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Abstract
In this new computing paradigm, named quantum computing, researchers from all over
the world are taking their first steps in designing quantum circuits for image process-
ing, through a difficult process of knowledge transfer. This effort is named quantum
image processing, an emerging research field pushed by powerful parallel comput-
ing capabilities of quantum computers. This work goes in this direction and proposes
the challenging development of a powerful method of image denoising, such as the
total variation (TV) model, in a quantum environment. The proposed quantum TV is
described and its sub-components are analysed. Despite the natural limitations of the
current capabilities of quantum devices, the experimental results show a competitive
denoising performance compared to the classical variational TV counterpart.
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1 Introduction

Digital image processing is an extremely, computationally demanding, strategic
research field. This has led, over the years, to the development of many complex
image processing algorithms on highly parallel, specialized hardware platforms. With
the rapid progress of parallel hardware, suitably high performance is now available
also for sophisticated imaging tasks. In the present studywe focus on image denoising,
an essential requirement for any other image processing, which refers to the recovery
of a clean sharp image from a noisy observation.

In [20] Rudin, Osher and Fatemi presented one of the main mathematical mod-
els and algorithms for image denoising, the so-called Total Variation denoising (also
known as TV model). Since then, TV model has become a quite popular technique,
which usage allows to improve overall image quality when the images are affected
by noise or corruption, while well preserving edges and details. Efficient solutions
have been proposed over time for the numerical optimizations of the TV model [3,
4, 11, 25], but they are not able to fully exploit parallel computational resources. In
[13], the authors designed a new optimization algorithm which is simple and highly
parallelizable, and relies on median value computations, thus reducing computational
effort to a sorting problem. Thanks to its low complexity, this algorithm is prone to
be implemented on low-end devices or, more generally, in situations where a reduced
amount of resources is available. That is the case of Quantum Image Processing (QIP),
a novel andpromising researchfieldwhichgoal is the development of imageprocessing
techniques for quantum computers, exploiting peculiar features from quantum world,
like entanglement, superposition, interference [24]. Quantum computing is univer-
sally acknowledged for its ability to process data providing computational speedups
compared to the classical paradigm. However, image processing is actually one of the
most demanding applications in terms of resources for quantum computers. As a con-
sequenceQIP is still in its early stage, and thus is facing several fundamental problems,
such as how to represent and store an image in quantum computers appropriately, and
how to efficiently implement image processing algorithms [10, 16].

In the present days, quantum devices are subject to several issues (i.e. noise,
absence of error correction, low amount of available qubits, etc.), which defines what
researchers commonly refer to as Noise intermediate-scale quantum era, or just NISQ
[18]. This is an intermediate development phasewhere, through the exhibition of quan-
tum devices’ limits, algorithms have been designed to be as optimized and simple as
possible [2]. In this context, QIP is a complex subject to deal with because several
difficulties may arise in the attempt of implementing the classical image processing
algorithms on quantum devices (some of them will be discussed later in this work).
Many proposals have been submitted during the past few years [22], in the attempt
to provide QIP algorithms that fulfill NISQ requirements. QIP algorithms are usually
tested using quantum simulators or similar execution environments.

Here along this line, the presented work aims to solve the TV model in a quantum
environment. The result is a Quantum TV filter, which integrates a Quantum Median
Filter proposal by Li et al. [10, 14]. This work focuses not only on the development
of a QIP technique for image denoising which mimics its variational TV counterpart,
but also on presenting an useful review of detected problems in the newly devel-
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oped QIP field, and offering possible solutions and ideas for future developments and
optimizations.

The paper is organized as follows. In Sect. 2 we introduce basic theory about
Total Variation denoising technique and a median formula for efficiently solving an
anisotropic TV problem. In Sect. 3 we discuss Quantum Image Processing concepts
and related issues. In Sect. 4 we explain in detail how Quantum TV Filter works,
highlighting its quantum components, and analysing its circuit complexity in Sect. 5.
In Sect. 6 we focus on the analysis of experimental results, comparing both quantum
and classical implementations of the TV algorithm. Section 7 reports conclusions and
future works. In the Appendix we briefly report details on a few quantum modules
used in the design of the proposed Quantum TV.

For basic notations and fundamental knowledge about quantum image processing
computing, we refer the reader to [24].

