
23 November 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Giuseppe Grieco, Ivan Heibi, Arcangelo Massari, Arianna Moretti, Silvio Peroni (2022). Enabling
Portability and Reusability of Open Science Infrastructures. Cham : Springer [10.1007/978-3-031-16802-
4_36].

Published Version:

Enabling Portability and Reusability of Open Science Infrastructures

Published:
DOI: http://doi.org/10.1007/978-3-031-16802-4_36

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/895843 since: 2022-11-13

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1007/978-3-031-16802-4_36
https://hdl.handle.net/11585/895843

ar
X

iv
:2

20
6.

03
92

6v
2

 [
cs

.D
C

]
 2

8
Ju

l 2
02

2

Enabling Portability and Reusability of

Open Science Infrastructures

Giuseppe Grieco[0000−0001−5439−4576], Ivan Heibi[0000−0001−5366−5194],
Arcangelo Massari[0000−0002−8420−0696], Arianna Moretti[0000−0001−5486−7070],

and Silvio Peroni[0000−0003−0530−4305]

Research Centre for Open Scholarly Metadata, Department of Classical Philology and
Italian Studies, University of Bologna, Bologna, Italy

g.grieco1997@gmail.com,ivan.heibi2@unibo.it,arcangelo.massari@unibo.it,

arianna.moretti4@unibo.it,silvio.peroni@unibo.it

Abstract. This paper presents a methodology for designing a container-
ized and distributed open science infrastructure to simplify its reusability,
replicability, and portability in different environments. The methodology
is depicted in a step-by-step schema based on four main phases: (1) Anal-
ysis, (2) Design, (3) Definition, and (4) Managing and provisioning. We
accompany the description of each step with existing technologies and
concrete examples of application.

Keywords: Open Science Infrastructures · OpenCitations · FAIR · POSI

1 Introduction

Open Science Infrastructures (OSInfras) are resources and services that the
scholarly ecosystem depends upon to foster research and “to support open science
and serve the needs of different communities” [19]. According to a survey pub-
lished in 2020 [10], there are 120 OSInfras in Europe, heterogeneous by domain
and objectives. In recent years, several founders – including the European Union
with its financial support towards building the European Open Science Cloud
(EOSC, https://eosc-portal.eu/about/eosc) – and institutions, such as UNESCO
with its Open Science recommendations [19], have strongly emphasised how the
survival of OSInfras is crucial for enabling Open (i.e. good) Science.

An OSInfra is made by several complementary pillars that concern (a) tech-
nological aspects (i.e. “software, hardware, and technical services” [15]), (b) so-
cial (i.e. the people behind the infrastructures) and (c) economic endeavours
(i.e. their sustainability in the long term). Several guidelines, such as [3] [18] [8],
have been published to help the scholarly community running, monitoring, and
maintaining OSInfras in all these aspects.

Focusing on technological concerns, several of these guidelines agree on adopt-
ing open source software for running OSInfras’ services. Indeed, both the Prin-

ciples for Open Scholarly Infrastructures [3] and another recent report by the
Knowledge Future Group about the values and principles for an OSInfra [18]

http://arxiv.org/abs/2206.03926v2
https://eosc-portal.eu/about/eosc

2 Grieco et al.

mention using open software, technologies, standards, and protocols. Such prin-
ciples are essential for ensuring that the OSInfra can be reusable and portable
into new organisations if the original maintainer is not capable anymore of han-
dling it. These aspects concerning the reusability (in the FAIR sense [20] [7] [11]
[14]) and portability of OSInfras are crucial values to guarantee. Indeed, in [18],
the authors stress that an OSInfra should enable and encourage the reuse of
code, and ensure the portability and durability of the content (including soft-
ware and services) that it hosts. Others explicitly ask to enable easy migration of
such content to another platform if needed [8], guaranteeing that all the ongoing
assets can be “archived and preserved when passed to a successor organisation”
[3].

