory χ,

and is common to all non-dogmatic planners. Population growth rates can thus be safely

neglected when explaining the variation in discount rates across planners in Figure 3.

The bottom left (right) panel of Figure 3 plots the distributions of ρ̄t|χ (Gt|χ) at sev-

eral maturities, for each of the non-dogmatic planners. Notice that these two components

of discount rates are not ordered uniformly across planners (i.e., high values of ρ̄ do not

necessarily correspond to high values of G), and they also behave differently as functions

of maturity. In particular, there is faster convergence to a common long-run distribution

in the consumption smoothing term (Gt|χ) than in the pure time preference term (ρ̄t|χ).19

This confirms our discussion above; since non-dogmatic planners exhibit substantive agree-

ment on the distribution of the consumption smoothing term Gt|χ even at relatively short

18This is without loss of generality.
19This is consistent with the findings of Millner (2020). Although this finding is contingent on empirical

details (and in particular on the endogenous consumption growth rates that prevail in our model), the
online appendix of Millner (2020) provides a qualitative discussion of why this might occur in a simplified
setting.
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maturities (e.g. 50 years), much of the divergence in their SCCs is explained by residual

disagreements about pure time preference. Nevertheless, the bottom left panel of Figure

3 shows that planners with low values of ρ exhibit much more agreement on the long-run

distribution of non-dogmatic PRSTPs than their high ρ counterparts, and they also assign

more weight to long maturities where agreement on discount rates is strongest. The out-

liers with high values of ρ (in blue, black, and yellow in the figure) exhibit more persistent

disagreement, which is still tempered at large maturities – even these planners largely agree

on the distribution of Gt|χ for large t. However, these planners place less weight on long

maturities when computing the SCC, and so their SCC values differ more even with some

non-dogmatism.

Figure 3 also helps to illustrate how reversals in the order of planners’ SCCs can occur

as x increases from zero. Consider the Pink planner with (ρ, η) = (1.5%/yr, 1.8) and the

Brown planner with (ρ, η) = (2.3%/yr, 0.8). Figure 2 shows that when x = 0 Pink has

a lower SCC than Brown, due to her larger value of η.20 But when x = 1.25%/yr, the

order of their SCCs reverses. A careful examination of Figure 3 demonstrates how this can

occur. At short maturities (i.e., t = 10), where a planner’s dogmatic views still dominate

her discount rates, the mean of Pink’s consumption discount rate distribution is above

Brown’s. But for t ≥ 50 Pink’s discount rate distribution drops below Brown’s, leading to

a higher SCC. The bottom panel of Figure 3 shows that this occurs because these planners’

values of ρ and η are not ranked uniformly, and their non-dogmatic counterparts ρ̄ and G

20For a representative consumption growth rate g ≈ 2%/yr, Pink’s discount rate is 1.5+2×1.8 = 5.1%/yr,
while Brown’s is 2.3 + 2× 0.8 = 3.9%/yr.
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have different rates of convergence to their long-run distributions.

Finally, while our discussion until now has focussed on SCCs in the initial model year,

in Figure 4 we illustrate that reductions in disagreement due to non-dogmatism may be

larger in the future. Since the trajectory of the economy in our model is stochastic, SCCs

in all except the first period are random variables. To provide an illustration of possible

future reductions in the SCC that is comparable to our analysis in Figure 2, we thus specify

a fixed reference trajectory for the economy. We take this to be the optimal path according

to a dogmatic planner whose preference parameters coincide with those used in Nordhaus

(2017). We compute SCCs at future times t, assuming that the interim evolution of the

economy until t is given by the reference trajectory. Figure 4 depicts the results of this

analysis, showing that the effects of non-dogmatism are even larger at later times along the

reference trajectory. This is due to the fact that marginal damages are larger in the future

(due to a larger economy and higher climate damages); this amplifies the importance of

discount rate disagreements for present values, and hence the SCC.

5 Conclusion

This paper presented a normative model of climate policy in which devotees of diverse

theories of intertemporal social welfare are non-dogmatic – they admit the possibility of a

change in their normative views, and internalise the preferences of possible future selves.

