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 37 

Abstract 38 

The ability of forests to withstand, and recover from, acute drought stress is a critical 39 

uncertainty regarding the impacts of climate change on the terrestrial carbon (C) cycle, but it is 40 

unclear how drought responses scale from individual trees to whole forests. Here, we 41 

assembled a dataset of tree-ring chronologies co-located within the footprint of eddy covariance 42 

towers across North America and Europe, with the aim of quantifying the sensitivity of tree 43 

radial growth versus gross primary productivity (GPP) during and following drought. We found 44 

that drought induced a large decoupling across C cycle processes, whereby GPP was relatively 45 

resistant to water stress despite large reductions in tree-ring widths. This decoupling also 46 

occurred in the year following drought (i.e., a ‘drought legacy effect’), and was similar in 47 

magnitude in response to both summer and winter droughts. By modeling whole-forest C 48 

turnover time, we show that a radial growth-GPP decoupling has important ramifications for the 49 

forest C cycle, especially if the C not used to support radial growth is instead allocated towards 50 

pools with short residence times. Our results demonstrate that quantifications of drought 51 

impacts that rely solely on C uptake are missing this fundamental pathway through which 52 

drought alters the forest C cycle and the resulting feedbacks to the climate system. 53 

 54 

 55 

 56 

 57 
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58 

Introduction 59 

Forests store nearly half of the carbon (C) in terrestrial ecosystems and take up ~25% of 60 

all anthropogenic C emissions (Bonan, 2008; Pan et al., 2011). However, the capacity of forests 61 

to assimilate and store C is threatened by an increase in the frequency and severity of droughts 62 

(Cook et al., 2015; Dai, 2013; McDowell et al., 2020). The drought resistance (ability to maintain 63 

function) and resilience (ability to recover function) of these processes in future climates is a 64 

major uncertainty in the terrestrial C cycle (Sippel et al., 2018) yet exerts a significant influence 65 

on the climate change mitigation potential of forests worldwide (Anderegg et al., 2020).  66 

Current efforts to quantify the resistance and resilience of forests to drought stress have 67 

largely been undertaken using tree-ring chronologies (Camarero et al., 2018; Lloret et al., 2011; 68 

Merlin et al., 2015). These approaches are invaluable towards understanding the climatic, 69 

topographic, and biological mechanisms that underpin the responses of tree growth to drought. 70 

However, radial tree growth is only one aspect of a complex forest C cycle, and the relationship 71 

between growth and whole-ecosystem fluxes of C is indirect. Thus, several studies have 72 

quantified the drought resistance and resilience of C uptake using broader-scale metrics of 73 

forest C cycling such as gross primary productivity (GPP) derived from flux towers (He et al., 74 

2018; Shen et al., 2016; Yu et al., 2017). Recent evidence suggests that drought may drive a 75 

large decoupling between these processes, whereby structural tree growth is much more 76 

sensitive to drought than GPP (Delpierre et al., 2016; Kannenberg et al., 2020b, 2019b).  77 

While this decoupling is intuitive at the tissue-level given the higher drought sensitivity 78 

of turgor-driven cell expansion than photosynthesis (Hsiao, 1973) and the plasticity of plant C 79 
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allocation in response to environmental stress (Epron et al., 2012), evidence at the stand- or 80 

ecosystem -scale is scarce due to the paucity of co-located measurements of tree growth and 81 

GPP (Babst et al., 2021, though see Cabon et al., 2022 and Krejza et al., 2022). Therefore, our 82 

knowledge of the degree of coupling between growth and GPP rests entirely on either case 83 

studies from a single drought (Kannenberg et al., 2019b), or GPP proxies from models or remote 84 

sensing products that may not fully capture both the magnitude of drought impacts or any 85 

lagged recovery processes (Anderegg et al., 2015; Kolus et al., 2019; Stocker et al., 2019). Given 86 

this lack of evidence, it is unsurprising that most large-scale vegetation models represent 87 

allocation to woody tissues as a constant percentage of GPP (Fatichi et al., 2019). Additional 88 

uncertainties regarding these processes arise due to the high species-specificity of drought 89 

responses, which are underlain by variability in key functional traits. Uncovering the traits that 90 

underlie tree drought responses, as well as the coupling between GPP and growth, has the 91 

potential to lead us to an improved predictive understanding of how drought impacts the forest 92 

carbon cycle. 93 

Divergent drought impacts on tree growth versus GPP have vast implications for our 94 

understanding of the terrestrial C cycle. Large shifts in allocation from tree boles to pools with 95 

shorter residence times (Doughty et al., 2015, 2014; Kannenberg et al., 2019b) have 96 

consequences for the turnover time of forest C, the magnitude of which is a major uncertainty in 97 

current vegetation models (Carvalhais et al., 2014; Friend et al., 2014; Pugh et al., 2020). 98 