2 Total variation image denoising

The goal of denoising is to obtain an image u∗ not only with small variations in
intensity between pixels but also close to the observation f . At this aim, the class
of variational methods for image restoration relies on determining restored images
u∗ ∈ R

N , given a noisy image f ∈ R
N , as the minimizers of suitable cost functionals

J : RN → R such that, typically, restoration is casted as an optimization problem of
the form:

u∗ ← arg min
u∈RN

{ J (u) := R(u) + λ F(u; f ) } , (1)

where the functionals R(u) and F(u; f ), commonly referred to as the regularization
and the fidelity term, encode prior information on the clean image u and the observation
model, respectively, with the so-called regularization parameter λ > 0 controlling the
trade-off between the two terms. In particular, the functional form of the fidelity term
is strictly connected to the characteristics of the noise corruption. A classical choice
for the fidelity measures the data fitting in terms of the �2-norm, in formulas:

F(u; f ) := ‖u − f ‖22. (2)

For what regards the regularization term R(u) in (1), a very popular choice is
represented by the Total Variation, presented in the following two forms:

[Isotropic TV] Riso(u) := ‖Du‖2,1 = ‖
√

(DXu)2 + (DYu)2‖1 (3)

[Anisotropic TV] Rani(u) := ‖Du‖1 = ‖DXu‖1 + ‖DYu‖1 (4)

where Dx , Dy denote the horizontal and vertical operators, respectively, and D =
(Dx , Dy) is the gradient operator ∇ in the discrete setting.

By substituting the TV regularizer T V (u) := Riso(u) in (3) or T V (u) := Rani (u)

in (4) and the fidelity term (2) for R and F in (1), respectively, one obtains the so-called
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TV-L2 - restoration model, originally introduced in [20]. In formulas:

u∗ ← arg min
u∈RN

{
J (u) = TV(u) + λ ‖u − f ‖22

}
. (5)

2.1 Median formula for TV

Li andOsher in [13] proposed an efficient and highly parallelizable method for solving
TVmodel (5)with anisotropicTV regularization (4). Theyproposed to solve iteratively
N one-dimensional optimization problems to obtain an accurate solution of the N -
dimensional optimization problem (5). In particular, for each pixel u ∈ R, we consider
the local minimization problem:

u∗ = argmin
u∈R

{

E(u) :=
κ∑

i=1

wi |u − ui | + F(u)

}

(6)

where F(u) = λ( f −u)2, u∗, f ∈ R are respectively the denoised and noisy versions
of the same pixel, while ui belongs to the set of κ neighboring pixels and wi ≥ 0 are
given weights. In [13], a simple method for computing u∗ in (6) is derived and here
reported for self-consistency.

Theorem 1 Supposing the wi are non-negative and the ui are sorted as u1 ≤ u2 ≤
... ≤ uκ , the function F is strictly convex and differentiable and F ′ is bijective; then
the minimizer of (6) is a median:

u∗ = median{u1, u2, ..., uκ , p0, p1, ..., pκ } (7)

where pi = (F ′)−1(Wi ) and

Wi = −
i∑

j=1

w j +
κ∑

j=i+1

w j , i = 0, 1, . . . , κ. (8)

In our formulation, the neighborhood of the current pixel u are simply uu, ud , ul , ur ,
the vertical and horizontal direct neighbors pixels, respectively. The adopted 4-
neighbors strategy allows us to apply the median formula in parallel on multiple
pixels at one time using a proper configuration, since each pixel is directly affected
only by its 4 neighbors.

The fidelity is defined as F(u) = λ( f − u)2, and consequently

F ′(u) = −2λ( f − u) ⇒ (F ′)−1(W ) = f + W

2λ
,

where W is a sum of weights previously defined in (8). The denoised pixel u∗ is then
obtained as the median value:

u∗ = median{ul , ur , uu, ud , p0, p1, p2, p3, p4}, (9)
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where the p-values pi are calculated following Theorem 1, with wi = 1 and κ = 4:

W0 = 4 ⇒ p0 = f + 4
2λ ⇒ p0 = f + 2

λ

W1 = 2 ⇒ p1 = f + 2
2λ ⇒ p1 = f + 1

λ

W2 = 0 ⇒ p2 = f + 0
2λ ⇒ p2 = f

W3 = −2 ⇒ p3 = f + −2
2λ ⇒ p3 = f − 1

λ

W4 = −4 ⇒ p4 = f + −4
2λ ⇒ p4 = f − 2

λ

(10)

The image denoising problem can hence be solved by iteratively computing (7)
pixel-by-pixel over the whole image until convergence, which is guaranteed by the
following result.

Theorem 2 The algorithm defined by repeatedly applying (7) at the j th pixel, con-
verges, i.e. u(k+1)

j = argminu j∈R E (k)(u j ), hence

u(k) ⇒ arg min
u∈RN

J (u).

This means that, after k iterations, with k → ∞, we obtain the minimizer of problem
(5).