The model requires planners (or economists) to exhibit a little humility about their pre-

ferred framework for evaluating climate policies. Despite this, the model still allows an-
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Figure 4: SCC values along a fixed trajectory for the state variables given by the optimal
path according to a dogmatic planner with DICE preferences (ρ = 1.5%, η = 1.45). Filled
dots correspond to x = 0, open circles to x = 2.5%, and stars to x = 10%. The dashed
line marks the DICE SCC.

alysts the freedom to advocate their preferred normative theory unequivocally. Although

disagreements about contested welfare parameters – the pure rate of social time preference

and elasticity of marginal utility – remain intact, planners who embrace non-dogmatism

will exhibit significantly less disagreement about the SCC. Disagreements reduce by almost

a factor of five if planners admit the possibility of a change in views once every forty years,

and substantially more if they are more non-dogmatic. While non-dogmatism cannot de-

liver a universally acknowledged ‘best’ value of the SCC, it can focus policy evaluation on

a much narrower range of values, which nevertheless reflects a plurality of normative views.

This can hopefully help to move the debate on optimal climate policy past ethics, and on
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to practicalities.
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A Time consistency

Since non-dogmatic planners’ preferred discount factors may change over time, intuition

might suggest that their preferences are necessarily time inconsistent. However, this is not

the case. We illustrate this in the context of the more general model of non-dogmatic social

time preferences in Millner (2020). Millner (2020) considers preferences over deterministic

consumption streams; we extend these to preferences over state-contingent consumption

plans. It is perhaps easiest to make the link between preferences over deterministic and

state-contingent plans by using trajectory-specific value functions similar to those in (5)

as an intermediate step. Given a deterministic trajectory χ = {(Sτ , iτ )}τ=0,...,∞, define

W (Sτ ,iτ )
χ (c) = U iτ (c(Sτ , iτ ), Sτ ) +

∞∑
t=1

βiτt W
(Sτ+t,iτ+t)
χ (c),

where now we have an infinite sequence of discount factors βit > 0 on future wellbeings at

all future times τ + t, for each value of i. We assume that maxi
∑∞

t=1 β
i
t < 1; this ensures

that preferences are complete on the set of bounded utility streams and increasing in all

utilities. Preferences over state contingent plans are then given by

W (Sτ ,iτ )(c) = EχW
(Sτ ,iτ )
χ (c)

= U iτ (c(Sτ , iτ ), Sτ ) +
∞∑
t=0

βiτt E(Sτ+t,iτ+t)W
(Sτ+t,iτ+t)(c), (19)

where E(Sτ+t,iτ+t) denotes an expectation over future values of the state (Sτ+t, iτ+t). The

model in (19) is a natural generalisation of that in Millner (2020). The major difference
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is that in Millner (2020) consumption does not depend on the state (S, i); in that paper

we have c(S, i) = c(t), i.e., consumption is an exogenous function of maturity t. The

expectation E(Sτ+t,iτ+t) reduces to Eiτ+t in that case, since we do not need to marginalise

over the physical states Sτ+t, although valuations of the exogenous consumption stream still

depend on the planner’s future preference iτ+t. As Millner (2020) observes, the preferences

(19) are the unique non-dogmatic preferences (i.e., preferences that internalise the values

of future selves) that are both time invariant (i.e., the utility functions U i and sequence

of discount factors βit do not depend on calendar time τ), and additively separable in time

and states of the world.

When do the preferences (19) satisfy the definition of time consistency in (3)?

Proposition 1. The preferences in (19) are time consistent if and only if βis = 0 for all

s ≥ 2, i = 1 . . . N .

Proof. Johnsen & Donaldson (1985) show that history independent and consequentialist21

preferences over state-contingent consumption plans c are time consistent iff they can be

represented by

V i
τ (x, c) = F i

τ (x, {V
j
τ+1(c)}|j ∈ Iτ+1)

where x is current consumption, c is an arbitrary state-contingent consumption plan, and

Iτ+1 indexes a set of events (preference changes in our setting) that occur at the begin-

21Preferences are consequentialist if they only depend on reachable nodes of a decision tree, i.e., they do
not depend on unrealised events or plans not carried out. They are history independent if preferences at
time τ do not depend explicitly on actions at times before τ . The preferences in (2) are consequentialist,
since current value W (Sτ ,iτ ) depends only on current consumption and future consumption in states that
are reachable with non-zero probability from (Sτ , iτ ); they do not depend on past unrealised plans or
events. Preferences are also history independent – they only depend on history indirectly through the
dependence of the consumption plan c on the state variables S.
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ning of period τ + 1. Applying this constraint on preferences to (2) yields the result, by

inspection.

