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Avalanche victim search via robust observers
Nicola Mimmo, Pauline Bernard and Lorenzo Marconi

Abstract—This paper deals with the problem of victim local-
ization in avalanches by using controlled UAVs equipped with
an electromagnetic sensor (known as ARVA) typically adopted
in these Search & Rescue scenarios. We show that the nominal
ARVA measurement can be linearly related to a quantity that
is sufficient to reconstruct the victim position. We explicitly deal
with a robust scenario in which the measurement is actually
perturbed by noise that grows with the distance to the victim
and we propose an adaptive control scheme based on a least-
square identifier and a trajectory generator whose role is both
to guarantee the persistence of excitation for the identifier and
to steer the ARVA receiver towards the victim. We prove that
the controller ensures boundedness of trajectories and enables
to localize the victim in a domain where the ARVA output
is sufficiently informative. We illustrate its performance in a
realistic simulation framework specifically developed with real
data. The proposed approach could significantly reduce the
searching time by providing an exploitable estimate before having
reached the victim.

Index Terms—Search & Rescue robotics, unmanned aerial ve-
hicles, nonlinear output-feedback, robust observers, least-squares
identification

I. INTRODUCTION

FUTURE Search & Rescue (S&R) missions will exploit
the support of robots more and more extensively. Indeed,

robots can boost the already high efficiency of human-based
rescue operations while decreasing the risks associated to
harsh environments (such as urban disasters, mining accidents,
explosions in radiation sites, fires, avalanches, earthquakes, ...).
During the last decades, engineers and scientists developed
several aerial robotic solutions, each of them characterized by
peculiar abilities and equipped with dedicated sensor suites,
to support S&R operations in different disaster areas [1],
[2], [3], [4], [5]. Related to high mountain environment,
[6], [7], [8] demonstrated how S&R operations can greatly
benefit from the use of autonomous UAVs to survey the
environment and collect evidences about the position of a
missing person. Furthermore, the European projects SHERPA
[9] and AIRBorne [10] address a specific challenge in S&R
robotics, i.e., the development of effective technologies and
algorithms to support professional alpine rescuer teams in
avalanches scenarios.

Within S&R in high mountain, a special role is played by
quick localization of buried by avalanches. In these settings,
a sensor technology that is typically adopted is the so-called
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ARVA. The system ARVA consists of two elements: a trans-
mitter and a receiver. The transmitter is worn by the victims
and emits an electromagnetic signal detectable by the receiver,
which is held by the rescuers. The S&R technique based on
the ARVA technology relies on three phases: in the first, the
rescuers look for the first valid electromagnetic signal, in the
second they exploits the ARVA data to find the victim and, in
the last phase, the rescuers dig to save the buried individual.
This paper focuses on the automatisation of the second phase.

In case of signal detection, the receiver provides information
about the electromagnetic field generated by the transmitter
sensed at the receiver device location. The rescuers are trained
to interpret these data and to move closer to the victim
location. Unfortunately, although this technique is common
and quite efficient, it requires a non negligible amount of time
due to the difficulties in walking in avalanche terrains. Further-
more, the rescuers walk on unstable snow with the tangible risk
of inducing a second avalanche event. In this context, drones
represent a valid alternative to humans. Indeed, if sufficiently
smart, ARVA-driven drones can fly autonomously on the snow
to find the transmitter location thus resulting in a faster and
safer research.

In principle there are two main strategies for victim detec-
tion. The first is based on following the signal intensity which
clearly reaches its maximum on the victim. Techniques falling
into this category rely on optimization techniques. The second,
on the contrary, are rather based on the design of an observer
whose goal is to estimate the transmitter location, without
necessary making the receiver approach the transmitter. The
current rescue techniques, along with all the available exam-
ples of UAVs equipped with the ARVA technology, belong
to the first category [11], [12], [13]. In fact, those methods
belong to the so-called source seeking control problems, where
the agent (or agents in case of collaborative and distributed
scenarios) senses the signal emitted by a source located at an
unknown position. By the knowledge of this signal, and maybe
the agent’s position, the control goal is to steer the agent
toward the source. Remarkable examples of generic source
seeking applications (not ARVA-grounded) include [14], [15],
[16] in which the extremum seeking control paradigm has
been exploited to provide the solution in absence of both
a detailed output map and information about the agent’s
position. Furthermore, [17] provided a control strategy inspired
by a line-search minimization algorithm for unconstrained
optimization of nonlinear functions without gradient infor-
mation whereas [18] proposed a gradient-free control law (a
sliding mode controller solving a boundary tracking problem)
which exploits local measurements of the phenomenon at the
vehicle’s position only.

The main advantage of these extremum-seeking approaches
is that they require very little knowledge of the output map.
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Typically, only the convexity and the nature of the extremum
under investigation must be known to properly set up a
minimisation or a maximisation problem. On the contrary, the
observer-based methods rely on the model of the output map
to build an estimator. Indeed, when the output map is known
and the focus of the problem is the estimation of the plant’
state associated with the extremum, such methods allow to
obtain a faster estimate without having to drive the plant to this
extremum. This feature is crucial in the context of avalanche
rescue, since it may allow one to save precious time and efforts
from the rescuers.

This paper presents an algorithm which estimates the victim
location by following a trajectory that is sufficiently “rich” in
ARVA data. Our first contribution is to show that the ARVA
output can be approximated by an output that is linear in a
quantity enabling to reconstruct the victim position. It follows
that the latter can be estimated by means of a least-square
algorithm if the receiver’s trajectory is sufficiently exciting
[19]. A distinguishing feature of our work is that we explicitly
take into account the noise corrupting the ARVA signal whose
magnitude grows with the relative distance between the trans-
mitter and the receiver. The reference trajectory generator must
thus serve a triple purpose: 1) ensuring boundedness of the
drone’s trajectory 2) guaranteeing persistence of excitation for
estimation of the victim position 3) bringing the receiver closer
to the victim to limit the noise and improve the estimation. By
adopting common terminologies, the approach we follow in
this paper falls into the adaptive control category and more
specifically in the class of the indirect adaptive control in
which the plant parameters are estimated on-line and used
to calculate the controller parameters [19]. In this class of
problems, the control law cannot be designed independently
from the identification scheme. Rather it must accomplish
the double role of sufficiently exciting the system to make
it sufficiently informative for identification purposes and to
use the resulting identification outcome to move closer to the
victim [20], [21], [22], [23]. This paper presents an indirect
adaptive control algorithm based on a least-squares identifier
and a reference trajectory generator whose role is both to
guarantee the persistence of excitation for the identifier, and
to steer the ARVA receiver towards the victim. We show
that there exists a region where the ARVA is sufficiently
informative to guarantee convergence to a ball around the
victim, whose radius depends on the measurement noises and
the amplitude of the excitation signal. The advantage of this
approach is that it can provide an exploitable estimate of the
victim position before having actually reached it.