An OSInfra is a complex system providing several services that can be either
tied up into a monolithic container or distributed in distinct locations federated
via APIs, and even if the software for replicating the OSInfra is released with
open source licenses, this is not enough to guarantee reusability, portability, and
redistribution of the OSInfra. Indeed, specific documentation and tools should
be considered to allow an easy reuse and deployment in a different environment.

In this paper, to address the issues mentioned above, we present a method-
ology in four steps that proposes the adoption of existing technologies to enable
the isolation, federation and distribution of the services of individual OSInfras
to simplify their reusability, replicability and portability. The solution we pro-
pose is tied with the infrastructure-as-code (IaC) practice [1], where we use a
standard language to design an infrastructure, including aspects related to script-
ing, automation, configuration, models, required dependencies, and parameters.
This approach is combined with methods based on containers for separation and
isolation of services to foster a more interoperable application packaging [16],
platform-as-a-service (PaaS) runtimes [2], and a better scalability and reliability
[9] of services, so that the software modification could be done directly on the
desired service without impacting the other ones provided by the OSInfra [9].

All the steps of the methodology, introduced in Section 2, are accompanied by
examples of (future) applications on OpenCitations (https://opencitations.net)
[17], i.e. an existing OSInfra dedicated to the publication of open bibliographic
metadata and citation data. Finally, in Section 3, we conclude the paper sketch-
ing out some future works.

2 Methodology

As summarised in Fig. 1, our methodology is based on four steps: (1) Analysis,
(2) Design, (3) Definition, and (4) Managing and provisioning, that are detailed
in the following subsections. The workflow of the methodology is bidirectional:
in clockwise, the output of each step becomes the input of the following one; in
counterclockwise, it enables a backward step (an explanation on when it is needed
is discussed in the following subsections) to re-process and refine the output
returned previously. In addition, the methodology is not entirely connected in

https://opencitations.net

Enabling Portability and Reusability of Open Science Infrastructures 3

a closed circle since the output of step 4 is not given as input to step 1 – and,
thus, any counterclockwise move from step 1 to step 4 is prohibited.

Analysis

Defining the infrastructure as

a collection of services, each

service is based on the

congregation of different

software units.

Design

Producing technical

documentation to specify

the cloud and environment

(i.e, orchestrator) resources

for the deployment of the

software units.

E.g. using Kubernetes as

orchestrator

Definition

Using IaC process for the

definition (with a declerative

language) of a managing

and provisioning process for

the infrastructure.

E.g. using Terraform

Managing and

Provisioning

Updating the infrastructure

server via IaC by

considering the differencce

between the current state of

the infrastructure and the

new one.

Containerized and

distributed infrastructure

The infrastructure

1

2

3

4

Fig. 1. The workflow summarising the steps of the proposed methodology.

2.1 Analysis

The aim of this step is to define a new organization to the infrastructure as a
collection of separated services, each of them defined as a composition of different
software units. This step is structured in two sub-steps.

First sub-step: software units. We analyze the software units (e.g. spe-
cific libraries and applications) used by the infrastructure. This process should
be done with the calculation of a trade-off between decoupling and cohesion [5],
that are crucial aspects to consider for determining how well components com-
municate with each other and with the end-user. Decoupling avoids situations
where highly coupled components cause intensive intra-infrastructure traffic and
are logically codependent. Instead, when components are highly cohesive, man-
aging the overall load balancing is challenging since it could be hard to isolate
the components for which more resources are needed. In addition, a wise choice
of the trade-off between these two aspects permits the integration of other third
party components (e.g. software) inside the infrastructure. This aspect is partic-
ularly relevant to support a federated infrastructure.

If any problem arises during the definition of the software units, then a doc-
ument should be produced highlighting how to improve the cohesion and de-
coupling trade-off with respect to infrastructure requirements. Issues detected in

4 Grieco et al.

this phase do not concern system efficiency but rather the evaluation of relevant
factors that might impact the logical design of a distributed infrastructure.

