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Fig. 1. A scene in the Booster dataset. We collect images in a variety of indoor environments featuring challenging objects such as the

mirror shown in (a). We provide dense ground-truth disparities (b) and segmentation masks that identify the most challenging materials (c).

As state-of-the-art deep stereo networks [25] struggle on these scenes (d), our benchmark highlights the open challenges in deep stereo.

Abstract

We present a novel high-resolution and challenging

stereo dataset framing indoor scenes annotated with dense

and accurate ground-truth disparities. Peculiar to our

dataset is the presence of several specular and transparent

surfaces, i.e. the main causes of failures for state-of-the-

art stereo networks. Our acquisition pipeline leverages a

novel deep space-time stereo framework which allows for

easy and accurate labeling with sub-pixel precision. We re-

lease a total of 419 samples collected in 64 different scenes

and annotated with dense ground-truth disparities. Each

sample include a high-resolution pair (12 Mpx) as well as

an unbalanced pair (Left: 12 Mpx, Right: 1.1 Mpx). Addi-

tionally, we provide manually annotated material segmenta-

tion masks and 15K unlabeled samples. We evaluate state-

of-the-art deep networks based on our dataset, highlighting

their limitations in addressing the open challenges in stereo

and drawing hints for future research.

1. Introduction

Depth estimation from images has long been deemed a

favourable alternative compared to expensive and intrusive

active sensors. Among several image-based approaches,

stereo vision [32,36] is arguably the most popular and heav-

ily researched technique. In the years, huge progresses have

∗ Joint first authorship.

been made in this field, also thanks to the availability of

challenging stereo benchmarks [15, 29, 34, 38] where the

community competes for the higher ranks. Moreover, the

abundance of stereo images paved the way for deep learning

to succeed also in this field [22,28,54]. Indeed, by browsing

the most popular benchmarks, one can notice how nowa-

days all the top-ranking proposals consist in end-to-end

deep networks that can reach sub-pixel precision in most

cases. Just to name a few, KITTI 2012 and 2015 [15, 29]

or ETH3D [38] seem solved, with top entries achieving av-

erage error rates near to 1%. Should this evidence suggest

that, thanks to deep learning, stereo vision is a solved prob-

lem? As shown in Fig. 1, we believe that this is definitely

not the case and, rather, it is time for the community to fo-

cus on the open-challenges left unsolved in the field. In

particular, we identify two of such challenges, namely i)

non-Lambertian surfaces and ii) high-resolution images.

As for non-Lambertian reflectivity, a variety of materials

and surfaces still represent a hard challenge to most com-

puter vision methodologies and to deep stereo alike. Specif-

ically, matching pixels dealing with transparent or specular

surfaces is extremely difficult and may consist in an inher-

ently ill-posed problem in many cases. Yet, we reckon that

objects with such properties are almost absent or unlabeled

in most stereo benchmarks, except for KITTI 2015, where

cars have been replaced with CAD models providing super-

vision on some specular/transparent surfaces on cars. As re-

ported in the KITTI 2015 online benchmark, deep learning

has the potential to tackle this challenge as well, if properly
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annotated samples are available.

Concerning the second challenge, when considering

higher-resolution images, for instance in the Middlebury

2014 benchmark [34], we can notice in general higher er-

rors. These are caused by the much larger image dimensions

(and thus disparity range) and, consequently, by a larger

number of occluded and untextured pixels in the images

framed in this dataset. Besides, processing images at high

resolution sets forth computational complexity issues, in

particular when deploying deep networks. Indeed, most of

the entries in the Middlebury benchmark can only process

input images downsampled to half or quarter of the orig-

inal 6 Mpx resolution. Moreover, an additional challenge

emerges due the peculiar camera setup featured by modern

smartphones, typically equipped with both a high resolution

and a much lower resolution image sensors. In such a set-

ting, one may wish to recover a high resolution depth map

despite the different resolution of the input pair, i.e., solve

an unbalanced stereo problem. However, such a research

direction has been only barely explored so far [1, 26].

To this aim, in this paper we present a novel high-

resolution challenging stereo benchmark. Each image in

our dataset, collected in indoor environments, features a set

of objects and surfaces that are either specular or transpar-

ent, as well as very large untextured regions. To accurately

annotate each collected sample, we implement a novel deep

space-time stereo pipeline [10] which combines disparity

estimates computed from multiple static images – up to 100

– acquired under a variety of texture patterns projected onto

the scene from different directions and after having care-

fully painted all non-Lambertian surfaces. Peculiar to our

pipeline is the use of a state-of-the-art, pretrained deep net-

work [25] to compute the individual disparity maps accu-

mulation through time within the space-time framework.

