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Abstract: This paper studies a new nonconvex optimization problem aimed at recovering high-
dimensional covariance matrices with a low rank plus sparse structure. The objective is composed
of a smooth nonconvex loss and a nonsmooth composite penalty. A number of structural analytic
properties of the new heuristics are presented and proven, thus providing the necessary framework
for further investigating the statistical applications. In particular, the first and the second derivative
of the smooth loss are obtained, its local convexity range is derived, and the Lipschitzianity of its
gradient is shown. This opens the path to solve the described problem via a proximal gradient
algorithm.
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1. Introduction

The estimation of large covariance or precision matrices is a relevant challenge nowa-
days, due to the increasing availability of datasets composed of a large number of variables
p compared to the sample size n in many fields. The urgency of this topic is testified by
several recent books [1–3], and comprehensive reviews [4–6]. In this paper, we assume for
the p× p covariance matrix Σ∗ a low rank plus sparse decomposition, that is

Σ∗ = L∗ + S∗ = BB′ + S∗, (1)

where L∗ = BB′ = ULΛLU′L, UL is a p × r matrix such that U′LUL = Ir, ΛL is a r × r
diagonal matrix, and S∗ is element-wise sparse, i.e. it contains only s� p(p−1)

2 off-diagonal
non-zero elements. Since [7] proposed their approximate factor model, structure (1) has
become the reference model for many high-dimensional covariance matrix estimators,
like POET [8].

The recovery of structure (1) is a statistical problem of primary relevance. Ref. [7]
proposed to consistently estimate L∗ (as p→ ∞) by means of principal component analysis
(PCA, see [9]), assuming that the eigenvalues of L∗ diverge with the dimension p while the
eigenvalues of S∗ remain bounded. [8] proposes to estimate L∗ by the top r principal com-
ponents of the sample covariance matrix Σn (as p→ ∞) and to estimate S∗ by thresholding
their orthogonal complement. In [10], L∗ and S∗ are recovered by nuclear norm plus l1
penalization, that is by computing(

L̂, Ŝ
)
= arg min

L�0,S�0
L(L, S) +P(L, S), (2)

where L(L, S) is a smooth loss function, P(L, S) is a nonsmooth penalty function, L � 0
denotes positive semidefiniteness for L and S � 0 denotes positive definiteness for S. In
particular, denoting by λi(M), i = 1, . . . , p, the eigenvalues of a p× p matrix M sorted
in descending order, L(L, S) = 1

2‖Σn − (L + S)‖2
F, P(L, S) = ψ‖L‖∗ + ρ‖S‖1, where
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‖L‖∗ = ∑
p
i=1 λi(L) (the nuclear norm of L), ‖S‖1 = ∑

p
i=1 ∑

p
j=i |Sij| (the l1 norm of S), and

ψ and ρ are non-negative threshold parameters.
The nuclear norm was first proposed in [11] as an alternative to PCA. Ref. [12]

furnishes a proof that ψ‖L‖∗ + ρ‖S‖1 is the tightest convex relaxation of the original non-
convex penalty ψrk(L) + ρ‖S‖0. Ref. [13] proves that the l1 norm minimization provides
the sparsest solution to most large underdetermined linear systems, while [14] proves that
the nuclear norm minimization provides guaranteed rank minimization under a set of
linear equality constraints. Ref. [15] shows that l1 norm minimization selects the best linear
model in a wide range of situations. The nuclear norm has instead been used to solve
large matrix completion problems, like in [16–18], and [19]. Nuclear norm plus l1 norm
minimization was first exploited in [20] to provide a robust version of PCA under grossly
corrupted or missing data.

The pair of estimators (2) derived in [10] is named ALCE (ALgebraic Covariance
Estimator). Although ALCE has many desirable statistical properties, there is room to
further improve it by replacing 1

2‖Σn − (L + S)‖2
F by a different loss. The Frobenius loss

optimizes in fact the entry by entry performance of Σ̂, while a loss able to explicitly control
the spectrum estimation quality may be desirable. In this paper, we consider the loss