For the numerical implementation the stopping criterion considered is computed
as follows: given a small tolerance value ε, process stops when, at iteration k

‖u(k−1) − u(k)‖2
‖u(k−1)‖2 ≤ ε (11)

where u(k−1) and u(k) are consecutive processed images.
The resulting algorithm is described in Algorithm 1.

Algorithm 1 Anisotropic TV algorithm

Input: f ∈ R
N , λ > 0

Output: u∗ ∈ R
N

Initialize image(0) = f , k = 0
while(!convergence)

For each pixel in image(k) do:
compute W ∈ R

5 as in (10)
set Npixel = get_neighbors(pixel) %Npixel = (ul , ur , ud , uu)

v ← sort(Npixel ) in ascending order
compute p ∈ R

5, with p j = pixel + 1
λ
Wj , j = 0, .., 4

pixel∗ ← median(v0, v1, v2, v3, p0, p1, p2, p3, p4)
tmp_image ← pixel∗

end
image(k+1) =tmp_image
k = k + 1
end
u∗ = image(k+1)
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Fig. 1 Scheme illustrating Quantum TV (QTV) denoising process

3 Quantum image processing

QIP aims to design quantum algorithms that, once constructed a quantum state which
encodes an image, implement image processing techniques in a quantum environ-
ment. QIP is a novel topic in quantum computing and many issues are far from being
solved, as explained in [19]. A central issue regards the image encoding in a quan-
tum environment, which will be discussed in Sect. 3.1. Another limiting issue is that,
nowadays, QIP represents a demanding branch of quantum computing, as it needs a
lot of resources that are far from being offered by current or medium term devices.
At the moment, researchers are proposing many different approaches to the problem,
even though only a limited number of these are commonly accepted and used [22–
24]. In order to tackle the memory restrictions, we subdivide the image into a set of
sub-images as described in Sect. 3.2.

The denoising QIP here proposed consists of three steps, illustrated in Fig. 1. The
image is first encoded in the quantum environment, then it is processed by quantum
circuits to perform the denoising task, and finally the denoised image is measured to
convert it in a classical image format. The used measurement process is detailed in
Sect. 3.3.

3.1 Quantum image representation

A quantum image encoding is defined Quantum Image Representation (QIR). Unlike
classical image processing, where a set of well-known standard formats are available
and well-assessed, in QIP many encoding QIR techniques were proposed and tested
[14], but on the other hand none nowadays has distinguished itself as standard. The
most used QIR technique is the Novel Enhanced Quantum Representation (NEQR).

This kind of representation needs to encode the following image’s data:

• Pixel coordinates, encoded by qubits |XY 〉. An image of dimension DX ×
DY , usually needs to use dX = �log2 DX� qubits for horizontal coordi-
nates and dY = �log2 DY � qubits for vertical ones. In this way |XY 〉 =
|X0X1...Xdx−1Y0Y1...Ydy−1〉.

• Pixel value, encoded by one or more qubits |C〉. It uses q qubits for representing
Nq = 2q possible values in a binary encoding.
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Fig. 2 NEQR representation of an image: (left) the 2× 2 image; (right) NEQR circuit, encoding pixels 00,
01, 10, 11 (left to right). Figure on the left from [24]

Without loss of generality, we consider grayscale images I with a square 2n × 2n

domain and values in the range [0, 2q − 1]. In this way we consider |XY 〉 with 2n
qubits, where n = �log2 D�, and |C〉 using q = �log2 Nq� qubits to represent 2q

state of 2n + q qubits:

|I (n)〉 = 1

2n

2n−1∑

X=0

2n−1∑

Y=0

|CXY 〉 ⊗ |XY 〉, (12)

where

|CXY 〉 = |Cq−1
XY . . .C2

XYC
1
XYC

0
XY 〉 ∈ {0, 1, . . . , 2q − 1} (13)

and each |Ci
XY 〉 qubit is |0〉 or |1〉. A simple example of NEQR representation for a

2× 2 grayscale image is illustrated in Fig. 2(left), where each corner number denotes
pixel’s coordinates, while centered value indicates pixel’s intensity [24]. The quantum
wave function for this image in NEQR is hence the following:

|I 〉 = 1

2
(|C00〉 ⊗ |00〉 + |C01〉 ⊗ |01〉 + |C10〉 ⊗ |10〉|C11〉 ⊗ |11〉)

= 1

2
(|11110000〉 ⊗ |00〉 + |01000100〉 ⊗ |01〉

+ |10010100〉 ⊗ |10〉 + |01001001〉 ⊗ |11〉). (14)

This is obtained by putting the coordinate qubits |X〉 and |Y 〉 in a superposition
state using Hadamard gates, then entangle them with qubits |CXY 〉 using a series of
CNOT gates. The resulting NEQR circuit is illustrated in Fig. 2(right) for the image
in Fig. 2(left).