Furthermore, a final careful manual cleaning is carried out

to remove outliers/artefacts and ensure high-quality dispar-

ity labels. We point out that for some non-Lambertian sur-

faces it might be possible to provide multiple depth ground-

truths: for instance, for transparent surfaces we might pro-

vide both depths for the surface itself and the objects seen

through the surface. Yet, in our dataset we provide depth

labels for the closest surfaces only, thereby enabling evalua-

tion and training of stereo methods designed to return a sin-

gle depth prediction per pixel. As such, our dataset mainly

addresses scenarios dealing with autonomous driving, ob-

stacle avoidance and robotic manipulation, while being less

amenable to applications such as AR and novel view syn-

thesis. The main contributions of our paper are:

• We propose a novel dataset consisting of both high-

resolution as well as unbalanced stereo pairs featuring a

large collection of labeled non-Lambertian objects. In par-

ticular, we have acquired a total of 64 scenes under dif-

ferent illuminations, yielding 419 balanced stereo pairs at

12 Mpx and 419 unbalanced pairs, each consisting in a 12

Mpx and 1.1 Mpx image. The latter setup provides the first-

ever dataset for unbalanced stereo matching, as prior work

is limited to simulation experiments [1, 26]. In both setups,

samples are annotated with dense ground-truth disparities

and grouped into 228 training images and 191 test images –

for which ground-truth is withheld.

• Data annotation is performed in a semi-automatic

manner based on a novel deep space-time stereo frame-

work, which enables to deploy modern stereo networks [25]

within the well-known space-time stereo framework [10].

• Alongside with ground-truth disparities, we provide

manually annotated segmentation maps that identify and

rank the hard-to-match materials based on specularity and

transparency. This is conducive to focus on the open-

challenges addressed in this paper when analyzing the be-

haviour of state-of-the-art networks. Moreover, we provide

an additional set of 15K raw pairs, both in balanced and un-

balanced settings, to encourage the development of weakly-

supervised solutions to the open challenges in stereo.

• We evaluate the prominent state-of-the-art stereo net-

works [5, 9, 49, 55], as trained by their authors, on the test

split of our dataset. The experimental findings highlight the

open-challenges that need to be faced by the stereo commu-

nity and provide hints on possible future research directions.

Our Benchmark on open-challenges in stereo (Booster)

is available at https://cvlab-unibo.github.io/

booster-web/.

2. Related Work

We briefly review the literature relevant to our work.

Traditional and Deep Stereo. For years, most algo-

rithms have been developed following a common pipeline

sketched in [36], starting with matching cost computation

and successive optimization strategies. Among the vast lit-

erature on traditional algorithms [11, 12, 20, 52, 53], Semi-

Global Matching (SGM) [18] is by far the most popular.

With the advent of deep learning, the first research efforts

focused on formulating the individual steps of the con-

ventional pipeline [36] as learnable neural networks, e.g.

matching cost computation [8,27,54], optimization [40,41]

and refinement [1, 3, 17]. Then, end-to-end deep stereo net-

works rapidly gained the main stage [22, 28, 30], thanks

to the top-positions achieved on the KITTI 2012 [15] and

2015 [29] benchmarks.

This research direction produced a large variety of deep

stereo architectures [5, 9, 13, 24, 43, 46, 49, 51, 55], as sur-

veyed in [32], as well as investigations on self-supervised

learning strategies [2, 23, 31, 44, 45, 48, 57], zero-shot gen-

eralization across datasets [1, 4, 56] and, more recently, un-

balanced stereo setups [1, 26].

Stereo benchmarks. Among the factors behind the in-

tensive research on stereo vision, the increasing availability
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Figure 2. Dataset acquisition overview. Our dataset acquisition procedure can be divided into 3 main parts. Left (blue): initial calibration

of our trinocular rig and the two stereo systems L− C and L−R. Middle (yellow): image acquisition without ground-truth. Right (red):

acquisition with ground-truth.

L C R

Figure 3. Cameras setup and acquisition stages. On left, we

show our camera rig, in which L and R are two 12 Mpx cameras,

and C is a wide-angle 2.3 Mpx camera. On right: i) acquisition of

passive stereo pairs, ii) painting of reflective/transparent surfaces,

iii) acquisition of textured stereo pairs.

of datasets and benchmarks plays a crucial role. For the

first decades, the dataset were limited to few dozen sam-

ples, acquired in controlled environments and mostly made

available by the Middlebury benchmark [19, 35–37]. In the

‘10s, more and more stereo datasets appeared, starting with

KITTI 2012 [16] and 2015 [29], collected in driving en-

vironments and annotated by means of a Velodyne LiDAR

sensor, then Middlebury 2014 [34], framing indoor environ-

ments at up to 6 Mpx and annotated through pattern projec-

tion, and ETH3D [39] which includes both indoor and out-

door scenes. Recently, other large-scale stereo benchmarks

dealing with driving scenarios have been released, although

not yet well-established as KITTI. Among them, we men-

tion DrivingStereo [50], Argoverse [6], Apolloscape [21]

and DSEC [14]. However, none of these more recent stereo

datasets focus on the hardest open challenges for stereo

matching as, instead, it is the case of our Booster dataset.