Quantifying the differential sensitivity of drought resistance and resilience across distinct C cycle 99 

processes and scales could provide valuable insights regarding whether drought impacts are 100 

likely to be most apparent through decreased C uptake and productivity, and/or through a 101 

shortened C turnover time. 102 
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Here, we seek to directly test the hypothesis that drought decouples tree radial growth 103 

from ecosystem C uptake. To do so, we amassed a dataset of 38 tree ring chronologies 104 

(spanning 31 common gymnosperm and angiosperm species) collected at 16 different eddy 105 

covariance tower sites (277 total site-years) that have experienced a severe drought. These 106 

chronologies represented the majority of the species present within these towers’ footprints, 107 

enabling direct comparisons between the resistance and resilience of tree growth and stand-108 

scale GPP. We then explored the implications of a decoupling between growth and GPP for the 109 

forest C cycle using a ‘box model’ that includes fluxes in and out of the main pools of tree 110 

structural C. We ask: 111 

1) Are drought resistance and resilience decoupled across C cycle processes?  112 

2) What traits shape variability in resistance and resilience, and what controls the 113 

degree of decoupling of these indices across scales?  114 

3) What are the implications of a decoupling between tree radial growth and GPP for 115 

whole-forest C turnover? 116 

 117 

Materials and methods 118 

Sites and eddy covariance data 119 

We compiled a dataset of 38 tree-ring chronologies collected near or within the 120 

footprint of 16 different eddy covariance towers (Fig. 1, Table S1). These sites, located across 121 

North America and Europe, spanned a wide variety of ecosystem types and were largely 122 

representative of various temperate and arid woodland biomes (Fig. 1), yet all experienced a 123 
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severe summer or winter drought within the flux record (see below for drought definition). All 124 

sites are included in either the FLUXNET2015 Tier 1 (Pastorello et al. 2020, 125 

fluxnet.org/data/fluxnet2015-dataset) or AmeriFlux (ameriflux.lbl.gov, downloaded January 6, 126 

2021) datasets. 127 

For the 10 sites in the AmeriFlux network (representing 30 chronologies), net ecosystem 128 

exchange data (NEE) was gapfilled using the 50th percentile Ustar distribution and then 129 

partitioned into GPP using the nighttime method (Reichstein et al., 2005) as implemented in the 130 

R package REddyProc (Wutzler et al., 2018). Data that were gapfilled by site PIs were 131 

preferentially used, if available. If the NEE variable was not available, turbulent CO2 flux (FC) was 132 

used instead. The meteorological data used for partitioning were taken from the primary sensor 133 

(the _1_1_1 suffix). During some periods, there were not enough incoming shortwave radiation 134 

data to properly gapfill NEE. In these cases, incoming photosynthetically active radiation (if 135 

available) was converted to shortwave, under the assumption that half of the incoming solar 136 

irradiance is photosynthetically active radiation (Britton and Dodd, 1976). Data from US-UMB 137 

from AmeriFlux are aggregated into both 30-minute (years 2007 – 2019) and 60-minute (years 138 

2000 – 2014) increments. For this site, we used the full 30-minute record for 2007 – 2019 and 139 

the 60-minute record for 2000 – 2006. For FLUXNET sites, we used the nighttime partitioned, 140 

variable 50th percentile distribution Ustar GPP product (i.e., GPP_NT_VUT_REF), which is the 141 

data product most comparable to our AmeriFlux partitioning approach. We confirmed that our 142 

partitioning approach was comparable to the FLUXNET2015 data by comparing a subset of 6 143 

sites that were included in both datasets (and thus partitioned independently). At these sites, 144 

monthly sums of our GPP product closely matched FLUXNET2015 (r2 = 0.98, slope not 145 

significantly different from one). 146 
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Some gaps remained even after gapfilling due to sensor malfunction, maintenance, or 147 

other long-term gaps. Years with large gaps in GPP during the growing season were excluded 148 

from analysis, and the site-years that remained all had < 5% of GPP records missing. 149 

In order to make GPP (typically aggregated at 30- or 60-minute resolutions) comparable 150 

to detrended tree-ring widths (annual resolution, see below for tree-ring detrending methods), 151 

we normalized the GPP time series by summing GPP for each site-year and calculating the 152 

anomaly for each annual GPP sum (i.e., the percentage deviation from mean GPP at that site). At 153 