NEQR is a very versatile representation for image computation.However, it presents
some drawbacks. As pixels are encoded one by one, large images produce long NEQR
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Fig. 3 Image pre-processing: image (left), padded image (center) and extracted patches (right)

circuits; this means that circuit depth grows linearly with image size. As the image size
grows, the number of coordinate qubits become larger and the control qubits needed for
encoding quickly become more than two. A Toffoli gate with more than two control
qubits is defined Multiple CNOT gate, or just MCX: this operator is decomposed
before execution, using many Toffoli gates and some auxiliary qubits called ancilla.
From an efficiency point of view, more coordinate qubits means larger MCX to be
used, which leads to a larger amount of gates.

3.2 Image pre-processing

In order to reduce thememory usage, we split a pre-padded image (one-pixel bordered)
into many smaller overlapped patches, 4 × 4 sub-images. Once extracted, a patch of
pixels will be processed by the quantum TV algorithm. At the end of each iteration,
will be necessary to reassemble the resulting image from the output patches.

Figure 3 illustrates the image pre-processing procedure for a sample image: red
square frames original image, while green squares in patches highlight the processed
pixels.

In order to speed up quantum circuits generation, we have subdivided workload
using multi-threading: each thread is tasked to assemble a QTV for each image patch,
using pre-assembled circuits and generating remaining ones. This approach consider-
ably accelerated the execution process for what regards the generation phase.

3.3 Imagemeasurement

The image extraction from the QIR format is a not-trivial process and its performance
depends on the quantum representation used in the algorithm.

A quantum representation collects all image’s data in a single quantum state. Due
to the nature of this particular quantum state, the extraction is not a deterministic
process: for each measurement, one of the possible pixel coordinate-value association
is randomlyobtained as outcome from the collapseof the quantumstate. For a complete
recovery of an image, it is necessary to execute the same algorithm many times.

The image measurement is the last step in Fig. 1.
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Fig. 4 Quantum TV general scheme (left); a detail of the QTV sub-circuits (right)

4 Quantum TV filter

In this section we introduce the Quantum TV Filter, named QTV, a quantum imple-
mentation of the TV regularization algorithm described in Sect. 2 applied to qubits
involved in theNEQRquantum image representation. This work extends and improves
the work in [10] where the authors proposed a quantum solution for implementing a
simple median filter for image processing.

The proposed circuit processes an image input inNEQRrepresentation andprovides
a denoised image in output in the same NEQR form, according to the scheme in Fig.
4(left).

According to the TV algorithm presented in Sect. 2 we have to iterate a core process
for each pixel of the input image.Considering a four-pixel neighborhood configuration,
this process is composed by three steps defined as three different quantum operators
acting for each pixel:

1. NeighborhoodPreparation (NP): collect neighboring pixels and extract their values
uu, ud , ul , ur ;

2. P-values Computation (PC): compute weighted values p0, p1, p2, p3, p4;
3. Median Function (MF): extract median value from set {uu, ud , ul , ur , p0, p1, p2,

p3, p4}
Thequantumoperators are assembled into theQTVstructure illustrated inFig. 4(right).

In the following, we will describe in detail the three operands which characterize
the Quantum TV. Each one is composed of many sub-circuits, or modules.

4.1 Neighborhood preparation

This operand is in charge of extract neighboring pixels from NEQR representation.
At this aim, we used Cycle-Shift (CS) module to change a coordinate register’s value,
allowing us to shift an image up, down, left or right; see Appendix A for details.
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Fig. 5 Neighborhood Preparation module

Fig. 6 P-values computation
module

The structure of the NP operand, which output is a quantum superposition state of
the central f , up uu , down ud , left ul and right ur pixel values, is illustrated in Fig. 5.
Specifically, once obtained a pixel value from NEQR, we use CS to shift coordinate
values, then we re-apply NEQR to gather a new pixel value corresponding to the new
position data. With the exception of the first NEQR for image encoding, we avoid the
usage of H-gates applied to coordinate registers, as we want to extract a specific (and
not random) color outcome.

