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Abstract
Inertial flow in porous media, governed by the Forchheimer equation, is affected by domain 
heterogeneity at the field scale. We propose a method to derive formulae of the effective 
Forchheimer coefficient with application to a perfectly stratified medium. Consider uniform 
flow under a constant pressure gradient ΔP∕L in a layered permeability field with a given 
probability distribution. The local Forchheimer coefficient � is related to the local perme-
ability k via the relation � = a∕kc , where a > 0 being a constant and c ∈ [0, 2] . Under ergo-
dicity, an effective value of � is derived for flow (i) perpendicular and (ii) parallel to layers. 
Expressions for effective Forchheimer coefficient, �

e
 , generalize previous formulations for 

discrete permeability variations. Closed-form �
e
 expressions are derived for flow perpen-

dicular to layers and under two limit cases, F ≪ 1 and F ≫ 1 , for flow parallel to layering, 
with F a Forchheimer number depending on the pressure gradient. For F of order unity, �

e
 

is obtained numerically: when realistic values of ΔP∕L and a are adopted, �
e
 approaches 

the results valid for the high Forchheimer approximation. Further, �
e
 increases with het-

erogeneity, with values always larger than those it would take if the � − k relationship was 
applied to the mean permeability; it increases (decreases) with increasing (decreasing) 
exponent c for flow perpendicular (parallel) to layers. �

e
 is also moderately sensitive to the 

permeability distribution, and is larger for the gamma than for the lognormal distribution.
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1 Introduction

An understanding of the interplay between nonlinear effects in porous media flow and 
domain heterogeneity is of great importance in several engineering and geological dis-
ciplines. Darcy’s law, usually adopted to model fluid flow in porous media, implies a 
linear relationship between flow rate and pressure (or head) gradient. However, for high 
flow rates, the pressure gradient is higher than that predicted by Darcy’s law, the devia-
tion increasing with the flow rate. This phenomenon, known as non-Darcy or Forch-
heimer flow, occurs in several civil, environmental, and industrial engineering applica-
tions, such as flow in rockfill dams; flow in coarse-grained, fractured or karstic porous 
media; flow in the vicinity of pumping or injection wells; gas flow in natural or artificial 
porous media; industrial filtration processes; reservoir exploitation. The importance of 
the aforementioned applications generated a large body of scientific and technical litera-
ture in the past decades aimed at understanding the mechanisms governing non-Darcy 
flow in porous media. The nonlinear relationship between flow rate and pressure drop 
is usually attributed to the insurgence of inertial effects within the laminar flow regime; 
these inertial effects are commonly represented by adding to Darcy’s equation an addi-
tional term proportional to the fluid density and to the second power of the flow rate; 
the coefficient of proportionality is known as Forchheimer, or inertial, or non-Darcy 
coefficient. For a review of the different existing formulations of Forchheimer’s law 
see, among others, Trussell and Chang (1999), Sidiropoulou et  al. (2007), and Huang 
and Ayoub (2008). An alternative to Forchheimer’s law is the Izbash equation, which 
states that the hydraulic gradient is a power function of the specific discharge (Bordier 
and Zimmer 2000; Moutsopoulos et al. 2009); more complex polynomial equations also 
exist (Balhoff et  al. 2010; Lofrano et  al. 2020), based on the fact that inertial flow in 
porous media may be classified into different subregimes depending on the form of the 
inertial correction (Agnaou et al. 2017).

In field-scale modeling of porous media flow at scales ranging from local to regional, 
heterogeneity in model parameters plays a crucial role; as a consequence, a relevant 
effort was devoted in the scientific literature at characterizing heterogeneity in hydrau-
lic and transport properties, and at deriving representative properties as functions of 
statistical parameters describing heterogeneity. While most of the effort was directed 
at hydraulic conductivity (Sanchez-Vila et al. 2006), heterogeneity in the Forchheimer 
coefficient was also recognized in the field (Jones 1987; Narayanaswamy et al.. 1999), 
prompting researchers to investigate the concept of a representative Forchheimer coef-
ficient at a given upscaled scale, as a function of its local value (Fourar et  al. 2005; 
Auriault et al. 2007; Garibotti and Peszynska 2009; Aulisa et al. 2014). The nonlinearity 
of the flow complicates the upscaling problem; related work in the context of geologic 
media includes the determination of the effective conductivity for non-Newtonian fluid 
flow (Di Federico et al. 2010; Airiau and Bottaro 2020).

The value of the Forchheimer coefficient has long been recognized as being empiri-
cally correlated to other properties of the porous medium, namely porosity, tortuosity, 
and permeability; a recent summary of proposed correlations was provided by Arabja-
maloei and Ruth (2017). In particular, the correlation of the Forchheimer coefficient � 
with permeability k was found to be a power-law inverse one since the work of Ergun 
(1952) and Geertsma (1974). The present paper incorporates the � − k correlation into 
deriving an upscaled Forchheimer coefficient for flow under a uniform pressure gradient 
in a stratified porous medium.
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The Forchheimer seepage law, related experimental findings, and the nature of the � − k 
correlation are illustrated in Sect.  2, while effective parameters for Forchheimer flow in 
one-dimensional stratified porous media are derived in Sect. 3 for flow perpendicular and 
parallel to layers; in the latter case, two analytical approximations are presented for low- 
and high-Forchheimer number case, together with a general option for numerical evalua-
tion. These results are discussed as a function of problem parameters in Sect. 4. A set of 
conclusions closes the paper (Sect. 5), while details on the permeability distribution func-
tions adopted and special values of the quantities of interest are presented in Appendices A 
through D.