Indeed, architectures ranking on top of KITTI perform re-

markably well also on the above datasets. On the contrary,

we show that state-of-the-art networks struggle on Booster.

3. Processing pipeline

Camera setup and calibration. To collect our dataset,

we have built a custom stereo rig made of 2 high resolu-

tion cameras featuring a Sony IMX253LQR-C 12.4 Mpx

sensor and a lower resolution camera equipped with a Sony

IMX174LQJ-C 2.3 Mpx sensor mounted between the for-

mer two, as shown in Fig. 3 (left picture). From left to right

we denote as L, C, and R the three cameras, with L pro-

viding the reference image for both the balanced (L,R) and

unbalanced (L,C) stereo pairs, and the baselines of these

two setups being ∼ 8 and 4 centimeters, respectively.

Before acquiring the dataset, we need to calibrate our rig,

in particular the two stereo systems L−C and L−R. Fig.

2 includes an overview of the calibration procedure, with a

more detailed description provided in the supplement.

Image acquisition. Our trinocular rig has been em-

bodied into a portable setup in order to acquire a variety

of scenes across different environments. In addition, our

setup includes six portable projectors used to enrich the

scene with random textures during the acquisition of the

stereo pairs endowed with ground-truth (red block of Fig.

2). For each ground-truth acquisition, before starting, we

properly setup the stage in order to capture one or more ob-

jects/surfaces embodying some of the open-challenges pe-

culiarly addressed by our dataset. Then, the image acqui-

sition pipeline follows three main steps, visually resumed

in Fig. 3 (right pictures): i) passive images acquisition –

we collect a set of balanced and unbalances stereo images

under different lightning conditions. ii) scene painting – we

carefully cover any specular/transparent surface in the scene

with paint, thus allowing to properly project texture over

them. iii) textured images acquisition – we project random

patterns from multiple directions and acquire a hundred im-

ages with varying textures. Differently from the white-

black banded patterns often used for this purpose [10], we

project color textures since we exploit state-of-the-art deep

stereo networks to label the scene. We empirically observed

that color patterns result more distinctive for a deep stereo

network, that is used to process bright colors typical of the

synthetic datasets [28] where they have been trained. The

outcome of this procedure consists of a set of passive stereo

pairs – both unbalanced and at high-resolution – with dif-

ferent illumination conditions, representing the actual im-

ages that will be released with the dataset, and a larger set

of textured images – these latter used to produce ground-

truth disparities only, as detailed in the next paragraph, and

thus acquired at high-resolution only in order to produce the

finest annotations.
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Deep space-time stereo processing. Once a set of mul-

tiple high-resolution stereo pairs – augmented with distinc-

tive colorful textures according to the aforementioned strat-

egy – has been acquired for a scene, we deploy our deep

space-time stereo pipeline to infer a dense and accurate dis-

parity map for the passive pair. Purposely, we leverage a

pre-trained deep stereo network achieving high zero-shot

generalization accuracy. We expect that, in the presence

of the distinctive colorful texture we project in the scene as

described before, the deep network can correctly infer a re-

liable disparity map. Moreover, we exploit the availability

of multiple stereo pairs to further improve the outcome.

Driven by the observation that most stereo networks pro-

cess a cost-volume, we accumulate all the cost volumes

computed from each textured single stereo pair into an ag-

gregated one. The resulting volume will reduce the effect

of noise due to portions of the scene that may turn out not

properly textured in a single acquisition. Purposely, we se-

lect RAFT-Stereo [25], as the top-1 method on the Middle-

bury 2014 stereo benchmark at the time of writing. Specifi-

cally, it uses the dot product as a measure of visual similar-

ity between features f and g extracted respectively from the

reference and target images. Thus, RAFT-Stereo computes

a correlation volume storing the inner product between any

pixel features in the reference image and all those at the

same y-coordinate on the target image:

Cijk =
∑

h

fijk · gikh, C ∈ R
H×W×W (1)

Then, the network recursively estimate a disparity map di

by means of a correlation look-up mechanism, implemented

as a recurrent neural network Θ processing reference image

features f , some additional context features c, the correla-

tion volume C and the disparity di−1 estimated at the pre-

vious iteration

di = Θ(f , c,di−1,C) (2)

until a final disparity map d is estimated after a fixed

number of iterations. We exploit the availability of T stereo

pairs and build an accumulated correlation volume C∗ by

averaging the correlation volumes computed from f t and gt

extracted from a single stereo pair t

C∗

ijk =
1

T

∑

t

∑

h

f tijk · gt
ikh, C ∈ R

H×W×W (3)

Then, we exploit this enriched volume to estimate a set of

disparity maps from any given stereo pair

dt
i = Θ(f t, ct,dt

i−1
,C∗) (4)

Once the disparity maps dt have been estimated, we finally

compute their average to obtain an initial, ground-truth dis-

parity map d∗ as well as an uncertainty guess u∗ through

their variance. The pipeline sketched so far is effective at es-

timating accurate ground-truths up to half the resolution of

our textured images, i.e. about 6 Mpx, since RAFT-Stereo

has never observed samples at such higher resolution and

with such higher disparity range. Thus, the outcome of our

deep space-time stereo pipeline is a set of accurate disparity

maps which yet require additional processing.