L(L, S) =
1
2

log det(Ip + ∆n∆′n), (3)

where ∆n = Σ− Σn, and Σ = L + S. Heuristics (3) is controlled by the individual singular
values of ∆n, because

log det(Ip + ∆n∆′n) = log
p

∏
i=1

(λi(Ip + ∆n∆′n)) ≤
p

∑
i=1

(1 + λi(∆n)
2) = p +

p

∑
i=1

λi(∆n)
2, (4)

and, therefore, it is better suited for the estimation of the underlying spectrum.
To the best of our knowledge, the mathematical properties of (3) have not been

extensively studied. Analogously to the univariate context (p = 1), (3) is not a convex
function. According to ongoing works like [21], nonconvex problems may be approached
either by searching for approximate solutions instead of global solutions, or by exploiting
the geometric structure of the objective function. Furthermore, in this case, the idea of
restricting the analysis to the convexity region of the objective, a region that may be
indefinitely extended (see the concept of Extendable Local Strong Convexity in [22]), is
the key to apply, for instance, existing proximal gradient algorithms for convex functions
(see [23]). For this reason, in this paper we calculate the first and second derivatives of (3),
we derive its range of local convexity, and the Lipschitzianity of (3) and of its gradient.
This opens the path to using the usual proximal gradient algorithms (see [23]) to solve
problem (2) with L(L, S) as in (3).

2. Analytic Setup

We consider the objective function

φ(L, S) = L(L, S) +P(L, S), (5)

where L(L, S) = 1
2 log det(Ip +∆n∆′n) is the smooth part of φ(L, S) and P(L, S) = ψ‖L‖∗+

ρ‖S‖1 is the non-smooth (but convex) part of φ(L, S). First, we calculate the derivative of
the smooth component L(L, S) wrt L and S, which is

δ 1
2 log det(Ip + ∆n∆′n)

δL
=

δ 1
2 log det(Ip + ∆n∆′n)

δS
= (Ip + ∆n∆′n)

−1∆n. (6)

Proof. Let us consider two generic p × p matrices L and S, their sum Σ = L + S, and
the matrix ∆n = Σ − Σn. Let us define the matrix function ϕ(Σ) = Ip + ∆n∆′n and the
function φ(Σ) = log det ϕ(Σ). We denote by ei the i-th canonical basis vector, by el

i = δil
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its l-th element, and by σij the ij entry of Σ. Then, following [24], for each i, j = 1, . . . , p, we
can write

∂Σ

∂σij
= mij = e′iej

∂

∂σij
log det ϕ(Σ) = Tr

(
ϕ−1(Σ)

∂ϕ

∂σij

)
∂ϕ

∂σij
= ∆n

∂∆′n
∂σij

+
∂∆n

∂σij
∆′n

∂∆n

∂σij
= mij.

Therefore,

∂

∂σij
log det ϕ(Σ) =Tr

(
ϕ−1(Σ)

[
∆nmji + mij∆

′
n
])

=Tr
(

ϕ−1(Σ)∆nmji

)
+ Tr

(
ϕ−1(Σ)mij∆

′
n

)
.

Since for A, B, C conformable matrices

Tr(ABC) = Tr((ABC)′) = Tr(C′B′A′) = Tr(A′B′C′),

we get
∂

∂σij
log det ϕ(Σ) = 2Tr

(
ϕ−1(Σ)∆nmji

)
= 2 ∑ν

(
ϕ−1(Σ)∆nmji

)
νν

= 2 ∑ν,ρ
(

ϕ−1(Σ)
)

νρ

(
∆nmji

)
ρν

= 2 ∑ν,ρ,σ
(

ϕ−1(Σ)
)

νρ
∆n,ρσ

(
mji
)

σν
.

(7)

Finally, considering that (
mji
)

σν
= (ej ⊗ ei)σν = δjσδiν,

we get

∂

∂σij
log det ϕ(Σ) = 2 ∑

ν,ρ,σ

(
ϕ−1(Σ)

)
νρ

∆n,ρσδjσδiν

= 2 ∑
ρ

(
ϕ−1(Σ)

)
iρ

∆n,ρj

= 2
(

ϕ−1(Σ)∆n

)
ij

.

To sum up,

∂

∂Σ

[
1
2

log det ϕ(Σ)

]
=

∂

∂L

[
1
2

log det ϕ(Σ)

]
=

∂

∂S

[
1
2

log det ϕ(Σ)

]
= ϕ−1(Σ)∆n. (8)

In the following, we explicit the second derivative of L(L, S) = 1
2 log det ϕ(Σ), with

ϕ(Σ) = (Ip + ∆n∆′n) and Σ = L + S:
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∂2

∂σij∂σhk
1
2 log det ϕ(Σ) =

(
1
2 Hess log det ϕ(Σ)

)
ijhk

= δjk
(

ϕ−1(Σ)
)

ih −∑µ,σ
(

ϕ−1(Σ)
)

hµ
∆µj
(

ϕ−1(Σ)
)

iσ∆σk

−
(

ϕ−1(Σ)
)

ih ∑µ,λ
(

ϕ−1(Σ)
)

λµ
∆µj∆λk.

