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Abstract
Given an arrangement of subtori of arbitrary codimen-
sion in a complex torus, we compute the cohomology
groups of the complement. Then, by using the Leray
spectral sequence, we describe the multiplicative struc-
ture on the associated graded cohomology. We also pro-
vide a differential model for the cohomology ring, by
considering a toric wonderful model and its Morgan
algebra. Finally, we focus on the divisorial case, proving
a new presentation for the cohomology of toric arrange-
ments.
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2000 MOCI and PAGARIA

INTRODUCTION

The cohomology ring of the complement of an arrangement of affine hyperplanes in a complex
vector space admits a renowned combinatorial presentation in terms of the poset of intersections
of the arrangement, due to Orlik and Solomon [21]. For a toric arrangement, that is, a collection of
1-codimensional subtori in a complex algebraic torus, a similar presentationwas recently provided
by [5].
A different way of generalizing arrangements of hyperplanes is considering a family of affine

subspaces, not necessarily of codimension 1. The complement of such a subspace arrangementwas
studied by several authors (see [10, 13, 14, 17, 25, 26]; see also [2] and the bibliography therein).
In particular, Goresky and MacPherson provided the following description of the cohomology
groups.

Theorem A [17, III.1.5, Theorem A]. Let be a subspace arrangement in ℝ𝑑, and let𝑀 = ℝ𝑑 ⧵

∪ be its complement. The reduced cohomology of the complement is given by

�̃�𝑘(𝑀; ℤ) ≅
⨁
𝑊∈>0̂

�̃�cdℝ 𝑊−𝑘−2
(
Δ(0̂,𝑊); ℤ

)
,

where >0̂ is the poset of intersections  without the minimum 0̂ = ℝ𝑑, cdℝ(𝑊) is the real codimen-
sion of𝑊, and Δ(0̂,𝑊) is the order complex of the open interval (0̂,𝑊) in .

Later, De Concini and Procesi constructed in [10] a wonderful model for subspace arrange-
ments, that is, a smooth projective variety 𝑌 that contains𝑀 as an open subset whose comple-
ment is a simple normal crossing divisor. They also applied a result of Morgan [20] to present
the rational cohomology ring of𝑀 as the cohomology of a differential graded algebra explicitly
constructed from the combinatorial data only.
In 1996, Yuzvinsky simplified the differential graded algebra (see [26]) by using the order com-

plex of the poset of intersections. He also showed a connection between the results of [17] and
of [10]. A further simplification was obtained in [25] by replacing the order complex with the
atomic complex.
Yuzvinsky also conjectured an integral version of this presentation. This conjecture was proven

in [13, 14]: Deligne, Goresky, and MacPherson proved their result using diagram of spaces, de
Longueville and Schultz by showing that the isomorphism of Theorem A is canonical.
In this paper, we consider arrangements of subtori of arbitrary codimension in a complex alge-

braic torus. Given the complement of such an arrangement, we determine its cohomology groups
in terms of the poset of layers, that is, the set of connected components of intersections of subtori,
ordered by reverse inclusion.

Theorem B (Theorem 2.8). Let  be an arrangement of subtori of a torus 𝑇 and  be its poset of
layers. Then the cohomology groups of the complement𝑀 are

𝐻𝑘(𝑀; ℤ) ≅
⨁
𝑊∈

⨁
𝑝+𝑞=𝑘

𝐻𝑝(𝑊;ℤ) ⊗ℤ �̃�2 cd(𝑊)−2−𝑞(Δ(𝑇,𝑊)),

where cd(𝑊) is the complex codimension of the layer𝑊.
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ON THE COHOMOLOGY OF ARRANGEMENTS OF SUBTORI 2001

Our proof is based on a suitable embedding of a 𝑑-dimensional complex algebraic torus 𝑇 in the
Alexandroff compactification of ℂ𝑑, that is, the sphere 𝕊2𝑑. The embedding is chosen so that the
complement of𝑇 in𝕊2𝑑 does not intersect the toric subspaces; hence the arrangement decomposes
in a wedge of two simpler ones, given, respectively, by the compactifications of the coordinate
hyperplanes and of the subtori in the original arrangement (Proposition 1.4). Then we apply some
results on homotopy colimits [24], following a strategy outlined by Deshpande in [12]. In that
paper, the same result was announced, but the proof therein does not seem to be correct, as several
steps fail if the compactification is not chosen carefully.
Moreover we describe the multiplicative structure on the associated graded of the cohomol-

ogy, by using the Leray spectral sequence for the inclusion map 𝑗 ∶ 𝑀 → 𝑇. We show, by using
results of the previous section, that the second page of the spectral sequence is a finitely gener-
ated ℤ-module isomorphic to the cohomology as a module. It follows that the spectral sequence
degenerates at the second page and this gives the isomorphism

𝐸
𝑝,𝑞
2

≅ grL𝑝+𝑞 𝐻
𝑝+𝑞(𝑀; ℤ)

(Theorem 3.2).
Furthermore, we provide a model for the cohomology of 𝑀: we use the wonderful model

for toric arrangements introduced by De Concini and Gaiffi (see [7, 8]) to construct a differential
graded algebra (D, d) (Definition 4.5)whose cohomology is isomorphic to the rational cohomology
ring of the complement:

𝐻∙(D, d) ≅ 𝐻∙(𝑀𝐴;ℚ)

(Theorem 4.9). Since our methods are based on the aforementioned Morgan algebra, this d.g.a.
codifies also the rational homotopy type of the complement.
Finally we focus on the case of an arrangement of subtori of codimension 1. Given such a toric

arrangement, and chosen its maximal building set, we find a subalgebra of the Morgan model iso-
morphic to the cohomology ring. This subalgebra, explicitly presented by generators and relations
in Theorem 5.12, yields an analogue of the Orlik–Solomon algebra for toric arrangements. This
new presentation depends on the oriented arithmeticmatroid only (see [22]) and, compared to the
previous result of [5], exhibits more clearly the dependence from the orientation. Furthermore, it
seems more suitable to be generalized to arrangement of subtori of arbitrary codimensions. We
also conjecture that a similar presentation holds for cohomology with integer coefficients (Con-
jecture 5.18).

1 POSITIVE SYSTEMS AND EMBEDDING OF SUBTORI

A 𝑑-dimensional complex torus 𝑇 is an algebraic group isomorphic to (ℂ∗)𝑑. A character is a mor-
phism of algebraic groups 𝑇 → ℂ∗. The group Λ of all characters is a lattice of rank 𝑑, that is, it is
isomorphic to ℤ𝑑. A subtorus of 𝑇 is a translate of a subgroup isomorphic to (ℂ∗)𝑘, 0 ⩽ 𝑘 < 𝑑.

Definition 1.1. An arrangement of subtori is a finite collection  = {𝑆1, … , 𝑆𝑛} of subtori of 𝑇
such that 𝑆𝑖 ⊈ 𝑆𝑗 for all 𝑖 ≠ 𝑗.
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2002 MOCI and PAGARIA

We denote by𝑀 the complement of this arrangement, that is,

𝑇 ⧵ (𝑆1 ∪⋯ ∪ 𝑆𝑛).

The set of characters that are constant on a subtorus 𝑆𝑖 is a subgroup of Λ, that we denote by
Λ𝑆𝑖 . Let 𝐁 be a basis (over ℤ) of Λ and, for every 𝑖 = 1, … , 𝑛, let 𝐁𝑖 be a basis (over ℤ) of Λ𝑆𝑖 .

Definition 1.2. We say that (𝐁, 𝐁1, … , 𝐁𝑛) is a positive system if the coordinates of all the elements
of every 𝐁𝑖 in the basis 𝐁 are non-negative.

The above definition is inspired by similar (and indeed stronger) notions introduced by De
Concini and Gaiffi in [7, 8].

Lemma 1.3. Every arrangement of subtori admits a positive system.

Proof. For each 𝑆𝑖 ∈  choose a basis 𝐁𝑖 ofΛ𝑆𝑖 and a basis 𝐁 ofΛ. Consider the matrix𝐴 that rep-
resent the elements 𝑏𝑖,𝑗 ∈ 𝐁𝑖 , for 𝑖 = 1, … , 𝑛 and 𝑗 = 1,… , |𝐁𝑖| in the basis 𝐁. Hence, the columns
of the matrix are indexed by couples (𝑖, 𝑗), with 𝑖 = 1, … , 𝑛 and 𝑗 = 1,… , |𝐁𝑖|. By changing 𝑏𝑖,𝑗
with −𝑏𝑖,𝑗 we suppose that the last non-zero entry of the (𝑖, 𝑗)th column of 𝐴 is a positive integer:
we call this entry the pivot of the column. We perform a sequence of elementary row operation in
order to make 𝐴 a non-negative matrix. The columns with pivot in the first row are already non-
negative. We proceed by induction, suppose that all columns with pivot in the first 𝑘 − 1 rows are
non-negative. By adding a suitable multiple of the 𝑘th row to the previous rows, we can make all
the columns with pivot in the 𝑘th row non-negative. This operation does not change the columns
with pivot in the first 𝑘 − 1 rows. By repeating the procedure for every 𝑘 = 2,… , 𝑑, we obtain a
non-negative matrix. The elementary row operations correspond to a change of basis from 𝐁 to a
new basis 𝐁′ that form a positive system (𝐁′, 𝐁1, … , 𝐁𝑛). □

We denote by 𝕊𝑑 the 𝑑-dimensional real sphere, and by 𝑑 the Boolean arrangement, that is,
the set of the coordinate hyperplanes in ℂ𝑑.
Given a topological space 𝑋, its Alexandroff compactification 𝑋 is defined as the pointed topo-

logical space on the set 𝑋 ∪ {∞} (with base point∞) whose basis of open sets is given by the open
sets of 𝑋 and the sets (𝑋 ⧵ 𝐶) ∪ {∞}, where 𝐶 ranges over all the closed and compact sets of 𝑋.
For instance, the Alexandroff compactification of ℂ𝑑 is isomorphic to the sphere 𝕊2𝑑. The wedge
sum of two pointed topological spaces (𝑋, 𝑥), (𝑌, 𝑦) is 𝑋 ∨ 𝑌, that is, the disjoint union of 𝑋 and
𝑌 with the base points identified.

Proposition 1.4. Let be a arrangement of subtori in a 𝑑-dimensional torus 𝑇. Then there exists
an embedding𝑀 ↪ 𝕊2𝑑 such that

𝕊2𝑑 ⧵ 𝑀 = ∪̂ ∨ ∪̂𝑑.

Proof. We choose a positive system (𝐁, 𝐁1, … , 𝐁𝑛). The basis𝐁 defines an isomorphism 𝑇 ≅ (ℂ∗)𝑑,
and consider the composition

𝑀 ⊂ 𝑇 ≅ (ℂ
∗)𝑑 ⊂ ℂ𝑑 ⊂ ℂ̂𝑑 ≅ 𝕊2𝑑.
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ON THE COHOMOLOGY OF ARRANGEMENTS OF SUBTORI 2003

Note that ℂ𝑑 ⧵ 𝑀 is the disjoint union of ∪ and ∪𝑑 because the system{
𝑧
𝑛1
1
𝑧
𝑛2
2

⋯ 𝑧
𝑛𝑑
𝑑
= 𝑐

𝑧𝑗 = 0

for 𝑛𝑖 ∈ ℕ>0, 𝑐 ∈ ℂ∗, and 𝑗 ⩽ 𝑑, has no solutions. The condition of positive system ensures that
each subtorus 𝑆𝑖 ∈  is contained in a hypertorus of the form

{𝑧 ∈ (ℂ∗)𝑑 ∣ 𝑧
𝑛1
1
𝑧
𝑛2
2
… 𝑧

𝑛𝑑
𝑑
= 𝑐}

for some 𝑐 ∈ ℂ∗ and some 𝑛𝑖 ∈ ℕ, not all equal to zero. Now, 𝕊2𝑑 ⧵ 𝑀 is the Alexandroff com-
pactification of ℂ𝑑 ⧵ 𝑀, hence

𝕊2𝑑 ⧵ 𝑀 ≅
ˆℂ𝑑 ⧵𝑀 ≅ ˆ∪ ⊔ ∪𝑑 ≅ ∪̂ ∨ ∪̂𝑑. □

2 COHOMOLOGY GROUPS OF ARRANGEMENTS OF SUBTORI

Let  be a poset. We recall that the order complex Δ() is the simplicial complex whose simplices
are the totally ordered subsets of  . For any𝑊,𝐿 ∈  with𝑊 > 𝐿 we denote Δ(𝐿,𝑊) the order
complex of the sub-poset

{𝑋 ∈  ∣ 𝑊 > 𝑋 > 𝐿}.

Definition 2.1. Given two pointed CW-complexes (𝑋, 𝑥) and (𝑌, 𝑦), we define:

∙ the wedge sum 𝑋 ∨ 𝑌 as 𝑋 ⊔ 𝑌∕𝑥 ∼ 𝑦;
∙ the smash product 𝑋 ∧ 𝑌 as the topological quotient 𝑋 × 𝑌∕𝑋 ∨ 𝑌;
∙ the join 𝑋 ∗ 𝑌 as 𝑋 ∧ 𝑌 ∧ 𝕊1.

Let ̂>0 be the poset obtained from the poset of layers  by removing the minimum 0̂ = 𝑇

and adding a maximum 1̂. We think of ̂>0 as a category, having one morphism 𝑝 → 𝑞 for every
𝑝, 𝑞 ∈ ̂>0 such that 𝑝 ⩽ 𝑞.
Given a poset  , a -diagram is a functor from the category  to the category Top∗ of pointed

topological spaces.

Definition 2.2. We define two ̂>0-diagrams and  as follows.
For every object𝑊 ∈ >0,

(𝑊) = (𝑊) = 𝑊 and(1̂) = (1̂) = {∞};

for every map𝑊 > 𝐿 (𝑊 ≠ 1̂), is defined by the natural inclusions:

(𝑊 > 𝐿) = 𝑊 ↪ �̂� and(1̂ > 𝐿) = {∞} ↪ �̂�

while  by the constant maps at the point∞:

(𝑊 > 𝐿) = 𝑊 → �̂� and (1̂ > 𝐿) = {∞} → �̂�.
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2004 MOCI and PAGARIA

The colimit of a -diagram  is the union of all topological spaces (𝑝) for all 𝑝 ∈  with the
identification given by the maps between them (that is, 𝑥 = (𝑝 → 𝑞)(𝑥) for all maps 𝑝 → 𝑞 in
 and all 𝑥 ∈ (𝑝)).
The homotopy colimit of  can be constructed by replacing all the maps (𝑝 → 𝑞) with homo-

topy equivalent cofibrations and then taking the colimit of the resulting diagram.
We recall the following results of Welker, Ziegler and Živaljević:

Lemma 2.3 (Projection Lemma [24, Lemma 4.5]). Let  be a -diagram such that all maps are
inclusions and closed cofibrations. Then the natural map hcolim→ colim from the homotopy
colimit to the colimit of is a homotopy equivalence.