11 sites, annual GPP increased or decreased over time, which would bias our calculations of 154 

drought responses depending on the year in which the drought occurred. For sites that had a 155 

statistically significant (via linear regression, P < 0.05) increase or decrease in annual GPP over 156 

time, we detrended the GPP time series by taking the residuals of the linear model and 157 

normalizing them as above. This quantification of normalized and detrended annual GPP was 158 

used for all subsequent analysis. 159 

160 

Tree ring data 161 

Canopy dominant or co-dominant trees of the common species at each flux site have 162 

been previously cored, processed, measured, and crossdated using standard 163 

dendrochronological procedures (Speer, 2012; Stokes and Smiley, 1999). Crossdated ring width 164 

measurements were detrended using a spline with a 50% frequency cutoff set at two-thirds of 165 

the mean sample length (Klesse, 2021), and species-level chronologies (ring width indices, RWI) 166 

were built using a bi-weight robust mean-value approach in the R package dplR (Bunn, 2008). 167 

The distance of each cored tree to the flux tower varied, but all cores were sampled within 1 km 168 
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of the tower. At least 5 trees were cored for each species at each site, though the average 169 

number of cores per site was 55 ± 8.0 (mean ± standard error). Chronology lengths ranged from 170 

30 to 300 years, and the average chronology length was 112.9 years ± 9.8 (mean ± standard 171 

error). The average expressed population signal (EPS, which quantifies the signal-to-noise ratio 172 

of the time series) for our chronologies was 0.87 ± 0.01 (mean ± standard error). Our results 173 

were robust to removing chronologies with an EPS lower than the commonly-used threshold of 174 

0.85 (Fig. S1). However, given that this threshold is arbitrary (Buras, 2017) and a low EPS may 175 

simply be indicative of less synchronous tree growth within a stand (a dynamic worth capturing 176 

in our study), we elected to not remove chronologies with low EPS for subsequent analyses. 177 

Chronology information and statistics are available in Table S2. 178 

 We also compiled species composition estimates for all cored tree species at each site 179 

(Table S3). These estimates were obtained from the published literature where possible. If 180 

published data were not found, species composition estimates were taken from site webpages 181 

or obtained directly from site research teams. We used plot-based basal area measurements 182 

where possible, but needed to use biomass or canopy cover estimates at a small subset of sites. 183 

Citations and data sources for these estimates are available in Table S3. When multiple tree 184 

species were present at a flux tower site, we calculated a community-weighted mean RWI using 185 

these data, in order to increase comparability to whole-ecosystem measurements of GPP. 186 

 187 

Forest and plant trait data 188 

Site information of location, elevation, mean annual temperature, mean annual 189 

precipitation, and IGBP biome were taken from the respective site pages on the AmeriFlux or 190 



 

 

10 

 

FLUXNET2015 websites. Functional traits were collected from a variety of different datasets for 191 

each of our sampled tree species, including: wood density from the Global Wood Density 192 

Database (Chave et al., 2009), specific leaf area and maximum photosynthetic rate from Maire 193 

et al. (2015), and hydraulic traits (P50, the water potential at which 50% of xylem conduits are 194 

embolized, and the P50 safety margin, which is the difference between P50 and the minimum 195 

water potential observed) from the Xylem Functional Traits database (Gleason et al., 2016). Trait 196 

data for the analyzed species are available in Table S4. 197 

Drought responses in GPP likely reflect the integrated signal of all constituent species in 198 

the tower footprint. Therefore, we aggregated plant trait data to the stand scale in a number of 199 

ways: the mean trait value of all cored species, the standard deviation of all cored species, and 200 

the mean of all cored species weighted by species composition. 201 

 202 

Climate data 203 

Standardized Precipitation Evaporation Index v2.6 (SPEI) data for all site-years were 204 

used to quantify drought severity (Vicente-Serrano et al., 2010). SPEI data were extracted for 205 

two relevant time scales in order to capture the differential effects of growing season versus 206 

winter droughts: June – August (hereafter, “Summer”) and the previous October – March 207 

(hereafter, “Winter”). 208 

We calculated mean site climatic water deficit (CWD) as potential evapotranspiration 209 

(PET) minus actual evapotranspiration (AET), using data from the TerraClimate dataset 210 

(Abatzoglou et al., 2018). Monthly values CWD were extracted for all sites, and these values 211 

were summed to get annual CWD. Mean site CWD was calculated over the period 2000 – 2019 212 
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in order to reflect climatic conditions during the years when most of our flux tower data were 213 

present. 214 

215 

MODIS data 216 

MODIS leaf area index (LAI) over 8-days windows (MCD15A2H, 500 m pixel size) were 217 

obtained for each site from 2002 – 2019 using the R package MODISTools (Tuck et al., 2014). In 218 

order to make MODIS data comparable to annual GPP sums in ecosystems that experience large 219 

annual variation in LAI (e.g., deciduous forests), we limited LAI data to the growing season in 220 

each year using a previously published method (Kannenberg et al., 2020a). We considered the 221 

start of the growing season to be the first day at which a smoothed curve of daily GPP sums 222 

crossed a threshold of mean winter GPP + 30% of the annual smoothed GPP amplitude, and the 223 

end of the growing season to be the last time point when smoothed GPP fell below this 224 

threshold. Annual growing season LAI means were used in the calculation of drought indices 225 