The output of the NP operand is a quantum state obtained starting from |ψ〉 =
|0〉⊗(q+2n+5q), which reads as

|ψNC 〉 = 1

2n

2n−1∑

X=0

2n−1∑

Y=0

|ul〉|uu〉|ur 〉|ud〉| f 〉|0〉|X〉|Y 〉 (15)

where each qubit in the |C〉 register is reset to the |0〉 state.
More in detail, following the scheme in Fig. 5, we have

NEQR · HXY |ψ〉 = 1
2n (

∑2n−1
X=0

∑2n−1
Y=0 | f 〉|X〉|Y 〉) ⊗ |0〉⊗5 = |ψ1〉

SWAP|ψ1〉 = 1
2n (

∑2n−1
X=0

∑2n−1
Y=0 | f 〉|0〉|X〉|Y 〉) ⊗ |0〉⊗4 = |ψ2〉

CSy+|ψ2〉 = 1
2n (

∑2n−1
X=0

∑2n−1
Y=0 | f 〉|0〉|X〉|Y + 1〉) ⊗ |0〉⊗4 = |ψ3〉
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NEQR|ψ3〉 = 1
2n (

∑2n−1
X=0

∑2n−1
Y=0 | f 〉|ud〉|X〉|Y + 1〉) ⊗ |0〉⊗4 = |ψ4〉

SWAP|ψ4〉 = 1
2n (

∑2n−1
X=0

∑2n−1
Y=0 |ud〉| f 〉|0〉|X〉|Y + 1〉) ⊗ |0〉⊗3 = |ψ5〉

CSy−CSx+|ψ4〉 = 1
2n (

∑2n−1
X=0

∑2n−1
Y=0 |ud〉| f 〉|0〉|X + 1〉|Y 〉) ⊗ |0〉⊗3 = |ψ6〉

NEQR|ψ6〉 = 1
2n (

∑2n−1
X=0

∑2n−1
Y=0 |ud〉| f 〉|ur 〉|X + 1〉|Y 〉) ⊗ |0〉⊗3 = |ψ7〉

SWAP|ψ7〉 = 1
2n (

∑2n−1
X=0

∑2n−1
Y=0 |ur 〉|ud〉| f 〉|0〉|X + 1〉|Y 〉) ⊗ |0〉⊗2 = |ψ8〉

CSy−CSx−|ψ8〉 = 1
2n (

∑2n−1
X=0

∑2n−1
Y=0 |ur 〉|ud〉| f 〉|0〉|X〉|Y − 1〉) ⊗ |0〉⊗2 = |ψ9〉

NEQR|ψ9〉 = 1
2n (

∑2n−1
X=0

∑2n−1
Y=0 |ur 〉|ud〉| f 〉|uu〉|X〉|Y − 1〉) ⊗ |0〉⊗2 = |ψ10〉

SWAP|ψ10〉 = 1
2n (

∑2n−1
X=0

∑2n−1
Y=0 |uu〉|ur 〉|ud〉| f 〉|0〉|X〉|Y − 1〉) ⊗ |0〉 = |ψ11〉

CSy+CSx−|ψ11〉 = 1
2n (

∑2n−1
X=0

∑2n−1
Y=0 |uu〉|ur 〉|ud〉| f 〉|0〉|X − 1〉|Y 〉) ⊗ |0〉 = |ψ12〉

NEQR|ψ12〉 = 1
2n (

∑2n−1
X=0

∑2n−1
Y=0 |uu〉|ur 〉|ud〉| f 〉|ul〉|X − 1〉|Y 〉) ⊗ |0〉 = |ψ13〉

SWAP|ψ13〉 = 1
2n

∑2n−1
X=0

∑2n−1
Y=0 |ul〉|uu〉|ur 〉|ud〉| f 〉|0〉|X − 1〉|Y 〉 = |ψ14〉

CSx+|ψ14〉 = 1
2n

∑2n−1
X=0

∑2n−1
Y=0 |ul〉|uu〉|ur 〉|ud〉| f 〉|0〉|X〉|Y 〉 = |ψNC 〉

4.2 P-values computation

Starting from the obtained neighborhood values, we compute the p-values according
to relations (10). This reduces to adding some constant values to f , the central pixel.

However the QTV algorithm only works in unsigned integer arithmetic, while
the TV algorithm works with floating point numbers, thus getting more accurate and
precise results. Therefore, instead of the p-values pi = f +Wi

2λ ,we force approximated
rounded values

pi = f + round(
Wi

2λ
). (16)

The p-values are then given by:

W0 = 4, p0 = f + round(2/λ)

W1 = 2, p1 = f + round(1/λ)

W2 = 0, p2 = f
W3 = −2, p3 = f − round(1/λ)

W4 = −4, p4 = f − round(2/λ).

(17)

The final design of the P-values Computation module is hence illustrated in Fig.
6, and it is composed by three sub-circuits for setting, adding and subtracting the
mentioned constants. In particular:

• SETTER module: assign the round to the nearest integer of a given value to a
register, which is used to encode our constants;

• ADDER module: add two values encoded in two quantum registers. We refer to
the Appendix A for more details;
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Fig. 7 The basic sorting strategy

Fig. 8 Median function module

• SUBTRACTORmodule: subtract two values by using an adder module, according
to α − β ⇒ α + β.