Moreover, the estimation and control scheme proposed in
this work can be applied to any electromagnetic source which
can be modelled as a dipole. Remarkable examples of these
sources are the Emergency Locator Transmitters (ELT) based
on omni-direction radio beacons worldwide used by airplanes
and ships. In those contexts, observer-based methods are
instrumental to obtain an indication about where to concentrate
the rescue efforts.

The performances of the proposed method are checked in a
dedicated, high-fidelity simulator. The simulation environment
has been defined taking into account both the theoretical model

of the system and the data collected by means of real field
experiments in which, the ARVA EM field has been sampled
and geo-localized to create a three-dimensional map.

This paper is organized as follows: Section II introduces
the notation, then Section III describes the ARVA system
and Section IV presents the blocks constituting the control
scheme (i.e., the identifier, the reference trajectory generator
and the plant stabilizer) while the main theorem is presented
in Section V. Finally, Section VI illustrates the performance
of our adaptive control in simulations.

II. NOTATIONS

For any x ∈ R3 we let S(x) ∈ so(3) be a skew-symmetric
matrix and we denote with ∨ : so(3) 7→ R3 the inverse
operator fulfilling x = (S(x))

∨. By ‖·‖ we denote the standard
Euclidean norm and ‖f‖t0,t = sups∈[t0,t] ‖f(s)‖ for t ≥ t0 ≥
0. A function γ : R≥0 → R≥0 is said to be class-K if γ(0) = 0
and γ is strictly increasing. A function β : R≥0×R≥0 → R≥0
is said to be class-KL if for every s ∈ R≥0, r 7→ β(r, s) is
class-K and for every r ∈ R≥0, s 7→ β(r, s) is decreasing
and lims→+∞ β(r, s) = 0. Bρ(x) denotes the ball of radius ρ
centered at x. Three Cartesian coordinate frames are defined
(see Figure 1): Fi = (Oi, xi, yi, zi) indicates the inertial
frame with origin Oi, with the unitary vector xi oriented
toward geographic north, zi oriented opposite to the local
gravity vector and yi oriented to create a right hand frame,
while Ft = (Ot, xt, yt, zt) and Fr = (Or, xr, yr, zr) are
the body right hand frames associated respectively to the
transmitter worn by the victim and to the receiver installed
on the drone. For sake of simplicity we assume that the
body frame of the drone coincides with Fr. The position of
Or relative to Ot is indicated by the vector p ∈ R3, with
p = pr − pt, while the positions of Or and Ot relative to
Oi are indicated respectively by the vectors pr ∈ R3 and
pt ∈ R3. Throughout the paper, and only when needed, we
shall use the apex i, t and r on the left of the vectors p,
pt, pr to denote the representation of the previous vectors in
the reference frames Fi, Ft and Fr respectively (for instance,
ip denotes a representation of p in Fi). The quantities are
intended in the inertial frame Fi when the left side apex is
not indicated. The rotation matrices from Fi to Ft and from
Fr to Fi are respectively denoted by Rt and Rr whereas the
relative rotation from Ft to Fr is indicated by Rrt.

Definition 1 (Persistence of Excitation). [19] Given T > 0,
a locally integrable function φ : R≥0 7→ Rn is said to be
persistently exciting (PE) if there exists a positive real α0 > 0
such that

1

T

∫ t

t−T
φ(τ)φ>(τ) dτ ≥ α0I ∀t ≥ T. (1)

III. CHARACTERISATION OF THE SYSTEM ARVA

The transceivers commercially available have two working
modalities, namely they can work as receivers or as trans-
mitters, with a manual switch used to commute between the
two modes. The ARVA system is based on the emission
and sensing of an electromagnetic field. More precisely, the
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Fig. 1: Reference frames definition

transmitter, worn by the victim, emits a signal which is sensed,
elaborated and made available to the rescuer by the receiver.
Before starting their activities, experienced skiers switch the
worn sensor to the transmitter mode. In case of accident,
companions not buried by the avalanche, or rescuers who reach
the disaster area, switch their device in the receiver mode and
start searching the victim by following the electromagnetic
flux lines. In this paragraph we go through the main physical
principles of the sensor and its main features that are instru-
mental for the development of the automatic search algorithms
presented in Section V.

A. ARVA in the transmitter mode

The ARVA system relies on a transmitter device that gener-
ates a magnetic field modelled as a dipole aligned with the xt
axis of Ft with an amplitude m ∈ R>0. The electromagnetic
vector field, described in Ft, is indicated by ht ∈ R3. Denoting
(px, py, pz) the components of the vector p expressed in Ft
(i.e., tp = col(px, py, pz)), a mathematical model of the
magnetic vector field at tp is given by (see [24])

ht(
tp) =

m

4π‖p‖5
Ac(

tp) (2)

where

Ac(
tp) :=

 2p2x − p2y − p2z
3pxpy
3pxpz

 .
The model can also be expressed in polar coordinates
(Θ, λ, ‖p‖) defined as

 Θ
λ
‖p‖

 :=


cos−1

(
px√

p2x+p
2
y+p

2
z

)
tan−1 (pz/py)√
p2x + p2y + p2z

 (3)

thus leading to

ht(‖p‖,Θ, λ) =
m

4π‖p‖3
Ap(Θ, λ) (4)

where

Ap(Θ, λ) =

 2− 3 sin2 Θ
3 cos Θ sin Θ cosλ
3 cos Θ sin Θ sinλ

 .

3D ARVA magnetic field

x
t

y
t

z
t

Fig. 2: 3D representation of flux lines and iso-power surfaces
(ellipsoid) for a theoretical magnetic dipole.

The intensity of the magnetic field is then obtained from the
previous relation (see [24] and Figure 2)

‖ht‖ =
m

4π‖p‖3
√

1 + 3 cos2 Θ . (5)

The flux lines described by (4) are symmetric with respect
to the transmitter x-axis and are depicted in Figure ?? (red
lines). Furthermore, equation (5) can be exploited to compute
the iso–power lines which are also symmetric with respect
to the transmitter x-axis. The iso-power lines are plotted in
Figure 2.

Remark 1. The models (2)-(5) do not take into account the
transmitter rotation with respect to the inertial space because
they are written in the transmitter reference frame. Moreover,
the burial depth is not clearly highlighted because the snow
surface is not specified. As described in [25], typical burial
depths of few meters do not disrupt the ideal magnetic dipole
here presented. Finally, this paper does not need to describe
the projection of the ARVA field of the snow surface because
the exploited robotic agent is not constrained to move on the
ground.