Super-resolution and sharpening. The quality of the

disparity labels produced so far is dampened by two main

causes, i) the resolution, being half of the real image reso-

lution and ii) the presence of over-smoothed depth discon-

tinuities, a common concern in disparity maps predicted by

deep networks [7, 47]. To address both at once, we deploy

the neural disparity refinement architecture proposed in [1].

However, being our images at a much higher-resolution

compared to existing datasets, we pretrain the refinement

network following [1], then we overfit a single instance of

it on each scene, assuming the disparity map as both input

and ground-truth. This strategy allows us to preserve ac-

curate disparity values at high-resolution while sharpening

depth boundaries thanks to the network output formulation.

Besides, we replaced the sub-pixel prediction mecha-

nism described in [1] with the SMD head proposed by Tosi

et al. [47], since we empirically observed that the former

introduces undesired artefacts in our setting. Thus, each

neural disparity refinement network is optimized to infer a

bimodal Laplacian distribution

p(d) =
π

2b1

e
−

d
∗
−µ1

b1 +
1− π

2b2

e
−

d
∗
−µ2

b2 (5)

Once the network is trained, a sharpened disparity map d∗

is obtained at full resolution by exploiting the continuous

representation enabled by the refinement network, selecting

the mode with highest density value. Concerning the im-

plementation, a shared refinement network is pre-trained on

SceneFlow following the guidelines in [1]. Then, a single

instance is overfitted on each scene for about 300 steps be-

fore inferring the refined disparity map.

Manual cleaning and filtering. Once a full-resolution

disparity map has been obtained, we manually clean it from

any remaining artefact. To this aim, we project it into a 3D

point cloud to better visualize structural errors in the geom-

etry of the scene. We use the variance map u∗ as a guidance

during this operation, allowing to easily detect most of the

artifacts. Points removed from the point cloud are then fil-

tered out from the disparity map as well. Finally, we apply

a 35 × 35 bilateral filter – with σcolor = 5 and σdist = 50 –

to smooth objects surfaces and obtain the final map d∗.

Fig. 4 illustrates the pipeline described so far, showing

the increasing quality of 3D reconstruction yielded by our
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RGB & Mask Raft Passive Raft Spacetime SR & Sharpening Manual Filtering

Figure 4. Data annotation pipeline. From left to right: reference image (top) and material segmentation mask (bottom), disparity maps

(top) and point clouds (bottom) obtained by RAFT-Stereo on the passive pairs, by our deep space-time stereo algorithm, by the super

resolution & sharpening procedure, and after manual cleaning.

annotations after each step.

Accuracy assessment. We follow the strategy used by

Scharstein et al. [34] in the Middlebury 2014 dataset to

measure the accuracy of our ground-truth annotations. Ac-

cordingly, we manually select planar regions from the im-

ages and fit a plane to the recovered disparities over each

of them, then we measure the residuals between the fit-

ted plane equation and the actual disparities. We perform

this evaluation over 153 planar regions achieving an aver-

age residual error of 0.053, which turns out comparable to

that reported for the Middlebury 2014 dataset (0.032), yet

without applying an explicit sub-pixel refinement based on

plane fitting.

Left-right consistency (balanced setup). We also filter

out occluded pixels by performing a left-right consistency

check. Purposely, the processing pipeline described so far

is performed twice for each scene, producing two disparity

maps, d∗

L and d∗

R, for the left and right images, respectively.

Then, any pixel at coordinates (x, y) in d∗

L is filtered out in

case the absolute difference with its match x − dL(x, y), y
in d∗

R is larger than a threshold, set to 2 pixels in our case

|dL(x, y)− dR(x− dL(x, y), y)| > 2 (6)

The same procedure is performed on top of d∗

R, removing

any pixel at coordinate (x, y) after comparison with pixel

(x+ d∗

R(x, y), y) on the left disparity map.

The output of our overall annotation pipeline consists of

three high-resolution ground-truth disparity maps per scene:

two for the left and right images of the balanced setup, one

for the unbalanced setup.