(detailed below), while growing season LAI was also averaged over the entire time interval (2002 226 

– 2019) to calculate mean site LAI and thus quantify the typical canopy cover at each site.227 

228 

Calculation of drought indices 229 

To quantify the responses of RWI, GPP, and LAI to severe drought, we calculated metrics 230 

of drought resistance and resilience. First, we identified severe drought years within the eddy 231 

covariance record at each site. We defined a severe drought as a < -1.5 anomaly in SPEI during 232 

two different periods: summer (June – August, the peak growing season) and winter (the 233 
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previous October – March, the start of the hydrological year to early spring). These two periods 234 

were chosen to capture any differential effects of a hotter, acute growing season drought (i.e., 235 

summer drought) versus a longer-term anomaly in early season moisture storage (i.e., winter 236 

drought). Our results were nearly identical when defining a summer drought as the full growing 237 

season (April – September), due to significant overlap between the drought years identified with 238 

each method (Fig. S2). Any multi-year droughts (i.e., two sequential winter or summer drought 239 

years < -1.5 SPEI) were identified and not considered in our analyses to avoid any bias 240 

introduced by a few anomalously severe droughts. Likewise, multi-drought years (i.e., a winter 241 

and summer drought in the same year) were not included in the analysis (see Table S1 for the 242 

drought site-years that were included in our analyses). The selected threshold of drought 243 

severity was chosen to represent a severe drought that impacts forest function, yet also be 244 

common enough to have a reasonable sample size in our dataset. The threshold of -1.5 SPEI, 245 

which corresponds to a return period of 20 years across all sites in our dataset (range = 10 to 33-246 

year return period), is comparable with other studies that have quantified severe drought 247 

resistance and resilience (Anderegg et al., 2015; Kannenberg, Maxwell, et al., 2019). Our main 248 

results were robust to relaxing our threshold to -1.2 SPEI (roughly a drought every 8 years, Fig. 249 

S3). When increasing our threshold to -2 SPEI (a once per century event), our sample size 250 

decreased drastically to only 4 drought events across all sites (Fig. S4). 251 

Once these severe drought years were identified, we calculated drought resistance (Rt) 252 

and resilience (Rs) for the community-weighted RWI (hereafter referred to as “RWI”), annual 253 

normalized GPP, and mean growing season LAI as follows: 254 

�� =  ����	
��  / ��������	
�� 255 
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�� =  ����	
���� / ��������	
��  256 

Where ����	
��  represents the process of interest (i.e., RWI, GPP, LAI) during the 257 

drought year itself, ����	
���� represents the process of interest in the year following a 258 

drought, and ��������	
��  represents the mean of that process in all non-drought years. Thus, 259 

these indices are analogous to effect sizes, where Rt represents the impact of each drought on 260 

the process of interest relative to normal conditions, and Rs represents the degree to which that 261 

process recovered in the year following the drought. These metrics are a slight modification of 262 

those developed by Lloret et al. (2011), intended to remove noise related to variability in the 263 

pre-drought year (Kannenberg et al., 2019b). Finally, the degree of decoupling between GPP and 264 

RWI (denoted ΔRt or ΔRs) was calculated as Rt or Rs in GPP minus Rt or Rs in RWI. 265 

 266 

C turnover time model 267 

 In order to quantify the impact of C reallocation away from stem growth and towards 268 

other structural tissues, we modeled the mean turnover time of whole-forest structural C using 269 

a simple four-pool vegetation C model under a range of different scenarios, whereby the C not 270 

allocated to stem growth during the drought year and following year (i.e., Rt and Rs) was re-271 

allocated entirely to leaf, coarse root, or fine root pools instead. Due to the large uncertainties 272 

regarding the residence times and allocation dynamics of reproductive tissues and non-273 

structural pools (e.g., sugars/starches, root exudates, respiratory losses), we elected to 274 

constrain our analyses to non-reproductive structural components. 275 
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 To do so, we compiled data for total biomass C density (aboveground and belowground 276 

biomass in Mg C ha-1) for the year 2010 from the 300 m grid cell containing all the flux tower 277 

sites using the dataset of Spawn et al. (2020). These biomass estimates are almost entirely 278 

reflective of tree cover (as opposed to understory vegetation or seedlings) since the underlying 279 

dataset for forest biomass is largely based on observations of saplings and mature trees.  280 