(9)

More, if Σ = Σn, we get(
1
2

Hess log det ϕ(Σ)

)
ijhk

= δjk ⊗ δih =
(
Ip ⊗ Ip

)
ijhk, (10)

that is,
1
2

Hess log det ϕ(Σ) = Ip ⊗ Ip. (11)

Proof. From [24], we write

∂2

∂σij∂σhk

1
2

log det ϕ(Σ) =
1
2

(
Tr

(
ϕ−1(Σ)

∂2 ϕ(Σ)

∂σij∂σhk

)
− Tr

(
ϕ−1(Σ)

∂ϕ(Σ)

∂σij
ϕ−1(Σ)

∂ϕ(Σ)

∂σhk

))
,

and we recall that
∂2 ϕ(Σ)

∂σij∂σhk
= σhkσji + σijσkh.

Then, we can calculate

Tr

(
ϕ−1(Σ)

∂2 ϕ(Σ)

∂σij∂σhk

)
= Tr

(
ϕ−1(Σ)σhkσji + ϕ−1(Σ)σijσkh

)
= Tr

(
ϕ−1(Σ)σhkσji

)
+ Tr

(
ϕ−1(Σ)σijσhk

)
= 2Tr

(
ϕ−1(Σ)σhkσji

)
= 2 ∑ν

(
ϕ−1(Σ)σhkσji

)
= 2δjk(ϕ−1(Σ))ih. (12)

The second summand

Tr

(
ϕ−1(Σ)

∂ϕ(Σ)

∂σij
ϕ−1(Σ)

∂ϕ(Σ)

∂σhk

)

can be derived from (12) as

2Tr
(

ϕ−1(Σ)∆σji ϕ
−1(Σ)∆σkh

)
+ 2Tr

(
ϕ−1(Σ)∆σji ϕ

−1(Σ)σhk∆
)

.

Equation (9) is consequently proved.

3. Local Convexity

The aim of this section is to determine the range of convexity for L(L, S) = 1
2 log det(Ip+∆n∆′n),

∆n = Σ− Σn, wrt to the semidefinite positive matrix ∆n∆′n. In the univariate context, the
function 1

2 ln det(1 + x2) is convex if and only if |x| < 1√
2

. In the multivariate context, it is

therefore reasonable to suppose that a similar condition on ∆n∆′n ensures local convexity. A
proof can be given by showing the positive definiteness of the Hessian of L(L, S) for some
range of ‖∆n∆′n‖. In other words, we need to show that there exists a positive δ such that,
whenever ‖∆n∆′n‖ < δ, the function 1

2 log det(Ip+∆n∆′n) is convex.



Stats 2022, 5 610

Lemma 1. Given 0 < µ ≤ 1
3p , we have that the function

log det
(
Ip + AA∗

)
(13)

is convex on the set Cµ = {A|A is a real p× p matrix, ‖A‖2 ≤ µ} where ‖A‖2 denotes the
spectral norm of A.

Proof. We proceed using the criterion of convexity estimating the second derivative with
respect to t of

φ(t) = log det
(
Ip + (tA + (1− t)B)(tA + (1− t)B)∗

)
. (14)

Let us recall that
d
dt

log det G(t) = Tr(G(t)−1G′(t)), (15)

where G(t) is a differentiable square matrix-valued function and (15) holds for those values
of t for which G(t) is invertible.

Furthermore, we have as well

d
dt

Tr(A(t)) = Tr(
d
dt

A(t)),
d
dt

A−1 = −A−1
(

d
dt

A
)

A−1, (16)

for any differentiable square matrix-valued function A(t). (See [25] or [26] e.g., how to
prove these identities).

Calling G(t) = Ip + (tA + (1− t)B)(tA + (1− t)B)∗, we see that G′(t) = 2tΛΛ∗ + R
and G′′(t) = 2ΛΛ∗ where

Λ = A− B , R = BΛ∗ + ΛB∗

and G(t) = 1
3pµ Ip + t2ΛΛ∗ + tR + BB∗.