For example, OpenCitations (as of 5 June 2022) handles everything through
one service, which is highly cohesive since it is the main hub in charge of several
other sub-services, such as the website, the APIs, and the access to the stored
collections. Therefore, in this case, a document should be produced to guide
OpenCitations’ software engineers to improve such a huge cohesiveness before
moving to the next sub-step.

Second sub-step: services. Once the trade-off between cohesion and de-
coupling is verified, the software units are organized into services to isolate the
work of the different parts of the infrastructure. Each single service collects the
software units which are logically related and relevant to its functionality. Con-
sidering the current main OpenCitations service, it should be split into several
other services (that use the software units defined in the previous step). For in-
stance, such new services should include the OpenCitations website, the REST

APIs, and the database access.

In case we are iterating again the methodology to build a new version of the
infrastructure to include new services, this step processes only the new additional
services and extends the previous documentation reporting the services and the
software units managed.

2.2 Design

In this step, we generate a technical documentation that specifies the resources
needed by the software units composing the services provided by the infrastruc-
ture. The documentation describes the resources to be created in the cloud, e.g.
virtual machines with specific computational and storage capacities provided to
cloud users by particular cloud provider such as the Amazon Web Services, and
in an environment managed by the orchestrator, i.e. a software agent that de-
fines how to select, deploy, monitor, and dynamically control the configuration
of multi-container packaged applications [6]. A popular orchestrator tool is Ku-
bernetes [12]. In Kubernetes, an object is a record of intent : once it is created,
Kubernetes constantly works to ensure that such object keeps working. In other
words, creating an object tells Kubernetes how we want its workload to be han-
dled in terms of usage of resources, including hardware resources and behaving
policies (e.g, upgrades and fault-tolerance).

In OpenCitations, Kubernetes should be used to specify a pod (the smallest
deployable unit of computing in Kubernetes) and its deployment specifications
(e.g. load balancing) for each individual service, e.g. the website and REST

APIs. Each pod groups all the containers needed to run a corresponding software
unit needed by a particular service – for instance, in case of the OpenCitations
website, we might use a pod for the database used for authentication and another
for the HTTP web server. It should also be necessary to specify the hardware
resources and network requirements for each pod, e.g. deciding to accept or
not incoming requests external to the Kubernetes cluster – For example, for the

Enabling Portability and Reusability of Open Science Infrastructures 5

website, we can grant to accept HTTP GET requests since it needs to be exposed
externally.

The output of this step is a documentation which groups the containers and
the cloud resources needed by each service, and defines the overall design of the
infrastructure. Of course, we can go back to the previous step in case we find out
that the services partitioning is not satisfying/correct, e.g., due to the inclusion
of unrelated software units or if we think there are services that incorporate too
many software units.

2.3 Definition

In this step, we define the design of the infrastructure using infrastructure-as-
a-code (IaC) – a process for managing and provisioning an infrastructure by
defining it through declarative language instead of using classical tools based on
configuration files, CLI, and control panels [13]. In IaC, the declarative language
specifies the desired state of the infrastructure, and lets the actions to achieve it
be automatically inferred. One of the possible tools to adopt for declarative IaC
is Terraform [4], a software for defining, launching, and managing IaC across a
variety of cloud and virtualization platforms.

Using IaC gives us several advantages. It enables the unification of all re-
source definitions using a standard language, thus facilitating both maintenance
and understanding by external adopters. In addition, specifying all the parame-
ters for deployment in appropriate configuration files simplifies the infrastructure
migration process, which is of particular relevance for supporting portability of
the OSInfra, in case the organization decides to no longer maintain its services.
Indeed, these aspects of IaC favor the organizations willing to reuse the in-
frastructure’s services and preserve its heritage [3], ensure the development of
a highly maintainable and sustainable software product [7], and foster repro-
ducibility and reusability by facilitating OSInfra understanding and trust [20].