After converting to total biomass C within each grid cell (Mg C), that biomass C was 281 

partitioned out to each sampled species using our species composition estimates (Table S3). We 282 

then allocated that C to leaf, aboveground woody biomass (AWB), coarse root, and fine root 283 

pools for each species using allometry derived from the Biomass And Allometry Database 284 

(BAAD, Falster et al. (2015), Table S5). For our species, all entries in BAAD that had 285 

measurements of total plant mass were considered after entries associated with greenhouse 286 

and growth chamber studies were excluded to avoid biases associated with the allometry of 287 

seedlings and saplings. From these data, mean percent of biomass contained in leaves, AWB 288 

(boles and branches), coarse roots, and fine roots were calculated. Many of our species were 289 

not present in this dataset, and thus data were aggregated to the family level or to the plant 290 

functional type level (i.e., deciduous angiosperm, deciduous conifer, or evergreen conifer). In 291 

some cases, our allometric estimates across tissues had a sum greater than one (expected since 292 

these tissue-specific estimates are many times drawing on different data sources). In those 293 

cases, values were scaled to sum to one. In order to account for tissue-specific differences in C 294 

content, we then scaled these estimates by the percentage of C contained in each tissue. 295 

Percent C (by dry mass) data for each tissue were obtained for all species from the TRY database 296 

(Kattge et al. 2020, Table S6), and gaps were filled using family-level and then functional type-297 

level means as above. 298 
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The effect of drought on AWB was estimated by quantifying the reduction in basal area 299 

increment (BAI) in each species during the drought year itself and in the year after (i.e., Rt and 300 

Rs). BAI chronologies were constructed using the ‘inside-out’ approach in the R package dplR 301 

(Bunn, 2008). We used this method because diameter measurements were not available for 302 

many of our sites.  303 

Reductions in total aboveground woody C (AWC) were estimated by multiplying total 304 

AWC by the reduction in stand basal area (the sum of chronology BAI) C represented by the Rt + 305 

Rs tree rings. We then simulated the impacts of a re-allocation of AWC on whole-forest C 306 

turnover time by adding that lost AWC entirely to leaf, coarse root, or fine root pools. 307 

Whole-forest C turnover time was calculated as follows. First, tissue-specific C density 308 

data were converted into a turnover flux (Ftissue, in Mg C yr-1) by dividing the total C in each tissue 309 

for each species at each site by the mean lifespan (in years) of that tissue (Table S7). Leaf, fine 310 

root, and coarse root lifespan data were directly available from TRY, and AWB life span was 311 

considered as the mean plant age. Leaf lifespan data for deciduous species were considered to 312 

be one year. Tissue lifespan data were aggregated from TRY for each species, and gaps in tissue 313 

lifespan data were filled by family and then functional type means. Then, we weighted each 314 

tissue-specific Ftissue by that species’ allometry in order to derive a whole-tree turnover flux, Ftree. 315 

����� =  �(�����	� × ��������	�)316 

Where Ftissue represents the turnover flux of each structural tissue (leaves, AWB, coarse 317 

roots, and fine roots) and Fractissue represents the proportion of total tree biomass contained in 318 

each tissue. Ftree was then scaled to the whole forest by weighting the Ftree of each species by its 319 

fractional of total stand basal area. 320 
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� ����� =  �(����� × �����!�"���)321 

Where Fracspecies represents the proportion of total species composition for each species 322 

at each site. Whole-forest C turnover time, τ (in years), was then calculated as the ratio of 323 

whole-forest total C density (Cforest) to Fforest (Pugh et al., 2020; Sierra et al., 2017). 324 

# =  $ �����
� �����

325 

Finally, we derived a percent change in τ for each of our tissue allocation scenarios, 326 

compared to a scenario where there was no reduction in AWC due to drought (i.e., Rt and Rs 327 

were 1). Note that this percentage represents the change in whole-forest τ due entirely to 328 

allocation shifts in structural C during the drought year itself and the year after, not changes to τ 329 

over longer time scales. 330 

331 

Statistical analysis 332 

Comparisons between categorical variables were conducted using two-tailed t-tests or 333 

via pairwise Tukey’s HSD for multiple comparisons. Trait correlations were assessed using 334 

ordinary least squares regression. For these regressions, normality and homoscedasticity of 335 

residuals were confirmed using quantile-quantile and residual plots and were natural log or 336 

square root transformed if necessary. All analyses were conducted in the R 4.0 computing 337 

environment (R Core Team 2021). 338 

339 

Results 340 
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Drought resistance (Rt) and resilience (Rs) in radial tree growth varied widely across 341 

species and sites (Fig. S5-S6). Averaged across all drought occurrences, drought reduced 342 

community-weighted RWI by 25.4% during the year of the drought itself (i.e., resistance) and by 343 