4.3 Median function

To determine a median from a set of values, we need to sort them. The sorting
strategy here adopted follows the proposal in [10] for a set of 9 sortable elements.
If we re-arrange these values in a matrix form, then we simply need to follow these
three steps in pipeline: sort each column, sort each row, and sort the right diagonal.
This will guarantee us to store the median value in the central quantum register. The
strategy is illustrated in Fig. 7.

The corresponding quantum circuit is shown in Fig. 8.
The Sort module is then the core of Median Function module. Sort module has to

order its three input registers. The total ordering of three elements is a trivial problem,
as it is reduced to compare two positive integer values and, if not ordered, swap them.A
sequence of three comparisons is necessary and sufficient to reach a correct ordering.
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Fig. 9 Sort module (left); Swapper module (right)

Noisy TV QTV

σ = 5 RMSE = 4.30 RMSE = 7.21

σ = 10 RMSE = 7.41 RMSE = 8.80

σ = 15 RMSE = 9.94 RMSE = 10.49

Fig. 10 Lena denoising results for AWGN

A Sort module is then a sequence of three sub-circuits, named Swapper (SWPR). A
Swapper module is in turn composed by two sub-circuits: a Comparator (COMP) and
a Controlled Swap (C-SWAP). Sort and Swapper modules are shown in Fig. 9.

The Comparator module evaluates two register values a, b and provides, on an
auxiliary qubit e, the result of the comparison a > b, as follows

if a ≤ b then e = |0〉 else e = |1〉. (18)
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Noisy TV QTV

σ = 5 RMSE = 3.86 RMSE = 5.99

σ = 10 RMSE = 6.87 RMSE = 8.14

σ = 15 RMSE = 9.24 RMSE = 10.98

Fig. 11 Cameraman denoising results for AWGN

This result will be next used to control a C-SWAP gate, so that if e = |1〉, then the
values a and b are swapped.

The Comparator module is described in Appendix A. The designed quantum circuit
for the Comparator module is more efficient with respect to other proposals. For
example, in case q = 8, this circuit uses less quantum elementary gates than other
existing methods: depth = 64 with respect to the Sort module applied in [10] which
has depth = 1.091.767.

5 Circuit complexity analysis

In order to estimate a quantum circuit efficiency, we have to look at its depth, that is
the longest path in it. The path length is always an integer number, representing the
number of gates it has to execute in that path. At this aim, we are going to analyze
each operand of Quantum TV to derive an approximate estimation of its depth.
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Noisy TV QTV

σ = 5 RMSE = 2.35 RMSE = 2.38

σ = 10 RMSE = 4.71 RMSE = 4.71

σ = 15 RMSE = 7.21 RMSE = 7.22

Fig. 12 QRCode denoising results for AWGN

Neighborhood Preparation is for sure the most demanding operand of all filtering
algorithm, because it usesmultiple instances of NEQR circuit, which length is variable
according to the number of pixel to encode. Considering a NEQR implementation
that commits the least amount of MCX gates and encodes N pixels, its depth grows
polynomially with N as follows,

NEQRdepth = N (4(2 log2
√
N − 1) + 8) ⇒ O(8N log2

√
N + 4N ).

Other modules involved are Swap and Cycle Shift. Swap depth depends on the
number q of color qubits, thus its depth is always equal to that value. Cycle Shift depth,
instead, depends on coordinate register size and it is equal to log2

√
N ·(log2

√
N −1).

Neighborhood preparation uses NEQR, SWAP and CS five times in a row. Hence
the NP module overall depth is polynomial in N and we can estimate the NP depth
as:

NPdepth = 5 · (8N log2
√
N + 4N + q + log2

√
N · log2

√
N − 1))
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Noisy TV QTV

ER = 5% RMSE = 11.72 RMSE = 11.95

ER = 10% RMSE = 13.05 RMSE = 13.28

ER = 30% RMSE = 20.22 RMSE = 20.71

Fig. 13 Lena denoising results for SPN

For what concerns the P-values Computation depth, the setting phase involves four
SETmodules,which however are applied simultaneously, so they count as a single one.
An Adder module depth instead is dependent on the q value. Full-Adder is composed
of q Half-Adder, with constant depth (considering also Reset gates); then it is followed
by 4q + 1 sequentially placed gates. Thus we have:

ADDdepth = 9q + 4q + 1 = 15q + 1

SUBdepth = ADDdepth + 2 = 15q + 3

From these results, we can derive the P-values Computation module total depth which
is polynomial in q:

PCdepth = 60q + 8 ⇒ O(poly(q))
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Noisy TV QTV

ER = 5% RMSE = 15.67 RMSE = 16.05

ER = 10% RMSE = 16.91 RMSE = 17.56

ER = 30% RMSE = 25.23 RMSE = 25.75

Fig. 14 Cameraman denoising results for SPN

To compute Median Filter depth, we just need to estimate SWPRmodule depth and
count its occurrences in the circuit. To do so, we add up Comparator and C-SWAP
depths.