Thus, although non-dogmatic planners’ utility functions and discount factors change

over time, their preferences over state-contingent plans need not be time inconsistent.

This is a direct consequence of preference internalisation: if current planners internalise

the preferences of future selves in the next time period only, their preferences satisfy a

recurrence relation that is reminiscent of a stochastic Bellman equation; they are thus

time consistent.

B Proof of Theorem 1

The proof of this result builds on the defining property of ergodic dynamical systems –

Birkhoff’s Ergodic Theorem. Given a state-contingent plan c, transition matrix w, and an

initial state (Sτ , iτ ), define a trajectory in state space as the sequence χ = {(Sτ+t, iτ+t)}t=0,...,∞,

where for each time τ + t + 1, (Sτ+t+1, iτ+t+1) is in the support of the transition function

T (S ′, i|Sτ+t, iτ+t) in (4). Birkhoff’s theorem can be stated as follows:

Theorem 2 (Birkhoff’s Ergodic Theorem). Suppose that the Markov process (4) associated

with (c,w) is ergodic, and denote its stationary distribution by p∞(S, i). Then for any

function h(S, i) on state space, and any trajectory χ = {(Sτ+t, iτ+t)}t=0,...,∞, we have

lim
t→∞

1

t

∞∑
t=0

h(Sτ+t, iτ+t) = E∞h(S, i)
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almost surely, where E∞ denotes an expectation taken with respect to p∞(S, i).

In words, ergodicity implies that time averages across trajectories are equivalent to

expectations across state space taken with the stationary distribution, for almost all tra-

jectories. See e.g. Cornfeld et al. (1982) for a proof of this theorem.

Given a trajectory χ that starts at (Sτ , iτ ), denote the t-th term of this sequence by

χt = (Sχt , i
χ
t ). In addition denote the 1-period population and consumption growth rates

at time τ + t along this trajectory by λχt and gχt respectively. Then on this trajectory we

can write population and consumption at time τ + t as

P χ
t = Πt

n=1(1 + λχn)Pτ

cχt = Πt
m=1(1 + gχm)cτ

where Pτ and cτ are population and consumption in the initial state (Sτ , iτ ). Similarly, the

discount factor that preference V (Sτ ,iτ ) in (2) places on state (Sτ+t, iτ+t) along trajectory

χ is

δχt ≡ Πt−1
l=0β

iχl ,

and the probability of being on trajectory χ at time τ + t is

zχt ≡ Πt−1
l=0wiχl ,i

χ
l+1
.

Using these definitions, the non-dogmatic preferences in (2) can be written in terms of
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sums over trajectories as follows:

V (Sτ ,iτ ) =
∞∑
t=0

∑
χ

zχt P
χ
t δ

χ
t U

iχt (cχt ),

where all trajectories χ in this sum start at (Sτ , iτ ).

Consider a trajectory χ with χt = (S, j), i.e., (S, j) is the state χ reaches at time τ + t.

The consumption discount rate that is applied to this state, given χ, is

rχ(t|S, j) =

(
P χ
t δ

χ
t (U j)′(c(S, j))

Pτc
−ηi

χ
τ

τ

)− 1
t

− 1

=

(
[Πt

n=1(1 + λχn)Pτ ][Π
t−1
l=0β

iχτ+l ](Πt
m=1(1 + gχm)cτ )

−ηj

Pτc
−ηi

χ
0

τ

)− 1
t

− 1. (20)

We are interested in limt→∞ r
χ(t|Sτ+t, j). We use Birkhoff’s theorem to evaluate this

limit as follows:

log [rχ(t|S, j) + 1] = −1

t

(
t∑

n=1

log(1 + λχn) +
t−1∑
l=0

log βi
χ
τ+l −

t∑
m=1

ηj log(1 + gχm)

)

− 1

t

(
logPτ − ηj log cτ − logPτ + ηi log cτ

)
→t→∞ −E∞

[
log(1 + λ̃) + log(β̃)− ηj log(1 + g̃)