21.1% in the year after (i.e., resilience, Fig. 2). Lagged drought effects on growth were apparent 344 

only one year, with the exception that RWI was significantly reduced for two years following a 345 

summer drought (Fig. S7). Rt and Rs were also comparable in response to winter versus summer 346 

droughts (Fig. 2). Contrary to the large observed reductions in RWI during and post-drought, 347 

annual GPP and growing season LAI remained relatively unchanged, as Rt and Rs were not 348 

significantly reduced below one (Fig. 1, Fig. S8-S10). 349 

In general, Rt was correlated with various plant- and site-level traits while Rs was not, 350 

though in some cases these relationships differed for summer versus winter droughts (Fig. 3, Fig. 351 

S11). Rt calculated from RWI was highest in gymnosperm species and associated with low 352 

specific leaf area (SLA) and wood density (WD), though the correlation with WD was not 353 

significant following winter droughts. No traits were found to be correlated with Rs calculated 354 

from RWI. The traits that predicted Rt and Rs were less consistent for indices derived from GPP. 355 

For example, mean P50, mean site precipitation, and mean site water deficit were strong 356 

predictors of Rt in response to summer droughts, while there were no significant correlations 357 

with Rs. In contrast, Rt in response to winter droughts was best predicted by mean SLA, SLA 358 

variability, and P50 variability, while Rs in response to winter droughts was strongly correlated 359 

with mean maximum photosynthetic capacity (Amax) and mean LAI. 360 

The degree of decoupling between RWI and GPP Rt during a summer drought was best 361 

explained by broad site factors such as elevation (P < 0.05, R2 = 0.25) and gymnosperm fraction 362 

(P < 0.05, R2 = 0.20) instead of plant traits (Fig. 4), though these factors were less successful in 363 
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explaining the decoupling in Rs. No correlations were found between the degree of RWI-GPP 364 

decoupling and any site factors or plant traits following a winter drought. 365 

As a way of estimating the C cycle impacts of the observed decoupling between RWI and 366 

GPP, we modeled changes to whole-forest C turnover time (τ) under a range of scenarios, 367 

whereby the C not allocated to tree-ring widths was instead allocated to other structural pools. 368 

We found ubiquitous decreases in τ across all allocation scenarios (Fig. 5, all P < 0.01). Declines 369 

in τ were particularly pronounced if C was allocated to leaves (mean change in τ = -3.3%), due to 370 

the large amount of biomass held in foliage and its short lifespan. Decreases in τ were present, 371 

but smaller, if C was allocated belowground (-1.2%), due to the small percentage of total 372 

biomass held in fine roots (mean = 4.5% of total biomass) and the longer lifespan of coarse roots 373 

(mean = 13.75 yrs). 374 

 375 

Discussion 376 

Drought decouples GPP and growth 377 

We found that drought induced a striking decoupling between community-weighted 378 

tree growth and stand-scale C dynamics, whereby RWI was significantly reduced in the year of, 379 

and the year after, drought, while total annual GPP and mean LAI were unchanged. While RWI, 380 

GPP, and LAI have been known to covary in some cases (Campioli et al., 2016; Teets et al., 2017; 381 

Xu et al., 2017), our results add to growing evidence that radial growth and canopy-scale C 382 

processes are commonly decoupled (Cabon et al., 2022; Delpierre et al., 2016; Mund et al., 383 

2010; Pappas et al., 2020; Rocha et al., 2006; Seftigen et al., 2018). 384 
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 We also found the magnitude of Rt and Rs in radial growth to be comparable in 385 

response to both summer and winter droughts. Given the strong temperature seasonality at 386 

most of our sites, the impacts of winter droughts are likely manifest through reductions in spring 387 

water balance and/or an increase in freeze-thaw induced root embolism due to decreased soil 388 

insulation from snowpack (Love et al., 2019; Venturas et al., 2017). While many studies on 389 

drought responses focus on droughts that occur in the growing season, our results point to the 390 

large potential for winter droughts to alter forest C cycling in both arid and mesic forests. 391 

Correlations between drought indices and plant- or site-level traits were generally 392 

sparse, though we did find a significant linkage between Rt in radial growth and factors 393 

pertaining to investment in tissue longevity such as SLA and WD. Consequently, gymnosperm 394 

species had the highest Rt in RWI. There is a robust literature documenting the relationship 395 

between investment into leaf longevity and tolerance to environmental stressors, including 396 

drought (Wright et al., 2004). Thinner leaves (and leaves in angiosperms generally) are less of a 397 