2  Seepage Law and Experimental Findings

2.1  Forchheimer Flow Law

For high seepage velocities, Darcy’s law is inadequate to represent fluid flow in porous 
media due to inertial effects, which are no longer negligible when the pore-scale Reynolds 
number exceeds a threshold value between 1 and 10 (Bear 1979), while turbulence usu-
ally occurs at much higher values of the pore Reynolds number (Huang and Ayoub 2008). 
In turn, inertial effects derive from the nonlinear terms in the general momentum balance 
equation.

The inertial effects are commonly represented by adding to Darcy’s law an additional 
term proportional to the fluid density and the second power of the flow rate; the resulting 
equation is termed Forchheimer’s flow law; its isotropic form reads (Auriault et al. 2007)

where P = p + �gz is the generalized pressure including gravity effects, p the pressure, � 
and � the fluid density and dynamic viscosity, � the specific discharge vector [LT−1] , kF 
the Forchheimer permeability coefficient [L2] , larger than, but close to, the Darcy perme-
ability coefficient kD appearing in Darcy’s law (El-Zehairy et  al. 2019). Finally, � is the 
Forchheimer coefficient [L−1] , also termed velocity coefficient, inertial coefficient, or non-
Darcian coefficient; when � = 0 , Eq. (1) reduces to Darcy’s law with kD in place of kF . In 
the following, we will assume kD = kF = k.

Values of the Forchheimer coefficient � reported in the literature vary over several 
orders of magnitude. In their review, Venkataraman and Rao (1998) summarized a large 
number of data from earlier laboratory experiments; when interpreted with Forchheimer’s 
law, these yielded values of � in the range 270 − 24, 550 m−1 . Bordier and Zimmer (2000) 
obtained � = 302 − 344 m−1 for coarse granular materials and � = 43 − 308 m−1 for man-
made drainage products. The review paper by Sidiropoulou et al. (2007) cites experimen-
tal values of � ranging from 42 to 7, 962 m−1 . The experimental work of Moutsopoulos 
et  al. (2009) in a vertical metal column yielded � = 448 − 6, 389 m−1 for eight different 
types of coarse porous media. Values of � for flow through woodchips (Ghane et al. 2016) 
range from 2.16 × 104 to 1.58 × 105 m−1 . Yang et al. (2017) performed seepage experiments 
in sand columns with nine different particle sizes, obtaining � = 2.06 × 105 − 1.50 × 109 
m−1 , though the larger value is associated with actual turbulence. For fine-grained 
sands typical of geotechnical applications, centrifuge and bench tests yielded 
� = 5.27 × 103 − 5.94 × 106 m−1 (Ovalle-Villamil and Sasanakul 2019). The 3-D direct 

(1)−∇P =
( �

kF
+ ��|�|)�,
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pore-scale simulations of Muljadi et al. (2016) yielded estimates of � of 2.57 × 105 m−1 , 
2.07 × 106 m−1 and 6.15 × 108 m−1 , for water flowing in beadpack, Bentheimer sandstone 
and Estaillades carbonate, in good agreement with available experimental data.

All experimental values cited above pertain to water flow, while values of � found 
experimentally for gas flow tend to be higher by a couple of orders of magnitude: values 
of the Forchheimer coefficient measured by Jones (1987) on a total of 364 core plugs were 
in the range 105 to 1013 m−1 ; Zeng and Grigg (2006) performed laboratory experiments 
with nitrogen gas, finding � = 2.88 × 108 − 1.57 × 1010 m−1 ; Wells et al. (2008) obtained 
for airflow values of � in the range 1.41 × 106 − 5 × 108 m−1 with a field permeameter. For 
fracture proppant packs in hydrofracturing, � lies in the range 7.2 × 104 − 3.8 × 107 m−1 
(Friedel and Voigt 2006).

2.2  Empirical ˇ − k Correlations

Several researchers found a correlation to exist between local values of the Forchheimer 
coefficient � and other properties of the porous medium; the different formulations of this 
relationship, either theoretically or empirically based, are summarized by Li and Engler 
(2001); according to them, a good representation of most of the previous work, either of 
theoretical or experimental nature, is provided by the formulation

in which � is porosity, � is tortuosity, and c1 , c2 , and c3 are three experimental constants for 
an assigned porous medium. Similar formulations are reported in Skjetne et al. (2001) and 
Saboorian-Jooybari and Pourafshary (2015), albeit with � = 1 . The former authors note 
that as [k] = [L2] and [�] = [L−1] , media that are scaled copies of each other have c2 = 0.5 . 
According to the analysis of Geertsma (1974), conducted both via dimensional and field 
data analysis, c2 = 0.5 ; according to Narayanaswamy et al. (1999), who also cites previous 
experimental work, c2 = 1.25 . Jones (1987) analyzed a large number of field samples with 
differing lithologies, obtaining c2 = 1.55 ; the reticular model of Thauvin and Mohanty 
(1998) and the experimental data of Cooper et al. (1998) suggest c2 = 1 . The values of c2 in 
Eq. (2), according to the review by Li and Engler (2001), are generally in the range of 0.5 
to 1.88. The same range is reported in the more recent review of Saboorian-Jooybari and 
Pourafshary (2015). In the sequel of this note, aimed at investigating the impact of hetero-
geneity in the permeability distribution on the effective Forchheimer coefficient, porosity 
� , and tortuosity � will be considered as constants, under the hypothesis that permeability 
varies across several order of magnitudes while porosity and tortuosity do not (Bear 1979); 
this allows writing Eq. (2) as

where c = c2 [−] is a non-negative empirical exponent, which will be assumed to lie in the 
range 0 − 2 , and the empirical parameter a = a(c) has dimensions [L(2c−1)] ; the case c = 0 
is equivalent to assuming a value of the local-scale Forchheimer coefficient � independent 
from permeability.