Lemma 2.4 (Homotopy Lemma [24, Lemma 4.6]). Let  and  be -diagrams and ℎ∶ → 

be a morphism of 𝑃-diagrams (that is, a natural transformation between the two functors). Suppose
that for all𝑊 ∈  the map ℎ𝑊 ∶ (𝑊) → (𝑊) is a homotopy equivalence, then the induced map
hcolim→ hcolim  is a homotopy equivalence.

Lemma 2.5 (Wedge Lemma [24, Lemma 4.9]). Let  be a poset with a maximal element and let 
be a -diagram. Suppose that all maps in  are constant morphisms of pointed spaces, then

hcolim  ≃
⋁
𝑝∈

(
Δ(<𝑝) ∗ (𝑝)

)
.

We now prove the following result on compactifications of subtori.

Lemma 2.6. Let be an arrangement of subtori. For each𝑊 ∈  there exists a homotopy equiva-
lence ℎ𝑊 ∶ 𝑊 → 𝑊 such that, for all 𝐿 > 𝑊, the following diagram commutes.

Proof. Consider a positive system 𝐁,𝐁𝑖 for the restricted arrangement in𝑊

𝑊 = {𝐿 ∣ 𝐿 is a connected component of 𝑆 ∩𝑊, 𝑆 ∈ },

that is, a basis 𝐁 of Λ𝑊 and a basis 𝐁𝑖 of Λ𝑆𝑖 for each atom 𝑆𝑖 ∈ 𝑊 . The basis 𝐁 gives an isomor-
phism between𝑊 and (ℂ∗)dim𝑊 . Let 𝜖 ∈ ℝ+ be theminimum of the distance between 0 ∈ ℂdim𝑊
and 𝑆𝑖 for all atoms 𝑆𝑖 ∈ 𝑊 .
Each layer 𝐿 ∈ >𝑊 of the restricted arrangement𝑊 is contained in a hypertorus

{𝑧 ∈ ℂdim𝑊 ∣ 𝑧
𝑛1
1
… 𝑧

𝑛dim𝑊
dim𝑊

= 𝑐}

for some 𝑛𝑖 ∈ ℕ and some 𝑐 ∈ ℂ∗. Hence, 𝜖 is positive and each layer 𝐿 is disjoint to the ball
𝐷𝜖 ⊂ ℂ

dim𝑊 ⊂ 𝕊2dim𝑊 of center 0 and radius 𝜖.
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ON THE COHOMOLOGY OF ARRANGEMENTS OF SUBTORI 2005

Choose a continuous, increasing and surjective function 𝑓∶ [0, 𝜖) → [0,∞) and define
ℎ̃𝑊 ∶ 𝕊

2dim𝑊 → 𝕊2dim𝑊 by

𝑥 ↦

{
𝑓(|𝑥|)𝑥 if 𝑥 ∈ 𝐷𝜖,
∞ otherwise,

where |𝑥| is the distance of 𝑥 from 0 and∞ is the unique point in 𝕊2dim𝑊 ⧵ ℂ2dim𝑊 . It easy to
see that ℎ̃𝑊 induces a homotopy equivalence ℎ𝑊 ∶ 𝑊 → 𝑊. The commutativity of the diagram
above follows from 𝐿 ∩ 𝐷𝜖 = ∅. □

The previous results now allow us to describe the Alexandroff compactification of the union of
the subtori of the arrangement.

Lemma 2.7. There exists a homotopy equivalence

∪̂ ≃
⋁

𝑤∈̂>0

(
𝑊 ∗ Δ(𝑇,𝑊)

)
.

Proof. Consider the maps ℎ𝑊 given by Lemma 2.6 and let ℎ1̂ ∶ {∞} → {∞} be the only map. These
data define a morphism ℎ∶ →  of ̂>0-diagrams. We have

∪̂ ≃ colim ≃ hcolim ≃ hcolim  ≃
⋁

𝑤∈̂>0

(
𝑊 ∗ Δ(𝑇,𝑊)

)
,

where the first isomorphism follow by the definition of colim, the others by the projection
Lemma 2.3, the homotopy Lemma 2.4 applied to ℎ, and the wedge Lemma 2.5, respectively. □

Theorem 2.8. Let be an arrangement of subtori of a torus 𝑇 and be its poset of layers. Then the
cohomology groups of the complement𝑀 are

𝐻𝑘(𝑀; ℤ) ≅
⨁
𝑊∈

⨁
𝑝+𝑞=𝑘

𝐻𝑝(𝑊;ℤ) ⊗ℤ �̃�2 cd𝑊−2−𝑞(Δ(𝑇,𝑊)).

Proof. Consider the embedding𝑀 ⊂ 𝑆
2𝑑 of such that 𝑆2𝑑 ⧵ 𝑀 = ∪̂ ∨ 𝐵𝑑, provided by Propo-

sition 1.4. We use the Alexander duality (see, for instance, [18, Theorem 3.44]) to obtain

�̃�𝑘(𝑀) ≅ �̃�2𝑑−𝑘−1(∪̂ ∨ 𝐵𝑑) ≅ �̃�2𝑑−𝑘−1(∪̂) ⊕ �̃�2𝑑−𝑘−1(𝐵𝑑).

Again Alexander duality for the embedding 𝐵𝑑 ⊂ 𝑆2𝑑 gives the isomorphism �̃�2𝑑−𝑘−1(𝐵𝑑) ≅

�̃�𝑘(𝑇). Now, Lemma 2.7 implies

�̃�2𝑑−𝑘−1(∪̂) ≅ �̃�2𝑑−𝑘−1

⎛⎜⎜⎝
⋁

𝑤∈̂>0

(
𝑊 ∗ Δ(𝑇,𝑊)

)⎞⎟⎟⎠
≅

⨁
𝑤∈̂>0

�̃�2𝑑−𝑘−1
(
𝑊 ∗ Δ(𝑇,𝑊)

)
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2006 MOCI and PAGARIA

≅
⨁
𝑤∈̂>0

�̃�2𝑑−𝑘−2
(
𝑊 ∧ Δ(𝑇,𝑊)

)
≅

⨁
𝑤∈̂>0

⨁
𝑝+𝑞=𝑘

�̃�2 dim𝑊−𝑝(𝑊) ⊗ℤ �̃�2 cd𝑊−𝑞−2(Δ(𝑇,𝑊))),

where the last isomorphism is the Kunneth isomorphism for reduced cohomology applied to the
smash product.We conclude the proof by the Poincarè duality on𝑊 betweenBorel–Moore homol-
ogy and cohomology (see [4, Theorem 9.2]):

�̃�2 dim𝑊−𝑝(𝑊) = 𝐻
𝐵𝑀
2dim𝑊−𝑝

(𝑊) ≅ 𝐻𝑝(𝑊). □

3 GRADED OF THE COHOMOLOGY RING

In this section, we study the Leray spectral sequence for the inclusion map 𝑗 ∶ 𝑀 → 𝑇 to give a
description of the graded cohomology ring grL∙ 𝐻

∙(𝑀; ℤ). We refer to [4, section 6] as a general
reference on this spectral sequence.
Let 𝑅𝑞𝑗∗ be the higher direct image functor of 𝑗. In our case, the Leray spectral sequence

𝐸
𝑝,𝑞
𝑟 ⇒ 𝐻𝑝+𝑞(𝑀; ℤ)

converges to𝐻𝑝+𝑞(𝑀𝐴;ℤ); the second page of this spectral sequence is

𝐸
𝑝,𝑞
2

= 𝐻𝑝(𝑅𝑞𝑗∗ℤ𝑀
),

where ℤ𝑀
is the constant sheaf and the Leray filtration L∙ on𝐻𝑘(𝑀; ℤ) is defined by

L𝑞 = Im
(
𝐻𝑘(𝑇; 𝜏𝑘−𝑞ℝ𝑗∗ℤ) → 𝐻𝑘(𝑇; ℝ𝑗∗ℤ) ≅ 𝐻

𝑘(𝑀; ℤ)
)
,

where 𝜏𝑘−𝑞ℝ𝑗∗ℤ is the truncation at position 𝑘 − 𝑞 of the complex ℝ𝑗∗ℤ.
For each𝑊 ∈ , let 𝜖𝑞

𝑊
be the sheaf on 𝑇 defined by

𝜖
𝑞
𝑊
= (𝑖𝑊)∗ℤ𝑊 ⊗𝑍 𝐻2cd𝑊−𝑞−2(Δ(𝑇,𝑊))

where 𝑖𝑊 is the closed embedding of𝑊 in 𝑇. We set

𝜖𝑞 =
⨁
𝑊∈

𝜖
𝑞
𝑊
.

The following lemma generalizes [1, Lemma 3.1].

Lemma 3.1. Let be an arrangement of subtori. Then

𝐸
𝑝,𝑞
2

= 𝐻𝑝(𝑅𝑞𝑗∗ℤ𝑀
) ≅

⨁
𝑊∈

𝐻𝑝(𝑊;ℤ) ⊗ �̃�2 cd𝑊−𝑞−2(Δ(𝑇,𝑊); ℤ).

Proof. First we prove that 𝜖𝑞 ≅ 𝑅𝑞𝑗∗ℤ𝑀
: for each point 𝑥 ∈ 𝑇 there exists an open set 𝑈𝑥 iso-

morphic to an open subset 𝑉𝑥 of the tangent space T𝑥 𝑇 (containing the origin). We also take a
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ON THE COHOMOLOGY OF ARRANGEMENTS OF SUBTORI 2007

neighborhood basis given for every 𝑥 ∈ 𝑇 by the inverse image of all open balls in 𝑉𝑥 centered
in 0 ∈ T𝑥 𝑇. Note that the arrangement of subtori defines a central arrangement of subspaces

[𝑥] = {T𝑥 𝑆 ∣ 𝑥 ∈ 𝑆 ∈ }

in T𝑥 𝑇 for all 𝑥 ∈ 𝑇.
We define a morphism of sheaves 𝑓∶ 𝜖𝑞 → 𝑅𝑞𝑗∗ℤ𝑀

on the neighborhood basis  as follow.
For all 𝑈 ∈  centered in 𝑥, let 𝑓(𝑈)∶ 𝜖(𝑈) → 𝑅𝑞𝑗∗ℤ(𝑈) be the composition

𝜖(𝑈) =
⨁
𝑊∋𝑥

ℤ ⊗ℤ �̃�2 cd𝑊−𝑞−2(Δ(𝑇,𝑊)) ≅ 𝐻
𝑞(𝑀[𝑥]) ≅ 𝐻

𝑞(𝑈 ∩𝑀) = 𝑅
𝑞𝑗∗ℤ(𝑈),

where the first isomorphism is given by Theorem A and the second one is given by the composi-
tion

𝑀[𝑥] ≃ 𝑉𝑥 ⧵ ∪[𝑥] ≅ 𝑈 ⧵ ∪.

Since 𝑓(𝑈) is an isomorphism for all 𝑈 ∈  then 𝑓 is an isomorphism of sheaves. Now, the iso-
morphism

𝐻𝑝(𝜖𝑞) ≅
⨁
𝑊∈

𝐻𝑝(𝑊;ℤ) ⊗ �̃�2 cd𝑊−𝑞−2(Δ(𝑇,𝑊); ℤ)

completes the proof. □

The minimum of the poset  (and of ⩽𝑊 for all 𝑊 ∈ ) is 0̂ = 𝑇. Let 𝐸𝑝,𝑞
𝑊

⊂ 𝐸
𝑝,𝑞
2

be the
ℤ−module 𝐻𝑝(𝑊;ℤ) ⊗ �̃�2 cd𝑊−𝑞−2(Δ(𝑇,𝑊); ℤ): this module depends only on the cohomology
of𝑊 and on the poset ⩽𝑊 .
The multiplication in 𝐸2 is induced by the maps

𝜂𝐿
𝑊,𝑊′ ∶ 𝐸

𝑝,𝑞
𝑊
⊗ 𝐸

𝑝′,𝑞′

𝑊′ → 𝐸
𝑝+𝑝′,𝑞+𝑞′

𝐿
,

where 𝜂𝐿
𝑊,𝑊′ = 0 if cd 𝐿 ≠ cd𝑊 + cd𝑊′ or if 𝐿 is not a connected component of𝑊 ∩𝑊′, other-

wise

𝜂𝐿
𝑊,𝑊′(𝑎 ⊗ 𝑏 ⊗ 𝑎′ ⊗ 𝑏′) = (−1)𝑝

′𝑞(𝑎 ⌣ 𝑎′) ⊗ (𝑏 ∙ 𝑏′),

where ∙∶ �̃�𝑘(Δ(0̂,𝑊)) ⊗ �̃�𝑘′(Δ(0̂,𝑊
′)) → �̃�𝑘+𝑘′+2(Δ(0̂, 𝐿)) is the map of [26, Theorem 6.6(ii)].

Under the isomorphism of Theorem A the map ∙ corresponds to the cup product in the cohomol-
ogy of the subspace arrangement[𝑥] (for any 𝑥 ∈ 𝐿).

Theorem 3.2. The Leray spectral sequence𝐸𝑝,𝑞𝑟 for the inclusion𝑀 ↪ 𝑇 degenerates at the second
page, that is,

𝐸
𝑝,𝑞
2

≅ grL𝑝+2𝑞 𝐻
𝑝+𝑞(𝑀; ℤ).

Proof. We know that 𝐸𝑝,𝑞∞ is a subquotient of 𝐸𝑝,𝑞
2

and that the last page is 𝐸𝑝,𝑞∞ ≅

grL
𝑝+2𝑞

𝐻𝑝+𝑞(𝑀; ℤ). By Theorem 2.8 and Lemma 3.1, 𝐸𝑝,𝑞∞ and 𝐸𝑝,𝑞
2

are isomorphic and finitely
generated; hence 𝐸𝑝,𝑞

2
= 𝐸

𝑝,𝑞
∞ . □
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2008 MOCI and PAGARIA

4 AMODEL FOR THE COMPLEMENT

As in the previous sections, we denote by an arrangement of subtori in 𝑇 and byΛ the character
group of 𝑇. For any layer𝑊 ∈ ,Λ𝑊 is the set of characters that are constant on𝑊. LetΛ∗ be the
dual lattice of Λ. We refer to [6] for a general introduction to fans and toric varieties. Let Δ be a
smooth and complete fan in Λ∗. Every ray of Δ is generated by a (uniquely determined) primitive
vector in Λ∗: we denote by Δ ⊂ Λ

∗ the set of primitive vectors corresponding to the rays of Δ.
Let (Δ) be power set of Δ; we denote by Δ ⊆ (Δ) the collection of the sets of primitive
vectors that span a cone inΔ. Thus, fromnowonwe identify a cone inΔwith the set of its extremal
primitive vectors.

Definition 4.1. A fanΔ inΛ∗ describes a good toric variety𝑋Δ (with respect to) ifΔ is complete
and smooth and each maximal cone 𝐶 ∈ Δ can be completed to a positive system (𝐂, 𝐂1, … , 𝐂𝑛)

(where 𝐂 is the dual basis of 𝐶 and 𝐂𝑖 a basis of Λ𝑆𝑖 for each 𝑆𝑖 ∈ ).