B. ARVA in the receiver mode

The ARVA equipment has three antennas directed along
the receiver frame axes xr, yr and zr, namely along the
longitudinal, lateral and vertical direction of the sensor case.
We assume that the ARVA receiver position pr and orientation
Rr in the inertial frame are known.

The magnetic field read by the receiver, denoted by
hm(p,Rrt, t), is given by the projection of the vector ht onto
the Fr frame corrupted by the sensor noise

hm(p,Rrt, t) = Rrtht(
tp) + rw(t) (6)

where rw(t) : R 7→ R3 indicates the Electro-Magnetic
Interference (EMI) expressed in the receiver frame. This noise
is bounded by a positive constant ‖rw‖∞. We will denote
hn(p,Rrt) = Rrtht(

tp) the nominal EM field at the receiver,
equal to hm(p,Rrt, t) in absence of noise.

In the following, we exploit the ARVA output (6) to estimate
the transmitter’s position pt, namely the victim’s position, by
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means of an observer. The estimation of its orientation Rt is
not crucial and is left aside in this paper.

a) Toward the transmitter position estimation: The di-
rect design of a non-linear observer for this system is not
straightforward unless adopting an extended Kalman filter
[26], which, however, would require linearizing the system
and would ensure only a local convergence. On the other hand,
the constant nature of the unknowns, namely the position and
orientation of the victim, can be exploited for the design of
an observer which benefits of more appealing properties (easy
design, global stability, etc.). In this context, we manipulate
the non-linear map hn(p,Rrt) to find a change of unknowns
that makes the output map linear, thus leading to a simpler
observer design. In other words, we design an observer by
immersion, i.e., by immersing (in the differential geometry
sense) the state space into a space of larger dimension [27].

More precisely, (3), computations on hn show that p, Rt
and hn fulfil a polynomial equation of the form

p>Mp− (4π)2‖hn‖2
(
p>p

)4
= 0 (7)

in which e1 = col(1, 0, 0) and M = M> =
m2
(
3Rte1e

>
1 R
>
t + I

)
. The equation (7) is a polynomial of

degree 8 in the unknown constants pt ∈ R3 and M ∈ R3×3

with coefficients depending on pr and hn that are known,
modulo some noise on hn. It could therefore be used as
an implicit output map to estimate pt and M (9 unknowns)
by an immersion in a linear space of order 54, but this
method is practically unfeasible. Instead, we show that a model
approximation leads to a practical solution.

b) ARVA model approximation: A detailed analysis of
(5) reveals that the complexity is introduced by the term√

1 + 3 cos2 Θ. So, the idea is to approximate this function
with an equivalent one, namely feq(Θ), which belongs to the
family of functions which are isomorphic to

√
1 + 3 cos2 Θ

and make (5) inversely proportional to a polynomial of p. This
paper adopts this approximation

1
3
√

1 + 3 cos2 Θ
≈ 1

a2
cos2 Θ +

1

b2
sin2 Θ. (8)

The selection of this function is motivated by the fact that the
iso-power surface of the electromagnetic field of (4) look like
ellipsoids, which are xt-axial symmetric, and whose shape is
defined by a, b ∈ R>0. Finally, the coefficients a and b are
known and chosen to minimize the quadratic error with respect
to (1 + 3 cos2 Θ)−1/3. Figure 3 depicts this approximation in
a polar graph. Given the approximation of (8) and keeping in
mind (3), the norm of hn becomes

‖hn‖ ≈
m

4π

(
a2b2

b2p2x + a2(p2y + p2z)

) 3
2

(9)

from which it is possible to obtain the following polynomial
function of order 2

η = Φ>(pr) x(xt) (10)

in which

η =

(
m

‖hn‖4π

) 2
3

(ab)2 (11)

0
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Fig. 3: Polar plot of the function (1 + 3 cos2 Θ)−1/3 (blue)
and its approximation a−2 cos2 Θ + b−2 sin2 Θ (red). The
approximation introduces an error wich is less than the ±6%
of the nominal value.

Φ(pr) = col(p2xr
, 2pxr

pyr , 2pxr
pzr , p

2
yr , 2pyrpzr ,

, p2zr , −2pxr , −2pyr , −2pzr , 1) (12)

with pr = (pxr
, pyr , pzr ), are known signals and

x(xt) = col(m11,m12,m13,m22,m23,m33, pt, %) (13)

is the vector of the unknown constants with mij the entries
of M = M

>
> 0, pt = Mpt, and % = p>t Mpt with

M = Rt diag(b2, a2, a2)R>t . (14)

It is worth observing that estimating the constant vector
x(xt) ∈ R10 is sufficient to obtain an estimate for pt. Indeed,
the first 6 components of x(xt) give an estimate for M whereas
pt estimates Mpt, so that pt can then be recovered by inversion
of M .

Property 1 (Partial bijectivity of the map x). The map
x : R3 × SO(3) 7→ Rnp is partially invertible with respect
to pt. namely, there exists a partial left-inverse denoted Υ
such that pt = Υ ◦ x(pt, Rt) for any (pt, Rt) ∈ R3 × SO(3).
Furthermore, Υ is globally Lipschitz on R10, i.e., there ex-
ists a constant L > 0 such that, for any x1, x2 ∈ R10,
‖Υ(x1)−Υ(x2)‖ ≤ L‖x1 − x2‖.

In practice, such a global inverse of x can be obtained by
projection of M in the following way. According to (14), M
has as eigenvalues {a2, a2, b2}. Therefore, for any M ∈ R3×3

and pt ∈ R3 we can take Υ(x) =
(
Usat (Σ)V >

)−1
pt,

where U , Σ and V > are the elements of the singular value
decomposition of M , such that UΣV > = M , and sat sat-
urates the entries of the diagonal matrix Σ in the interval
[κ−1 min(a2, b2), κmax(a2, b2)] where κ ≥ 1 represents a
tolerance factor.

c) Model mismatch for the approximated ARVA: Substi-
tuting the real noisy measurement hm in place of the ideal
measurement hn in the definition (11) of η leads to a new
output defined by

yt =

(
m

‖hm‖4π

) 2
3

(ab)2. (15)
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Now using a first order approximation on the noise rw, it turns
out that

yt = Φ>(pr)x(xt) + ∆(‖p‖,Θ) + νt(pr, xt, t) (16)

where

∆(‖p‖,Θ) = ‖p‖2
[

1
3
√

1 + 3 cos2 Θ
− 1

a2
cos2 Θ +

1

b2
sin2 Θ

]
νt(pr, xt, t) ≈ (ab)2

(m
4π

) 2
3 ∇A(Θ, λ)‖p‖5 rw(t)

(17)
with ‖∇A(Θ, λ)‖ bounded.