The value of the parameter a is highly sensitive to the exponent c and the medium prop-
erties, porosity � and tortuosity � . For c = 0.5 , Ergun (1952) measured a = 361480 [−] 
for sand packs and Macdonald et al. (1979) calculated a = 339408 [−] for unconsolidated 

(2)� =
c1�

kc2�c3
,

(3a-b)�(k) =
a

kc
, a =

c1�

�c3
,
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and consolidated sandstone. For c = 1 , the experimental data of Liu et al. (1995) result in 
a = 71274432m considering as mean values of porosity and tortuosity � = 0.25 and � = 2 . 
For c = 1.55 , Jones (1987) obtained a = 187724450m2.1 for limestone, and fine-grained 
sandstone considering � = 1 . In what follows, we assume the latter value of a to be valid 
also for the case c = 1.5 as a = 187724450m2 . Additional, different experimental values of 
a can be found in Saboorian-Jooybari and Pourafshary (2015) for different correlations of 
� and k.

3  Effective Parameters for Forchheimer Flow in Stratified Porous 
Media

Consider an heterogeneous, perfectly stratified porous domain of length L, subject to an 
external, generalized pressure difference ΔP = P(0) − P(L) = P1 − P2 in the x-direction; 
the domain permeability k is taken to vary as a weakly stationary random field character-
ized by its probability density function (PDF) f(k). The ergodic assumption is assumed to 
hold; hence spatial averages and ensemble averages are interchangeable, and a single reali-
zation can be examined. To derive an expression for the effective permeability ke and effec-
tive Forchheimer coefficient �e in perfectly layered media, two limiting cases are examined, 
coincident with those providing the lower and upper bound for the effective permeability 
(Matheron 1967): (i) flow perpendicular to the layering (serial-type layers), when the pres-
sure gradient is parallel to the permeability variation; (ii) flow parallel to the layering (par-
allel-type layers) when the pressure gradient is transverse to the permeability variation, as 
shown schematically in Fig. 1a and b, respectively. Such perfect layering is an idealization 
of real-world conditions frequently employed in the stochastic hydrology literature (Dagan 
2017).

3.1  Flow Perpendicular to Layers

For flow perpendicular to layers, the domain is made of N homogeneous layers of equal 
thickness Δx , each having an area A perpendicular to the flow direction; the i-th layer has a 
permeability of ki and a Forchheimer coefficient �i = �i(ki) given by Eq. (3a-b). By virtue 
of mass conservation, volumetric flux Q = qA through each layer is the same; assuming 
that the one-dimensional version of the flow law given by Eq. (1) holds locally, the pres-
sure difference in each layer is provided by

(a) (b)

Fig. 1  Schematic of the heterogeneous layers arranged (a) perpendicular to flow and (b) parallel to flow
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Since Δx = L∕N and ΔP =
∑n

i
ΔPi , summing over the layers and then taking the limit as 

N → ∞ , the length of each layer tends to zero and the discrete permeability variation to a 
continuous one; then under ergodicity

where ⟨⋅⟩ is the expected value, and the relationship � = �(k) given by Eq. (3a-b) was 
employed. Eq. (5) extends to a continuous permeability distribution the discrete equation 
of Narayanaswamy et al. (1999). The result on the r.h.s. is valid unless f(k) is a constant, 
e.g. for a uniform distribution: see Appendix 1 for this case.

The effective parameters kes and �es for flow perpendicular to layers are defined by

Comparison between Eqs. (6) and (5) gives for the effective parameters

where kH is the harmonic mean.

3.2  Flow Parallel to Layers

In this case the porous domain is still constituted by N homogeneous layers, with the i-th layer 
having an area ΔA = A∕N perpendicular to the direction of the external pressure gradient, a 
permeability ki and a Forchheimer coefficient �i = �i(ki) according to Eq. (3a-b). The volu-
metric flux ΔQi in the i-th layer is, solving the quadratic Eq. (1) in terms of flow rate

Summing over the layers and switching to a continuous parameter variation gives

where the quantity

is the dimensionless external pressure gradient, essentially a Forchheimer number, the 
ratio of liquid-solid interaction to viscous resistance (Ruth and Ma 1992). Substituting the 
expression of �(k) given by Eq. (3a-b) gives F = (4�ak2−c∕�2)(ΔP∕L) , and Eq. (9) is not 
amenable to closed-form integration for the most commonly adopted formulations of the 
probability density function f(k), except for the uniform distribution, see Appendix C.

(4)ΔPi =
�q

ki
Δx + ��iq

2Δx.

(5)
ΔP

L
= ∫

∞

0

�
�q

k
+ ��q2

�
f (k)dk = �q⟨k−1⟩ + �aq2⟨k−c⟩,

(6)
ΔP

L
=

�q

kes
+ ��esq

2.