The second condition in the above definition can be reformulated as follows: for each 𝑊 ∈

, there exists a basis 𝛽1, … , 𝛽cd𝑊 of Λ𝑊 such that for each maximal cone 𝐶 ∈ Δ and each 𝑖 =
1, … , cd𝑊 the natural pairing ⟨𝛽𝑖, 𝑐⟩ is non-negative (or non-positive) for all 𝑐 ∈ 𝐶. In this case, we
say that the basis 𝛽1, … , 𝛽cd𝑊 ofΛ𝑊 has the equal sign propertywith respect toΔ (see [7, Definition
3.2]).
Let  ⊆ >0 be awell-connected building set in the sense of [8, Definition 4.1] and Δ a good toric

variety. These data define a smooth projective variety 𝑌(Δ,) obtained from 𝑋Δ by subsequently
blowing up (the strict transform of)𝑊 for all𝑊 ∈  in any total order refining the partial order
given by inclusion (so that smaller layers are blown up first). The variety 𝑌(Δ,) is the wonderful
model for 𝑀 described in [8], that is, a smooth projective variety containing 𝑀 such that the
complement𝑌(Δ,) ⧵ 𝑀 is a simple normal crossing divisor. The irreducible components of the
divisor 𝑌(Δ,) ⧵ 𝑀 are indexed by  ⊔Δ, indeed these components are:

∙ the exceptional divisor 𝐷𝑊 associated to the blowup along𝑊 for each𝑊 ∈ ,
∙ the strict transform 𝐷𝑗 of the torus equivariant divisor for each ray 𝑗 ∈ Δ.

We want to describe the Morgan algebra (cf. [20]) for the pair (𝑌(Δ,),𝑀). For the conve-
nience of the reader, we will briefly recall here the definition of this algebra. Consider a smooth
complete algebraic variety 𝑌 and a simple normal crossing divisor𝐷 =

⋃
𝑖∈𝐼 𝐷𝑖 with complement

𝑀. TheMorgan algebra (see [20]) is the vector space

⨁
𝐴⊆𝐼

𝐻∙

(⋂
𝑖∈𝐴

𝐷𝑖

)

with𝐻𝑝(
⋂
𝑖∈𝐴 𝐷𝑖) of bi-degree (𝑝, |𝐴|). The multiplication is given by

𝐻𝑝

(⋂
𝑖∈𝐴

𝐷𝑖

)
⊗𝐻𝑝

′

(⋂
𝑖∈𝐴′

𝐷𝑖

)
→ 𝐻𝑝+𝑝

′

( ⋂
𝑖∈𝐴⊔𝐴′

𝐷𝑖

)
,

that is, the composition of the restriction maps and the cup product. The differential is induced
by the Gysin morphisms 𝐻𝑝(

⋂
𝑖∈𝐴 𝐷𝑖) → 𝐻𝑝+2(

⋂
𝑖∈𝐵 𝐷𝑖) for every 𝐵 = 𝐴 ⧵ {𝑎}.
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ON THE COHOMOLOGY OF ARRANGEMENTS OF SUBTORI 2009

Let 𝐸 be the graded commutative algebra overℚ on generators 𝑠𝑊, 𝑡𝑊, 𝑏𝑗, 𝑐𝑗 for𝑊 ∈  and 𝑗 ∈
Δ, where the bi-degree of 𝑠𝑊 and 𝑏𝑗 is (0,1) and the bi-degree of 𝑡𝑊 and 𝑐𝑗 is (2,0). Consider the
differential d on 𝐸 defined on generators by d(𝑠𝑊) = 𝑡𝑊 , by d(𝑏𝑗) = 𝑐𝑗 , and by d(𝑡𝑊) = d(𝑐𝑗) = 0
for all𝑊 ∈  and 𝑗 ∈ Δ, so that (𝐸, d) is a differential graded commutative algebra.
To understandwhat relations should put on 𝐸, we start by recalling the definition of some poly-

nomials 𝑃𝑉
𝑊
(𝑡), which were introduced in [8, section 8] as good lifting of the Chern polynomials†.

For each pair 𝑉 ⩽ 𝑊 in , and for each tuple 𝛽1, … , 𝛽cd𝑉 ∈ Λ𝑉 with the equal sign property
with respect to Δ such that 𝛽cd𝑊−cd𝑉+1, … , 𝛽cd𝑉 form an integral basis of Λ𝑊 , define

𝑃𝑉𝑊(𝑡) =

cd𝑊−cd𝑉∏
𝑖=1

(
𝑡 −

∑
𝑗∈Δ

min(0, ⟨𝛽𝑖, 𝑗⟩)𝑐𝑗). (1)

The polynomial 𝑃𝑉
𝑊
(𝑡) depends on the choice of 𝛽1, … , 𝛽cd𝑊−cd𝑉 .

Definition 4.2. A set𝐴 ⊂  is nested if the irreducible components of the normal crossing divisor
of 𝑌(Δ,) that correspond to the elements of 𝐴 have non-empty intersection. When we want to
emphasize the dependence on  we will say that 𝐴 is -nested.

The property of being nested does not depend on the choice of Δ, and can be expressed in a
purely combinatorial way (see [8, Definition 2.7]). For each𝐴 ⊔ 𝐵 ⊆  ⊔Δ we denote with𝑌𝐴⊔𝐵
the intersections of all divisors associated to𝐴 and 𝐵. We recall the following result of De Concini
and Gaiffi.

Theorem 4.3. [8, Theorem 9.1] Let 𝐴 ⊆  and 𝐵 ⊆ Δ. The intersection 𝑌𝐴⊔𝐵 is non-empty if and
only if𝐴 is -nested,𝐵 is contained in

⋂
𝑊∈𝐴 AnnΛ𝑊 , and𝐵 is a cone inΔ. In this case the cohomol-

ogy ring𝐻∙(𝑌𝐴⊔𝐵) is the algebra on generators {𝑡𝑊}𝑊∈ and {𝑐𝑗}𝑗∈Δ
of degree two with relations:

(T1)
∏
𝑗∈𝐶 𝑐𝑗 if 𝐶 ∉ Δ,

(T2)
∑
𝑗∈Δ

⟨𝛽, 𝑗⟩𝑐𝑗 for every 𝛽 ∈ Λ (or equivalently for 𝛽 in a fixed basis of Λ),
(W1)

∏
𝑗∈𝐶 𝑐𝑗 if 𝐶 ∪ 𝐵 is not a cone in Δ or 𝐶 ⊄

⋂
𝑊∈𝐴 AnnΛ𝑊 , †

(W2) 𝑡𝑊𝑐𝑗 if 𝑗 ∉ AnnΛ𝑊 ,
(W3a) for all𝑊 ∈  and all 𝐶 ⊆ <𝑊 , the relations

𝑃𝑉𝑊

⎛⎜⎜⎝
∑

𝐿∈⩾𝑊

−𝑡𝐿

⎞⎟⎟⎠
∏
𝐿∈𝐶

𝑡𝐿,

where 𝑉 is the connected component of
⋂
𝐿∈𝐴<𝑊∪𝐶

𝐿 containing𝑊,
(W3b)

∏
𝑊∈𝐶 𝑡𝑊 if 𝐶 ∪ 𝐴 is not -nested or 𝐵 ⊄

⋂
𝑊∈𝐶 AnnΛ𝑊 .

† The authors of [8] forgot to specify that, in order to define a good lifting, the basis ofΛ𝑊 must have the equal sign property
with respect to Δ.
† In [8], these relations are stated only for |𝐶| = 1; however they hold, before performing blow-ups, for any set 𝐶, by the
well-known theory of toric varieties. Thus, by adding the relations with |𝐶| > 1 to the presentation given in [8], we get a
correct presentation.
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2010 MOCI and PAGARIA

Although the polynomials 𝑃𝑉
𝑊
(𝑡) in (W3a) depend on the choice of a basis, the ideal generated

by all the relations is independent from this choice, as shown in [8, Proposition 6.3].

Remark 4.4. Another possible choice of 𝑃𝑉
𝑊
(𝑡) consist of taking the polynomials:

𝑡cd𝑊−cd𝑉 +

cd𝑊−cd𝑉∏
𝑖=1

∑
𝑗∈Δ

−min(0, ⟨𝛽𝑖, 𝑗⟩)𝑐𝑗. (2)

Indeed, the difference between the polynomials (1) and (2) evaluated at 𝑡 =
∑
𝐿∈⩾𝑊

−𝑡𝐿 is in the
ideal generated by the relations of type (W2).

To simplify the notations, in the definition above we denoted by
∏
𝑎∈𝐴 the exterior product

taken in the order of𝐴 ⊆ {1, … , 𝑛}. The same notation will be used from now on. Let𝐴 be a nested
set,𝑊 be any element in , and 𝐵 ⊆  be such that each 𝐿 ∈ 𝐵 is smaller than𝑊 (𝐿 ⪇ 𝑊 in ).
We define the element 𝐹(𝐴,𝑊, 𝐵) in 𝐸 by

𝐹(𝐴,𝑊, 𝐵) = 𝑃𝑉𝑊

⎛⎜⎜⎝
∑

𝐿∈⩾𝑊

−𝑡𝐿

⎞⎟⎟⎠
∏
𝐿∈𝐴

𝑠𝐿
∏
𝐿∈𝐵

𝑡𝐿,

where 𝑉 is the connected component of
⋂
𝐿∈𝐴<𝑊∪𝐵

𝐿 containing𝑊 (so 𝑉 ⩽ 𝑊).

Definition 4.5. Let (D, d) be the differential graded algebra given by 𝐸 with relations:

(1) 𝑥𝑊𝑦𝑗 if 𝑗 ∉ AnnΛ𝑊 , where 𝑥𝑊 = 𝑠𝑊 or 𝑡𝑊 and 𝑦𝑗 = 𝑏𝑗 or 𝑐𝑗 ,
(2)

∏
𝑊∈𝐴 𝑠𝑊

∏
𝑊∈𝐵 𝑡𝑊 if 𝐴 ∪ 𝐵 is not a -nested set,

(3)
∏
𝑗∈𝐴 𝑏𝑗

∏
𝑗∈𝐵 𝑐𝑗 if 𝐴 ∪ 𝐵 is not a cone in Δ (that is, 𝐴 ∪ 𝐵 ∈ (Δ) ⧵ Δ),

(4)
∑
𝑗∈Δ

⟨𝜒, 𝑗⟩𝑐𝑗 for every 𝜒 ∈ Λ (or equivalently for 𝜒 in a fixed basis of Λ),
(5) 𝐹(𝐴,𝑊, 𝐵) for 𝐴 -nested set,𝑊 ∈ , and 𝐵 ⊆  be such that each 𝐿 ∈ 𝐵 is smaller than𝑊

(that is, 𝐵 ⊆ <𝑊),

and differential d induced by the one of𝐸, that is, defined on generators by d(𝑠𝑊) = 𝑡𝑊 , d(𝑏𝑗) = 𝑐𝑗 ,
and by d(𝑡𝑊) = d(𝑐𝑗) = 0.

Lemma 4.6. The ideal generated by (1)–(5) is stable with respect to d, so (D, d) is a differential
graded algebra.

Proof. It is obvious that the ideal generated by (1)–(4) is d-stable. The relation

d(𝐹(𝐴,𝑊, 𝐵)) =
∑

𝐿∈𝐴<𝑊

±𝐹(𝐴 ⧵ {𝐿},𝑊, 𝐵 ∪ {𝐿}) +
∑

𝐿∈𝐴≮𝑊

±𝑡𝐿𝐹(𝐴 ⧵ {𝐿},𝑊, 𝐵)

show that the ideal generated by (5) is d-stable. □

LetM be the Morgan algebra associated to the pair (𝑌(Δ,),𝑀). The complement 𝑌(Δ,) ⧵
𝑀 is a simple normal crossing divisor

⋃
𝑊∈ 𝐷𝑊 ∪

⋃
𝑗∈Δ

𝐷𝑗 , whose irreducible components
are indexed by  ⊔Δ.
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ON THE COHOMOLOGY OF ARRANGEMENTS OF SUBTORI 2011

For each 𝐴 ⊆  ⊔Δ we denote with 𝑌𝐴 the intersections of all divisors associated to 𝐴. The
graded differential algebraM is the direct sum of vector spaces⨁

𝐴⊂⊔Δ

𝐻∙(𝑌𝐴,ℚ),

on which:

∙ the total degree of the elements in𝐻𝑝(𝑌) is |𝐴| + 𝑝;
∙ the multiplication is induced by the restriction maps and the cup product

𝐻𝑝(𝑌𝐴) ⊗ 𝐻𝑝
′
(𝑌𝐵) → 𝐻𝑝+𝑝

′
(𝑌𝐴∪𝐵);

∙ the differential is defined from the Gysin map𝐻𝑝(𝑌𝐴) → 𝐻𝑝+2(𝑌𝐴⧵{𝑎}).

The cohomology of each stratum 𝑌𝐴 is computed in [8, Theorem 9.1] in terms of some generators
𝑡𝑊, 𝑠𝑗 ∈ 𝐻

2(𝑌).
We define a morphism 𝑓∶ 𝐸 → M on generators by

𝑠𝑊 ↦ 1 ∈ 𝐻0(𝐷𝑊), 𝑡𝑊 ↦ 𝑡𝑊 ∈ 𝐻2(𝑌(Δ,)),

𝑏𝑗 ↦ 1 ∈ 𝐻0(𝐷𝑗), 𝑐𝑗 ↦ 𝑐𝑗 ∈ 𝐻
2(𝑌(Δ,)).

Lemma 4.7. The map 𝑓 is a surjective morphism of differential graded algebras.

Proof. As shown in [8, Theorem 9.1], the restriction maps 𝐻∙(𝑌𝐴) → 𝐻∙(𝑌𝐵) for 𝐴 ⊂ 𝐵 are sur-
jective. Since Im𝑓 contains 𝐻∙(𝑌(Δ,)) and the elements 1 ∈ 𝐻0(𝐷) for all divisors 𝐷, the mor-
phisms 𝑓 is surjective. By construction of the cohomology algebra, the elements 𝑡𝑊 and 𝑐𝑗 of
𝐻2(𝑌(Δ,)) are 𝑡𝑊 = (𝑖𝑊)∗(1) and 𝑐𝑗 = (𝑖𝑗)∗(1), where 𝑖∗ is the Gysin morphism for the regular
embedding 𝑖 ∶ 𝐷 ↪ 𝑌(Δ,). Therefore, 𝑓 is a morphism of differential graded algebras. □

The map 𝑓 factors through 𝑓∶ D → M, indeed we have the following lemma.

Lemma 4.8. The map 𝑓 is well-defined and is an isomorphism.

Proof. We first check that (1)–(5) belong to ker 𝑓.

(1) There are four cases to check:
∙ 𝑓(𝑠𝑊𝑏𝑗) is zero since 𝐷𝑊 and 𝐷𝑗 do not intersect for 𝑗 ∉ AnnΛ𝑊 ;
∙ 𝑓(𝑠𝑊𝑐𝑗) is zero since 𝑐𝑗 = 0 in 𝐻∙(𝐷𝑊) by (W1);
∙ 𝑓(𝑡𝑊𝑏𝑗) = 𝑡𝑊 ∈ 𝐻∙(𝐷𝑗) is zero by (W3b);
∙ 𝑡𝑊𝑐𝑗 = 0 in𝐻∙(𝑌(Δ,)) by (W2).