Segmentation masks. Finally, we manually label im-

ages to annotate challenging surfaces, i.e. transparent or

specular, with segmentation masks. We cluster object sur-

faces into 4 classes (from 0 to 3) with increasing level

of transparency and/or specularity, with class 0 identifying

very opaque materials (e.g., a wood table) and class 3 those

highly transparent/specular (e.g., window glasses/mirrors).

An example of segmentation mask is shown in Fig. 4.

Warping (unbalanced setup). The ground-truths ob-

Balanced Setup Unbalanced Setup Illuminations

Figure 5. A scene from the Booster testing split. First two

columns: data made available in the balanced setup (12 Mpx stereo

pair, material segmentation mask, left and right disparity maps and

left-right consistency mask). Third column: data dealing with the

unbalanced setup (12 Mpx - 1.1 Mpx image pair, high-res disparity

map associated with the 12 Mpx image ). Last columns: additional

12 Mpx images acquired under different illuminations.

tained so far are aligned with images of L − R. However,

we want ground-truths also for the unbalanced L−C stereo

system. Being the rectification transformation an homog-

raphy (i.e., only a change of intrinsic parameters and a ro-

tation), we can easily perform a backward warping of the

ground-truths of the left images of L − R to align them to

the left images of L − C. When warping disparity maps,

we take into account the rotation of the camera reference

frame and the different baselines of the two stereo systems

before performing the warping. Additional details about the

warping procedure can be found in the supplement.

4. The Booster Dataset

Composition. To build up the dataset, we set the stage

in 64 different indoor scenes. Then, we collected a variety

of passive stereo images under different illumination con-

ditions, leading to a total of 419 stereo samples for which

we obtain dense annotations through the pipeline detailed in

Sec. 3. We split the 64 scenes into 38 and 26 for training and

testing purposes, respectively. As a result, Booster counts
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228 training images and 191 testing images. In defining the

split we aimed at having diversity of environments between

the training and test scenes as well as at achieving a bal-

anced distribution of challenging objects and materials (e.g.,

both splits contain a scene framing a mirror). Two main

benchmarks are defined in Booster: the Balanced bench-

mark, including 419 stereo pairs at 12 Mpx, and the Unbal-

anced one, featuring equally many 12 Mpx - 1.1 Mpx pairs.

The latter represents the first-ever real dataset for unbal-

anced stereo matching, a task studied so far only by simulat-

ing the unbalanced setup by resizing one of the two images

of a balanced pair same-resolution stereo images [1, 26].

More details regarding dataset images are reported in the

supplement. Fig. 5 concerns a sample from the testing split

and shows the data made available for any acquired scene.

Unlabeled samples. To encourage research on weakly-

supervised approaches, i.e. not requiring ground-truth la-

bels at training time, we release 15K additional samples

collected –in both balanced and unbalanced settings – in

a variety of indoor and outdoor environments.

Evaluation metrics. To assess the accuracy of stereo

algorithms and networks, we adopt a set of metrics in-

spired by Middlebury 2014 [34]. Specifically, we compute

the amount of pixels having error larger than a threshold τ

(bad-τ ). As initially our ground-truth maps are inferred at

half the input resolution, we assume 2 pixels as the lowest

threshold. Then, given the much higher resolution of our

images, we compute error rates up to bad-8. We also mea-

sure Mean Absolute Error (MAE) and Root Mean Squared

Error (RMSE). All metrics are computed on any valid pixel

(All), or in alternative, on pixels belonging to the material

class i (Class i) to evaluate the impact of non-Lambertian

objects. In the case of the balanced setup, we also evaluate

on not-occluded pixels identified by the left-right check of

our annotation pipeline (e.g., the bottom image in the third

column of Fig. 5).

5. Experiments

5.1. Balanced Stereo Benchmark

We start by considering the Balanced split of Booster and

perform a set of different experiments.

Off-the-shelf deep networks. We run a set of off-the-

shelf, state-of-the-art deep stereo networks on the test set

of Booster in order to assess their accuracy. We select

networks with freely available implementations and pre-

trained weights providing good performance on the Middle-

bury 2014 dataset, i.e. the most challenging among existing

benchmarks. This constraint limits our selection to HSM-

Net [49] LEAStereo [9], CFNet [42], RAFT-Stereo [25]

and Neural Disparity Refinement [1]. We also evaluate,

as references, the popular Semi-Global Matching algorithm

(SGM) [18] and the pivotal MC-CNN network [54] in its

fast variant because of memory constraints.