(7a-b)kes = ⟨k−1⟩−1 = kH , �es = a⟨k−c⟩,

(8)
ΔQi = �ΔA

√
1 +

( 4��ik
2
i

�2

)(ΔP

L

)
− 1

2��iki
.

(9)Q = �A∫
∞

0

(√
1 +

(
4��k2

�2

)(ΔP

L

)
− 1

2��k

)
f (k)dk,

(10a-b)F =
(4��k2

�2

)(
ΔP

L

)
∼

��qk

�
, q = Q∕A,
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For c = 2 , Eq. (9) with Eq. (3a-b) gives

while the flowrate in terms of the effective parameters is

Comparing Eqs. (11) and (12) leads to

where kA is the arithmetic mean.
For c ≠ 2 , we note that for F both small and large with respect to unity, an approxi-

mate closed-form solution for the flow rate and the effective Forchheimer coefficient can be 
found explicitly. In particular, for F ≪ 1 (case 1), where the quantity F is small, but not so 
small that inertial effects on the flow could be disregarded, the quantity 

√
1 + F in Eq. (9) 

can be approximated by its second-order Taylor’s expansion 
√
1 + F ≈ 1 + F∕2 − F2∕8 . 

When, on the other hand, F ≫ 1 (case 2), we assume in Eq. (9) at leading order √
1 + F − 1 ≈

√
F and hence Q ∝

√
ΔP∕L (Fourar et al. 2005), i.e. the Forchheimer term 

in Eq. (9) is dominant with respect to the Darcy one.
Both approximations examined may be appropriate for laboratory or field applications, 

depending on the fluid involved, the values of the porous medium properties, and the pres-
sure gradient. Typically, laboratory and field measurements involve water or gas flow. 
In the first case, taking for the fluid properties those of water at 10◦C ( � = 999.7 kg∕m3 , 
� = 1.337 × 10−3 kg∕m∕s ), and further assuming k = 10−8 m2 , � = 50 m−1 , ΔP∕L = 104 
Pa ⋅ m (corresponding approximately to a unit hydraulic gradient), yields F = 0.117 , while 
larger values of permeability, Forchheimer coefficient, and/or pressure gradient bring about 
larger values of F. The data reported in Moutsopoulos et al. (2009) lead to F = 1.82 − 2025 
(depending on the actual temperature during the experiments), those of Bordier and Zim-
mer (2000) to F = 0.80 − 44.23 , those by Wahyudi et  al. (2002) to F = 0.16 − 5.32 . In 
applications involving gas flow, typically the values of the ratio �∕�2 , the Forchheimer coef-
ficient � , and pressure gradient ΔP∕L are decidedly higher when compared to water flow, 
while the permeability values are lower. Taking � = 1.25 kg∕m3 , � = 1.79 × 10−5 kg∕m∕s 
for air at 10◦C , a porous medium with k = 10−12 − 10−10 m2 and � = 2 ⋅ 108 − 8 ⋅ 108 m−1 , 
yields for a pressure gradient in the range ΔP∕L = 106 − 107Pa∕m a wide interval 
F = 75 − 1.87 × 106 . Values of F = 280 − 4.2 × 106 , consistently much higher than 
unity, are associated with the gas condensate field results of Narayanaswamy et  al. 
(1999). The field air permeameter data of Wells et al. (2008) lead to values in the interval 
F = 0.03 − 27.97 , with five out of sixteen samples providing values of F less than one. 
For the laboratory measurements of Zeng and Grigg (2006), F = 4.5 × 10−5 − 2.6 × 10−3 , 
while for those of Cooper et al. (1998), F = 1.68 × 10−3 − 1.28 × 10−1.

3.2.1  Low Forchheimer case ( F ≪ 1)

Substituting 
√
1 + F ≈ 1 + F∕2 − F2∕8 in Eq. (9) yields

(11)Q =
�⟨k⟩A
2�a

��
1 +

�
4�a

�2

��
ΔP

L

�
− 1

�
,

(12)Q =
�A

2��eke

(√
1 +

(
4��ek

2
e

�2

)(
ΔP

L

)
− 1

)
.

(13a-b)kep = ⟨k⟩ = kA, �ep =
a

⟨k⟩2 ,
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Inserting Eq. (3a-b) in Eq. (14) gives

Now taking an upscaled equation like (6) written in terms of the effective parameters for 
parallel-type layers in this case, namely kep1 and �ep1 , solving it for Q = qA and adopting the 
same second-order Taylor’s approximation employed in Eq. (14), gives

Comparison between Eqs. (15) and (16) yields

where kA is the arithmetic mean (Matheron 1967).

3.2.2  High Forchheimer Case ( F ≫ 1)

Performing the same steps as in the previous case and adopting in Eq. (9) the zero 
order approximation 

√
1 + F − 1 ≈

√
F yields as counterparts of Eqs. (14)-(16) the fol-

lowing expressions for the approximate flow rate, the approximate flow rate incorpo-
rating the � − k relationship, and the flow rate as a function of the effective parameters:

Comparison between Eqs. (19) and (20) yields the effective Forchheimer coefficient for 
F ≫ 1 as

For c = 2 , the approximate result given by Eq. (21) is equal to the exact one provided by 
Eq. (13a-b).

(14)Q =
A

�

ΔP

L ∫
∞

0

k

(
1 −

��k2

�2

ΔP

L

)
f (k)dk.

(15)Q =
A

�

ΔP

L
⟨k⟩ − �Aa

�3

�
ΔP

L

�2

⟨k3−c⟩.