Property 2 (Model mismatch in yt). There exists a class-K∞
function γt such that the output map yt of (16) verifies for all
t ≥ 0

|∆(‖p‖,Θ)+νt(pr, xt, t)| ≤ γt(‖p‖).

A detailed analysis of (17) reveals that γt(‖p‖) =
cmax{‖p‖2,‖p‖5‖ rw‖∞} for some c > 0. As consequence,
the output yt becomes closer to Φ>(pr)x(xt) (which is
proportional to ‖p‖2) as p gets closer to zero (i.e., pr closer
to pt).

C. Receiver dynamics

The receiver is assumed to be rigidly installed on a quad-
copter, whose dynamics is captured by the following model
[28] 

ṗr = vr
mv̇r = mg +RrMFu

Ṙr = −RrS( rωr)
J rω̇r = −S( rωr)J

rωr +Mτu

, yr = xr (18)

with state xr = (pr, vr, Rr,
rωr) ∈ Mr := R3 × R3 ×

SO(3)×R3 denoting the drones’s position, velocity, orienta-
tion and angular velocity respectively, input u ∈ R4

>0 denoting
the vector of the propeller speeds, and measurable output
yr = xr. The terms MF ∈ R1×4 and Mτ ∈ R3×4 are two
known constant matrices.

D. Overall system and problem statement

Gathering (16), (18) and the constant quantities pt and Rt,
we finally get

ṗt = 0

Ṙt = 0
ṗr = vr

mv̇r = mg +RrezMFu

Ṙr = −RrS( rωr)
J rω̇r = −S( rωr)J

rωr +Mτu

(19a)

with xt = (pt, Rt) ∈ Mt := R3 × SO(3), xr =
(pr, vr, Rr, ωr) ∈ Mr and outputs yt ∈ R and yr ∈ R9

defined by

yt := Φ>(pr)x(xt) + νt(pr, xt, t)
yr := xr

(19b)

with the maps x : R3 × SO(3) → R10 and Φ : R3 → R10

defined in (12) and (13). The goal is now to estimate the

Stabilizer Plant ARVA

νt

IdentifierTrajectory Generator

xr, xtu

p̂t

xr

yt

ξ

Fig. 4: Representation of the closed-loop system.

position pt of the victim as precisely as possible. As seen,
this reduces to the estimation of the constant x(xt), whose
observability is inherently linked to the invertibility of the
known quantity Φ>(pr), with the latter intimately connected
to a property of persistence of excitation of the signal pr. Due
to the presence of the noise νt, the problem can thus be cast
as a robust observation problem of the partial state pr of (19a)
from the measured output (19b).

Remark 2. The availability of receivers able to sense multiple
constellations of satellite for positioning generally allows to
neglect the GPS error in the formulation (19). That is why the
drone position xr is assumed known. If this is not the case,
the following can be adapted to handle the measurement noise
(see Remark 4).

Remark 3. The observability study of (19) is performed by
considering that the state of the receiver xr, i.e. the position
pr, the speed vr, the rotation matrix Rr and the angular speed
ωr, is fully available as output so we can consider it as a
known time-varying quantity. On the other hand, this state
appears in the non linear output map besides the unknown (but
constant) state of the transmitter, represented by x. Thus the
goal is to study the observability, from one single scalar output
yt, of the multi-dimensional constant state x. Fortunately, this
unknown appears in the output equation in affine form and we
can apply the linear observability results that, in this case, lead
to the necessity of having the term Φ>(pr) sufficiently exciting
to let us observe x. The Lemma 1 shows how to design the pr
to make Φ>(pr) sufficiently exciting.

IV. PROPOSED SOLUTION

Figure 4 depicts the proposed overall control scheme whose
elements are detailed in the following sections.

A. Identifier
The role of the identifier is to provide an estimation of the

victim position by properly processing the ARVA signal.
This paper adopts the Recursive Least Square (RLS) with

forgetting factor detailed in [19] and hereafter briefly recalled
in its differential version. Given the ARVA measurement yt
verifying (16), the RLS algorithm is given by

Ṙ = −ρR+
φφ>

1 + φ>φ

Q̇ = −ρQ− φ yt
1 + φ>φ

˙̂x = −Γ (Rx̂ +Q)

, p̂t = Υ (x̂) (20)
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in which, for easiness of notation, φ denotes the known signal
Φ(pr) of (16), ρ > 0 represents the forgetting factor, the matrix
Γ = Γ> > 0 is a scaling matrix, and the initial conditions of
R and Q are taken for instance as R(0) = I , Q(0) = 0. If the
vector Φ(pr) is persistently exciting (see Definition 1) and in
the ideal case where yt = Φ(pr)

>x(xt), it is a well-known
fact ([19]) that the origin of the estimation error x̂− x(xt) is
globally exponentially stable, and therefore limt→+∞ p̂t(t) =
pt. In presence of noise νt in (16) verifying Property 2, the
following can be proved.

Property 3 (x-identifier). Assume Property 2 holds. Consider
a signal t 7→ pr(t) that is persistently exciting in the sense
of Definition 1 for some T and α0, and such that Φ(pr) is
bounded. For any identifier parameters ρ > 0 and Γ = Γ> >
0, there exist µ > 0 and a class-KL function βp such that any
trajectory t 7→ p̂t(t) of (20) satisfies

‖x̃(t)‖ ≤ βp(‖x̃(t0)‖, t− t0) + µγt(‖p‖t0,t) (21)

for all t ≥ t0, with x̃ := x̂− x(xt) the estimation error.

Proof. The solutions R(t) and Q(t) to (20) are

R(t) = e−ρ(t−t0)I +

∫ t

t0

e−ρ(t−τ)
φ(τ)φ>(τ)

1 + φ>(τ)φ(τ)
dτ

Q(t) =

∫ t

t0

e−ρ(t−τ)
φ(τ)

(
φ>(τ)x + νt

)
1 + φ>(τ)φ(τ)

dτ

= xe−ρ(t−t0) −R(t)x

−
∫ t

t0

e−ρ(t−τ)
φ(τ)νt

1 + φ>(τ)φ(τ)
dτ

(22)
By considering the positive definite candidate Lyapunov func-

tion V (x̃) =
1

2
x̃>Γ−1x̃ its time derivative fulfills

V̇ = x̃>Γ−1 ˙̃x
= −x̃> (Rx̂ +Q)

= −x̃>
(
Rx̃−

∫ t

t0

e−ρ(t−τ)
φ(τ)νt

1 + φ>(τ)φ(τ)
dτ

+xe−ρ(t−t0)
) (23)

Since R(t) ≥ 0 for all t and using Property 2

V̇ ≤ −‖x̃‖2σ(R) + xe−ρ(t−t0)‖x̃‖

+‖x̃‖
∫ t

t0

e−ρ(t−τ)
‖φ(τ)‖‖νt‖

1 + φ>(τ)φ(τ)
dτ

≤ −‖x̃‖2σ(R) + xe−ρ(t−t0)‖x̃‖

+‖x̃‖
∫ t

t0

e−ρ(t−τ)
‖φ(τ)‖

1 + φ>(τ)φ(τ)
γt(‖p(τ)‖)dτ

≤ −‖x̃‖2σ(R) + xe−ρ(t−t0)‖x̃‖
+‖x̃‖γt(‖p‖t0,t)

1

2ρ

(
1− e−ρ(t−t0)

)
≤ −‖x̃‖2σ(R) +

1

2ρ
‖x̃‖γt(‖p‖t0,t) + xe−ρ(t−t0)‖x̃‖ .