In this step, the resources (i.e. cloud and environment ones) are coded follow-
ing the requirements established during the design phase. It might be necessary
to return to the design phase if we realize that the infrastructure model does not
provide sufficient detail on the resources needed, or in case some necessary re-
sources are not included. In OpenCitations, we can use Terraform to declare the
resources needed by each of the services following the documentation provided
in the previous phase – for instance, the pods and the network configurations
needed by OpenCitations website service.

2.4 Managing and provisioning

This is the final step of the methodology, it takes in input the state of the infras-
tructure defined via IaC and updates the remote state of the server with respect
to such definitions. This operation is accomplished again via IaC. Depending
on the IaC technology used, the state of the infrastructure could be updated
using two different strategies: push strategy — the state is sent to the recipient
servers, or pull strategy — the state is pulled by the recipient servers. In case

6 Grieco et al.

this is not the first iteration of the methodology, the state of the infrastructure
is updated considering the delta between the current state of the infrastructure
and the new one.

To evaluate the result of this phase and decide whether to go back to the
previous step or not, benchmarks on the infrastructure are needed to assess the
infrastructure efficiency from a technical point of view. It is worth mentioning
that it is difficult to obtain the optimal infrastructure after one iteration, there-
fore it is highly expected to step backwards to previous steps and refine the
results until we finally obtain the desired output.

The term desired is deliberately ambiguous, because the constraints might
not be purely technical, e.g. the number of users to be supported or the financial
limitations to respect. Therefore, a benchmark strategy for this step should test
the infrastructure considering all these constraints.

In OpenCitations, concerning this step, we should design benchmarks for
all the services, e.g. the website, the REST APIs and the database access, for
instance through the application of massive stress tests on the services.

3 Discussion and conclusions

Re-engineering an OSInfra from one single monolithic to a containerized and
distributed model increases the scalability and reliability of its services. A con-
tinuous benchmark analysis of the system is essential to achieve the desired
result, since the performances of the infrastructure components may vary with a
large degree of unpredictability considering the new factors involved in the new
distributed model.

One of the crucial aspects of this methodology concerns the use of IaC as a
mean to promote the reproducibility and reusability of the infrastructure. IaC
has been applied in literature for the research software. However, in this paper,
we have abstracted this approach to involve the technical organisation of an
OSInfra.

It is necessary that the implementation of each phase of the methodology
is followed by software engineers and software developers. In addition, from an
administrative point of view, the maintenance and management of this architec-
tural model requires a continuous configuration, monitoring, and optimization
of the components composing the infrastructure.

Finally, the methodology has been designed to be flexible and adaptable to
specific use cases. Therefore, it is possible to integrate additional in-between
sub-steps to address specific requirements, e.g. to refine the output of a step
or to add other technical output required by a next step. Our upcoming plan
is to apply the methodology to re-engineer the current OpenCitations technical
infrastructure.

Acknowledgements. The work has been partially funded by the European
Union’s Horizon 2020 research and innovation program under grant agreement
No 101017452 (OpenAIRE-Nexus).

Enabling Portability and Reusability of Open Science Infrastructures 7

References

1. Artac, M., Borovssak, T., Di Nitto, E., Guerriero, M., Tamburri, D.A.: De-
vops: Introducing infrastructure-as-code. In: 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C). pp. 497–498 (2017).
https://doi.org/10.1109/ICSE-C.2017.162

2. Bernstein, D.: Containers and cloud: From lxc to docker to kubernetes. IEEE Cloud
Computing 1(3), 81–84 (2014). https://doi.org/10.1109/MCC.2014.51

3. Bilder, G., Lin, J., Neylon, C.: The principles of open scholarly infrastructure
(2020). https://doi.org/10.24343/C34W2H

4. Brikman, Y.: Terraform: Up and Running Writing Infrastructure as Code. O’Reilly
Media, Inc., 1st edn. (2017)

5. Candela, I., Bavota, G., Russo, B., Oliveto, R.: Using cohesion and coupling for
software remodularization. ACM Trans. Softw. Eng. Methodol. 25(3), 1–28 (Aug
2016). https://doi.org/10.1145/2928268