(16)Q =
A

�

ΔP

L
kep1 −

�A�ep1k
3
ep1

�3

(
ΔP

L

)2

.

(17a-b)kep1 = ⟨k⟩ = kA, �ep1 = a
⟨k3−c⟩
⟨k⟩3 ,

(18)Q = A∫
∞

0

(
1

�1∕2�1∕2

(
ΔP

L

)1∕2)
f (k)dk,

(19)Q = A∫
∞

0

�
1

�1∕2a1∕2
⟨kc∕2⟩

�
ΔP

L

�1∕2�
f (k)dk,

(20)Q = A∫
∞

0

(
1

�1∕2�
1∕2

ep2

(
ΔP

L

)1∕2)
f (k)dk.

(21)�ep2 =
a

⟨kc∕2⟩2 .
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3.3  Effective Parameters ˇes , ˇep1 , ˇep2 for given Permeability Distribution

The effective parameters are evaluated for two given PDFs of permeability, the lognormal and 
the gamma distributions, both suitable to represent non-negative permeability distributions. 
Their expressions are illustrated in Appendices A and B, respectively.

Utilizing Eqs. (7a-b), (17a-b), and (21) with the distributions of Eqs. (A1) and (B2) pro-
vides the following expressions of effective parameters for the lognormal (Eqs. (22a-b)-(24)) 
and gamma distributions (Eqs. (25a-b)-(27)) and flow perpendicular or parallel to layers; in the 
latter case, results for low Forchheimer ( F ≪ 1 ) and high Forchheimer ( F ≫ 1 ) are reported. 

Lognormal PDF  

Gamma PDF  

3.4  Numerical Evaluation of Effective Forchheimer Coefficient ˇepN for Flow Parallel 
to Layers and any F

Considering the specific flow rate q = Q∕A directly, Eq. (9) can be rearranged as

For c = 1 , Eq. (28) is amenable to a simpler solution for the lognormal distribution and a 
closed-form solution for the gamma distribution; these are reported in Appendix D. In gen-
eral, once q is evaluated numerically from Eq. (28) for a given permeability distribution, 
the numerical effective Forchheimer coefficient �epN for the parallel-type layers will be

(22a-b)kes = kG exp

(
−

�2
y

2

)
, �es =

a

kc
G

exp

(
c2
�2
y

2

)
,

(23a-b)kep1 = kG exp

(
�2
y

2

)
, �ep1 =

a

kc
G

exp

(
(c2 − 6c + 6)

�2
y

2

)
,

(24)�ep2 =
a

kc
G

exp

(
− c2

�2
y

4

)
.

(25a-b)kes = �(� − 1), �es =
�

�c

Γ(� − c)

Γ(�)
,

(26a-b)kep1 = ��, �ep1 =
�

�c

Γ(� + 3 − c)

�3Γ(�)
,

(27)�ep2 =
�

�c

(
Γ(�)

)2
(
Γ(� +

c

2
)
)2 .

(28)q =
�

2�a ∫
∞

0

kc−1
(√

1 +

(
4�a

�2
k2−c

ΔP

L

)
− 1

)
f (k)dk.

(29)�epN =
1

�q2
ΔP

L
−

�

⟨k⟩�q .
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Note from Eq. (29) that, in variance with Eq. (7a-b) for flow perpendicular to layers, the 
effective Forchheimer coefficient for flow parallel to layers depends on the boundary 
conditions.

4  Discussion of Results

The effective properties, permeability and Forchheimer coefficient, are functions of the 
parameters describing heterogeneity. While the results for effective permeability recover 
well-known results (Matheron 1967; Sanchez-Vila et  al. 2006), those for the effective 
Forchheimer coefficient are novel. Some general tendencies of its behavior are evident 
from Eqs. (22a-b)-(27): (i) for flow perpendicular to layers, the effective Forchheimer coef-
ficient increases with increasing heterogeneity; (ii) the same is true for flow parallel to lay-
ers and low Forchheimer number; (iii) the reverse is true for flow parallel to layers and high 
Forchheimer number; (iv) the shape of the distribution does not influence the aforemen-
tioned tendencies; (v) the parameter c influences the effective Forchheimer coefficient for 
serial and parallel arrangements in a non-trivial way.

4.1  Analytical Results for Flow Perpendicular or Parallel to Layers

We express Eqs. (22a-b)-(27) in the dimensionless form

adopting as a scale for �e the value of the effective Forchheimer coefficient would take if 
the correlation given by Eq. (3a-b) was applied to a representative permeability equal to 
the mean value ⟨k⟩ of the random permeability field. One then obtains for the lognormal 
distribution and gamma distribution the following expressions: 

Lognormal PDF  

Gamma PDF  

(30a-b)k̂e =
ke

⟨k⟩ , 𝛽e =
𝛽e

a⟨k⟩−c ,

(31a-b)k̂es = exp
(
− 𝜎2

y

)
, 𝛽es = exp

(
c(c + 1)

𝜎2
y

2

)
,

(32a-b)k̂ep1 = 1, 𝛽ep1 = exp

(
(3 − c)(2 − c)

𝜎2
y

2

)
,

(33)𝛽ep2 = exp

(
c(2 − c)

𝜎2
y

4

)
,

(34a-b)k̂es =
𝛼 − 1

𝛼
, 𝛽es = 𝛼c Γ(𝛼 − c)

Γ(𝛼)
,

(35a-b)k̂ep1 = 1, 𝛽ep1 =
Γ(𝛼 + 3 − c)

𝛼3−cΓ(𝛼)
,
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 Specific expressions of the effective Forchheimer coefficient for special values of c are 
listed in Table 1.