Thus, applying (15) and (16) we get

φ′(t) = Tr(G(t)−1G′(t))

and
φ′′(t) = Tr

(
(G(t)−1G′(t))′

)
= Tr

(
G−1G′′ −G−1G′G−1G′

)
(17)

Convexity will follow once we have proven that (17) is non-negative for every t ∈ [0, 1]
and every A and B in Cµ.

Due to the circularity of the trace function we also have

φ′′(t) = Tr
(

G−1/2G′′G−1/2 −G−1/2G′G−1G′G−1/2
)

, (18)

that is

φ′′(t) = Tr
(

G−1/2G′′G−1/2
)
− Tr

(
G−1/2G′G−1/2 G−1/2G′G−1/2

)
. (19)

This can be written as

φ′′(t) = 2Tr
(

G−1/2ΛΛ∗G−1/2
)
− Tr

(
G−1/2(2tΛΛ∗ + R)G−1/2 G−1/2(2tΛΛ∗ + R)G−1/2

)
. (20)

We recall that G(t) is self-adjoint so that denoting by H the matrix G−1/2Λ and K the
matrix G−1/2G′G−1/2 we get that (19) can be written as

φ′′(t) = 2Tr(HH∗)− Tr(KK∗). (21)
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We also recall that Tr(AB∗) induces a scalar product to which the trace norm is attached:

||A||tr =
√

Tr(AA∗) = ∑
i

σi(A),

where σi(A) are the singular values of A. In particular we have ‖A‖2 ≤ ||A||tr ≤ p‖A‖2
for every A. Now from (21) convexity can be checked as

φ′′(t) = 2||H||tr − ||K||tr ≥ 0. (22)

Let us consider

‖K‖2 = ‖G−1/2G′G−1/2‖2 = ‖G−1/2(2tΛΛ∗ + R)G−1/2‖2.

We have
‖K‖2 ≤ 2t‖G−1/2ΛΛ∗G−1/2‖2 + ‖G−1/2RG−1/2‖2.

Notice that the spectral norm ‖ • ‖2 is self-adjoint, that is ‖M∗‖2 = ‖M‖2 for every M
(see e.g., [27]). Then

‖K‖2 ≤ 2t‖HH∗‖2 + ‖G−1/2(BΛ∗ + ΛB∗)G−1/2‖2,

that is
‖K‖2 ≤ 2‖H‖2‖G−1/2Λ‖2 + 2‖G−1/2Λ‖2‖G−1/2B‖2.

Thus,
‖K‖2 ≤ 2‖H‖2

(
‖G−1/2Λ‖2 + ‖G−1/2B‖2

)
. (23)

Assume now that A, B ∈ Cµ: ‖A‖2 ≤ µ, ‖B‖2 ≤ µ. We deduce that ‖Λ‖2 ≤ 2µ and
due to the structure of G(t) = Ip + Q(t)Q(t)∗ we also have

‖G−1/2Λ‖2 ≤ 2µ , ‖G−1/2B‖2 ≤ µ. (24)

Finally, we have
‖K‖2 ≤ 6µ‖H‖2.

Going back to (22) we have

φ′′(t) = 2||H||tr − ||K||tr ≥ 2‖H‖2 − p‖K‖2 ≥ 2(1− 3pµ)‖H‖2 ≥ 0, (25)

since 0 < µ ≤ 1
3p .

By means of a simple change of variable, the following result can be proven.

Lemma 2. For any δ > 0 the function

log det
(

δ−2Ip + AA∗
)

(26)

is convex on the closed ball Cδ = {A|A is a real p× p matrix , ‖A‖2 ≤ 1
3δp}.

In conclusion, even though the function log det(Ip + A) is always concave, Lemma 2
shows that the function log det

(
δ−2Ip + AA∗

)
can be made locally convex into any ball

centered in 0, just choosing a suitable δ.

4. Lipschitz-Continuity

In this section, we prove the Lipschitzianity of the smooth function L(L, S) = 1
2 ln det(Ip + ∆n∆′n),

and of its gradient function, δL(L,S)
δL = δL(L,S)

δS = (Ip + ∆n∆′n)
−1∆n (see (6)).
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Lemma 3. The function L(L, S) = 1
2 ln det(Ip + ∆n∆′n) is Lipschitz continuous in Euclidean

norm with Lipschitz constant equal to 1:

| log det ϕ(Σ1)− log det ϕ(Σ2)| ≤ ‖Σ1 − Σ2‖2. (27)

Proof. Let us recall that L and S are two generic p× p matrices, Σ = L + S is their sum,
and ∆n = Σ− Σn. We reconsider the matrix function ϕ(Σ) = Ip + ∆n∆′n and the function
φ(Σ) = log det ϕ(Σ). We recall from (6) that

∂

∂Σ

[
1
2

log det ϕ(Σ)

]
= ϕ−1(Σ)∆n.