(2) We have 𝑓(
∏
𝑊∈𝐴 𝑠𝑊

∏
𝑊∈𝐵 𝑡𝑊) =

∏
𝑊∈𝐵 𝑡𝑊 = 0 in 𝐻∙(𝑌𝐴) by (W3b) since 𝐴 ∪ 𝐵 is not -

nested set.
(3) The element 𝑓(

∏
𝑗∈𝐴 𝑏𝑗

∏
𝑗∈𝐵 𝑐𝑗) =

∏
𝑗∈𝐵 𝑐𝑗 is zero in 𝐻∙(𝑌𝐴) by (W1).

(4) The vanishing of the linear relation follows from (T2).
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2012 MOCI and PAGARIA

(5) We have

𝑓(𝐹(𝐴,𝑊, 𝐵)) = 𝑃𝑉𝑊

⎛⎜⎜⎝
∑

𝐿∈⩾𝑊

−𝑡𝐿

⎞⎟⎟⎠
∏
𝐿∈𝐵

𝑡𝐿

that is zero by (W3a).

We have proven that 𝑓 is well-defined and surjective, since 𝑓 is. Let 𝐼 be the ideal in 𝐸 generated
by (1)–(5) and note that 𝐼 is a monomial ideal in the variable 𝑠𝑊 and 𝑏𝑗 for𝑊 ∈  and 𝑗 ∈ Δ. It
is enough to prove that

𝑓

(∏
𝑊∈𝐴

𝑠𝑊
∏
𝑗∈𝐵

𝑏𝑗𝑧

)
= 0 implies

∏
𝑊∈𝐴

𝑠𝑊
∏
𝑗∈𝐵

𝑏𝑗𝑧 = 0

in D for all subsets 𝐴 ⊆ , 𝐵 ⊆ Δ and all polynomials 𝑧 in the variables {𝑡𝑊}𝑊∈ and {𝑐𝑗}𝑗∈Δ
.

The monomials
∏
𝑊∈𝐴 𝑠𝑊

∏
𝑗∈𝐵 𝑏𝑗 with 𝐴 a non-nested set belong to 𝐼 by (2), the ones with 𝐵

not a cone belong to 𝐼 by (3), and the ones with 𝐵 ⊄
⋂
𝑊∈𝐴 AnnΛ𝑊 are in 𝐼 by (1).

Now, let 𝐴 be a -nested set and 𝐵 ∈ Δ be a cone contained in
⋂
𝑊∈𝐴 AnnΛ𝑊 . We define a

map 𝐻∙(𝑌𝐴⊔𝐵) → D by using the presentation of Theorem 4.3: the morphism is defined by 𝑧 ↦∏
𝑊∈𝐴 𝑠𝑊

∏
𝑗∈𝐵 𝑏𝑗𝑧 for all 𝑧 in the exterior algebra on generators {𝑡𝑊}𝑊∈ and {𝑐𝑗}𝑗∈Δ

. It is well-
defined:

(T1) holds by relation (3),
(T2) holds by relation (4),
(W1) holds by relations (1) and (3),
(W3a) holds by relation (5),
(W3b) holds by relations (2) and (1).

The composition

𝐻∙(𝑌𝐴⊔𝐵) → D → M ↠ 𝐻∙(𝑌𝐴⊔𝐵)

is the identity, therefore if 𝑓(
∏
𝑊∈𝐴 𝑠𝑊

∏
𝑗∈𝐵 𝑏𝑗𝑧) = 0 then 𝑧 = 0 in 𝐻∙(𝑌𝐴∪𝐵) and∏

𝑊∈𝐴 𝑠𝑊
∏
𝑗∈𝐵 𝑏𝑗𝑧 = 0 in D. □

Lemma 4.8 together with the main result of [20] imply the following result.

Theorem 4.9. The differential graded algebra (D, d) built in Definition 4.5 is a model for the com-
plement𝑀. Therefore,𝐻∙(D, d) ≅ 𝐻∙(𝑀𝐴;ℚ). □

Remark 4.10. Since our methods are based on the Morgan algebra, the d.g.a. (D, d) also codifies
the rational homotopy type of the complement, which was studied also in [9]. Unlike the d.g.a.
introduced therein, our d.g.a. is finite-dimensional.

5 DIVISORIAL CASE

In this section, we consider arrangements of subtori of codimension 1, usually known in the lit-
erature as toric arrangements. Given such an arrangement  = {𝑆1, … , 𝑆𝑛} we consider the toric

 14697750, 2022, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12616 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [18/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ON THE COHOMOLOGY OF ARRANGEMENTS OF SUBTORI 2013

wonderful model 𝑌(Δ,) where  = >0̂ is the maximal building set. In this case, the -nested
subsets coincide with the chains in >0̂.
Inspired byYuzvinsky [25, 26], we introduce a different set of generators𝜎𝑊, 𝜏𝑊 for the differen-

tial graded algebra (d.g.a. for short)D and we determine the relations between them (Lemma 5.2).
By using these generators we define some elements Ξ𝑊,𝐴 of (Definition 5.3) that belongs to the
kernel of d (Lemma 5.4). We study the multiplication between them in Lemma 5.8 and their rela-
tion with the cohomology of the ambient torus (Lemma 5.9). The linear relation between Ξ𝑊,𝐴
are rather complicated to prove (Lemmas 5.5, 5.10 and 5.11 and Corollary 5.6). In the main result
of this section, Theorem 5.12, we introduce a Orlik–Solomon type algebra 𝑅 and we prove that the
composition

𝑅 → 𝐻(D, d) ≅ 𝐻(𝑀(); ℚ)

is an isomorphism. The map 𝑅 → 𝐻(D, d) is well-defined by all the lemmas preceding the main
theorem, is injective by Lemmas 5.1, 5.14 and 5.15, and surjective by dimensional argument
(Lemma 5.14).
Although the d.g.a. D depends on the choice of a good fan Δ, the algebra 𝑅 and its isomorphic

image in D are independent from the choice of the fan.
In this section, we will use basic notions of matroid theory: a set of subtori 𝐼 ⊆  is an inde-

pendent set if the codimension of the intersection ∩𝑆∈𝐼𝑆 is equal to the cardinality of 𝐼, and a
dependent set otherwise. A circuit is a minimal dependent set. We fix a order of the subtori, that is,
a total order≺ on. We recall that a broken circuit is a circuit with the maximum (with respect to
the fixed order ≺) removed, and that a no broken circuit is a set that does not contain any broken
circuits.
Define the elements 𝜎𝑊 =

∑
𝐿⩾𝑊 𝑠𝐿 and 𝜏𝑊 =

∑
𝐿⩾𝑊 𝑡𝐿 in D for all 𝑊 ∈ ⩾0̂. Moreover, for

every 𝜒 ∈ Λ define

𝛽−𝜒 = −
∑
𝑗∈Δ

min(0, ⟨𝜒, 𝑗⟩)𝑏𝑗, 𝛽+𝜒 =
∑
𝑗∈Δ

max(0, ⟨𝜒, 𝑗⟩)𝑏𝑗
and

𝛽𝜒 = 𝛽
+
𝜒 − 𝛽

−
𝜒 , 𝛾−𝜒 = −

∑
𝑗∈Δ

min(0, ⟨𝜒, 𝑗⟩)𝑐𝑗.
As in the previous section, we consider the bi-gradation of D given by deg(𝑠𝑊) = deg(𝑏𝑗) =

(0, 1) and deg(𝑡𝑊) = deg(𝑐𝑗) = (2, 0), so that the differential d has bi-degree (2, −1).

Lemma 5.1. The set {
∏
𝑊∈𝐴 𝑠𝑊

∏
𝑗∈𝐶 𝑏𝑗}𝐴,𝐶 , where 𝐴 runs over all the -nested sets and 𝐶 ∈ Δ

over all the cones contained in ∩𝑊∈𝐴 AnnΛ𝑊 , is a linear basis of D0,∙.
Moreover, the set {

∏
𝑊∈𝐴 𝜎𝑊

∏
𝑗∈𝐶 𝑏𝑗}𝐴,𝐶 (where𝐴 and 𝐶 runs over the range described above) is

a linear basis of D0,∙.

Proof. Note that D0,∙ is the exterior algebra on generators 𝑠𝑊 and 𝑏𝑗 with relations:

(1’) 𝑠𝑊𝑏𝑗 if 𝑗 ∉ AnnΛ𝑊 ,
(2’)

∏
𝑊∈𝐴 𝑠𝑊 if 𝐴 is not -nested,

(3’)
∏
𝑗∈𝐶 𝑏𝑗 if 𝐴 is not a cone in Δ.
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2014 MOCI and PAGARIA

These relations generate a monomial ideal and so the monomials not divisible by the rela-
tions form an basis  of the vector space 𝐷0,∙. Thus, it can be easily seen that the set
{
∏
𝑊∈𝐴 𝑠𝑊

∏
𝑗∈𝐶 𝑏𝑗}𝐴,𝐶 is the basis .

For the second basis, we choose a total order on the set  that refines the partial order on it. This
total order induces a lexicographical order on the set of -nested sets. The matrix that represents
the elements {

∏
𝑊∈𝐴 𝜎𝑊

∏
𝑗∈𝐶 𝑏𝑗}𝐴,𝐶 in the basis {

∏
𝑊∈𝐴 𝑠𝑊

∏
𝑗∈𝐶 𝑏𝑗}𝐴,𝐶 is upper triangular with

ones on the diagonal entries. This proves the claim. □

For a subset𝐴 of the poset of layers, we denote by sup(𝐴) the set of all minimal upper bounds
of𝑁, that is, sup(𝐴) is the set of connected components of the intersection

⋂
𝑊∈𝐴𝑊. To simplify

notations, we write sup(𝐴1, … ,𝑛) for sup({𝐴1, … ,𝑛}).

Lemma 5.2. In D, we have the following relations:

(1) 𝜎𝑊𝜎𝐿 = (𝜎𝑊 − 𝜎𝐿)(
∑
𝑉∈ sup(𝑊,𝐿) 𝜎𝑉) for all𝑊,𝐿 ∈ ,

(2) if 𝜒 ∈ Λ𝑉 then 𝑥𝜒𝑦𝑉 = 0 where 𝑥 = 𝛽, 𝛽−, 𝛽+ or 𝛾− and 𝑦 = 𝜎 or 𝜏,
(3) if𝑊 ⋗ 𝑉 and 𝜒 ∈ Λ𝑊 is an element that generates Λ𝑊∕Λ𝑉 , then:

𝜎𝑉(−𝜏𝑊 + 𝛾−𝜒 ) = −𝜎𝑊𝜏𝑊, 𝜏𝑉(−𝜏𝑊 + 𝛾−𝜒 ) = −𝜏
2
𝑊.

Proof.

(1) Let 𝑥1 =
∑
𝑉⩾𝑊
𝑉𝐿

𝑠𝑉 , 𝑥2 =
∑

𝑉⩾𝐿
𝑉𝑊

𝑠𝑉 and 𝑥3 =
∑
𝑉⩾𝑊
𝑉⩾𝐿

𝑠𝑉 . The claimed equality can be rewritten

as (𝑥1 + 𝑥3)(𝑥2 + 𝑥3) = (𝑥1 − 𝑥2)𝑥3. Since 𝑥3 has degree one we have 𝑥23 = 0 and we need to
prove that 𝑥1𝑥2 = 0. This follows from 𝑥1𝑥2 =

∑
𝑠𝑉𝑠𝑈 where the sum runs over all 𝑉 ⩾ 𝑊,

𝑉  𝐿 and 𝑈  𝑊, 𝑈 ⩾ 𝐿: we have 𝑠𝑉𝑠𝑈 = 0 because 𝑉 and 𝑈 do not form a chain.
(2) Note that for 𝜒 ∈ Λ𝑊 we have min(0, ⟨𝜒, 𝑗⟩)𝑎𝑗𝑟𝑊 = 0 for 𝑎 = 𝑏 or 𝑎 = 𝑐 and 𝑟 = 𝑠 or 𝑟 = 𝑡,

by relation (1) of Definition 4.5. Since𝑊 ⩾ 𝑉 implies Λ𝑊 ⊇ Λ𝑉 , we have

𝑥𝜒𝑦𝑉 = −
∑
𝑊⩾𝑉
𝑗∈Δ

min(0, ⟨𝜒, 𝑗⟩)𝑎𝑗𝑟𝑊 = 0,

that proves the statement for 𝑥 = 𝛽−, 𝛾−. Analogously, the relations max(0, ⟨𝜒, 𝑗⟩)𝑎𝑗𝑟𝑊 = 0

imply the statement for 𝑥 = 𝛽+. Finally, we have 𝛽𝜒𝑦𝑉 = 𝛽+𝜒𝑦𝑉 − 𝛽
−
𝜒𝑦𝑉 = 0.

(3) If 𝐿 ⩾ 𝑊, we have that 𝑠𝐿(−𝜏𝑊 + 𝛾−𝜒 ) = −𝑠𝐿𝜏𝑊 since 𝜒 ∈ Λ𝐿. On the other hand, if 𝐿 ⩾ 𝑉,
𝐿  𝑊, we will show that 𝑠𝐿(𝜏𝑊 + 𝛾−𝜒 ) = 0. Indeed, we have

𝑠𝐿(−𝜏𝑊 + 𝛾−𝜒 ) = −

( ∑
𝑈∈sup(𝐿,𝑊)

𝑠𝐿𝜏𝑈

)
+ 𝑠𝐿𝛾

−
𝜒 .