]

almost surely. In words, if the state (S, j) is sufficiently far in the future, the discount

rate on that state does not depend on the initial state (Sτ , iτ ), on the future value of the

physical state S, or on the trajectory χ that led to that state, almost surely. In particular,

long-run discount rates are independent of the planner’s current preferred welfare measure
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iτ . Given this result, and writing β̃ = (1 + ρ̃)−1 we define the long-run discount rate on a

distant future state (S, j) as

r̂(j) ≡ exp

(
E∞

[
log

1 + ρ̃

1 + λ̃
+ ηj log(1 + g̃)

])
− 1.

Now let us consider the ‘total’ discount rate on a state (S, j) that occurs at time τ + t,

which we denote by d(t|S, j). This is related to the probability weighted sum of discount

factors over all trajectories that have χt = (S, j), i.e.

(1 + d(t|S, j))−t =
∑

χ|χt=(S,j)

zχt (1 + rχ(t|S, j))−t

Since rχ(t|S, j) is independent of χ when t → ∞, we can factor it out of this expression

when t is large. By ergodicity, the quantity
∑

χ|χt=(S,j) z
χ
t must approach the stationary

density p∞(S, j)dS as t→∞, almost surely.22 Thus we have

(1 + d(t|S, j))−t ∼t→∞ (1 + r̂(j))−tp∞(S, j)dS

almost surely.

Consider cost benefit analysis of a project with long-run payoffs π(S, j) in a distant

state future (S, j). If marginal rates of substitution and project payoffs are bounded in

all states (as we assumed in the statement of Theorem 1 when we required consumption

to be bounded above zero), we may neglect measure zero trajectories when computing a

22This holds provided that (S, j) is in the support of p∞(S, j).
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project’s present value. Thus, according to a planner who currently advocates theory i,

the present value of these payoffs are

∫
S

∑
j

(1 + d(t|S, j))−tπ(S, j)dS →t→∞

∫
S

∑
j

(1 + r̂(j))−tπ(S, j)p∞(S, j)dS (21)

Since the discount rates r̂(j) and stationary probability distribution p∞(S, j) do not depend

on the initial state (Sτ , iτ ), all planners agree on the present value of these long-run payoffs.

To make contact between this result and the statement of the result in Theorem 1,

assume now that project payoffs depend on the physical state S but not the planner’s

preferences j, i.e., πππ = π(S). In this case we can marginalise over the physical states S in

(21) to write the right hand side of this expression as

E∞,j(1 + r̂(j))−tE∞,Sπ(S)

where E∞,j denotes an expectation over j taken with respect to the stationary marginal

distribution
∫
S
p∞(S, j)dS, and E∞,S denotes an expectation over S taken with respect to

the stationary marginal distribution
∑

j p∞(S, j).

Now it is a standard result (see e.g. Hardy et al., 1934) that

lim
t→∞

(
E∞,j(1 + r̂(j))−t

)− 1
t = min

j
{1 + r̂(j)}
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and hence in this case we can write long-run project present value as

(1 + r̂)−tE∞,Sπ(S)

where

r̂ ≡ min
j
r̂(j) = exp

(
min
j

{
E∞

[
log

(1 + ρ̃)(1 + g̃)η
j

1 + λ̃

]})
− 1.

C Details of the climate-economy model

We here detail the exact numerical model we use in the paper. We closely duplicate the

structure of DICE-2016R September 2016 (downloaded from William Nordhaus’s website).

We adjust the time period to ∆ = 10 years, instead of 5. Some of the growth rates

associated with parameters have been computed or adjusted to reflect this. We also simplify

the carbon cycle and climate module, so that surface temperature deviation in our model

depends only on cumulative carbon emissions. Finally, given the simplified climate module

in which we do not explicitly consider radiative forcing, we also omit the non-CO2 forcings.

Population. Population Pt (in billions) at time t depends on a population growth

parameter νP and the ultimate population size P∞, through:

Pt+1 = Pt(P
∞/Pt)

νP ,

νP = 1− .97164∆,

P1 = 7.403, P∞ = 11.5.
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TFP. Total factor productivity (TFP) at time t, denoted by At, grows at a declining

rate. The sequence of growth rates depends on the parameter vector νAt :

At+1 = At/(1− νAt ),

νAt = νA1 exp(−.005 ∆(t− 1)),

A1 = 5.115, νA1 = (1.0148)∆ − 1.