Tab. 1 collects the outcome of this evaluation. In the

top portion of the table, we compare the predicted disparity

maps with full-resolution ground-truths, on All (left) and

Cons (right) pixels, the latter being the pixels of the left im-

age that turn out consistent upon performing the left-right

check and, as such, are considered as not-occluded. Each

method processes input images either at the original resolu-

tion (F) or scaled to half (H) or quarter (Q) resolution. Deep

networks inferences are performed on a single 3090 RTX

GPU. We can notice how most methods can run only at Q

resolution, mainly because of memory constraints. Conse-

quently, their output is upsampled with nearest-neighbor in-

terpolation in order to perform the comparison with the full-

resolution ground-truth maps, with disparities scaled by the

upsampling factor itself. We can notice how all methods

struggle at achieving good results at such high resolution,

with RAFT-Stereo achieving the best results – not surpris-

ingly, perhaps, given its top-rank on Middlebury. Error met-

rics computed on All and Cons pixels yield similar scores,

proving that occlusions do not represent the main difficul-

ties in our benchmark. In the bottom portion of Tab. 1, pre-

dicted disparities are compared with ground-truth disparity

maps downsampled to a quarter (Q) of the original resolu-

tion. Although the error metrics are much lower in general,

we point out how they are still very far from those observed

on existing benchmarks [15,29,34,38], confirming that res-

olution is certainly a challenge in our benchmark, yet not

the only one – due to the large presence of transparent and

specular surfaces framed during acquisition.

Evaluation on challenging regions. We dig deeper into

the unique features of Booster by evaluating the accuracy

of the predicted disparities in regions of increasing level of

difficulty, as defined by means of the material segmentation

masks. Purposely, we select the top-performing network

from the previous evaluation, i.e. RAFT-Stereo, and evalu-

ate it on subsets of pixels defined by our manually annotated

masks. Tab. 2 collects the outcome of this evaluation, to-

gether with results on all valid pixels as a reference. Starting

from the least challenging category, we observe much lower

error scores – in particular, by evaluating on quarter resolu-

tion ground-truths (bottom), we achieve results comparable

with those of existing benchmarks [34]. By gradually in-

creasing the degree of difficulty of the considered pixels,

we witness a large increase of the errors. This confirms both

our claims on the open-challenges in deep stereo as well as

the significance of our segmentation masks.

Fine-tuning by the Booster training data. Finally, we

fine-tune RAFT-Stereo on the Booster training set to show

that the availability of annotated scenes can be effective in

improving the result in presence of the open challenges ad-

dressed in this paper. We run 100 epochs on batches of two

884×456 crops, extracted from images randomly resized to
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F
u

ll
re

s.

Input

Model Res.

SGM [18] Q

MC-CNN [54] Q

LEAStereo [9] Q

CFNet [42] Q

HSMNet [49] Q

RAFT-Stereo [25] Q

SGM [18] H

HSMNet [49] H

SGM+Neural Ref. [1] H

RAFT-Stereo [25] H

HSMNet [49] F

All pixels

bad-2 bad-4 bad-6 bad-8 MAE RMSE

(%) (%) (%) (%) (px.) (px.)

80.35 66.89 58.09 52.21 57.01 119.21

88.09 66.30 47.77 40.53 31.23 62.98

70.86 55.41 47.56 42.25 27.61 51.72

61.34 48.33 42.22 38.34 27.60 51.62

66.95 48.05 37.46 31.14 20.97 42.72

40.27 27.54 22.83 20.13 17.08 36.30

76.61 64.72 58.34 54.37 71.68 133.35

53.75 36.47 28.71 24.50 19.17 42.00

78.54 63.20 53.77 46.87 31.82 67.02

46.31 35.49 30.98 28.15 23.95 49.94

50.85 36.53 30.77 27.56 30.82 68.97

Cons pixels

bad-2 bad-4 bad-6 bad-8 MAE RMSE

(%) (%) (%) (%) (px.) (px.)

78.40 63.70 54.13 47.79 41.28 91.86

87.64 64.20 44.24 36.70 27.56 57.34

69.15 53.17 45.42 40.24 26.36 49.52

59.13 46.02 40.08 36.36 25.72 48.55

65.23 45.86 35.36 29.31 20.93 42.42

38.65 26.49 22.25 19.84 17.13 35.76

74.18 61.17 54.25 49.99 55.25 106.55

51.25 34.06 26.78 23.01 18.92 41.28

78.35 60.59 49.59 42.50 30.92 68.37

44.02 33.59 29.49 26.95 23.25 48.11

48.11 33.88 28.50 25.61 30.02 66.79

Q
u

ar
te

r
re

s.

Input

Model Res.

SGM [18] Q

MC-CNN [54] Q

LEAStereo [9] Q

CFNet [42] Q

HSMNet [49] Q

RAFT-Stereo [25] Q

All pixels

bad-2 bad-4 bad-6 bad-8 MAE RMSE

(%) (%) (%) (%) (px.) (px.)