In the following, the dimensionless effective Forchheimer coefficient 𝛽e for flow per-
pendicular and parallel to layers is illustrated as a function of the permeability coefficient 
of variation Cvk = �k∕⟨k⟩ for the lognormal and gamma distributions (see Appendix A 
and Appendix B). Note that for a lognormal distribution the classical upper limit of valid-
ity of the first-order approximation in stochastic hydrology, �2

y
= �2

Y
= 1 , corresponds to 

Cvk = 1.31 , and conversely Cvk = 1 is equivalent to �2
y
= 0.693 . The deviation of 𝛽e from 

unity represents the relative error made upon adopting the correlation Eq. (3a-b) and the 
mean permeability to evaluate �e.

Figures 2, 3 and 4 show 𝛽e as a function of Cvk for different values of exponent c and 
for the lognormal and gamma distributions, respectively for flow perpendicular to layers, 
parallel to layers with low Forchheimer number (case 1), and parallel to layers with high 
Forchheimer number (case 2).

Figure 2a and b depict the effective Forchheimer coefficient for lognormal and gamma 
distributions for flow perpendicular to layers. The effective Forchheimer coefficient 𝛽es 
increases as a function of increasing heterogeneity (higher Cvk ); an increase in the value 
of c has a similar effect. For c = 0 (no correlation between � and k), the effective Forch-
heimer coefficient coincides with the value calculated inserting the mean permeability in 
the empirical relationship Eq. (3a-b).

Even for flow parallel to layering (Figs.  3 and 4), as the heterogeneity grows, the 
value of 𝛽ep1 and 𝛽ep2 increases. However, unlike in serial geometry, the increase in the 
coefficient c corresponds to a smaller rise of 𝛽ep1 and 𝛽ep2 as Cvk grows; in this case, 
a value c = 0 corresponds to the maximum difference between the value of the actual 
Forchheimer coefficient and its local value. The values of 𝛽ep2 are smaller than that of 
𝛽ep1 , showing that the high Forchheimer case implies smaller upscaled �e . We remark 

(36)𝛽ep2 = 𝛼c

(
Γ(𝛼)

)2
(
Γ(𝛼 +

c

2
)
)2 .

Table 1  The effective Forchheimer coefficient for c = 0.0 , 0.5, 1.0, 1.5, and 2.0

Lognormal distribution Gamma distribution

c Serial case Parallel case Serial case Parallel case

𝛽
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that the estimation of high Forchheimer values for c = 0.5 and c = 1.5 , shown by a solid 
line and black dots in Fig. 4a, are identical, as is evident from Eq. (33).

Finally, upon comparing the results relating to the two adopted distributions in the 
two limit cases of low and high Forchheimer numbers, it is noted that with the same Cvk 
and the value of the exponent c, for flow perpendicular to layering the values of �e for 
the lognormal distribution are lower than those for the gamma distribution; the reverse 
is true for flow parallel to layering. The differences between distributions are modest for 
low-Forchheimer numbers and more significant for high-Forchheimer numbers. We note 
that in the low Forchheimer number regime (see Fig. 3), the calculated value of �e for 
c = 1 is identical for the lognormal and gamma distributions.

(a) (b)

Fig. 2  Dimensionless effective Forchheimer coefficient 𝛽es for flow perpendicular to layers as a function 
of the permeability coefficient of variation Cvk , for different values of exponent c for (a) lognormal and (b) 
gamma distribution

(a) (b)

Fig. 3  Effective dimensionless Forchheimer coefficient 𝛽ep1 for flow parallel to layers ( F ≪ 1 or case 1), as a 
function of the permeability coefficient of variation Cvk , for different values of exponent c for (a) lognormal 
and (b) gamma distribution
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4.2  Numerical Estimation of Parallel Flow

We assume water as the reference fluid ( � = 1000 kg∕m3 , � = 10−3 Pa ⋅ s ), and a mean per-
meability ⟨k⟩ = 10−10 m2 to perform the numerical integration of Eq. (28). The realistic 
values of a = 361480 [−], 71274432m, 187724450m2 are considered for c = [0.5, 1.0, 1.5] , 
respectively, as discussed in Sec. 2.2. In addition, the pressure gradient is taken to be 
ΔP∕L = 400Pa∕m . We then introduce a further set of dimensionless parameters for the 
numerical estimation of the Forchheimer coefficient of the parallel-layer case as

where q̂ , Δ̂P
L

 , and â are normalized flow rate, pressure gradient, and proportionality constant 
a, respectively. Then, Eq. (28) can be written in terms of the dimensionless parameters of 
Eqs. (30a-b) and (37a-c) as

Eq. (38) can be specialized for the lognormal distribution as

and for Gamma distribution by substituting Eq. (B3) and Cvk = �k∕⟨k⟩

(37 a-c)q̂ =
𝜌q⟨k⟩1∕2

𝜇
, â =

a

⟨k⟩c−1∕2 ,
�ΔP

L
=

𝜌⟨k⟩3∕2
𝜇2

ΔP

L
,

(38)q̂ =
1

2â ∫
∞

0

(k̂epN)
c−1

(√
1 +

(
4â

�ΔP

L
(k̂epN)

2−c

)
− 1

)
f (k̂epN)dk̂epN .