Climate. Temperature is given by

Tt = 2CO2,t,

in which CO2,t is the stock of cumulative carbon emissions at the beginning of period

t. The evolution of cumulative emissions depends on annual energy-related and land-use

emissions, respectively Et and Eland
t :

CO2,t+1 = CO2,t + ∆(Et + Eland
t )/1000,

in which the division by 1000 translates emissions into GtC/year.

Emissions. Energy-related annual carbon emissions are given by

Et = σt(1− µt)Ft,

where µt is the emissions control rate, and Ft is gross output (defined below). The carbon
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intensity of GDP σt grows according to

σt+1 = σt exp(νσt ∆),

νσt+1 = νσt (1− .001)∆,

σ1 =
35.85

105.5(1− .03)

12

44
, νσ1 = −.0152.

Land-use annual emissions are given exogenously by

Eland
t = Eland

1 (1− .115)
∆
5

(t−1),

Eland
1 = 2.6(12/44).

Output. The production function is Cobb-Douglas:

Ft(K,P ) = AtK
.3P .7.

where K is capital and P is population.

Net output. Output net of abatement cost and damages is

Yt(K,P, µ, T ) = (1− Ω(T )− Ξ(µ))Ft(K,P )

with climate damages (as fraction of GDP) Ω(T ) determined by

Ω(T ) = .00236 T 2,
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and abatement costs (as fraction of GDP) Ξ(µ) dependent on the rate of emission abate-

ment µ:

Ξ(µ) = θ1,tµ
2.6

. The parameter θ1,t is given by

θ1,t = (bt/1000)σt/2.6.

The sequence bt represents the time dependent marginal cost of 100% abatement, and is

given by

bt = b1(1− .005051)(t−1)∆, b1 = 550(44/12).

Multiplication by 44/12 converts the units from per tonnes of CO2 into per tonnes of

carbon.

Utility. Utility functions are isoelastic in per-capita consumption c:

U(c) =
(νuc)1−η

1− η
,

with the scaling parameter νu = 0.1.

Capital. Capital accumulation follows

Kt+1 = (1− δ)Kt + ∆(Yt − ctPt),
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with ctPt being aggregate consumption, and the depreciation factor being

δ = 1− (1− .10)∆.

The initial capital stock is K1 = 223 (trillions of dollars), and the initial cumulative

emissions CO2,1 = .5 (teratons of carbon).

D Details of the numerical solution

We solve the model using numerical stochastic dynamic programming. The model’s time

step is 10 years, the initial model year is 2015, and and the terminal period is taken to be

T = 50, corresponding to the year 2515, at which point the economy comes to an end.23

The final period value function for each type i is given by the utility of consuming all

output plus any remaining undepreciated capital. By approximating the value functions

at any t ≤ T , we can solve the problem for each type at time t−1. We iterate until t = 0.24

Value functions are approximated by Chebyshev collocation. That is, we choose a de-

gree of approximation (NK , NCO2) and approximate each value function V i,t by Ṽ i,t(K,CO2) ≡
23We could use an alternative terminal condition, for example that the economy is forced to reach a

steady state at this point. Given the DICE assumptions about TFP growth, and conservatively using the
preference parameter combination mini ρi, mini ηi, the effects due to the choice of terminal condition are
small.

24Since our model is not ratio-scale invariant in consumption (i.e., rescaling consumption values does
not leave preferences unchanged), we must pick consumption units for our simulations that give rise to
reasonable wealth effects. We don’t want to choose units that give rise to artificial large differences in
marginal utilities across types in the initial period when all planners are in an equal a priori position (i.e.,
they all start from the same initial values of the state variables). In future periods, where the values of
state variables are determined endogenously by modelled events, divergences in marginal utility across
planners are economically meaningful – they capture wealth effects across types that are consequences of
the model structure. We thus pick units so that all planners’ marginal utilities are approximately equal to
1 a priori.
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∑NK−1
j=0

∑NCO2
−1

k=0 zi,tjkζj(K)ζk(CO2), where zi,tjk is the set of NKNCO2 coefficients for type i

at time t, and ζj(·) is the Chebyshev polynomial of degree j. The value function is ap-

proximated in [K,K] × [CO2, CO2] (with the state intervals normalised to [−1, 1] for the

Chebyshev approximation itself). We compute the set of Chebyshev nodes in this region,

solve the optimisation problem of type i at time t at each node, and choose the coefficients

such that the approximation holds exactly at these nodes (Judd, 1998).