(24)
For t ∈ [t0, t0 + T ], R(t) ≥ R(t0)e−ρT . For t ≥ t0 + T ,

denoting φm an upper-bound of ‖Φ(pr)‖,

R(t) ≥
∫ t

t−T
e−ρ(t−τ)

φ(τ)φ>(τ)

1 + φ>(τ)φ(τ)
dτ ≥ e−ρT α0T

1 + φ2m
I .

So denoting α1 = e−ρT min{ α0T
1+φ2

m
, σ(R(t0))},

V̇ ≤ −α1‖x̃‖2 +
1

2ρ
‖x̃‖γt(‖p‖t0,t) + xe−ρ(t−t0)‖x̃‖

which gives the required ISS property. In particular, the gain
µ of (21) is defined as µ := (2ρα1)−1.

Remark 4. If the GPS errors are not negligible, i.e. pr is not
known exactly, more sophisticated schemes can be adopted in
place of the Least Squares, such as a Kalman filter and Errors
in Variables algorithms. These approaches allow to model the
positioning inaccuracy as a co-variance matrix affecting the
process and the regressor respectively. On the other hand, in
practice, Least Squares can still be used by filtering more
the pr data and making them more robust. To do this, we
decrease the value of ρ and increase the value of the excitation
amplitudes Ai which will be described in Section IV-B.

B. Reference Trajectory Generator

In order to use the identifier defined above, we need Φ(pr)
bounded and persistently exciting, and p = pr − pt becoming
sufficiently small to reduce the impact of the noise on the
estimation error x̃. The idea is therefore to make pr follow
a reference trajectory ξ composed of an exciting part ξe and
a “slow” part ξs steering pr to pt, i.e., reducing p. In order
to guarantee boundedness of trajectories, we saturate the slow
component ξs outside a bounded region where the victim is
known to be. More precisely, assume we know scalars bi, bi,
i = 1, 2, 3, such that

bi ≤ pt,i ≤ bi i = 1, 2, 3

and consider any increasing C2 map sat : R3 → R3 such that
sat(p) = (sat1(p1), sat2(p2), sat3(p3)) with

sati =


bi − ε on (−∞, bi − ε]
Id on [bi, bi]

bi + ε on [bi + ε,+∞) .

Then, for i = 1, 2, 3, let Ai > 0 and $i > 0 be such that
$i 6= $j , i 6= j. The reference trajectory generator is then
represented by a dynamic system described by the following
equations

ξ̇s = fs(p̂t − ξs) , ξ = sat(ξs) + ξe (25a)

with ξs(t0) = pr(t0),

ξe(t) =

A1 sin$1t
A2 sin$2t
A3 sin$3t

 (25b)

and where fs(·) is defined as

fs(v) = fs,max
K‖v‖√

1 +K2‖v‖2
v

‖v‖
(26)

with K > 0. Notice that fs(·) is continuous on R3, globally
bounded by fs,max and such that f(0) = 0 and fs(v) has the
direction of v.

The previous reference signal generator is justified by the
“dual control” objective that characterizes the problem, namely
exciting the system to identify the victim position and moving
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closer to the victim to have a better signal to noise ratio. The
interplay between the two actions is managed by imposing
two time-scales, which are enforced by reducing the parameter
fs,max. In fact, the following can be proved.

Lemma 1. For any Ai, $i defined as above, the signal ξe
defined in (25) is such that Φ(ξe) is bounded and PE, and
there exist f?s,max > 0 and ε > 0 such that for all positive
fs,max ≤ f?s,max and for any tracking error t 7→ e(t) bounded
by ε, with e := pr − ξ, Φ(ξe + sat(ξs) + e) is also bounded
and PE.

The rest of this section is dedicated to the proof of Lemma
1.

a) Φ(ξe) is bounded and PE with level α?0: The vector
Φ(pr) is composed by terms like ξei , ξ

2
ei and ξeiξej with i 6= j

and is thus bounded. Exploiting the Werner’s formulae, it is
possible to write the following relations

ξ2ei =
A2
i

2
− A2

i

2
cos (2$it)

ξeiξej =
AiAj

2
(cos (($i −$j)t)− cos (($i +$j)t))

(27)
From (12), defining the column vector w̄ as

w̄ =



cos (2$1t)
cos (2$2t)
cos (2$3t)

cos (($1 −$2)t)− cos (($1 +$2)t)
cos (($1 −$3)t)− cos (($1 +$3)t)
cos (($2 −$3)t)− cos (($2 +$3)t)

sin ($1t)
sin ($2t)
sin ($3t)

1


(28)

we have Φ = FAFw̄ where

FA =


F11 0 0 0
0 F22 0 0
0 0 F33 0
0 0 0 1

 (29)

with

F11 = −diag
(
A2

1

2
, . . . ,

A2
3

2

)
F22 = diag (A1A2, . . . , A2A3)
F33 = −2diag (A1, . . . , A3) .

and F a constant invertible matrix such that Fij = ±1. Since
Ai 6= 0 for i = 1, 2, 3, the matrix FA is non singular.

The linear term in equation (16), i.e., Φ>(pr)x(xt) with
pr = ξe, can be written as

Φ>(ξe)x(xt) = (FAFw̄)>x(xt) = w̄>F>A F
>x(xt) . (30)

The selection of $1 6= $2 6= $3 6= 0 ensures that the signal
w̄ contains 9 different frequencies thus guaranteeing the PE
property of w̄ ([19]), i.e., there exist T > 0 and α$ > 0 such
that

1

T

∫ t

t−T
w̄(τ)w̄>(τ)dτ ≥ α$I.