(39)

q̂ =
1

2â ∫
∞

0

(k̂epN)
c−1

��
1 +

�
4â

�ΔP

L
(k̂epN)

2−c

�
− 1

�

1

k̂epN𝜎y

√
2𝜋

exp

�
−

�
ln
�
k̂epN exp

� 𝜎2
y

2

���2
2𝜎2

y

�
dk̂epN ,

(a) (b)

Fig. 4  Effective dimensionless Forchheimer coefficient 𝛽ep2 for flow parallel to layers (high Forchheimer 
number or case 2), as a function of the permeability coefficient of variation Cvk , for different values of expo-
nent c for a lognormal and b gamma distribution
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The dimensionless effective Forchheimer coefficient for the parallel-type layers obtained 
from the direct numerical analysis is derived by substituting the dimensionless parameters 
of Eq. (30a-b) and Eqs. (37a-c) into Eq. (29), as:

The outcomes of the direct numerical integration are shown in Fig.  5 for Δ̂P
L

= 0.0004 , 
c = 0.5, 1.0, 1.5 , and their corresponding a values, where the left and right panels depict 
the lognormal and gamma PDFs, respectively. For c = 0.5 and for both distribution func-
tions, the effective Forchheimer coefficient obtained from the direct numerical integration 
𝛽epN approaches to the high Forchheimer number estimation 𝛽ep2 . For the cases  c = 1.0 and 
c = 1.5 , the numerical results are almost identical to the high Forchheimer approximation.

We then perform a parametric study on the pressure gradient and proportionality param-
eter a to analyze their impact on the numerical evaluation of the effective Forchheimer 
coefficient for flow parallel to layers considering c = 0.5 , the most common value in the 
literature (Ergun 1952). Figure  6a and b show the effective Forchheimer coefficient for 
Δ̂P

L
= 0.0001, 0.0004, 0.0020 (or equivalently ΔP

L
= 100, 400, 2000Pa∕m ) upon assuming a 

constant value of â = 361480.
For the larger pressure gradients, the numerical estimation approaches the high 

Forchheimer approximation ( F ≫ 1 ). Figure  6c and d highlight the variation of 
â = 36148, 361480, 3614800 where Δ̂P

L
= 0.0004 (or equivalently ΔP∕L = 400Pa∕m ) is 

assumed to be constant. In this case, larger â values produce 𝛽epN values very close to the 
high Forchheimer approximation. The trends are similar for both distribution functions, 
while the actual values of 𝛽epN are higher for the lognormal distribution.

5  Conclusions

Nonlinear seepage in heterogeneous, perfectly layered porous media is investigated in 
this work with the aim of deriving expressions for the effective permeability and effective 
Forchheimer coefficient. The local Forchheimer coefficient is expressed as a function of the 
local permeability value with an inverse power relationship of exponent c and constant of 
proportionality a.

The effective permeability for flow perpendicular or parallel to layers coincides respec-
tively with the harmonic and arithmetic mean, and therefore decreases or increases as 
the heterogeneity of the domain increases. The increase in heterogeneity determines an 
increase in the effective Forchheimer coefficient for all setups and dimensionless parame-
ters. Its value is always larger than that it would take if the � − k correlation was applied to 
the mean permeability. The effective � increases (decreases) with increasing (decreasing) 
exponent c for flow perpendicular (parallel) to layers. The influence of the permeability 
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c=0.5

c=1.0

c=1.5

c=1.0

c=0.5

c=1.5

(a) (b)

(d)(c)

(e) (f)

Fig. 5  Effective dimensionless Forchheimer coefficient 𝛽ep for flow in heterogeneous layers arranged in par-
allel as a function of the permeability coefficient of variation Cvk , for c = 0.5, 1.0, 1.5 , for lognormal (left 
panels) and gamma distribution (right panels). The numerical results obtained from the integration of Eq. 
(41) are shown compared with their corresponding low and high Forchheimer number approximation
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distribution adopted is most evident for flow perpendicular to layers and the high Forch-
heimer limit for flow parallel to layers: in both cases, the gamma distribution yields larger 
values of the effective Forchheimer coefficient than the lognormal. When realistic values 
of the pressure gradient and of the a parameter are adopted, the effective Forchheimer 
coefficient for flow parallel to layers is very close or identical to the result of the high 
Forchheimer approximation ( F ≫ 1 ). For flow parallel to layers, the effective Forchheimer 
coefficient depends on boundary conditions, in variance with the effective permeability. 
The outcomes of this work, despite model simplifications, provide additional insight into 
nonlinear effects on flow in heterogeneous porous media, emphasizing the sensitivity of the 
effective Forchheimer coefficient to heterogeneity.