Comparator’s depth depends on q, as for each color qubit it uses 6 gates. Although
Toffoli gate used in this module counts as three, as two additional X-gates need to be
added in order to work. This means that module depth is estimated as 8q. C-SWAP
depth is the same as SWAP. This means that Swapper’s total depth is estimated as
8q + q = 9q.

In Median Filter there are multiple occurrences of SWPR module, which can be
further reduced if row and column sorting are executed simultaneously:

MFdepth = 9 · 9q = 81q ⇒ O(poly(q)).

From this analysis we have derived that Quantum TV algorithm implements the
NP module with polynomial complexity in the number of pixels N . The PC and MF
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Noisy TV QTV

ER = 5% RMSE = 11.31 RMSE = 11.46

ER = 10% RMSE = 19.47 RMSE = 19.50

ER = 30% RMSE = 40.16 RMSE = 40.25

Fig. 15 QRCode denoising results for SPN

modules instead have a polynomial complexity in q = �log2 Nq�, i.e. the logarithm
of the number of colors, hence providing an exponential speedup.

6 Experimental results

In this section we evaluate the performance of the quantum TV algorithm (QTV)
on denoising grayscale images, and we present some preliminary results from the
comparison with the variational anisotropic TV in Algorithm 1.

The reference images used for the test have dimension 128 × 128 pixels and
grayscale values (8-bit color depth). The discrete model of the image degradation
process under noise corruptions can be written as:

f = N (ū) (19)
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where ū, f ∈ R
N represent vectorized forms of the unknown clean image and of

the observed corrupted image, respectively, whileN ( · ) denotes the noise corruption
operator, which in most cases is of random nature.

In this work we considered two important types of noise, namely the additive (zero-
mean) white Gaussian noise (AWGN) and the impulsive salt and pepper noise (SPN),
which models saturated or dead pixels.

Denoting by 	 := {1, . . . , N } the set of all pixel positions in the images, for these
two kinds of noise the general degradation model in (19) reads as

AWGN : SPN :
fi = ūi + ni ∀ i ∈ 	 ; fi =

{
ūi for i ∈ 	0 ⊆ 	

ni ∈ {Vmin, Vmax } for i ∈ 	1 := 	 \ 	0.

In case of SPN, only a subset 	1 of the pixels is corrupted by noise, whereas the
complementary subset 	0 is noise-free. In particular, the corrupted pixels can take
only the two possible extreme values Vmin/Vmax , where in our case assume 0 and
255 values, with the same probability. The amount of noise can be measured with an
error rate computed as follows:

ER% = number of corrupted pixels

number of pixels in image
× 100.

For what concerns AWGN, the additive corruptions ni ∈ G(σ, 0), i ∈ 	, represent
independent realizations from the same univariate Gaussian distribution with zero
mean and standard deviation σ .

The performance has been evaluated by the Root-Mean-Square Error (RMSE) met-
ric, defined as:

RMSE(ū, u) :=
√∑N

i=1(ūi − ui )2

N
,

where ū is the original reference image and u is the denoised output image. A lower
RMSE indicates a more precise reconstruction.

For the remaining part of this work, when you come across the terms classical/quan-
tum algorithm, we are referring to their respective implementation.

The selection of the regularization parameter λ, which exerts a crucial effect on
the solution, has been carried out, for each test, by running the TV algorithm for a
range of λ values in order to select by the trial-error strategy the optimal regularization
parameter. Then the estimated selected optimal λ has been used in the quantum TV
algorithm in order to compare the results of the two algorithms with the same optimal
parameter.

A fundamental concept we must keep in mind when analyzing the obtained results,
is that classical TV denoising uses floating point numbers, usually along with a value
normalization, to be as accurate as possible. This leads to a more precise outcome and
a finer quantization of the output image. On the other hand, our quantum computation
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uses integer numbers, so an approximation had to be applied (as previously described
in Sect. 4). This difference has an impact on the output images, which present coarser
improvements than the classical ones.