Since cd𝑉 = cd𝑊 + 1 and𝑈 > 𝐿, then cd 𝐿 = cd𝑈 + 1. Let 𝜂 ∈ Λ𝑈 be an element that gener-
atesΛ𝑈∕Λ𝐿. By [15, Lemma 3.4], we have |𝐿 ∩𝑊| = |Λ𝑈∕(Λ𝐿 + Λ𝑊)| andwe set𝑎 = |𝐿 ∩𝑊|.
Moreover, Λ𝐿 + Λ𝑊 = Λ𝐿 + ℤ𝜒, so there exists 𝜂′ ∈ Λ𝐿 such that 𝑎𝜂 = 𝜂′ + 𝜒. Observe that

𝛾−𝜒 𝑠𝐿 =
∑
𝑗∈Δ

−min(0, ⟨𝜒, 𝑗⟩)𝑐𝑗𝑠𝐿
=

∑
𝑗∈Δ

𝑗∈AnnΛ𝐿

−min(0, ⟨𝑎𝜂 − 𝜂′, 𝑗⟩)𝑐𝑗𝑠𝐿
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ON THE COHOMOLOGY OF ARRANGEMENTS OF SUBTORI 2015

=
∑
𝑗∈Δ

𝑗∈AnnΛ𝐿

−𝑎min(0, ⟨𝜂, 𝑗⟩)𝑐𝑗𝑠𝐿
=

∑
𝑗∈Δ

−𝑎min(0, ⟨𝜂, 𝑗⟩)𝑐𝑗𝑠𝐿 = 𝑎𝛾−𝜂 𝑠𝐿
and so

𝑠𝐿(−𝜏𝑊 + 𝛾−𝜒 ) =
∑

𝑈∈sup(𝐿,𝑊)

𝑠𝐿(−𝜏𝑈 + 𝛾
−
𝜂 ) =

∑
𝑈∈sup(𝐿,𝑊)

𝐹({𝐿}, 𝑈, ∅) = 0

by relation (5) of Definition 4.5. The proof of 𝜏𝑉(−𝜏𝑊 + 𝛾−𝜒 ) = −𝜏
2
𝑊
is analogous. □

Let 𝐴 ⊆ {1, … , 𝑛} be an independent set and𝑊 a connected component of ∩𝑎∈𝐴𝑆𝑎. Following
[19], we denote by 𝑚(𝐴) the number of connected components in such intersection. Let 𝑊

𝐴
be

the subposet of ⩽𝑊 = {𝐿 ∈  ∣ 𝐿 ⩽ 𝑊} generated by the atoms in 𝐴.
A flag adapted to 𝐴 and 𝑊 is a sequence of layers 𝑇 = 𝐹0 ⋖ 𝐹1 ⋖ ⋯ ⋖ 𝐹𝑘 in the lattice 𝑊

𝐴
such that 𝐹0 = 𝑇 and each 𝐹𝑖 covers 𝐹𝑖−1. Since 𝑊𝐴 is Boolean, for every 𝑖 = 1, … , 𝑘 there exists
a unique 𝑎𝑖 ∈ 𝐴 such that 𝐹𝑖 = 𝑆𝑎𝑖 ∩ 𝐹𝑖−1. Therefore, each flag adapted to 𝐴 and𝑊 is uniquely
determined by the sequence  = (𝑎1, 𝑎2, … , 𝑎𝑘) of 𝑘 distinct elements of 𝐴.
For a flag = (𝑎1, 𝑎2, … , 𝑎𝑘) adapted to𝐴 and𝑊, we denote by𝑚() the number of connected

components in the intersection ∩𝑘
𝑖=1
𝑆𝑎𝑖 .

For every 𝑖 ∈ {1, … , 𝑛} we choose a character 𝜒𝑖 that generates Λ𝑆𝑖 . For each flag  and each
𝑎 ∈ 𝐴, we define the elements 𝑥( , 𝑎) = −𝜎𝐹𝑖 if 𝑎 = 𝑎𝑖 and 𝑥( , 𝑎) = 𝛽

−
𝜒𝑎
otherwise. Analogously

we set 𝑦( , 𝑎) = −𝜏𝐹𝑖 if 𝑎 = 𝑎𝑖 and 𝑦( , 𝑎) = 𝛾
−
𝜒𝑎
, otherwise.

Definition 5.3. For each independent set 𝐴 ⊆ {1, … , 𝑛} and each connected component 𝑊 of
∩𝑎∈𝐴𝑆𝑎 we define the following element of D:

Ξ𝑊,𝐴 =
∑


𝑚()

𝑚(𝐴)

∏
𝑎∈𝐴

𝑥( , 𝑎),

where the sum is taken over all the flags adapted to 𝐴 and𝑊.

In the previous definition we use the notation defined above: by
∏
𝑎∈𝐴 we indicate the exterior

product taken in the order of 𝐴 ⊆ {1, … , 𝑛}.

Lemma 5.4. For each independent set 𝐴 ⊆ {1, … , 𝑛} and each connected component𝑊 of ∩𝑎∈𝐴𝑆𝑎
we have d(Ξ𝑊,𝐴) = 0.

Proof. We have that

d(Ξ𝑊,𝐴) =
∑


𝑚()

𝑚(𝐴)

∑
𝑏∈𝐴

(−1)|𝐴<𝑏|𝑦( , 𝑏) ∏
𝑎∈𝐴⧵{𝑏}

𝑥( , 𝑎),

so define 𝑍( , 𝑏) = 𝑦( , 𝑏)
∏
𝑎∈𝐴⧵{𝑏} 𝑥( , 𝑎).

 14697750, 2022, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12616 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [18/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2016 MOCI and PAGARIA

Let  = (𝑎1, 𝑎2, … , 𝑎𝑘) be a flag adapted to 𝐴 and𝑊. For 𝑖 > 1, let us denote by �̃�( , 𝑎𝑖) be the
same product defining 𝑍( , 𝑎𝑖) but with−𝜎𝐹𝑖−1 replaced by−𝜎𝐹𝑖 (in position labeled by 𝑎𝑖−1, that
is, the |𝐴<𝑎𝑖−1 |-th position in the product). We analyze the elements 𝑍( , 𝑎𝑖) for 𝑖 ∈  dividing in
cases:

𝑘 > 1, 𝑖 = 1∶ We have

𝑍( , 𝑎1) = 0 (3)

because 𝜏𝐹1𝜎𝐹2 = −(−𝜏𝐹1 + 𝛾
−
𝜒𝑎1
)𝜎𝐹2 = −𝐹(∅, 𝐹1, ∅)𝜎𝐹2 = 0.

𝑖 ≠ 1, 𝑘∶ We have

𝑍( , 𝑎𝑖) = �̃�( , 𝑎𝑖)

because 𝜎𝐹𝑖−1𝜏𝐹𝑖𝜎𝐹𝑖+1 = −𝜎𝐹𝑖−1(−𝜏𝐹𝑖 + 𝛾
−
𝜒𝑎𝑖
)𝜎𝐹𝑖+1 = 𝜎𝐹𝑖 𝜏𝐹𝑖𝜎𝐹𝑖+1 . Consider the flag

 ′ = (𝑎1, … , 𝑎𝑖−2, 𝑎𝑖, 𝑎𝑖−1, 𝑎𝑖+1, … , 𝑎𝑘) and note that

�̃�( ′, 𝑎𝑖−1) = (−1)
|𝐴<𝑎𝑖 |−|𝐴<𝑎𝑖−1 |−1�̃�( , 𝑎𝑖),

because 𝐹𝑗 = 𝐹′𝑗 for all 𝑗 ≠ 𝑖 − 1 and the factor −𝜎𝐹𝑖 appears in the |𝐴<𝑎𝑖−1 |th posi-
tion in �̃�( , 𝑎𝑖) and in the |𝐴<𝑎𝑖 |th position in �̃�( ′, 𝑎𝑖−1). Therefore,

(−1)|𝐴<𝑎𝑖 |𝑍( , 𝑎𝑖) + (−1)|𝐴<𝑎𝑖−1 |𝑍( ′, 𝑎𝑖−1) = 0. (4)

𝑘 = 𝑖 = 1∶ We have

𝑍((𝑎1), 𝑎1) +
1

𝑚(𝑎1)
𝑍(∅, 𝑎1) = 0 (5)

because
𝜒𝑎1
𝑚(𝑎1)

generatesΛ𝐹1 where𝐹1 is the connected component of 𝑆𝑎1 containing

𝑊 and so −𝜏𝐹1 +
1

𝑚(𝑎1)
𝛾−𝜒𝑎1

= −𝜏𝐹1 + 𝛾
−
𝜒𝑎1
𝑚(𝑎1)

= 𝐹(∅, 𝐹1, ∅) = 0.

𝑖 = 𝑘 > 1∶ We have

𝑍( , 𝑎𝑘) +
𝑚( ⧵ 𝑎𝑘)

𝑚()
𝑍( ⧵ 𝑎𝑘, 𝑎𝑘) = �̃�( , 𝑎𝑘) (6)

because 𝜎𝐹𝑘−1(−𝜏𝐹𝑘 +
𝑚(⧵𝑎𝑘)

𝑚()
𝛾−𝜒𝑎𝑘

) = 𝜎𝐹𝑘−1(−𝜏𝐹𝑘 + 𝛾
−
𝜒 ) = −𝜎𝐹𝑘𝜏𝐹𝑘 , where 𝜒 ∈

Λ𝐹𝑘 is any element such that 𝑚()𝜒 − 𝑚( ⧵ 𝑎𝑘)𝜒𝑎𝑘 ∈ Λ𝐹𝑘−1 . Moreover, for  =

(𝑎1, 𝑎2, … , 𝑎𝑘) we have defined  ′ = (𝑎1, … , 𝑎𝑘−2, 𝑎𝑘, 𝑎𝑘−1) and we have

�̃�( ′, 𝑎𝑘−1) = (−1)
|𝐴<𝑎𝑘 |−|𝐴<𝑎𝑘−1 |−1�̃�( , 𝑎𝑘). (7)

Finally, we have:

𝑚(𝐴) d(Ξ𝑊,𝐴) =
∑


𝑚()
∑
𝑏∈𝐴

(−1)|𝐴<𝑏|𝑍( , 𝑏)

=
∑
| |>0

𝑘∑
𝑖=1

(−1)|𝐴<𝑎𝑖 |𝑚()𝑍( , 𝑎𝑖) +∑


∑
𝑎∉

(−1)|𝐴<𝑎|𝑚()𝑍( , 𝑎).
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ON THE COHOMOLOGY OF ARRANGEMENTS OF SUBTORI 2017

By Equations (3) and (4), the terms with 𝑖 < 𝑘 cancel with each other, hence the sum above is
equal to ∑

| |>0(−1)
|𝐴<𝑎𝑘 |𝑚()𝑍( , 𝑎𝑘) +∑



∑
𝑎∉

(−1)|𝐴<𝑎|𝑚()𝑍( , 𝑎).
By formula (5), the terms with 𝑘 = 0 vanish, thus we obtain∑

| |>1(−1)
|𝐴<𝑎𝑘 |𝑚()𝑍( , 𝑎𝑘) + ∑

≠∅

∑
𝑎∉

(−1)|𝐴<𝑎|𝑚()𝑍( , 𝑎).
Equation (6) allows us to rewrite the above sums using the monomials �̃�:∑

| |>1(−1)
|𝐴<𝑎𝑘 |𝑚()�̃�( , 𝑎𝑘)

and finally we apply formula (7) to obtain∑
| |>1
𝑎𝑘>𝑎𝑘−1

(1 + (−1)1)𝑚()�̃�( , 𝑎𝑘) = 0.

This completes the proof. □

Let 𝑠 ∈ {+,−} and 𝜒 ∈ Λ, we define the open half space𝐻𝑠𝜒 ⊂ Λ
∗ as

𝐻𝑠𝜒 = {𝑣 ∈ Λ
∗ ∣ ⟨𝑣, 𝑠𝜒⟩ > 0}.

Recall that Δ is the collection of all cones inΔ. We denote 𝑙Δ the set of all cones inΔ of dimension
𝑙.

Lemma 5.5. Let 𝐴 be an independent set and 𝑠𝑎 ∈ {+,−} for 𝑎 ∈ 𝐴. Let 𝑍 be the set
⋂
𝑎∈𝐴 𝐻

𝑠𝑎
𝜒𝑎
.

Consider the projection 𝜋∶ Λ∗ → Λ∗∕AnnΛ𝐴. We have that∏
𝑎∈𝐴

𝛽
𝑠𝑎
𝜒𝑎
= 𝑚(𝐴)

∑
𝐾∈

|𝐴|
Δ

𝐾⊂𝑍

Vol(𝜋(𝐾))
∏
𝑐∈𝐾

𝑏𝑐,

where the last product is taken in any order such that the two bases (𝑠𝑎𝜒𝑎)𝑎∈𝐴 and (𝜋(𝑐))𝑐∈𝐾 are
both positive or both negative.
Moreover, if 𝐴 is dependent then

∏
𝑎∈𝐴 𝛽

𝑠𝑎
𝜒𝑎
= 0.

Proof. Let 𝐾 ∈ 
|𝐴|
Δ

be a |𝐴|-dimensional cone not contained in 𝑍: then there exists 𝑐 ∈ 𝐾 such
that 𝑐 ∉ 𝑍. So, for some 𝑎 ∈ 𝐴, we have min(0, ⟨𝑠𝑎𝜒𝑎, 𝑐′⟩) = 0 for all 𝑐′ ∈ 𝐾 by using the equal
sign property. It easy to see that the monomial

∏
𝑐∈𝐾 𝑏𝑐 does not appear in

∏
𝑎∈𝐴 𝛽

𝑠𝑎
𝜒𝑎
.

Now suppose that a 𝐾 = (𝑘1, … , 𝑘𝑙) ∈ 𝑙
Δ
is contained in 𝑍, the coefficient of

∏𝑙
𝑖=1 𝑏𝑘𝑖 in∏

𝑎∈𝐴 𝛽
𝑠𝑎
𝜒𝑎
is
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2018 MOCI and PAGARIA

∑
𝜎∈𝔖𝑙

(−1)sgn 𝜎
𝑙∏
𝑖=1

⟨𝑠𝑖𝜒𝑖, 𝑘𝜎(𝑖)⟩.
Now note that ⟨𝑠𝑖𝜒𝑖, 𝑘𝜎(𝑖)⟩ = ⟨𝑠𝑖𝜒𝑖, 𝜋(𝑘𝜎(𝑖))⟩ for all 𝑖 and 𝜎.
The equality

∑
𝜎∈𝔖𝑙

(−1)sgn 𝜎
𝑙∏
𝑖=1

⟨𝑠𝑖𝜒𝑖, 𝜋(𝑘𝜎(𝑖))⟩ = det(𝑠𝑖𝜒𝑖) det(𝜋(𝑘𝑖))
follows from the multilinearity in the entries 𝑠𝑖𝜒𝑖 and 𝜋(𝑘𝑖).
If 𝐴 is dependent then dimΛ∗∕AnnΛ𝐴 = rk(𝐴) < |𝐴|, so det(𝜋(𝑘𝑖)) = 0 and∏𝑎∈𝐴 𝛽

𝑠𝑎
𝜒𝑎
= 0.

Otherwise, the two bases (𝑠𝑎𝜒𝑎)𝑎∈𝐴 and (𝜋(𝑘))𝑘∈𝐾 are both positive (respectively, negative)
then det(𝑠𝑖𝜒𝑖) det(𝜋(𝑘𝑖)) is positive and equals to𝑚(𝐴)Vol(𝜋(𝐾)). □

The proof of this corollary follows from the proof of Lemma 5.5 by omitting some steps.

Corollary 5.6. Let 𝐴 be an independent set, then:∏
𝑎∈𝐴

𝛽𝜒𝑎 = 𝑚(𝐴)
∑

𝐾∈
|𝐴|
Δ

Vol(𝜋(𝐾))
∏
𝑐∈𝐾

𝑏𝑐,

where the last product is taken in any order such that the two bases (𝜒𝑎)𝑎∈𝐴 and (𝜋(𝑐))𝑐∈𝐾 are both
positive or both negative. □

Corollary 5.7. Let 𝑉 ∈ , 𝐴 ⊆ 𝐸 and 𝑠𝑎 ∈ {+,−} for 𝑎 ∈ 𝐴. Let 𝑍 be the set
⋂
𝑎∈𝐴 𝐻

𝑠𝑎
𝜒𝑎

and
𝜋∶ Λ∗ → Λ∗∕AnnΛ𝐴. If the vectors 𝜒𝑎 for 𝑎 ∈ 𝐴 are dependent in Λ∕Λ𝑉 then 𝜎𝑉

∏
𝑎∈𝐴 𝛽

𝑠𝑎
𝜒𝑎
= 0,

otherwise

𝜎𝑉
∏
𝑎∈𝐴

𝛽
𝑠𝑎
𝜒𝑎
= 𝜎𝑉𝑚(𝐴)

∑
𝐾∈

|𝐴|
Δ

𝐾⊂𝑍∩AnnΛ𝑉

Vol(𝜋(𝐾))
∏
𝑐∈𝐾

𝑏𝑐,

where the last product is taken in any order such that the two bases (𝑠𝑎𝜒𝑎)𝑎∈𝐴 and (𝜋(𝑐))𝑐∈𝐾 are
both positive or both negative.