A desirable extension is the determination of the effective Forchheimer coefficient for 
two- and three-dimensional geometry, to be obtained either: (i) via a conjecture, assum-
ing that the effective Forchheimer coefficient for a 2-D isotropic domain is the weighted 
average (geometric mean) of the results obtained for the two limit geometries (flow 

(a) (b)

(d)(c)

Fig. 6  Dimensionless effective Forchheimer coefficient 𝛽epN for flow in heterogeneous layers arranged in 
parallel as a function of the permeability coefficient of variation Cvk and c = 0.5 , considering the variation 
of pressure gradient and assuming â = 361480 as a constant in panels (a) and (b); and for constant pressure 
gradient case Δ̂P

L
= 0.0004 considering the variation of â in (c) and (d). Left panels represent the outcomes 

of the lognormal distribution, and right panels represent gamma distribution results. Low ( 𝛽ep1 ) and high 
Forchheimer approximation ( 𝛽ep2 ) results are over-imposed to the figures
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perpendicular and parallel to layers) examined here; the conjecture extends to the Forch-
heimer coefficient the procedure classically adopted for the effective permeability, equal 
to the geometric mean in 2-D; (ii) by composing the 1-D expressions to model flow geom-
etries at the field scale that are intermediate between the two limit situations of motion 
parallel and perpendicular to the medium stratification; or (iii) by means of appropriate 
formal developments in line with the theory of composites. In all cases, results can then be 
validated via Monte Carlo simulations. A further avenue for validation is the comparison 
of � values obtained at the laboratory scale with larger values obtained in the field.

Appendix A The Lognormal Distribution

The lognormal distribution has the form

where kG = ⟨k⟩ exp(−�2
y
∕2) is the geometric mean, ⟨k⟩ the expected value and �2

y
 the vari-

ance of y = ln k . The permeability variance is �2
k
= ⟨k⟩2(e�2

y − 1) = k2
G
e
�2
y (e�

2
y − 1) , and the 

coefficient of variation is Cvk =
√
e
�2
y − 1.

Appendix B The Gamma Distribution

The gamma distribution with a zero lower bound of permeability takes the form (Loáiciga 
et al. 2006)

where � and � ( 𝛼, 𝜃 > 0 ) are the shape and scale parameters, respectively, and Γ(⋅) is the 
gamma function; its mean and variance are given respectively by ⟨k⟩ = �� and �2

k
= ��2 ; 

the coefficient of variation is Cvk =
√
1∕� . For � = 1 , Eq. (B2) reduces to the exponential 

distribution.
An alternative expression of the gamma distribution (B2) as a function of its mean ⟨k⟩ 

and variance �2
k
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Appendix C Results for the Uniform Distribution

The continuous uniform distribution on support [k1, k2] takes the form

the mean and variance are given respectively by ⟨k⟩ = (k1 + k2)∕2 and 
�2
k
= 1∕[12(k2 − k1)

2] ; the coefficient of variation is Cvk = (k2 − k1)∕[
√
3(k1 + k2)].

For flow perpendicular to layers and c ≠ 1 , Eq. (5) becomes

and the effective parameters are by comparison with Eq. (6):

while for c = 1 , Eq. (C5) gives

For flow parallel to layers, Eq. (9) with Eq. (3a-b) gives (Wolfram 2022),

where F is the Forchheimer number, k is a dummy variable, 2F1(⋅, ⋅; ⋅ ;⋅) is the hypergeo-
metric function of parameters −1∕2 , c∕(2 − c) , 2∕(2 − c) and argument F and the transfor-
mation formulae (9.130) in Gradshteyn and Rhyzik (1994) can be used for analytic contin-
uation if F > 1 , as 2F1 in Eq. (C8a-ba) converges in the entire unit circle. Comparing Eqs. 
(C8a-ba) and (12) leads to numerically determined values of kep and �ep for any c.

For a lower limit of the distribution k1 = 0 , a possible and likely case being k the per-
meability, Eq. (C8a-ba) simplifies to

In turn, Eq. (C9) further reduces to (Wolfram 2022)
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respectively for c = 1 and c = 3∕2 , and to Eq. (11) (see (15.1.8) in Abramowitz and Stegun 
1972) for c = 2 ; see Eq. (D14a) for the definition of <F1>. In Eqs. (C10a-b) and (C11a-b), 
Z1 and Z3∕2 are modified forms of the Forchheimer number for the uniform distribution, see 
also Eqs. (D14a-b-c) in Appendix 1.

Appendix D Flow Rate Parallel to Layers, c = 1 , Lognormal and Gamma 
Distributions

For c = 1 , the specific flowrate q in Eq. (28) takes the following simpler form for the 
lognormal distribution (A1) after a change of variable

and the following closed-form expression for the gamma distribution (B2) (see eq. 
(3.383.5) in Gradshteyn and Rhyzik 1994)

where

are the expected value of the Forchheimer number for c = 1 and its modified values for the 
lognormal and gamma distributions, respectively; Ψ(⋅, ⋅;⋅) is the degenerate hypergeomet-
ric function, and � = 1∕C2

vk
 . Using identities (8.331), (8.338.2), (8.338.3) and (9.210.2) in 

Gradshteyn and Rhyzik (1994) allows rewriting Eq. (D13) as

where Φ(⋅, ⋅;⋅) is the confluent hypergeometric function. The same expression may be 
obtained also via the following steps: (i) integrating Eq. (28) with the gamma distribution 
(B2) obtaining the result reported in (3.383.5) of Gradshteyn and Rhyzik (2007), including 
generalized binomial coefficients and generalized Laguerre polynomials, both containing 
real, non-integer values; (ii) transforming the binomial coefficients into gamma functions 
via (3.1.2) and (6.1.5) in Abramowitz and Stegun (1972) and the Laguerre polynomials 
into confluent hypergeometric functions via (8.972.1) in Gradshteyn and Rhyzik (2007); 
(iii) simplify the resulting expressions via (8.331), (8.334.3), (8.338.2), and (8.338.3) in 
Gradshteyn and Rhyzik (2007).
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