6. Casalicchio, E.: Container Orchestration: A Survey. In: Puliafito, A., Trivedi, K.S.
(eds.) Systems Modeling: Methodologies and Tools, pp. 221–235. Springer Interna-
tional Publishing, Cham (2019). https://doi.org/10.1007/978-3-319-92378-9_14,
http://link.springer.com/10.1007/978-3-319-92378-9_14, series Title:
EAI/Springer Innovations in Communication and Computing

7. Chue Hong, N.P., Katz, D.S., Barker, M., Lamprecht, A.L., Martinez, C., Pso-
mopoulos, F.E., Harrow, J., Castro, L.J., Gruenpeter, M., Martinez, P.A., Hon-
eyman, T.: FAIR Principles for Research Software (FAIR4RS Principles). Recom-
mendations with RDA Endorsement in Process, Research Data Alliance (2022),
https://doi.org/10.15497/RDA00068

8. Confederation Of Open Access Repositories, SPARC*: Good Prac-
tice Principles for Scholarly Communication Services. Tech. rep.,
Confederation Of Open Access Repositories and SPARC* (2019),
https://sparcopen.org/our-work/good-practice-principles-for-scholarly-communication-services/

9. Fazio, M., Celesti, A., Ranjan, R., Liu, C., Chen, L., Villari, M.: Open issues in
scheduling microservices in the cloud. IEEE Cloud Computing 3(5), 81–88 (2016).
https://doi.org/10.1109/MCC.2016.112

10. Ficarra, V., Fosci, M., Chiarelli, A., Kramer, B., Proud-
man, V.: Scoping the Open Science Infrastructure Landscape
in Europe (Oct 2020). https://doi.org/10.5281/zenodo.4159838,
https://doi.org/10.5281/zenodo.4159838

11. Hasselbring, W., Carr, L., Hettrick, S., Packer, H., Tiropanis, T.: From
fair research data toward fair and open research software. it - Informa-
tion Technology 62(1), 39–47 (2020). https://doi.org/doi:10.1515/itit-2019-0040,
https://doi.org/10.1515/itit-2019-0040

12. Hightower, K., Burns, B., Beda, J.: Kubernetes: Up and Running Dive into the
Future of Infrastructure. O’Reilly Media, Inc., 1st edn. (2017)

13. Johann, S.: Kief morris on infrastructure as code. IEEE Software 34(1), 117–120
(2017). https://doi.org/10.1109/MS.2017.13

14. Lamprecht, A.L., Garcia, L., Kuzak, M., Martinez, C., Arcila, R., Martin Del Pico,
E., Dominguez Del Angel, V., van de Sandt, S., Ison, J., Martinez, P.A., McQuilton,
P., Valencia, A., Harrow, J., Psomopoulos, F., Gelpi, J.L., Chue Hong, N., Goble,
C., Capella-Gutierrez, S.: Towards FAIR principles for research software. Data sci.
3(1), 37–59 (Jun 2020). https://doi.org/10.3233/DS-190026

https://doi.org/10.1109/ICSE-C.2017.162
https://doi.org/10.1109/ICSE-C.2017.162
https://doi.org/10.1109/MCC.2014.51
https://doi.org/10.1109/MCC.2014.51
https://doi.org/10.24343/C34W2H
https://doi.org/10.24343/C34W2H
https://doi.org/10.1145/2928268
https://doi.org/10.1145/2928268
https://doi.org/10.1007/978-3-319-92378-9_14
https://doi.org/10.1007/978-3-319-92378-9_14
http://link.springer.com/10.1007/978-3-319-92378-9_14
https://doi.org/10.15497/RDA00068
https://sparcopen.org/our-work/good-practice-principles-for-scholarly-communication-services/
https://doi.org/10.1109/MCC.2016.112
https://doi.org/10.1109/MCC.2016.112
https://doi.org/10.5281/zenodo.4159838
https://doi.org/10.5281/zenodo.4159838
https://doi.org/10.5281/zenodo.4159838
https://doi.org/doi:10.1515/itit-2019-0040
https://doi.org/doi:10.1515/itit-2019-0040
https://doi.org/10.1515/itit-2019-0040
https://doi.org/10.1109/MS.2017.13
https://doi.org/10.1109/MS.2017.13
https://doi.org/10.3233/DS-190026
https://doi.org/10.3233/DS-190026