52.76 39.43 33.11 29.26 14.64 30.68

40.33 30.36 25.64 22.25 7.82 15.85

42.21 30.23 24.37 20.43 6.89 12.92

38.31 29.53 24.70 21.34 6.89 12.89

31.11 20.25 15.92 13.23 5.24 10.67

20.13 15.13 12.85 11.05 4.27 9.05

Cons pixels

bad-2 bad-4 bad-6 bad-8 MAE RMSE

(%) (%) (%) (%) (px.) (px.)

48.42 34.18 27.58 23.63 10.75 24.05

36.50 26.50 21.84 18.79 6.90 14.43

40.19 28.68 23.21 19.50 6.58 12.36

36.32 27.85 23.24 20.05 6.42 12.11

29.25 19.47 15.70 13.23 5.22 10.59

19.82 15.19 12.98 11.17 4.28 8.91

Table 1. Results on the Booster Balanced testing split. We run off-the-shelves stereo networks, using weights provided by their authors.

We evaluate on full resolution ground-truth maps, or by downsampling them to quarter resolution. Best scores in bold.

F
u
ll

re
s.

Category

All

Class 0

Class 1

Class 2

Class 3

All pixels

bad-2 bad-4 bad-6 bad-8 MAE RMSE

(%) (%) (%) (%) (px.) (px.)

40.27 27.54 22.83 20.13 17.08 36.30

32.81 16.67 11.11 7.92 3.72 9.38

42.95 27.47 21.60 18.21 10.20 19.96

73.59 60.69 51.03 44.51 36.67 47.44

81.54 71.93 65.22 59.62 47.73 59.38

Q
u
ar

te
r

re
s.

Category

All

Class 0

Class 1

Class 2

Class 3

All pixels

bad-2 bad-4 bad-6 bad-8 MAE RMSE

(%) (%) (%) (%) (px.) (px.)

20.13 15.13 12.85 11.05 4.27 9.05

7.97 3.72 2.33 1.82 0.93 2.28

18.22 11.22 7.84 6.68 2.55 4.97

44.47 32.14 27.92 25.43 9.17 11.88

59.65 43.99 34.97 28.51 11.92 14.82

Table 2. Results on the Booster Balanced testing split – ma-

terial segmentation. We run RAFT-Stereo [25], using weights

made available by their authors and process quarter resolution im-

ages. We evaluate on full resolution ground-truth maps, or by

downsampling them to quarter resolution.

half or quarter of the original resolution, using the optimiza-

tion procedure from [25] and initial learning rate set to 1e-5.

Tab. 3 collects the results on All pixels, as well as on

each segmentation class. Compared to the results in Tab. 2,

all error metrics tend to improve. More specifically, we can

notice how the metrics do improve significantly for the most

challenging materials, at the cost of a minimal decrease

in accuracy within the simpler regions (Class 0). Overall

we reckon that, although our experiments show that avail-

ability of annotated data can help to better handle specu-

lar/transparent objects by deep stereo networks, the accu-

racy level turns out still much worse compared to opaque

surfaces. Hence, we observe that these kinds of materials

set forth really hard open challenges in stereo which, hope-

fully, may be addressed in future research thanks also to the

availability of the annotated data provided by Booster.

In Fig. 6 we provide some qualitative results dealing

with the predictions obtained by the networks evaluated in

Tab. 1 as well as, in the rightmost column, by RAFT-Stereo

F
u
ll

re
s.

Category

All

Class 0

Class 1

Class 2

Class 3

All pixels

bad-2 bad-4 bad-6 bad-8 MAE RMSE

(%) (%) (%) (%) (px.) (px.)

38.68 23.33 17.66 14.55 7.56 17.39

37.50 20.47 13.75 10.40 4.43 10.07

42.48 23.35 16.15 12.22 5.24 12.05

61.84 42.37 33.23 27.37 13.08 18.08

65.59 48.74 39.19 32.93 14.91 21.75

Q
u
ar

te
r

re
s.

Category

All

Class 0

Class 1

Class 2

Class 3

All pixels

bad-2 bad-4 bad-6 bad-8 MAE RMSE

(%) (%) (%) (%) (px.) (px.)

14.46 9.47 7.32 5.76 1.87 4.23

10.29 4.61 2.76 2.00 1.08 2.33

12.09 6.35 4.62 3.58 1.28 2.82

27.22 16.83 13.06 10.65 3.25 4.42

32.91 21.08 15.36 10.46 3.70 5.32

Table 3. Results on the Booster Balanced testing split after fine

tuning on the training split – material segmentation. We run

RAFT-Stereo, fine-tuned on the Booster training split, processing

quarter resolution images. We evaluate on full resolution ground-

truth maps, or by downsampling them to quarter resolution.

after fine-tuning on the Booster training set (Tab. 3). After

fine-tuning on the Booster training split, RAFT-Stereo has

learned to handle transparent objects much better.