Proof. We use Lemma 5.5 and then we multiply both sides by 𝜎𝑉 . If 𝐾 ⊈ AnnΛ𝑉 then
𝜎𝑉

∏
𝑐∈𝐾 𝑏𝑐 = 0 and the second claim follows. Since we can assume 𝐾 ⊂ AnnΛ𝑉 the map 𝜋

restricts to the canonical projection AnnΛ𝑉 → AnnΛ𝑉∕Ann(Λ𝑉 + Λ𝐴). As in the proof of
Lemma 5.5, it follows that det(𝜋(𝑘𝑖)) = 0 because they are |𝐴| vectors in a vector space of strictly
less dimension. □

We recall that, given two positive integers 𝑘, ℎ, a (𝑘, ℎ)-shuffle is an element 𝑝 of the symmetric
group on the elements {1, … , 𝑘 + ℎ} such that 𝑝(𝑖) < 𝑝(𝑗) for every couple 𝑖 < 𝑗 such that either
𝑖, 𝑗 ∈ {1, … , 𝑘}, or 𝑖, 𝑗 ∈ {𝑘 + 1,… , 𝑘 + ℎ}.
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ON THE COHOMOLOGY OF ARRANGEMENTS OF SUBTORI 2019

Lemma 5.8. For all independent set𝐴 and 𝐵, and for all connected components𝑊 of ∩𝑎∈𝐴𝑆𝑎 and
𝐿 of ∩𝑏∈𝐵𝑆𝑏, we have Ξ𝑊,𝐴Ξ𝐿,𝐵 = 0 if 𝐴 ∩ 𝐵 is not empty or if 𝐴 ⊔ 𝐵 is not independent. Otherwise

Ξ𝑊,𝐴Ξ𝐿,𝐵 = (−1)
𝑙(𝐴,𝐵)

∑
𝑉∈sup(𝑊,𝐿)

Ξ𝑉,𝐴∪𝐵,

where 𝑙(𝐴, 𝐵) is the sign of the permutation reordering (𝐴, 𝐵).

Proof. Let = (𝑎1, … , 𝑎𝑘) be a flag adapted to𝐴 and𝑊, and = (𝑎𝑘+1, … , 𝑎𝑘+ℎ) be a flag adapted
to 𝐵 and 𝐿. Let 𝐶 = {𝑎1, … , 𝑎𝑘+ℎ} and suppose that 𝐶 is not independent. Then using Equation (1)
of Lemma 5.2, we can write the product

∏| |
𝑖=1
𝜎𝐹𝑖

∏||
𝑖=1
𝜎𝐻𝑖 as linear combination of monomi-

als
∏𝑘+ℎ
𝑖=1 𝜎𝐺𝑖 for 𝐺1 ⩽ 𝐺2 ⩽⋯ ⩽ 𝐺𝑘+ℎ ⩽ 𝐹ℎ ∨ 𝐻𝑘. Since 𝐶 is dependent, rk(𝐺𝑘+ℎ) < 𝑘 + ℎ and so

there exists 𝑖 such that 𝐺𝑖 = 𝐺𝑖+1. Since 𝜎2𝐺𝑖 = 0, all such monomial are zero and so the product∏| |
𝑖=1
𝜎𝐹𝑖

∏||
𝑖=1
𝜎𝐻𝑖 vanishes. If 𝐶 is independent of cardinality 𝑘 + ℎ, then for each (𝑘, ℎ)-shuffle

𝑝 and each element 𝑉 ∈ sup(𝐹𝑘,𝐻ℎ) we have a flag  ∗𝑝  ∶= (𝑎𝑝(1), … , 𝑎𝑝(𝑘+ℎ)) adapted to 𝐶
and 𝑉. By using only Equation (1) of Lemma 5.2, we have

𝑘∏
𝑖=1

𝜎𝐹𝑖

ℎ∏
𝑗=1

𝜎𝐻𝑗 = (−1)
𝑙(𝐴,𝐵)

∑
𝑉∈sup(𝐹𝑘,𝐻ℎ)

∑
𝑝 shuffle

𝑘+ℎ∏
𝑖=1

𝜎(∗𝑝)𝑖 ,

where the products are taken in increasing order of the corresponding 𝑎𝑖 .
Now we prove that Ξ𝑊,𝐴Ξ𝐿,𝐵 = 0 if rk(𝐴 ∪ 𝐵) < |𝐴| + |𝐵|. It is enough to verify that∏
𝑎∈𝐴 𝑥( , 𝑎)

∏
𝑏∈𝐵 𝑥(, 𝑏) = 0 for all flags  and  as above. If 𝐶 is dependent then we have

already prove that the product is zero, so suppose 𝐶 to be independent. Let 𝑎𝑘+ℎ+1, … , 𝑎|𝐴|+|𝐵| be
the list of the elements in𝐴 ⧵  and in 𝐵 ⧵. By Corollary 5.7, we have 𝜎𝑉

∏|𝐴|+|𝐵|
𝑖=𝑘+ℎ+1

𝛽−𝜒𝑎𝑖
= 0 for

all 𝑉 ∈ sup(𝐹𝑘,𝐻ℎ).
It remains to prove the case 𝐴 ⊔ 𝐵 an independent set. The number of connected components

of𝑊 ∩ 𝐿 contained in 𝑉 is equal to

𝑚(𝐴 ∪ 𝐵)

𝑚(𝐴)𝑚(𝐵)

𝑚()𝑚()

𝑚( ∪)
.

Finally,

Ξ𝑊,𝐴Ξ𝐿,𝐵 =
∑
 ,

𝑚()𝑚()

𝑚(𝐴)𝑚(𝐵)

∏
𝑎∈𝐴

𝑥( , 𝑎)
∏
𝑏∈𝐵

𝑥(, 𝑏)

= (−1)𝑙(𝐴,𝐵)
∑
 ,

𝑚()𝑚()

𝑚(𝐴)𝑚(𝐵)

∑
𝑉∈sup(𝐹𝑘,𝐻ℎ)

∑
𝑝 shuffle

∏
𝑎∈𝐴⊔𝐵

𝑥( ∗𝑝 , 𝑎)

= (−1)𝑙(𝐴,𝐵)
∑
 ,

𝑚( ∪)

𝑚(𝐴 ∪ 𝐵)

∑
𝑉∈sup(𝑊,𝐿)

∑
𝑝 shuffle

∏
𝑎∈𝐴⊔𝐵

𝑥( ∗𝑝 , 𝑎)

= (−1)𝑙(𝐴,𝐵)
∑

𝑉∈sup(𝑊,𝐿)

∑
 ,

𝑚( ∪)

𝑚(𝐴 ∪ 𝐵)

∑
𝑝 shuffle

∏
𝑎∈𝐴⊔𝐵

𝑥( ∗𝑝 , 𝑎)
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2020 MOCI and PAGARIA

= (−1)𝑙(𝐴,𝐵)
∑

𝑉∈sup(𝑊,𝐿)

∑


𝑚()

𝑚(𝐴 ∪ 𝐵)

∏
𝑎∈𝐴⊔𝐵

𝑥(, 𝑎)

= (−1)𝑙(𝐴,𝐵)
∑

𝑉∈sup(𝑊,𝐿)

Ξ𝑉,𝐴∪𝐵,

where we used the fact that flags  adapted to 𝐴 ⊔ 𝐵 and 𝑉 are in bijection with flags  ∗𝑝 

where 𝑝 runs over all the (𝑘, ℎ)-shuffles,  over all flags adapted to𝐴 and𝑊, and over all flags
adapted to 𝐵 and 𝐿. So, the claim follows. □

Lemma 5.9. Let 𝐴 be an independent set and𝑊 a connected component of ∩𝑎∈𝐴𝑆𝑎 . If 𝜒 ∈ Λ𝑊 ,
then Ξ𝑊,𝐴𝛽𝜒 = 0.

Proof. Let  be a flag adapted to 𝐴 and𝑊, we show that 𝛽𝑠𝜒
∏
𝑎∈𝐴 𝑥( , 𝑎) = 0 for 𝑠 ∈ {+,−}. The

element 𝛽𝑠𝜒𝜎𝐹𝑘
∏
𝑎∈𝐴⧵ 𝛽

−
𝜒𝑎
is zero by Corollary 5.7, because the vectors 𝜒, 𝜒𝑎 for 𝑎 ∈ 𝐴 ⧵  are

linearly dependent in Λ∕Λ𝐹𝑘 . The Lemma follows. □

Recall that by definition of a circuit 𝐶, there exists a minimal relation
∑
𝑖∈𝐶 𝑛𝑖𝜒𝑖 with 𝑛𝑖 ≠

0 for all 𝑖 ∈ 𝐶 and this coefficients 𝑛𝑖 are unique up to scalars. Moreover, we can choose 𝑛𝑖 as
𝑐𝑖𝑚(𝐶 ⧵ {𝑖}), where𝑚 is themultiplicity function of the arithmeticmatroid and 𝑐𝑖 is the orientation
of the oriented matroid.

Lemma 5.10. Let 𝑋 be a subset such that |𝑋| = rk(𝑋) + 1, 𝐶 ⊆ 𝑋 be the unique circuit, 𝐴 ⊂ 𝑋
be an independent set, 𝐹 be a connected component of ∩𝑎∈𝐴𝑆𝑎 . There exists a minimal relation∑
𝑖∈𝐶 𝑐𝑖𝑚(𝐶 ⧵ {𝑖})𝜒𝑖 = 0 for some 𝑐𝑖 ∈ {+,−}. Suppose that 𝐶′ ∶= 𝐶 ⧵ 𝐴 has cardinality at least 2,

then

𝜎𝐹
∑
𝑗∈𝐶′

(−1)
|𝐶′
<𝑗

|
𝑚(𝑋 ⧵ {𝑗})

∏
𝑖∈𝐶′⧵{𝑗}

𝛽
𝛿(𝑖,𝑗)
𝜒𝑖

= 0,

where 𝛿(𝑖, 𝑗) = 𝑐𝑖𝑐𝑗 if 𝑖 < 𝑗 and 𝛿(𝑖, 𝑗) = − if 𝑖 > 𝑗.

Proof. For the sake of simplifying the notation, let us suppose 𝐶′ = {0, 1, … , 𝑙}. The first step of the
proof is to reduce to the case 𝑐𝑖 = − for 𝑖 < 𝑘 and 𝑐𝑖 = + for 𝑖 ⩾ 𝑘 for some 𝑘 ∈ 𝐶′. Let 𝜇 ∈ 𝔖|𝐶′|
be the unique shuffle that reorders 𝐶′ in such a way that 𝑐𝑖 = − for 𝑖 < 𝑘 and 𝑐𝑖 = + for 𝑖 ⩾ 𝑘. We
have

∑
𝑗∈𝐶′

(−1)𝑗

𝑚(𝑋 ⧵ {𝑗})

∏
𝑖∈𝐶′⧵{𝑗}

𝛽
𝛿(𝑖,𝑗)
𝜒𝑖

= sgn(𝜇)
∑
𝑗∈𝐶′

(−1)𝜇(𝑗)

𝑚(𝑋 ⧵ {𝑗})

∏
𝑖∈𝜇(𝐶′⧵{𝑗})

𝛽
𝛿(𝑖,𝜇(𝑗))
𝜒𝑖

,

where we use sgn(𝜇) = (−1)𝑗−𝜇(𝑗) sgn(𝜇|𝐶′⧵{𝑗}). Moreover, note that 𝛿(𝑖, 𝑗) = 𝛿(𝜇(𝑖), 𝜇(𝑗)) since
(𝑖, 𝑗) is an inversion of 𝜇 only if 𝑐𝑖𝑐𝑗 = −. Thus, from now on we assume 𝑐𝑖 = − for 𝑖 < 𝑘 and
𝑐𝑖 = + for 𝑖 ⩾ 𝑘.
Define 𝑍𝑗 = (∩𝑖<𝑗𝐻

𝑐𝑖𝑐𝑗
𝜒𝑖

∩𝑖>𝑗 𝐻
−
𝜒𝑖
) ∩ AnnΛ𝐹 , 𝑋𝑗 = 𝑍𝑗 ∩ 𝐻+𝜒𝑗 and 𝑌𝑗 = 𝑍𝑗 ∩ 𝐻

−
𝜒𝑗
. The following

properties follows easily from the definition:
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ON THE COHOMOLOGY OF ARRANGEMENTS OF SUBTORI 2021

𝑍𝑗 = 𝑋𝑗 ∪ 𝑌𝑗 dim(𝑋𝑗 ∩ 𝑌𝑗) < 𝑙

𝑋𝑙 = ∅ 𝑌𝑘−1 = ∅

𝑋𝑘 = 𝑌0 𝑋𝑗−1 = 𝑌𝑗 for all 𝑗 ≠ 𝑘.