Therefore,∫ t

t−T
Φ(ξe(τ))Φ>(ξe(τ))dτ =

=

∫ t

t−T
FAFw̄(τ)w̄>(τ)F>F>A dτ

= FAF

∫ t

t−T
w̄(τ)w̄>(τ)dτF>F>A

≥ Tα$FAFF>F>A

≥ Tνα$ min
i,j

{
AiAj

2
, 2Ai, 1

}2

I

with ν > 0 the smallest eigenvalue of FF>, independent
from the Ai and $i. We thus denote in the following α?0 =

να$ mini,j

{
AiAj

2 , 2Ai, 1
}2

.
b) Effects of a perturbation δ on the PE: Let us assume

that a perturbation δ affects the nominal exciting trajectory ξe,
namely pr(t) = ξe(t) + δ(t). First, if δ is bounded then Φ(pr)
is still bounded. Then, the PE level of Φ(pr) is affected by
the disturbance δ(t) as follows

1

T

∫ t

t−T
Φ(pr(τ))Φ>(pr(τ))dτ

=
1

T

∫ t

t−T
Φ(ξe(τ))Φ>(ξe(τ))dτ + ∆(t)

≥ (α?0 + σ(∆(t)))I

with

∆(t) =
1

T

∫ t

t−T
φ̃(τ)Φ(ξe(τ))>+

Φ(ξe(τ))>φ̃(τ) + φ̃(τ)φ̃(τ)>dτ

where φ̃(τ) = Φ(pr(τ)) − Φ(ξe(τ)) has its norm going to
zero when |δ| goes to 0. Using that Φ(ξe(τ)) is bounded, there
exists δ? such that for any t and any |δ| ≤ δ?, |σ(∆(t))| < α?0
and Φ(pr) is PE. This shows that a sufficiently small pertur-
bation of ξe preserves the PE property with 0 < α0 < α?0.

The second step consists in showing that the PE is also
preserved when δ bounded and sufficiently slow. Assume

|δ̇(t)| ≤ fs,max ∀ t .

Then, we have for all τ ∈ [t− T, t],

Φ(pr(τ)) = Φ(ξe(τ) + δ(τ)) = Φ(ξe(τ) + δ(t) + δ(τ)− δ(t))

with |δ(τ)− δ(t)| ≤ fs,maxT . Therefore, for all τ ∈ [t−T, t],

Φ(pr(τ)) = Fm(t)w̄(τ) + φ̃(τ)

with |φ̃(τ)| arbitrarily small if fs,max is sufficiently small, and
Fm(t) = FAF + F̃ (t) with

F̃ (t) =


0 0 F̃13(t) F̃14(t)

0 0 F̃23(t) F̃24(t)

0 0 0 F̃34(t)
0 0 0 0

 .
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Fm(t) is still invertible for all t and thus Fm(t)Fm(t)> is still
positive definite. Since φ̃ can be made arbitrarily small, it does
not impact the PE as proved above. Besides, since

1

T

∫ t

t−T
Fm(t)w̄(τ)w̄>(τ)F>m(t)dτ ≥ α$Fm(t)F>m(t)

we just have to prove that the positive definite matrix
Fm(t)F>m(t) can be lower bounded uniformly in time. We
have for all t,

det(Fm(t)F>m(t)) = det(FAFF
>F>A )

so the product of all eigenvalues is constant. Therefore, the
only way the minimal eigenvalue could go to zero would be
for the maximal one to diverge. But this is impossible since δ
(and thus Fm) is bounded. Therefore, the PE is preserved.

To conclude, since sat(ξs) is bounded with a derivative
bounded by fs,max and e is bounded by ε, Φ(ξe+sat(ξs)+e)
is bounded and PE for fs,max and ε sufficiently small.

Remark 5. It is worth noting that, according to Property
3, the estimation error x̃ is minimized if the parameter µ
in (21) is minimized. The proof of Lemma 1 shows that µ

can be minimized by maximizing the quantity e−ρT
ρTα0

φm
,

i.e., by taking R(t0) with sufficiently large eigenvalues. Since
the perturbation impact can be reduced by taking fs,max and
ε sufficiently small, the choice of Ai and $i is intended to

maximize the term e−ρT
ρTα?0
φm

, i.e.,

e−ρT ρT
να$ mini,j

{
AiAj

2 , 2Ai, 1
}2

1 +
(
maxi,j {2AiAj , 2Ai, 1}+ max{|bi|, |bi|}+ ε

)2 .
Then, once T , $i and ρ have been designed to
maximize e−ρT ρTα$, the largest Ai, which ensures

mini,j

{
AiAj

2 , 2Ai, 1
}2

= 1, represents the best choice.

C. Stabilizer

We do not present a specific low-level control structure of
the drone since many solutions already available in literature
could be used, see [28] and citations therein. Rather, we focus
on the main property required to the low level controller in
order to have the whole solution properly working.

Property 4 (Controller). For all ε > 0 and for all reference
signal t 7→ ξ(t) generated as in Section IV-B, there exists a
control law of the form

u = fε (x, ξ) (31)

such that the resulting closed-loop tracking error e := pr − ξ
satisfies

‖e(t)‖ ≤ βe(e(0), t− t0)+ε (32)

for all t ≥ 0.

The envisioned controller (31) is a static state feedback
controller although dynamic output feedback solutions could
be considered in case the state is not fully known. Property

(32) asks for practical tracking with a sufficiently small asymp-
totic bound on the error. The value of ε will be asked to be
sufficiently small in the next section to guarantee convergence
of the whole control scheme. We emphasize that existing high-
gain solutions (see [28] among the others) could be adopted
to have this property fulfilled robustly with respect to system
uncertainties. Details about the way such a controller can be
constructed are given in Section VI.

Note that since the reference trajectory can be initialized at
ξ(0) = pr(0), the transient can be neglected and we directly
assume in the following that the tracking error is bounded by
the parameter ε.

V. MAIN RESULT

We now analyse the stability of the whole interconnection
shown in Figure 4. The following theorem claims that if
the time scales of the references ξe and ξs are sufficiently
different (namely if fs,max is taken sufficienly small in relation
to the $is), then the estimation error of the victim position
practically converges to zero with a practical region that is
affected by the amplitude of the exciting signal. Such property,
indeed, holds as long as the receiver remains sufficiently close
to the victim in relation to the noise features.

Theorem 1. Let the identifier and the reference signal be fixed
as in Sections IV-A and IV-B. Furthermore, let the stabilizer
be fulfilling Property 4. There exist f?s,max > 0 and ε > 0
such that if fs,max ≤ f?s,max, there exists a class-K function
γ such that any trajectory of (19) , (20), (25) and (31), is
bounded and verifies

lim sup
t→∞

‖pr(t)−pt(t)‖+‖p̂t(t)−pt(t)‖ ≤ γ(‖ξe‖∞+ε) (33)

as long as pr ∈ Bρ?(pt), with

ρ? = min

{(
1

cc′µL

) 1
2

,

(
1

cc′µL‖rw‖∞

) 1
4

}
where c′ > 0, and L, c and µ denote the Lipschitz constant
appearing in Property 1, the noise gain in γt defined in
Property 2 and the ISS parameter of x-identifier appearing
in Property 3 respectively.