Given two vectors u, v ∈ Rp, let us define the Euclidean inner product 〈u, v〉 = u′v.
We consider

〈ϕ(Σ)v, v〉 = 〈(Ip + ∆n∆′n)v, v〉 = |v|2 + |∆′nv|2,

where |v| is the Euclidean norm of v ∈ Rp. Then we have

|v|2 + |∆′nv|2 ≤ 1
2

(
1
δ2 |ϕ(Σ)v|

2 + δ2|v|2
)

,

via Cauchy-Schwarz, for any δ ∈ R. Now choose δ =
√

2, then we have

4|∆′nv|2 ≤ |ϕ(Σ)v|2

for every v ∈ Rp. Noticing that ϕ(Σ) is invertible and plugging in the previous inequality
v = ϕ(Σ)−1w, w ∈ Rp, we obtain

max
w 6=0

|∆′n ϕ(Σ)−1w|
|w|2 ≤ 1

2
.

Now recall that (see [25] p. 312) that the spectral norm of a matrix A, ‖A‖2, can be
computed also via the equality

‖A‖2 = max
x 6=0

|Ax|
|x| ,

and that the spectral norm is self-adjoint (again see [25] p. 309), that is ‖A′‖2 = ‖A‖2.
Summing up, we have proved that

‖ϕ(Σ)−1∆n‖2 ≤
1
2

. (28)

This means that the gradient of log det ϕ(Σ) is uniformly bounded and since Σ 7→
log det ϕ(Σ) is a smooth function we have that the Lipschitz condition is satisfied with
Lipschitz constant equal to 1:

| log det ϕ(Σ1)− log det ϕ(Σ2)| ≤ ‖Σ1 − Σ2‖2. (29)
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We have proven that the function

∂2

∂σij∂σhk

1
2

log det ϕ(Σ) = δjk

(
ϕ−1(Σ)

)
ih
−∑

µ,σ

(
ϕ−1(Σ)

)
hµ

∆n,µj

(
ϕ−1(Σ)

)
iσ

∆n,σk

−
(

ϕ−1(Σ)
)

ih
∑
µ,λ

(
ϕ−1(Σ)

)
λµ

∆n,µj∆n,λk

= δjk

(
ϕ−1(Σ)

)
ih
− (ϕ−1(Σ)∆n)hj(ϕ−1(Σ)∆n)ik

−
(

ϕ−1(Σ)
)

ih
〈ϕ−1(Σ)∆n,j, ∆n,k〉 (30)

is Lipschitz continuous.
Now, we prove that the function δL(L,S)

δL = δL(L,S)
δS = (Ip + ∆n∆′n)

−1∆n is Lipschitz
continuous.

Lemma 4. The function δL(L,S)
δL = δL(L,S)

δS = (Ip + ∆n∆′n)
−1∆n is Lipschitz continuous with

Lipschitz constant equal to 5
4 :

‖F(∆n + εH)− F(∆n)‖2 ≤
5
4

ε‖H‖2 + O(ε2), (31)

with F(∆n) = ϕ−1(Σ)∆n = (Ip + ∆n∆′n)
−1∆n and fix ε > 0, for any ε > 0.

Proof. Let us call F(∆n) = ϕ−1(Σ)∆n = (Ip + ∆n∆′n)
−1∆n and fix ε > 0.

Let us compute

F(∆n + εH)− F(∆n) = (Ip + (∆n + εH)(∆n + εH)′)−1(∆n + εH)− (Ip + ∆n∆′n)
−1∆n.

We have

(Ip + (∆n + εH)(∆n + εH)′)−1(∆n + εH) = (Ip + ∆n∆′n + Λ)−1(∆n + εH),

with Λ = εΛ0 + ε2Λ1 and

Λ0 = H∆′n + ∆nH′ , Λ1 = HH′.

Calling Ψ = Ip + ∆n∆′n we have

(Ψ + Λ)−1 = (Ψ(Ip + Ψ−1Λ))−1 = (Ip + Ψ−1Λ)−1Ψ−1,

so that we have

F(∆n + εH)− F(∆n) = (Ip + Ψ−1Λ)−1Ψ−1(∆n + εH)−Ψ−1∆n.