Note that 𝜎𝐹𝑏𝑐 = 0 if 𝑐 ∉ AnnΛ𝐹 by Definition 4.5. By Lemma 5.5, we have

𝜎𝐹
𝑚(𝑋 ⧵ {𝑗})

∏
𝑖∈𝐶′⧵{𝑗}

𝛽
𝛿(𝑖,𝑗)

𝑖
= 𝜎𝐹

𝑚(𝐶′ ⧵ {𝑗})

𝑚(𝑋 ⧵ {𝑗})

∑
𝐾∈𝑙

Δ
𝐾⊂𝑍𝑗

Vol(𝜋𝑗(𝐾))
∏
𝑐∈𝐾

𝑏𝑐

= 𝜎𝐹
𝑚(𝐶′)

𝑚(𝑋)

∑
𝐾∈𝑙

Δ
𝐾⊂𝑍𝑗

Vol(𝜋𝑗(𝐾))
∏
𝑐∈𝐾

𝑏𝑐,

where in the last equality we used the property (P) of arithmetic matroids (see [3]).
The map 𝜋𝑗 restricted to AnnΛ𝐹 does not depend on 𝑗 ∈ 𝐶′. Indeed the restriction of

𝜋𝑗 ∶ Λ
∗ → Λ∗∕AnnΛ𝐶′⧵{𝑗} is the canonical projectionAnnΛ𝐹 → AnnΛ𝐹∕AnnΛ𝑋⧵{𝑗} and it does

not depend on 𝑗 because Λ𝑋 = Λ𝑋⧵{𝑗} for all 𝑗 ∈ 𝐶.
For 𝑗 ≠ 𝑘 the bases (𝛿(𝑖, 𝑗)𝜒𝑖)𝑖≠𝑗 and (𝛿(𝑖, 𝑗 − 1)𝜒𝑖)𝑖≠𝑗−1 have the same orientation. The bases

(−𝜒𝑖)𝑖>0 and (𝛿(𝑖, 𝑘)𝜒𝑖)𝑖≠𝑘 have the same orientation if and only if (−1)𝑘−1 = 1.
Since

𝜎𝐹
∑
𝑗∈𝐶′

(−1)
|𝐶′
<𝑗

|
𝑚(𝑋 ⧵ {𝑗})

∏
𝑖∈𝐶′⧵{𝑗}

𝛽
𝛿(𝑖,𝑗)

𝑖
=
𝑚(𝐶′)

𝑚(𝑋)
𝜎𝐹

∑
𝑗∈𝐶′

∑
𝐾∈𝑙

Δ
𝐾⊂𝑍𝑗

(−1)𝑗 Vol(𝜋(𝐾))
∏
𝑐∈𝐾

𝑏𝑐,

it is enough to consider the following:

∑
𝑗∈𝐶′

∑
𝐾⊂𝑍𝑗

(−1)𝑗 Vol(𝜋(𝐾))
∏
𝑐∈𝐾

𝑏𝑐 =

∑
𝑗∈𝐶′

∑
𝐾⊂𝑋𝑗

(−1)𝑗 Vol(𝜋(𝐾))
∏
𝑐∈𝐾

𝑏𝑐+

+
∑
𝑗∈𝐶′

∑
𝐾⊂𝑌𝑗

(−1)𝑗 Vol(𝜋(𝐾))
∏
𝑐∈𝐾

𝑏𝑐

=
∑
𝐾⊂𝑋𝑘

(−1)𝑘 Vol(𝜋(𝐾))
∏
𝑐∈𝐾

𝑏𝑐 +
∑
𝐾⊂𝑌0

Vol(𝜋(𝐾))
∏
𝑐∈𝐾

𝑏𝑐 = 0,

so the claim follows. □

Let 𝐶 ⊆ {1, … , 𝑛} be a circuit oriented by the signs (𝑐𝑖)𝑖∈𝐶 . We recall the following definition,
which was introduced by Postnikov in [23]. For each 𝐴 ⊆ {1, … , 𝑛}, we say that 𝐶∕𝐴 is a positroid
if 𝑐𝑖 = 𝑐𝑗 for all 𝑖, 𝑗 ∈ 𝐶 ⧵ 𝐴. Since the orientation is defined up to a global sign, we can assume 𝑐𝑖
is positive for all 𝑖 ∈ 𝐶 ⧵ 𝐴.

Lemma 5.11. Consider 𝑋 ⊆ {1, … , 𝑛} such that |𝑋| = rk(𝑋) + 1, let 𝐶 ⊆ 𝑋 be the unique circuit
and 𝐿 be a connected component of ∩𝑖∈𝑋𝑆𝑖 . There exists a minimal relation

∑
𝑖∈𝐶 𝑐𝑖𝑚(𝐶 ⧵ {𝑖})𝜒𝑖 = 0
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2022 MOCI and PAGARIA

for some 𝑐𝑖 ∈ {+,−}. Then, we have∑
𝑋⧵𝐶⊆𝐴⊊𝑋
𝐶∕𝐴 positroid

(−1)|𝑋<𝑗|+𝑙(𝐴,𝐵) 𝑚(𝐴)

𝑚(𝑋 ⧵ {𝑗})
Ξ𝑊,𝐴𝛽𝐵 = 0,

where 𝑗 = max(𝑋 ⧵ 𝐴), 𝐵 = 𝐶 ⧵ (𝐴 ∪ {𝑗}),𝑊 is the connected component of ∩𝑎∈𝐴𝑆𝑎 containing 𝐿
and 𝑙(𝐴, 𝐵) is the sign of the permutation that reorders (𝐴, 𝐵).

Proof. We may assume that 𝑋 = {0, 1, … , rk(𝑋)} and 𝐶 = {0, 1, … , rk(𝐶)}. Let 𝑅 = 𝑋 ⧵ 𝐶, we can
rewrite the left-hand side as follows:∑

𝑅⊆𝐴⊊𝑋
𝐶∕𝐴 pos.

(−1)𝑗+𝑙(𝐴,𝐵)
𝑚(𝐴)

𝑚(𝑋 ⧵ {𝑗})
Ξ𝑊,𝐴𝛽𝐵 =

=
∑

𝑅⊆𝐴⊊𝑋
𝐶∕𝐴 pos.

∑
⊆𝐴

(−1)𝑗+| |+𝑙(𝐴,𝐵)+𝑙( ,𝐴⧵) 𝑚()

𝑚(𝑋 ⧵ {𝑗})

| |∏
𝑖=1

𝜎𝐹𝑖

∏
𝑎∈𝐴⧵

𝛽−𝑎

∏
𝑏∈𝐵

𝛽𝑏

=
∑
⊊𝑋

∑
∪𝑅⊆𝐴⊊𝑋
𝐶∕𝐴 pos.

(−1)𝑗+| |+𝑙(𝐴,𝐵)+𝑙( ,𝐴⧵) 𝑚()

𝑚(𝑋 ⧵ {𝑗})

| |∏
𝑖=1

𝜎𝐹𝑖

∏
𝑎∈𝐴⧵

𝛽−𝑎

∏
𝑏∈𝐵

𝛽𝑏,

where we applied the definition of Ξ𝑊,𝐴 and then we exchanged the two sums. By setting 𝐷 =
𝐴 ⧵ ( ∪ 𝑅) so that 𝐴 = 𝐷 ⊔  ⊔ (𝑅 ⧵ ), we rewrite the above equation as

∑
𝑅⊆𝐴⊊𝑋
𝐶∕𝐴 pos.

(−1)𝑗+𝑙(𝐴,𝐵)
𝑚(𝐴)

𝑚(𝑋 ⧵ {𝑗})
Ξ𝑊,𝐴𝛽𝐵 =

=
∑
⊊𝑋

𝑚()

𝑚(𝑋 ⧵ {𝑗})

∑
𝐷⊊𝐶⧵

𝐶∕(𝐷∪) pos.

(−1)𝑗+| |+𝑙(𝐴,𝐵)+𝑙( ,𝐴⧵) | |∏
𝑖=1

𝜎𝐹𝑖

∏
𝑎∈𝐷∪(𝑅⧵)

𝛽−𝑎

∏
𝑏∈𝐵

𝛽𝑏. (8)

Let 𝐶′ = 𝐶 ⧵  , 𝑗 = max(𝐶 ⧵ 𝐴) and 𝐶(𝑗) = {𝑖 ∈ 𝐶<𝑗 ⧵  ∣ 𝑐𝑖 = 𝑐𝑗}, we need the following equal-
ity: ∑

𝐵⊆𝐶<𝑗⧵

𝐵∪{𝑗} pos.

(−1)𝑙(𝐶
′⧵(𝐵∪{𝑗}),𝐵)

∏
𝑎∈𝐶′⧵(𝐵∪{𝑗})

𝛽−𝑎

∏
𝑏∈𝐵

𝛽𝑏 =

(1)
=

∑
𝐵⊆𝐶(𝑗)

∑
𝐷⊆𝐵

(−1)|𝐵⧵𝐷|+𝑙(𝐶′⧵(𝐷∪{𝑗}),𝐷) ∏
𝑎∈𝐶′⧵(𝐷∪{𝑗})

𝛽−𝑎

∏
𝑏∈𝐷

𝛽+
𝑏

(2)
=

∑
𝐷⊆𝐶(𝑗)

(−1)𝑙(𝐶
′⧵(𝐷∪{𝑗}),𝐷)

∏
𝑎∈𝐶′⧵(𝐷∪{𝑗})

𝛽−𝑎

∏
𝑏∈𝐷

𝛽+
𝑏

∑
𝐸⊆𝐶(𝑗)⧵𝐷

(−1)|𝐸| (9)
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ON THE COHOMOLOGY OF ARRANGEMENTS OF SUBTORI 2023

(3)
= (−1)𝑙(𝐶

′⧵(𝐶(𝑗)∪{𝑗}),𝐶(𝑗))
∏

𝑎∈𝐶′⧵(𝐶(𝑗)∪{𝑗})

𝛽−𝑎

∏
𝑏∈𝐶(𝑗)

𝛽+
𝑏

(4)
=

∏
𝑏=0,…,𝑗−1
𝑏∉

𝛽
𝑐𝑏𝑐𝑗
𝑏

∏
𝑎=𝑗+1,…,rk(𝐶)

𝑎∉

𝛽−𝑎 .

In equality (1), we used 𝛽𝑏 = 𝛽+𝑏 − 𝛽
−
𝑏
and expanded the product. In equality (2) we set 𝐸 = 𝐵 ⧵ 𝐷

and we exchanged the two sums. Equality (3) follows from the fact that
∑
𝐸⊆𝐶(𝑗)⧵𝐷(−1)

|𝐸| = 0 if
𝐶(𝑗) ⧵ 𝐷 ≠ ∅. Equality (4) follows from the fact that, for 𝑏 < 𝑗, 𝑐𝑏𝑐𝑗 = − if 𝑏 ∈ 𝐶′ ⧵ (𝐶(𝑗) ∪ {𝑗})
and 𝑐𝑏𝑐𝑗 = + if 𝑏 ∈ 𝐶(𝑗).
We also need, for |𝐶′| > 1 the following:

𝜎𝐹𝑘

∑
𝑗∈𝐶′

(−1)
|𝐶′
<𝑗

|
𝑚(𝑋 ⧵ {𝑗})

∑
𝐵⊆𝐶′

<𝑗

𝐵∪{𝑗} pos.

(−1)𝑙(𝐶
′⧵(𝐵∪{𝑗}),𝐵)

∏
𝑎∈𝐶′⧵(𝐵∪{𝑗})

𝛽−𝑎

∏
𝑏∈𝐵

𝛽𝑏 =

= 𝜎𝐹𝑘

∑
𝑗∈𝐶′

(−1)
|𝐶′
<𝑗
|

𝑚(𝑋 ⧵ {𝑗})

∏
𝑏∈𝐶′

<𝑗

𝛽
𝑐𝑏𝑐𝑗
𝑏

∏
𝑎∈𝐶′

>𝑗

𝛽−𝑎

= 0,

by Equation (9) and Lemma 5.10. This proves that all summands in eq. (8) such that |𝐶 ⧵  | > 1
cancel each other. Therefore,

∑
𝑅⊆𝐴⊊𝑋
𝐶∕𝐴 pos.

(−1)𝑗+𝑙(𝐴,𝐵)
𝑚(𝐴)

𝑚(𝑋 ⧵ {𝑗})
Ξ𝑊,𝐴𝛽𝐵 =

=
∑
𝑗∈𝐶

∑
𝐶⧵{𝑗}⊆⊊𝑋

(−1)𝑗+| |+𝑙( ,𝑋⧵(∪{𝑗}) 𝑚()

𝑚(𝑋 ⧵ {𝑗})

| |∏
𝑖=1

𝜎𝐹𝑖

∏
𝑎∈𝑋⧵(∪{𝑗})

𝛽−𝑎 .

Recall also that 𝑚()

𝑚(𝑋⧵{𝑗})
=

𝑚(∪{𝑗})

𝑚(𝑋)
by property (P) of arithmetic matroids. Thus, we have:

∑
𝑅⊆𝐴⊊𝑋
𝐶∕𝐴 pos.

(−1)𝑗+𝑙(𝐴,𝐵)
𝑚(𝐴)

𝑚(𝑋 ⧵ {𝑗})
Ξ𝑊,𝐴𝛽𝐵 =

=
∑
𝑗∈𝐶

∑
𝐶⧵{𝑗}⊆⊊𝑋

(−1)𝑗+| |+𝑙( ,𝑋⧵(∪{𝑗})) 𝑚( ∪ {𝑗})
𝑚(𝑋)

| |∏
𝑖=1

𝜎𝐹𝑖

∏
𝑎∈𝑋⧵(∪{𝑗})

𝛽−𝑎 .

We prove that the terms in the above sum cancels in pairs: consider 𝑗 ∈ 𝐶, a flag  with last
element 𝑘 and define ̃ the flag obtained from  substituting 𝑘 with 𝑗. This gives a pairing
between (𝑗,) and (𝑘, ̃). We prove that the summands associated with (𝑗,) and (𝑘, ̃) cancel
each other. Note that  ∪ {𝑗} = ̃ ∪ {𝑘} and that (−1)𝑙( ,𝑋⧵(∪{𝑗}))

∏| |
𝑖=1
𝜎𝐹𝑖

∏
𝑎∈𝑋⧵(∪{𝑗}) 𝛽

−
𝑎 differ
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2024 MOCI and PAGARIA

from (−1)𝑙(̃ ,𝑋⧵(̃∪{𝑘}))
∏|̃ |
𝑖=1
𝜎𝐹𝑖

∏
𝑎∈𝑋⧵(̃∪{𝑘}) 𝛽

−
𝑎 by (−1)𝑘−𝑗−1, because the element 𝜎𝐹 appears

in position 𝑘 in the first element and in position 𝑗 in the second one. Therefore, the twomonomials
associated with (𝑗,) and (𝑘, ̃) are the same but with opposite sign. □

Let 𝜔 be the generator of𝐻1(ℂ∗; ℤ).

Theorem 5.12. Let  be a toric arrangement. The rational cohomology algebra 𝐻∗(𝑀(); ℚ) is
isomorphic to the graded commutative algebra

𝐻∙(𝑇;ℚ)[𝑒𝑊,𝐴]⟋𝐼,

where 𝐴 ranges over all the independent subsets of {1, … , 𝑛} and𝑊 ranges over all connected com-
ponents of ∩𝑎∈𝐴𝑆𝑎 . The degree of the generator 𝑒𝑊,𝐴 is |𝐴|. The ideal 𝐼 is generated by the following
elements.

∙ For any two generators 𝑒𝑊,𝐴, 𝑒𝑊′,𝐴′ ,

𝑒𝑊,𝐴𝑒𝑊′,𝐴′

if 𝐴 ∩ 𝐴′ ≠ ∅ or 𝐴 ⊔ 𝐴′ is a dependent set, and otherwise

𝑒𝑊,𝐴𝑒𝑊′,𝐴′ − (−1)
𝑙(𝐴,𝐴′)

∑
𝐿∈𝜋0(𝑊∩𝑊

′)

𝑒𝐿,𝐴∪𝐴′ . (10)

∙ For any 𝜓 ∈ 𝐻∙(𝑇;ℚ) such that 𝜓|𝑊 = 0,

𝑒𝑊,𝐴𝜓. (11)

∙ For every 𝑋 ⊆ {1, … , 𝑛} such that rk(𝑋) = |𝑋| − 1 write 𝑋 = 𝐶 ⊔ 𝐹 with 𝐶 the unique circuit in
𝑋. Consider the associated linear dependency

∑
𝑖∈𝐶 𝑛𝑖𝜒𝑖 = 0with 𝑛𝑖 ∈ ℤ, and for every connected

component 𝐿 of ∩𝑖∈𝑋𝑆𝑖 a relation∑
𝑋⧵𝐶⊆𝐴⊊𝑋
𝐶∕𝐴 positroid

(−1)|𝑋<𝑗|+𝑙(𝐴,𝐵) 𝑚(𝐴)

𝑚(𝑋 ⧵ {𝑗})
𝑒𝑊,𝐴𝜓𝐵, (12)

where 𝑗 = max(𝐶 ⧵ 𝐴), 𝐵 = 𝐶 ⧵ (𝐴 ∪ {𝑗}), 𝜓𝐵 =
∏
𝑏∈𝐵 𝜒

∗
𝑏
(𝜔) an element in 𝐻∙(𝑇), and𝑊 is the

connected component of ∩𝑖∈𝐴𝑆𝑖 containing 𝐿.