The boundedness of all trajectories, guaranteed by the
saturation of ξs, ensures that the drone remains in a predefined
zone containing the avalanche area. The size of this region de-
pends on the chosen saturation, the amplitude of the excitation,
and the tracking performance ε of the controller.

We observe that, due to the persistent excitation, we cannot
ensure pr = pt asymptotically, and from Property 2, the noise
νt does not completely disappear, producing a residual error
on the estimation depending on the size of γt.

The size of the region Bρ?(pt) which guarantees stability
and nice asymptotic properties increases when either the
amplitude of the noise ‖rw‖∞ or the parameter µ decrease.

The design degree of freedom which could be used to
enlarge the radius ρ? is the amplitude of the exciting signal,
i.e., Ai with i = 1, 2, 3, through the parameter µ as described
in Section IV-B. But, according to Property 3, reducing Ai
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Fig. 5: Error Definitions

reduces the asymptotic effect of the noise rw on the estimation
error x̃. Therefore, unfortunately, a reduction of the amplitudes
Ai leads both to a reduction of the asymptotic norm of x̃
and to a reduction of the stability domain. So, there exists a
design compromise between the stability requirement and the
asymptotic performance.

Remark 6. At first sight, Theorem 1 may look like a local
result with little advantage with respect to an EKF. However,
the region of attraction is here only to guarantee the stability
of the interconnection between the observer and the reference
generator, in order to drive the distance to the victim, and thus
the noise, to zero. It is important to note that the least-square
observer on its own is globally stable and ISS with respect to
the noise in all circumstances. In particular, if the gain of the
noise is small, the observer may still rapidly provide a reliable
estimate of the victim’s position, even outside of Bρ?(pt). On
the other hand, using an EKF for the observation of the
nonlinear plant would lead to a double locality constraint:
remaining in the local convergence region of the EKF (in
spite of the noise), besides guaranteeing contraction with the
reference generator to bring the noise to zero. It is possible
that the noise and the nonlinearities destabilize the observer
without leaving a chance to the reference generator to drive
the drone closer to the victim.

Remark 7. The fact that the observer is able to provide
a workable estimate of the victim’s position before actually
reaching the victim, constitutes a great advantage in the
context of avalanche rescuing compared to extremum-seeking
methods. This may seem paradoxical since the goal of the
rescue team is eventually to reach the victim. But actually,
with an early estimate provided by a fast drone, the rescuers
can go early and directly to the victim, thus saving up efforts
and time in a very hostile environment. Besides, the observer
provides an estimation of the burial depth that the extremum
seeking cannot provide. Finally, the potentiality of this method
is enhanced when considering the possibility of estimating the
position of multiple victims at the same time. Indeed each
ARVA receiver is able to track 4 independent transmitters.
If the victims are not too far apart, the reference trajectory
computed by the observer-tracking scheme for one victim
also enables to reduce the noise for the other victims and
parallel observers can then provide a reliable estimate for all
victims positions at the same time. On the contrary, any policy
based on the extremum-seeking should steer the drone to each
transmitter, one per time, with a huge time expense.

The rest of the section provides the proof of Theorem 1.

(32) (36)

‖ξe‖t0,t

(39)
‖e‖t0,t ‖x̃‖t0,t ‖s‖t0,t

Fig. 6: Interconnections between systems e, s and x̃

First, according to Lemma 1, Φ(pr) = Φ(ξe + sat(ξs) + e) is
PE for fs,max and ε sufficiently small.

a) Dynamics of x̃ as function of s and e: The dynamics
of x̃ is described by

‖x̃(t)‖ ≤ βp(‖x̃(t0)‖, t− t0) + µγt(‖p‖t0,t) . (34)

On the other hand, the distance p is linked to e as follows

p = (pr − ξe − sat(ξs)) + (sat(ξs)− pt) + ξe = s+ e+ ξe

with norm thus bounded by

‖p‖ ≤ ‖s‖+ ‖e‖+ ‖ξe‖ (35)

because ‖sat(ξs) − pt‖ ≤ ‖ξs − pt‖ by definition of the
saturation. Using γt(‖p‖) = c‖ rw‖∞‖p‖5 and the inequality
(a + b)5 ≤ 24(a5 + b5) for any a, b ≥ 0, the substitution of
the equation (35) into (34) leads to

‖x̃(t)‖ ≤ βp(‖x̃(t0)‖, t− t0) + c′µγt (‖s‖t0,t)
+ c′µγt (‖e‖t0,t + ‖ξe‖t0,t) (36)

for some positive c′.
b) Dynamics of s as function of x̃: The system generating

the error s is described by the following differential equation

ṡ = fs,maxK
p̃t − s√

1 +K2‖p̃t − s‖2
. (37)

By taking V = s>s as possible Lyapunov function, it turns
out that

V̇ = ṡ>s+ s>ṡ =
2fs,maxK√

1 +K2‖p̃t − s‖2
(
p̃>t s− s>s

)
(38)

which is negative if p̃>t s < s>s. Therefore, (37) is ISS with
unitary asymptotic gain, namely, for all t ≥ t0,

‖s(t)‖ ≤ βs(‖s(t0)‖, t− t0) + L‖x̃‖t0,t . (39)

c) Interconnection conditions: The application of the
small gain theorem ([29]) to the interconnection (36)-(39)
leads to the contraction condition

c′Lµγt(·) < Id (40)

which, if fulfilled, leads to the conclusion that the system (36)-
(39) is ISS with respect to the inputs e and ξe, i.e., there exist
a KL-class function β̄ such that

‖(s, x̃)(t)‖ ≤ β̄ (‖(s, x̃)(t0)‖, t− t0)

+ c′µγt (‖e‖t0,t + ‖ξe‖t0,t) max{L, 1} (41)

Since γt(‖p‖) = cmax{‖p‖2, ‖rw‖∞‖p‖5},(40) holds in the
domain where ‖p‖ < ρ?. Besides, we deduce from (35) and
Property 1, that (p, p̃t) is ISS with respect to e and ξe. Finally,
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Fig. 7: Stabilizer architecture

(32) says that e is ISS with respect to ε, so by standard cascade
ISS arguments, (p, p̃t) is ISS with respect to ε and ξe and we
obtain (33).