Recalling that
(Ip + G)−1 = Ip −G + (Ip + G)−1G2,

whenever Ip + G is invertible, we have

F(∆n + εH)− F(∆n) = (Ip −Ψ−1Λ + (Ip + Ψ−1Λ)−1(Ψ−1Λ)2)Ψ−1(∆n + εH)−Ψ−1∆n.

We develop in the powers of ε:

F(∆n + εH)− F(∆n) = (Ip −Ψ−1(εΛ0 + ε2Λ1) + (Ip + Ψ−1(εΛ0 + ε2Λ1)
−1)

(Ψ−1(εΛ0 + ε2Λ1))
2)Ψ−1(∆n + εH)−Ψ−1∆n
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A tedious but simple computation yields to

F(∆n + εH)− F(∆n) = εT1 + O(ε2),

with
T1 = Ψ−1H−Ψ−1Λ0Ψ−1∆n,

that is
T1 = Ψ−1H(Ip − ∆′nΨ−1∆n)−Ψ−1∆nH′Ψ−1∆n.

The previous computations for the Lipschizianity of log det(Ip + ∆n∆′n) gave us
(see (28)) that

‖Ψ−1∆n‖2 ≤
1
2

.

It is also easy to check that
‖Ψ−1‖2 ≤ 1,

and that
‖Ip − ∆′nΨ−1∆n‖2 ≤ 1.

Putting all together we get

‖F(∆n + εH)− F(∆n)‖2 ≤
5
4

ε‖H‖2 + O(ε2), (32)

such that we have proven that the directional derivative of the gradient is bounded in every
direction by 5/4, i.e., the gradient is Lipschitz as a function fromM(p) toM(p), the vector
space of p× p real matrices.

5. Discussion

In this paper, we have proved that the loss 1
2 log det(Ip + ∆n∆′n) has good analytic

properties for the purpose of optimization, provided that the matrix ∆n fulfills certain
conditions. As a consequence, by [23,28] and the supplement of [10], it follows that our
analytic setup can provide a numerical solution to the problem

min
L�0,S�0

1
2

log det(Ip + ∆n∆′n) + ψ‖L‖∗ + ρ‖S‖1, (33)

by using proximal gradient algorithms. The local convexity of log det(Ip + ∆n∆′n) is the key
to apply first-order methods to solve (33). Following [23,28] and the supplement of [10],
we derive the following solution Algorithm 1.

Such algorithm may be applied in many fields, like economics, finance, biology,
genetics, health, climatology, social science, among others. In future research, we plan to
properly develop the selection of threshold parameters, to study how local convexity may
cope with the random nature of the sample error matrix ∆n, and to establish the consistency
of the solution pair of (33).



Stats 2022, 5 615

Algorithm 1 Pseudocode to solve problem (33) given any input covariance matrix Σn.

1. Set (L0, S0) =
1
2 (diag(Σn), diag(Σn)), η0 = 1.

2. Initialize Y0 = L0 and Z0 = S0. Set t = 1.
3. For t ≥ 1, repeat:

(i) calculate calculate ∆t,n = Yt−1 + Zt−1 − Σn;

(ii) compute
∂ 1

2 log det(Ip+∆t,n∆′t,n)
∂Yt−1

=
∂ 1

2 log det(Ip+∆t,n∆′t,n)
∂Zt−1

= (Ip + ∆t,n∆′t,n)
−1∆t,n.

(iii) apply the singular value thresholding (SVT, [29]) operator Tψ to
EY,t = Yt−1 − 1

` (Ip + ∆t,n∆′t,n)
−1∆t,n, with ` = 10

4 ,
and set Lt = Tψ(EY,t) = ÛD̂ψÛ>.

(v) apply the soft-thresholding operator [30] Tρ to
EZ,t = Zt−1 − 1

` (Ip + ∆t,n∆′t,n)
−1∆t,n, with ` = 10

4 , and set St = Tρ(EZ,t).

(vi) set (Yt, Zt) = (Lt, St) +
{

ηt−1−1
ηt

}
{(Lt, St)− (Lt−1, St−1)} where

ηt =
1
2 + 1

2

√
1 + 4η2

t−1.

(vii) stop if the convergence criterion ‖Lt−Lt−1‖F
1+‖Lt−1‖F

+ ‖St−St−1‖F
1+‖St−1‖F

≤ ε.

4. Set L̂ALCE = Yt and ŜALCE = Zt.
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