We choose NK = 24, NCO2 = 10. The problem is set up in Julia, using JuMP and the

solver IPOPT. We use tight tolerances and verify that the relative errors in the Bellman

equation are small (typically of the order of 10−4), despite the existence of a kink where

the abatement rate reaches unity (the maximal degree of abatement). The algorithm is

stable as long at the state space region is chosen large enough.

After solving for the value functions, simulation of time paths (given an initial state)

is straightforward: given a realisation of the type sequence, the optimal decision can be

calculated for each t. Social costs of carbon are calculated using the formula (15), given

our approximations for the value functions.

E Alternative specification of the switching probabil-

ities

In this section we present numerical results for an alternative specification of the switching

probabilities in (14). In the body of the paper we assumed that, conditional on switch-
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ing preferences, which occurs with probability x, each planner has a constant probability

1/(N − 1) of switching to each of the alternative normative theories. Here we adopt a

different model where planner i’s probability of switching to theory j is inversely related to

a measure d(i, j) of the ‘distance’ between their preferences. Given the preference data in

Figure 1, we use the well-known Mahalanobis metric to measure this distance. For planner

i, define a vector

qi =

 ρi

ηi


Let S be the covariance matrix of the (ρ, η) data in Figure 1. Then we define

d(i, j) =
√

(qi − qj)TS−1(qi − qj). (22)

In the case where ρ and η are uncorrelated, this distance measure reduces to a standard-

ised Euclidean distance in the (ρ, η) plane, where squared differences between the ρ (η)

component of two vectors are normalised by the variance of ρ (η) in the data. When ρ

and η are correlated, d(i, j) accounts for the fact that differences in the ρ components of

vectors are statistically related to differences in their η components (and vice versa), and

adjusts the standardisation of the Euclidean distance measure accordingly.

We then define a new transition matrix wC on the set of planner preferences as follows:

wCij =


1− x+ Aixmi j = i

Ai
xmj

1+µd(i,j)
j 6= i

(23)
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where µ > 0 is a parameter, and

Ai =

(∑
j

mj

1 + µd(i, j)

)−1

is a normalisation constant chosen so that

∑
j

wCij = 1.

Clearly, the specification in (23) reduces to that in (14) when µ = 0. In (23) with µ > 0

however, conditional on switching preferences, the probability of switching from i to j is

downweighted by a factor (1 + µd(i, j))−1, so that preferences that are further from i are

switched to less often. For the present analysis we choose the parameter µ so that

min
(i,j)

(1 + µd(i, j))−1 = 0.1

In words, the i, j pair that is furthest apart receives one tenth of the weight that a switch

from one point in preference cluster i to another point in the same cluster receives.

Figure 5 presents the results of SCC calculations for the alternative specification of the

switching matrix in (23). This figure tells a remarkably similar story to that in Figure 2,

where we used the uniform switching probabilities in (14). The upshot is that at least in this

model admitting some possibility of a switch in preferences (with probability x) matters

more for SCC calculations than precisely how preferences switch when they do. One factor

that contributes to this is that because most climate damages occur in the distant future,
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Figure 5: SCC estimates for the switching probabilities in (23).

both models of the switching process in (14) and (23) give rise to ‘well-mixed’ discount

rate distributions at the relevant maturities, and thus the short-run structure of switching

probabilities is not so important for explaining SCC calculations. Theorem 1 also indicates

a second relevant factor. Regardless of the details of the switching probabilities, long-run

present value calculations for non-dogmatic planners are dominated by the lowest value of

η (assuming positive expected consumption growth), which is of course independent of the

precise nature of the switching process. As Figure 3 indicates, the consumption smoothing

motive is a major determinant of social discount rates and SCCs, so it is significant that the

long-maturity behaviour of this component is independent of the details of the switching
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process.
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