For testing purpose, we created an implementation of QuantumMedian Filter using
Qiskit, a Python library for quantum computing simulation [9, 15, 17]. The simulations
of the quantum algorithm has ran on the Galileo100 supercomputer (CINECA), with
the following cluster configuration:

• Nodes: 348 standard nodes
• Processors: 2xCPU x86 Intel Xeon Platinum 8276-8276L (2.4Ghz)
• Cores: 16704 (48 cores/node)
• RAM: 384GB

6.1 Example 1: AWGN denoising

We consider the problem of denoising the three test images lena, QR, cameraman,
corrupted only by AWG noise with standard deviation σ = {5, 10, 15}, as shown in
the first column of Figs. 10, 11, 12.

The denoised images obtained by applying TV and QTV algorithms are illustrated
in Figs. 10, 11, 12, column-wise for the three images. For each denoised image the
RMSE obtained value is reported below.

From a visual inspection the denoised images from TV and QTV present a compa-
rable quality, even if the RMSE highlights the lost in accuracy due to the mentioned
integer arithmetic representation followed by QTV.

Moreover, the quantum TV algorithm is able to denoise images corrupted by severe
Gaussian noise, as illustrated in the last row of Figs. 10, 11, and Fig. 12 for σ = 15.
Unlike, the quantum median filter proposed in [10], as any standard median filtering,
is not appropriate to remove this kind of noise. Themedian filter is instead well-known
to be an excellent image denoiser in case of salt-and-pepper noise because it does not
blur the image, as a mean filter would do. However, despite its name, the median filter
is not a filter because it does not respect the linearity property.

6.2 Example 2: SPN denoising

In this example we applied TV and QTV for the denoising of the three test images
lena, QR, cameraman, corrupted by SPN noise with error rate ER% = {5, 10, 30}.

The noisy images are shown in the first column of Figs.13, 14, 15, together with
the denoised images in the second (TV) and third (QTV) columns, along with the
associated RMSE values, reported in the bottom.

From these results, we can see how well quantum algorithm performs when
compared to its variational counterpart. QTV results present excellent qualitative per-
formance, with minimal RMSE differences.

However, by a visual inspection of the denoised images, we notice that, for both
the algorithms, some pixel clusters were not completely denoised. This can be due
to either to the limited pixel neighborhood considered (4 pixels), or to the L2-norm
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metric fidelity in our model (5), when it is well known that SPN can be better treated
by a L1-norm fidelity, which, anyway, leads to a non-differentiable fidelity term.

7 Conclusions and discussion

In this work a quantum approach is proposed for total variation denoising, and its
corresponding quantum circuit is designed. Specifically the quantum TV implements
the anisotropic median formula presented in [13]. The main idea of the approach is
that first the classical image is converted into a quantum version based on the quantum
representation (NEQR) of digital images, and then three quantummodules are applied
to realize the neighboring collection for each pixel in the image, weight calculation,
and median extraction. Finally, an image measurement process collapses the quantum
state into a resulting denoised image. From the complexity analysis in Section 5 we
derived a polynomial complexity in the number of pixels N for the NP module, and a
polynomial complexity in logarithm of the number of colors Nq = 2q for the PC and
MF modules.

The experimental results show that the quantum TV performance is comparable to
the classical variational TVapproach.However,we highlighted several issues that need
to be addressed to make the proposal a competitive QIP algorithm, as its variational
counterpart. For example theNeighborhood collectionmodule is an expensive operand
due to the NEQR image representation. Even though NEQR is still one of the most
used representation methods in QIP and the most suitable choice for this work, future
developments should definitely search for other QIR alternatives, or develop more
efficient versions of the same representation, such as parametric quantum circuits that
take advantage of data structure for improving image processing activities.
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Fig. 16 Quantum modules used in QTV
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Appendix A Quantum gates for QTV

In this appendix we illustrate a few modules composed of basic quantum gates used
in the design of QTV algorithm.

We used classical logic for designing a quantum version of a Half-Adder (HA)
and a Full-Adder (FA), as illustrated in Fig. 16a, b. These sub-circuits need three
additional auxiliary qubits, for storing temporary results needed for summing. FA
does not provide a minimum/maximum cap over result: to solve this, we can use the
temporary result stored in auxiliary qubits to manually fix the output to the correct
value, as illustrated in Fig. 16c.

The Comparator module is illustrated in Fig. 16d. This module uses a very small
amount of elementary gates and a reduced number of auxiliary qubits: if Reset option
(RES) is not available, only q ancillas are needed for Comparator to work.

A Cycle Shift module (CS) is essentially a modulo-2 adder or subtractor, defined
as CS+ and CS− respectively. CS module implementation is illustrated in Fig. 16e.
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