5.2. Unbalanced Stereo Benchmark

Here, we evaluate the considered stereo methods on the

Booster Unbalanced testing split. Tab. 4 collects the out-

come of this experiment. For most methods, we follow the

baseline approach defined in [1] and downsample the ref-

erence high-resolution image to the same resolution as the

second image. Yet, as HSMNet is designed to handle high-

resolution stereo pairs, for this network we upsample the

target up to the reference image size. We point out that

these results are not directly comparable to those in Tab. 1,

since the baseline length (and thus disparity values) in this

setup is halved, thus making the matching problem easier

(i.e., smaller research range). Therefore, being errors larger

than those of the Balanced split, it is evident the major dif-

ficulty of this scenario. Moreover, we highlight that, sim-
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RGB & GT MC-CNN [54] LEAStereo [9] CFNet [42] HSMNet [49] Neural Ref. [1] RAFT-Stereo [25] RAFT-Stereo (ft) [25]

Input Res. Q Q Q H H Q Q

Figure 6. Qualitative results on Booster Balanced testing split. We show the reference image (top) and the ground-truth map (bottom)

on leftmost column, followed by disparity (top) and error maps (bottom) for the deep models evaluated in our benchmark.

Model

SGM [18]

MC-CNN [54]

LEAStereo [9]

CFNet [42]

HSMNet [49] †
SGM+Neural Ref. [1] †
RAFT-Stereo [25]

RAFT-Stereo [25] (ft)

All pixels

bad-2 bad-4 bad-6 bad-8 MAE RMSE

(%) (%) (%) (%) (px.) (px.)

78.47 62.74 52.62 45.97 42.63 97.62

86.30 68.67 54.20 44.78 23.64 45.46

74.31 57.70 47.11 39.88 17.68 31.29

70.22 53.20 43.61 37.10 16.19 28.78

63.20 43.22 32.87 26.55 11.96 22.82

70.90 52.15 41.71 35.40 24.27 52.52

55.96 36.81 27.87 22.33 9.86 19.36

58.67 32.83 22.96 17.65 6.31 11.11

Table 4. Results on Booster Unbalanced testing split. We run

stereo networks, using weights made available by their authors.

We evaluate on full resolution ground-truth maps. † denotes im-

ages being resized to half the reference resolution (about 6 Mpx).

(ft) denotes fine-tuned on Booster Unbalanced training split.

ilarly to the Balanced setup, by fine-tuning RAFT-Stereo

on the Unbalanced training split, we can improve its per-

formance on nearly all metrics. Thus, future research on

stereo may leverage the finding that state-of-the-art deep

models hold the potential to better learn to match spec-

ular/transparent surfaces even in unbalanced setting when

properly fine-tuned with carefully annotated data.

5.3. Challenges in Monocular Depth Estimation

We argue that most of the difficult surfaces featured by

Booster set forth open-challenges to be addressed in future

research also for other image-based depth estimation ap-

proaches, such as, in particular, monocular depth estima-

tion. As a side experiment, thus, we run DPT [33] – a trans-

former for single image depth estimation – on the images

present in our dataset. Fig. 7 shows some qualitative exam-

ples, highlighting how scale-aligned DPT predictions are

very inaccurate on transparent surfaces.

6. Conclusion, Limitations and Future work

In this paper, we have presented the Benchmark on open-

challenges in stereo (Booster), a novel stereo dataset col-

lecting 419 images – acquired both in balanced and un-

balanced setups – featuring extremely challenging environ-

ments and kinds of objects. It comes with dense and accu-

rate ground-truth disparities, obtained through a novel deep

Figure 7. Qualitative results for monocular depth estimation.

From left to right: reference images, depth maps predictions by

DPT [33], ground-truth depth maps, error maps.

space-time stereo pipeline, as well as with manually an-

notated material segmentation masks. Compared to recent

stereo datasets targeting autonomous/assisted driving, such

as DrivingStereo [50], Booster includes a much smaller

number of annotated images and, hence, cannot be consid-

ered a large-scale dataset. Moreover, the deep space-time

pipeline and the small baseline used for annotations con-

straints the collected scenes to frame indoor environments.

Our experiments show that Booster unveils some of the

most intriguing challenges in deep stereo and provides hints

on promising research directions. In particular, follow-

up work fostered by Booster may be devoted to i) inves-

tigating on the ability of deep models suitably fine-tuned

on Booster to generalize to outdoor setting featuring simi-

lar difficult surfaces and materials, ii) devising a pipeline,

e.g, leveraging on Lidar sensors, to collect annotated data

with transparent/specular surfaces also in outdoor setting,

iii) build large scale synthetic datasets specifically address-

ing the open-challenges highlighted by Booster to enable

more effective pre-training and iv) building and scanning

scenes through successive depth layers, to gather multiple

depths at transparent/reflective objects which can be useful

for applications such as augmented reality.

Therefore, we are lead to believe that Booster holds the

potential to boost future research in deep stereo.
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