8 Grieco et al.

15. Lin, D., Crabtree, J., Dillo, I., Downs, R.R., Edmunds, R., Giaretta, D.,
De Giusti, M., L’Hours, H., Hugo, W., Jenkyns, R., Khodiyar, V., Martone,
M.E., Mokrane, M., Navale, V., Petters, J., Sierman, B., Sokolova, D.V., Stock-
hause, M., Westbrook, J.: The TRUST Principles for digital repositories. Sci-
entific Data 7(1), 144 (Dec 2020). https://doi.org/10.1038/s41597-020-0486-7,
http://www.nature.com/articles/s41597-020-0486-7

16. Morabito, R., Kjällman, J., Komu, M.: Hypervisors vs. lightweight virtualization:
A performance comparison. In: 2015 IEEE International Conference on Cloud En-
gineering. pp. 386–393 (2015). https://doi.org/10.1109/IC2E.2015.74

17. Peroni, S., Shotton, D.: OpenCitations, an infrastructure organization for
open scholarship. Quantitative Science Studies 1(1), 428–444 (02 2020).
https://doi.org/10.1162/qss_a_00023, https://doi.org/10.1162/qss_a_00023

18. Skinner, K., Lippincott, S.: Values and Principles Framework and As-
sessment Checklist. Tech. rep., Knowledge Futures Group (Jul 2020),
https://doi.org/10.21428/6ffd8432.5175bab1

19. UNESCO: UNESCO Recommendation on Open Science. Programme
and meeting document SC-PCB-SPP/2021/OS/UROS, UNESCO (2021),
https://unesdoc.unesco.org/ark:/48223/pf0000379949

20. Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., Appleton, G., Axton, M.,
Baak, A., Blomberg, N., Boiten, J.W., da Silva Santos, L.B., Bourne, P.E., Bouw-
man, J., Brookes, A.J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S.,
Evelo, C.T., Finkers, R., Gonzalez-Beltran, A., Gray, A.J.G., Groth, P., Goble,
C., Grethe, J.S., Heringa, J., ’t Hoen, P.A.C., Hooft, R., Kuhn, T., Kok, R., Kok,
J., Lusher, S.J., Martone, M.E., Mons, A., Packer, A.L., Persson, B., Rocca-Serra,
P., Roos, M., van Schaik, R., Sansone, S.A., Schultes, E., Sengstag, T., Slater, T.,
Strawn, G., Swertz, M.A., Thompson, M., van der Lei, J., van Mulligen, E., Vel-
terop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., Mons, B.:
The FAIR guiding principles for scientific data management and stewardship. Sci.
Data 3(1), 160018 (Dec 2016). https://doi.org/10.1038/sdata.2016.18

https://doi.org/10.1038/s41597-020-0486-7
https://doi.org/10.1038/s41597-020-0486-7
http://www.nature.com/articles/s41597-020-0486-7
https://doi.org/10.1109/IC2E.2015.74
https://doi.org/10.1109/IC2E.2015.74
https://doi.org/10.1162/qss_a_00023
https://doi.org/10.1162/qss_a_00023
https://doi.org/10.1162/qss_a_00023
https://doi.org/10.21428/6ffd8432.5175bab1
https://unesdoc.unesco.org/ark:/48223/pf0000379949
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18

	Enabling Portability and Reusability of Open Science Infrastructures