C investment for a tree, and are indicative of a life history strategy more tuned towards fast 398 

growth in favorable environmental conditions, whereas higher leaf C investment (as in most 399 

gymnosperms) is indicative of more long-lived, stress tolerant species (Greenwood et al., 2017; 400 

Grime, 1979). However, contrary to previous work (Anderegg et al., 2015; Vitasse et al., 2019) 401 

we found that Rs was not lower for gymnosperm species. High latitude coniferous forests 402 

feature more prominently in our dataset than previous studies, and thus this result may indicate 403 

a greater ability of gymnosperms in northern or mesic forests to recover from drought stress. 404 

The factors underlying the high Rt in GPP were less clear, though we did confirm previous 405 

evidence that found embolism resistance (P50), site aridity, and drought severity to mediate the 406 
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responses of whole-forest C fluxes to drought (Anderegg et al., 2015; Schwalm et al., 2017; Wu 407 

et al., 2018), with lower Rt observed in drier forests and in those with lower mean P50. 408 

There is a growing interest in incorporating key plant functional traits to improve the 409 

predictive capacity of terrestrial biosphere models (Fatichi et al., 2019; Fisher et al., 2018; 410 

Kennedy et al., 2019). However, it stands to reason that different mechanisms control different 411 

C cycle processes, and our results confirm that the functional traits underlying drought 412 

responses in growth versus C uptake likely differ. Recognizing this nuance is an important factor 413 

to consider towards trait-based vegetation modeling. 414 

 Multiple mechanisms for the decoupling between RWI and GPP have been proposed 415 

(reviewed in Kannenberg et al. 2020b). A buffering of GPP during drought due to understory 416 

species is one such mechanism, though emerging evidence indicates that these species are 417 

frequently equally or more drought sensitive than canopy dominant species (Kannenberg et al., 418 

2019b; Rollinson et al., 2021). An abundance of research indicates that a major factor driving 419 

this decoupling is likely the weakening of the link between C source activity and radial growth 420 

sink dynamics due to: 1) the greater sensitivity of xylogenesis than photosynthesis to aridity, and 421 

2) dynamic C allocation processes (Kannenberg et al., 2019b; Körner, 2015; Mund et al., 2010; 422 

Pappas et al., 2020; Peters et al., 2021; Rocha et al., 2006). For example, radial growth is often 423 

more sensitive to drought than GPP (Delpierre et al., 2016; Martin-StPaul et al., 2017; Peters et 424 

al., 2021), and thus the different sensitivities of these processes could result in radial growth 425 

reductions without concomitant declines in GPP. Radial growth is likely also actively reduced 426 

during and following drought, whereby C is allocated elsewhere such as non-structural carbon 427 

(Körner, 2015), root structural and exudate pools (Phillips et al., 2016), or reproductive efforts 428 

(Hacket-Pain et al., 2018). 429 
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Allocation shifts impact turnover time 430 

No matter if the decoupling between RWI and GPP was due to passive or active 431 

mechanisms, the C that was fixed yet not used for radial growth necessarily went towards some 432 

other structural or non-structural pools. Allocation of C away from long-lived aboveground 433 

woody biomass pools could impart profound changes on the forest C cycle irrespective of any 434 

drought-induced decline in GPP, because that C is very likely to be allocated towards tissues or 435 

compounds with shorter turnover times (Pappas et al., 2020). We estimated that no matter 436 

what structural pool C was allocated to, whole-forest C turnover time (τ) was significantly 437 

reduced, and this decline was notably large in the foliar allocation scenario. Given that our 438 

drought threshold of -1.5 SPEI represented a roughly 20-year drought frequency, our upper-439 

bound estimate of mean τ (where C was allocated to foliar tissue following a summer drought) 440 

implies a 0.39% reduction in τ over the lifespan of the forest assuming steady-state vegetation 441 

dynamics. The magnitude of this estimate is striking as it is roughly a sixth of the current trend in 442 

forest τ (-2.3%) due to increasing tree mortality (Yu et al., 2019). While significant foliar 443 

allocation shifts due to drought have been observed at some of our sites (Kannenberg et al., 444 