VI. SIMULATION RESULTS

A. Simulator Description

The simulator is implemented following the scheme of
Figure 4 and it is based on real data, collected in field test
campaigns, which complete the base model. Indeed, despite
the magnetic dipole represents a good model for the ARVA
signal, the characterization of the noise rw as stochastic
variable, of a random white process, required the determination
of its statistical properties. The ARVA noise, rw(t), has been
defined as a randomly oriented vector whose magnitude and
attitude are generated by means of band-limited withe noise
blocks. In particular, the magnitude of the noise is bounded
by ‖ rw‖∞ ≤ w̄ := (2π‖peq‖3)−1 with ‖peq‖ = 80m. This
value has been identified after a field test campaign that was
performed by measuring the relative position of the receiver
with respect to the transmitter (by means of GPS receivers),
their relative attitude (by means of Inertial Measurement Units)
and the ARVA data. The maximum environment induced EMI
are estimated to be equivalent to an ARVA signal emitted
by a transmitter approximately located 80 meters far from
the receiver. Furthermore, the algorithm implementation into
the UAV flight control unit (PixHawk) has been tested in a
dedicated software-in-the-loop system, also comprehensive of
the ARVA simulator [30].

The relevant control parameters are K = 1 and fs,max =
0.5 m/s whereas the RLS algorithm is characterized by the
forgetting factor ρ = 1. The excitation trajectory ξe =
col(ξe1 , ξe2 , ξe3) is designed with ξei = Ai sin(ωit), i =
1, 2, 3 with A1 = A2 = A3 = 2 m and ω1 = 0.7 2π,
ω2 = ω1/2 and ω3 = ω1/4 rad/s. The parameters of the
reference trajectory, fs,max, Ai and ωi, have been chosen in
agreement with the limitations on the maximum speed of 6
m/s. The simulations assume that the centre of the inertial
reference system (which is defined by the user) coincides
with the initial position of the drone, i.e., pr(0) = 0. At
time t = 0 also the reference trajectory ξs is set to be
null, thus leading to ξs(0) = 0, whereas the position of the
transmitter is randomly generated to belong to a sphere of
radius equal to 50 m, centred at the origin of the inertial space.
The maximum initial distance of 50 m has been selected by
following practical experiments which validated the maximum
ratings declared in the data-sheets of the popular ARVA
devices [31], [32]. It is worth noting that, for longer distances
the ARVA signal-to-noise ratio would be too small for letting
the algorithm working properly. In particular, the simulations

are obtained with pt = col(−32.8, 27.0, 8.6) m. The mass
of the drone is set to 1 kg whereas the inertia matrix is
J = diag(0.1, 0.1, 0.2) kg m2.

Finally, the simulator has been implemented in a Matlab®

Simulink® model with the simulator solver set to integrate the
continuous time ordinary differential equations with an explicit
4th order solver (ode45 Dormand-Prince), exploiting a variable
step size upper bounded by 1 ms.

As for the stabilizer design, we followed the inner-outer
design paradigm presented in [28] and depicted in Figure 7.
With the position and speed tracking errors defined as

p̃ :=

[
e
˙̃p

]
:=

[
pr − ξ
ṗr − ξ̇

]
, (42)

the controller takes the form

RcezMFu = ac (43)

Mτu = JR>r ω̇c − kpε̃
− (S(Jω̃c) + kd)

(
ω −R>r (R>c Ṙc)

∨
) (44)

where ‖RcezMFu‖ = ‖u‖ = ‖ac‖ and

ac = −m
(
g − ξ̈

)
+ λ2sat

(
k2
λ2

(
˙̃p+ λ1sat

(
k1
λ1
e

)))
and ωc = R>r (R>c Ṙc)

∨ is the desired angular speed, ε̃
represents the vector part of the quaternion associated to
R̃ = R>c Rr, Rc is the desired rotation matrix defined such
that Rcez =

ac
‖ac‖

with the entry Rc(2, 1) = 0.

The stabiliser (43)-(44) has been implemented with k1 =
0.1, k2 = 15, λ1 = 5 and λ2 = 15. Moreover, the saturation
functions are defined as sat(·) : R3 → R3 that for n = 1 is
specialised as

sat(s) =

{
s |s| < 1

sign(s) |s| ≥ 1
.

For the case n = 3 the function is intended to hold component-
wise. With these settings, the tracking error e is upper bounded
by ε = 0.5 m.

B. Result Comments

Figure 8 depicts the trajectory of the receiver with respect
to the transmitter and Figure 9 the estimation p̂t. The initial
estimation is poor due to the long relative distance from the
receiver to the transmitter which makes the ARVA data par-
ticularly noisy. After about 10 seconds, the identifier collects
data rich enough to estimate more accurately the transmit-
ter position. Due to the double time scale (guaranteed by
small fs,max) between the identifier (faster) and the reference
trajectory (slower), the receiver is slowly driven toward the
estimated transmitter position which rapidly converges to the
right value. On the other hand, the estimation gets more and
more accurate as far as the receiver is close to the transmitter.
The effect of the noise νt is depicted in Figure 10 where
the nominal ARVA output is superposed to the noisy one. We
observe that the noise disappear as the receiver approaches the
transmitter. It is important to note that a reliable estimate of
the victim’s position is obtained before the receiver reaches the
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Fig. 8: Distance p from the transmitter to the receiver

Fig. 9: Estimate of the victim position p̂t.

victim, which constitutes a significant advantage with respect
to extremum-seeking techniques.

The choice of fs,max influences the stability of the overall
control scheme (in agreement with the theoretical result). In
particular, Figures 11-12 depict how the trajectories of the
estimation error p̃t and the distance ξs − pt change with
respect to the variation of fs,max. A reduction of fs,max leads
to a more conservative satisfaction of the stability criterion
but makes the receiver staying longer in the noisier zone.
As a consequence, the estimation of the transmitter position
provided by the identifier is less accurate. Vice-versa, higher
values of fs,max induce the receiver to move faster toward
the less noisy zone but satisfy in a less conservative way the
stability. For this reason, the parameter fs,max is subject to a
design compromise between stability and performance.

VII. CONCLUSIONS AND FUTURE WORKS

This paper presented an identification scheme for the prob-
lem of automatic estimation of the position of avalanche
victims who wearing an electromagnetic transmitter (commer-
cially known as ARVA). Due to the peculiar properties of the
output map associated to the ARVA receiver, rigidly attached
to a quadcopter, the identification process provided by the
implementation of a recursive least square algorithm does not
provide the best performance if not supported by a control
system which steers the receiver toward the transmitter. The
effectiveness of the proposed control scheme was tested in
simulations. Future works will regard the real implementation
of the proposed strategy on the drones developed in the
AirBorne European project (targeting a TRL8 aerial platform).

y
t [

m
2
]

Fig. 10: Effects of the noise νt on the ARVA data: comparison
with the nominal output.
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