Remark 5.13. Compared to the previous result of [5], this newpresentation exhibitsmore clearly its
dependence on the orientation. Different choices of the orientation give rise to different presenta-
tions of the same algebra. Furthermore, our presentation depends only on the oriented arithmetic
matroid associated with the set of characters defining the toric arrangement. The notion of of ori-
ented arithmetic matroid was defined in [22], by refining the notion of arithmetic matroid intro-
duced in [3, 15]. Since, by [22, Theorem 6.1], all the orientations are equivalent, the isomorphism
class of the cohomology algebra only depends on the arithmetic matroid.
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ON THE COHOMOLOGY OF ARRANGEMENTS OF SUBTORI 2025

We also remark that the presentation provided by Theorem 5.12 seems more suitable to be gen-
eralized to arrangement of subtori of arbitrary codimensions.

Before proving the above theorem, we need a couple of lemmas. We denote the ring
𝐻∙(𝑇;ℚ)[𝑒𝑊,𝐴]∕𝐼 by 𝑅.

Lemma 5.14. There exists a filtration F∙ of𝐻∙(𝑇;ℚ)[𝑒𝑊,𝐴]∕𝐼 such that

gr∙F 𝑅 ≅
⨁
𝑊∈

𝐻∙(𝑊;ℚ) ⊗ �̃�cd𝑊−2(Δ(𝑇,𝑊)).

In particular, the set 𝑒𝑊,𝐴 with 𝐴 a no broken circuit set in ⩽𝑊 generates 𝑅 as 𝐻(𝑇;ℚ)-module.
Moreover, 𝑅 and𝐻∙(𝑀(); ℚ) have the same dimension.

Proof. Let F∙ be the filtration defined by

Fℎ𝑅 =
∑

cd(𝑊)⩽ℎ
𝐴

𝑒𝑊,𝐴𝐻
∙(𝑇; ℚ).

The graded ring grF 𝑅 is isomorphic to𝐻∙(𝑇;ℚ)[𝑒𝑊,𝐴]∕𝐼′, where 𝐼′ is the ideal generated by Equa-
tions (10), (11) and ∑

𝑗∈𝐶

(−1)|𝑋<𝑗|𝑒𝐿,𝑋⧵{𝑗} (12′)

for all 𝑋 such that rk(𝑋) = |𝑋| − 1 and all 𝐿 connected components of ∩𝑎∈𝑋𝑆𝑎. Note that grF 𝑅 is
-graded and isomorphic to ⨁

𝑊∈

𝐻(𝑊;ℚ)[𝑒𝑊,𝐴]𝐴⟋𝐼𝑊

as 𝐻(𝑇)-module, where 𝐼𝑊 is the ideal generated by Equation (12’) for all 𝑋 such that rk(𝑋) =|𝑋| − 1 and𝑊 is a connected component of ∩𝑎∈𝑋𝑆𝑎. Finally, we have

𝐻∙(𝑇;ℚ)[𝑒𝑊,𝐴]⟋𝐼 ≅ grF 𝑅

≅
⨁
𝑊∈

𝐻(𝑊;ℚ)[𝑒𝑊,𝐴]𝐴⟋𝐼𝑊

≅
⨁
𝑊∈

𝐻∙(𝑊;ℚ) ⊗ �̃�rk𝑊−2(Δ(𝑇,𝑊)),

where we use the Brieskorn isomorphism for the Orlik–Solomon algebra associated to the geo-
metric lattice ⩽𝑊 .
From Theorem 2.8, we deduce that 𝑅 ≅ 𝐻∙(𝑀(); ℚ) as ℚ-vector space and so they have the

same dimension. □
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2026 MOCI and PAGARIA

We want to construct a bijection for any geometric lattice ⩽𝑊 between no broken circuit
sets and certain maximal flags. For any maximal flag of layers  = (𝑇 = 𝐹0 ⋖ 𝐹1 ⋖ ⋯ ⋖ 𝐹𝑘 =
𝑊) we define the edge labeling 𝜖() as the list (𝑏1, … , 𝑏𝑘) where 𝑏𝑘 = max{𝑖 ∈ {1, … , 𝑛} ∣ 𝐹𝑘 ∈
sup(𝐹𝑘−1, 𝑆𝑖)}. We say that  is increasing if 𝑏𝑖 < 𝑏𝑗 for all 𝑖 < 𝑗 (where 𝜖() = (𝑏1, … , 𝑏𝑘)).
Note that if  is a maximal flag adapted to 𝐴 and𝑊, 𝜖()may not be a subset of 𝐴.

Lemma 5.15. We fix a layer𝑊 of rank 𝑘 and consider the geometric lattice⩽𝑊 . If𝐴 = {𝑎1 < 𝑎2 <
⋯ < 𝑎𝑘} is a no broken circuit set, then a maximal flag  adapted to 𝐴 and𝑊 is increasing in ⩽𝑊

if and only if  = (𝑎1, 𝑎2, … , 𝑎𝑘).

Proof. The key observation is the following: if 𝑏 > 𝑎𝑘 then 𝐴 ∪ {𝑏} is an independent set (since 𝐴
is a no broken circuit set). We prove that every maximal, increasing flag adapted to 𝐴 and𝑊 is
 = (𝑎1, 𝑎2, … , 𝑎𝑘) = 𝜖() by induction on 𝑘; the base case is trivial. Let = (𝑎𝜎(1), 𝑎𝜎(2), … , 𝑎𝜎(𝑘))

be a maximal increasing flag adapted to 𝐴 and 𝑊, by inductive step we assume that the flag
 ′ = (𝑎𝜎(1), 𝑎𝜎(2), … , 𝑎𝜎(𝑘−1)) = (𝑎1, … , 𝑎𝜎(𝑘), … , 𝑎𝑘)has labeling 𝜖( ′) = (𝑎1, … , 𝑎𝜎(𝑘), … , 𝑎𝑘). The
labeling 𝜖() = (𝑎1, … , 𝑎𝜎(𝑘), … , 𝑎𝑘, 𝑏) for some 𝑏 ∈ {1, … , 𝑛} is increasing but from the key obser-
vation we have 𝑏 ⩽ 𝑎𝑘. By definition of the labeling 𝑏 ⩾ 𝑎𝑘, so 𝑏 = 𝑎𝑘 and 𝜎(𝑘) = 𝑘.
Again by induction, we prove that the flag  = (𝑎1, 𝑎2, … , 𝑎𝑘) has labeling 𝜖() =

(𝑎1, 𝑎2, … , 𝑎𝑘) and so is increasing. By inductive step 𝜖((𝑎1, 𝑎2, … , 𝑎𝑘−1)) = (𝑎1, 𝑎2, … , 𝑎𝑘−1), so
 has labeling 𝜖() = (𝑎1, … , 𝑎𝑘−1, 𝑏)with 𝑏 ⩾ 𝑎𝑘 by definition and with 𝑏 ⩽ 𝑎𝑘 by the key obser-
vation. We have proven that the flag (𝑎1, 𝑎2, … , 𝑎𝑘) is increasing. □

Proof of Theorem 5.12. Let g ∶ 𝐻(𝑇;ℚ)[𝑒𝑊,𝐴] → D be the map defined by g(𝜒∗(𝜔)) = 𝛽𝜒 for all
𝜒 ∈ Λ and by g(𝑒𝑊,𝐴) = Ξ𝑊,𝐴. It is well-defined since 𝛽𝑎𝜒+𝑏𝜂 = 𝑎𝛽𝜒 + 𝑏𝛽𝜂 for all 𝑎, 𝑏 ∈ ℤ. The
ideal 𝐼 is contained in ker g by Lemmas 5.8, 5.9 and 5.11, so g ∶ 𝐻(𝑇;ℚ)[𝑒𝑊,𝐴]∕𝐼 → D is well-
defined.
We will show the injectivity of g considering it as morphism of 𝐻∙(𝑇)-module. Consider the

monomial base of D0,∙ provided in the second part of Lemma 5.1. Note that in the expansion of
g(𝑒𝑊,𝐴) = Ξ𝑊,𝐴, for 𝐴 no broken circuit set in ⩽𝑊 , appears only one monomial

∏
𝐿∈ 𝜎𝐿 with

 increasing chain (in ⩽𝑊) by Lemma 5.15. For each𝑊 ∈  and𝐴 no broken circuit set in ⩽𝑊 ,
we choose a set 𝐵(𝐴) such that 𝐴 ⊔ 𝐵(𝐴) is a basis and a cone 𝐶(𝐴) ∈ Δ contained in AnnΛ𝐴 of
maximal dimension. Let us suppose that

g
⎛⎜⎜⎝
∑
𝑊∈

∑
𝐴 n.b.c. in ⩽𝑊

𝛼𝑊,𝐴𝑒𝑊,𝐴𝜓𝑊,𝐴

⎞⎟⎟⎠ = 0
for some 𝜓𝑊,𝐴 ∈ 𝐻∙(𝑊;ℚ) and some 𝛼𝑊,𝐴 ∈ ℚ with at least one 𝛼𝑊,𝐴 different from zero.
Let (𝑊,𝐴) such that |𝐴| is maximal among all (𝑊,𝐴) with 𝛼𝑊,𝐴 ≠ 0. Let 𝜓 ∈ 𝐻(𝑇) such that
𝜓
𝑊,𝐴

𝜓|
𝑊
= 𝜓

𝐵(𝐴)
. Let  be the list of all elements in 𝐴 ordered increasingly. By Lemma 5.15, in

g
⎛⎜⎜⎝
∑
𝑊∈

∑
𝐴 n.b.c. in ⩽𝑊

𝛼𝑊,𝐴𝑒𝑊,𝐴𝜓𝑊,𝐴𝜓
⎞⎟⎟⎠ =

∑
𝑊∈

∑
𝐴 n.b.c.

𝛼𝑊,𝐴Ξ𝑊,𝐴g(𝜓𝑊,𝐴𝜓)

=
∑
𝑊∈

∑
𝐴 n.b.c.

∑
 adap. 𝐴,𝑊

𝛼𝑊,𝐴
𝑚()

𝑚(𝐴)

(∏
𝑎∈𝐴

𝑥( , 𝑎)

)
g(𝜓𝑊,𝐴𝜓)
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ON THE COHOMOLOGY OF ARRANGEMENTS OF SUBTORI 2027

the monomial 𝑧 =
∏
𝐿∈

−𝜎𝐿
∏
𝑗∈𝐶(𝐴)

𝑏𝑗 associated to the increasing flag  , can appear only in
the addendum 𝛼

𝑊,𝐴
Ξ
𝑊,𝐴

g(𝜓
𝑊,𝐴

𝜓). In particular, 𝑧 appears only in the expansion of

⎛⎜⎜⎝
∏
𝐿∈𝐹

−𝜎𝐿

⎞⎟⎟⎠ g(𝜓
𝑊,𝐴

𝜓) =
⎛⎜⎜⎝
∏
𝐿∈𝐹

−𝜎𝐿

⎞⎟⎟⎠ g(𝜓
𝐵(𝐴)

)

=
∏
𝐿∈𝐹

−𝜎𝐿
∏

𝑏∈𝐵(𝐴)

𝛽𝑏

= 𝑚(𝐵(𝐴))
∏
𝐿∈𝐹

−𝜎𝐿
∑

𝐾∈
|𝐵(𝐴)|
Δ

Vol(𝜋(𝐾))
∏
𝑐∈𝐾

𝑏𝑐.

The coefficient of 𝑧 in (
∏
𝐿∈𝐹

−𝜎𝐿)g(𝜓𝑊,𝐴𝜓) must be zero, but it is (up to a sign) equal to
𝛼
𝑊,𝐴

𝑚(𝐵(𝐴)) Vol(𝜋(𝐶(𝐴))) (cf. Corollary 5.6). The volume Vol(𝜋(𝐶(𝐴))) is different from zero
because Λ

𝐴
⊗ ℚ⊕Λ

𝐵(𝐴)
⊗ ℚ = Λ⊗ℚ. We have 𝛼

𝑊,𝐴
= 0 contradicting the assumption, hence

g is injective.
Note that the range of g is contained in ker d by Lemma 5.4 and in the subalgebra D0,∙. The

map g induces an injective map

g ∶ 𝐻
∙(𝑇;ℚ)[𝑒𝑊,𝐴]⟋𝐼 → 𝐻∙(D, d) ≅ 𝐻∙(𝑀(); ℚ)

since d is of bi-degree (2, −1). It is also surjective because𝐻∙(𝑇;ℚ)[𝑒𝑊,𝐴]∕𝐼 and𝐻∙(𝑀(); ℚ)have
the same dimension (see Lemma 5.14). We have proven the theorem. □

Remark 5.16. Theorem 5.12 is a generalization of [11, Theorem 5.2] and analogous to [5, Theorem
6.13]. Indeed, if  is totally unimodular and the circuit 𝐶 = {0, 1, … , 𝑛} is oriented with 𝑐0 = −,
𝑐𝑖 = + for 𝑖 > 0, we obtain [11, eq. 20].
We have chosen the generator associated with an hypertorus 𝑆𝑎 as Ξ𝑆𝑎,{𝑎} = −𝜎𝑆𝑎 + 𝛽

−
𝜒𝑎

that
depends on the choice of one between 𝜒𝑎 and −𝜒𝑎. Another possible choice of generators were
Ξ𝑆𝑎,{𝑎} = −2𝜎𝑆𝑎 + 𝛽

−
𝜒𝑎
+ 𝛽+𝜒𝑎

, this would be lead to the same presentation of [5, Theorem 6.13].

Remark 5.17. Theorem 5.12 gives another proof of the rational formality of toric arrangements,
previously proven in [5, 16].

Conjecture 5.18. Substituting in Equation (12) 𝑚(𝐴)

𝑚(𝑋⧵{𝑗})
𝜓𝐵 with

∏|𝐵|
𝑖=1
𝜓𝜒𝑖 , where (𝜒𝑖)𝑖 form a basis

ofΛ𝐶∕Λ𝐴 with the same orientation of (𝜒𝑏)𝑏∈𝐵, the cohomology ring with integer coefficients have a
presentation analogous to the one in Theorem 5.12.

Furthermore, our approach to the computation of cohomology ring for toric arrangements
seems suitable to be extended to the non-divisorial case. We hope to develop this line of research
in a future paper.
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