2019b), widespread canopy allocation across sites seems unlikely given that we did not observe 445 

a significant decrease in Rt or Rs derived from MODIS LAI. 446 

These changes in τ are likely a conservative estimate since we only modeled non-447 

reproductive structural C components, which have relatively long residence times. If C were 448 

allocated to respiratory fluxes or non-structural compounds, which generally can turn over 449 

within days or weeks (Carbone et al., 2007; Muhr et al., 2016), declines in τ would be even more 450 

sizeable. Likewise, large-scale allocation to reproductive efforts (e.g., masting events) frequently 451 

occurs during or following drought (Hacket-Pain et al., 2018), and is a plausible mechanism for 452 
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the decoupling between RWI and GPP that would likely reduce τ. Though, the magnitude of this 453 

reduction in turnover τ would be highly species-dependent given the high variability in 454 

reproductive allocation and tissue residence time across species (Wenk and Falster, 2015). We 455 

also note that our model did not include any decomposition dynamics due to uncertainties in 456 

decomposition rate over time and across species. Despite these uncertainties, our results 457 

provide a first-order approximation of the impacts of drought-induced allocation shifts on the 458 

forest C cycle across a range of scenarios. Crucially, our τ modeling reveals that the degree to 459 

which the decoupling between RWI and GPP impacts the forest C cycle hinges on where that C is 460 

allocated. Further efforts in model development, coupled with increased measurement of 461 

allometry and C allocation during and after drought, are necessary steps towards refining our 462 

estimates of how this decoupling will impact the ability of forests to mitigate climate change. 463 

Conclusions 464 

Drought is likely to cause consequential impacts to the terrestrial C cycle through 465 

changes in C uptake, forest structure, and mortality rates (Saatchi et al., 2013; Yang et al., 2018; 466 

Yu et al., 2019). Here, we document widespread and direct evidence of an additional, and 467 

underappreciated, impact of drought on the forest C cycle: a fundamental disconnect between 468 

the responses of tree radial growth versus whole-forest C uptake. We estimate that a drought-469 

induced allocation of C away from radial growth leads to decreases in whole-forest C turnover 470 

time. This evidence indicates that drought impacts on terrestrial C cycling may be significantly 471 

mediated by C allocation processes, irrespective of C uptake. Crucially, satellite-based estimates 472 

of drought impacts or vegetation models driven by photosynthetic or productivity dynamics may 473 

be missing key pathways through which the C cycle will be altered in a changing climate with 474 

more frequent and severe drought.   475 
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Figures 931 

 932 

Figure 1. Map of all eddy covariance towers where tree-ring chronologies were collected (panel 933 

A), along with the climate space and biome that our sites represented (panel B). 934 

 935 



 

 

45 

 

 936 

Figure 2. Resistance (Rt, panels A and B) and resilience (Rs, panels C and D) in normalized gross 937 

primary productivity (GPP) and weighted tree-ring width (RWI) in response to two drought 938 

periods: winter (October – March, panels A and C) and summer (June – August, panels B and D). 939 

The horizontal line represents a value of one, which represents no response to drought. The * 940 

symbol indicates a p-value < 0.05 for a t-test from one, ** indicates a p-value < 0.01, and *** 941 

indicates a p-value < 0.001. 942 



 

 

46 

 

 943 

Figure 3. Pearson’s correlation coefficients between Rt (panels A and C) and Rs (panel B and D) 944 

in weighted ring width (RWI, panels A and B) and normalized gross primary productivity (GPP, 945 

panels C and D) in response to summer droughts for all plant- and site-level traits, including 946 

maximum photosynthetic capacity (Amax), mean site climate water deficit (CWD), elevation, 947 

taxa (gymnosperm/angiosperm, or % gymnosperm species presence), mean annual 948 

temperature/precipitation (MAT/MAP), mean site leaf area index (Mean LAI), the water 949 

potential at 50% loss of conductivity (P50), specific leaf area (SLA), SPEI during the drought 950 

(SPEI), and wood density (WD). Bar color represents the type of trait: plant (green), climate 951 

(blue), or site (brown). The * symbol indicates a p-value < 0.1, while ** indicates a p-value < 952 

0.05. Correlation coefficients are not present for the ‘Gymno’ trait as these relationships were 953 

assessed with t-tests. 954 
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955 

Figure 4. Relationships between tree-and site-level traits and ΔRt (panels A and B) or ΔRs (panels 956 

C and D) in response to summer drought. Solid trendlines are present for significant 957 

relationships (p < 0.05) and dotted lines represent moderately significant relationships (p < 0.1). 958 

959 

960 

961 



48 

962 

Figure 5. Change in whole-forest C turnover time in response to winter (panel A) and summer 963 

(panel B) droughts based on simulations where the losses of tree ring C during, and following, 964 

drought (i.e., Rt and Rs), are allocated entirely to coarse roots, fine roots, or leaves. Dots 965 

represent the tissue mean and error bars represent standard error. The * symbol indicates a p-966 

value < 0.05 for a t-test from 0, ** indicates a p-value < 0.01, and *** indicates a p-value < 967 

0.001. 968 




