
SoftwareX 18 (2022) 101099

c
c
l
f
s
(
d
t
i
I

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

Cloud2FEM: A finite elementmesh generator based on point clouds of
existing/historical structures
Giovanni Castellazzi ∗, Nicolò Lo Presti, Antonio Maria D’Altri, Stefano de Miranda
Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, Viale del Risorgimento
2, Bologna 40136, Italy

a r t i c l e i n f o

Article history:
Received 14 February 2022
Received in revised form 20 April 2022
Accepted 3 May 2022

Keywords:
Point cloud
FE modelling
Mesh generation
Cultural heritage structures
Voxel
Masonry

a b s t r a c t

Nowadays, the common output of surveying activities on existing/historical structures consists of dense
point clouds. However, the direct and automatic exploitation of point clouds for structural purposes,
i.e. to generate finite element models, is still very limited. In this framework, the Cloud2FEM software
supplies an automatic finite element mesh generator based on point clouds of existing/historical
structures. Cloud2FEM is based on open-source Python libraries with graphical interface. The point
cloud is initially sliced along with the vertical direction. Then, closed polygons are recognized on each
slice and stacked vertically thanks to the use of voxels. The voxelized volume is exported into 3D
solid hexahedron-based finite element meshes. Suitable graphical tools are developed to help the user
adjusting local potential criticalities in the slices, also when partial information is missing in the points
cloud. An illustrative example is given to highlight the Cloud2FEM potentialities.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Code metadata

Current code version v1.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-22-00047
Permanent link to reproducible capsule None
Legal code license GNU General Public License (GPL) version 3
Code versioning system used None
Software code languages, tools and services used Python
Compilation requirements, operating environments and dependencies PyQt5, PyQtGraph, VisPy, NumPy, pyntcloud, Shapely, ezdxf.
If available, link to developer documentation/manual None
Support email for questions giovanni.castellazzi@unibo.it

1. Motivation and significance

The structural analysis of existing/historical structures is a
hallenging task. One main reason consists in the geometrical
omplexity which typically characterize these structures, that
ead to non-trivial tasks for the geometrical modelling in the
ramework of the Finite Element Method (FEM). A promising
upport could come from modern automatic survey techniques
e.g. laser scanning and close-range photogrammetry) which pro-
uce dense point clouds [1] of the building under study. However,
he direct exploitation of point clouds for structural purposes,
.e. to generate Finite Element (FE) models, is still very limited.
ndeed, only few attempts concerning historic facades [2], timber

∗ Corresponding author.
E-mail address: giovanni.castellazzi@unibo.it (Giovanni Castellazzi).

structures [3], minarets [4], and pulpits [5], have been lately
developed. Typically, the standard process consists in the manual
creation of a CAD solid model and its discretization with solid FEs,
even if this usually leads to errors in the FE meshing procedures
due to geometric imprecisions and tolerances.

In this framework, Castellazzi et al. [6,7] proposed a workflow
to directly and semi-automatically exploit dense point clouds
to generate FE meshes. In particular, the point cloud is initially
sliced along with the vertical direction. Hence, closed polygons
are recognized on each slice and stacked vertically thanks to the
use of voxel concept. The voxelized volume is then exported into
robust and conforming 3D solid hexahedron-based FE meshes.
This workflow guarantees a remarkable user-time saving with
respect to 3D CAD standard modelling procedures, as well as a
considerable robustness of the generated mesh. These aspects
have been underlined in [8], where nonlinear static analysis have
ttps://doi.org/10.1016/j.softx.2022.101099
352-7110/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).

https://doi.org/10.1016/j.softx.2022.101099
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2022.101099&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00047
mailto:giovanni.castellazzi@unibo.it
mailto:giovanni.castellazzi@unibo.it
https://doi.org/10.1016/j.softx.2022.101099
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Giovanni Castellazzi, N. Lo Presti, A.M. D’Altri et al. SoftwareX 18 (2022) 101099

C
n
w
w
w
t
g
s
T
a
a
t
t
c
i

2

i
l
l

Fig. 1. Cloud2FEM main graphical user interface: (I) file menu, (II) 3D Viewer panel, (III) cloud/mesh processing panel, (IV) plot area, (V) 2D Viewer panel, (VI)
editing bar.

been successfully conducted on the generated mesh of a historical
fortress. In particular, this workflow demonstrated to be efficient
also in presence of horizontal decks and masonry vaults in the
structure, as discussed in [7].

In this paper, an easy-to-use open-source software (named
loud2FEM) which efficiently accomplishes the point cloud-to-
umerical model procedure proposed in [6,7] is released. The
orkflow proposed in [6,7], initially composed of different scripts
ritten in different code languages, has been herein straightfor-
ardly implemented using the Python language. In particular,
he Cloud2FEM software has been developed with a user-friendly
raphical interface. Accordingly, this allows an agile and robust
eamless user experience and easy improvements of the code.
herefore, non-skilled users are able to approach the software
nd transform a point cloud (input) into a solid FE model (output),
llowing a widespread adoption of this approach. Additionally,
he graphical interface favoured the implementation of CAD-like
ools which can be used by the user to adjust local potential
riticalities in the slices, also when partial information is missing
n the point clouds.

. Software description

The main graphical user interface of the software Cloud2FEM
s shown in Fig. 1. On the top (I), the file menu contains buttons to
oad point clouds (the input data of this software), save a project,

CAD environments (i.e. .dxf slices) or FE simulations (i.e. FE solid
mesh). On the left (II), the 3D Viewer section contains buttons to
open a separated window where the selected quantities can be
explored in 3D.

The right panel (III) contains, starting from the top, the ex-
treme z coordinates of the loaded point cloud, a section to specify
the slicing modality, buttons to perform all the steps needed
to generate a FE model. Red and green indicators beside each
button denote if a certain step still needs to be performed or not,
respectively. Most of the data generated through the steps in the
right panel can be visualized in the central plot area (IV), which
occupies most of the space of the interface. The 2D Viewer section
on the left (V) can be utilized to choose the data to be shown, for
any slice. The edit button on the top bar (VI) allows to enter the
edit mode for the current slice and for the selected data type. An
example of slice processing is shown in Fig. 2.

On each slice, local modifications can be performed with the
help of various suitable ad-hoc tools (for both points and poly-
lines, e.g. draw, join, remove, add, move, offset, etc.), that can
be activated via keyboard shortcuts. The top bar (VI) contains
also buttons to save or discard the changes made in the edit
mode, as well as a copy button that opens a separated window
used to copy data from one slice to others. Finally, the button
‘‘Generate mesh’’ positioned at the bottom of the right panel (III)
generates the matrix of nodal coordinates and the connectivity
matrix of the FEs, i.e. the FE mesh, which can be exported from
oad a previously saved project, and export data to be used into the file menu (I). In this particular case, the mesh is exported into

2



Giovanni Castellazzi, N. Lo Presti, A.M. D’Altri et al. SoftwareX 18 (2022) 101099

g

e
s
e
t
b
i
i
T
e
i
w
w
p
g
p
i

2

Fig. 2. Example of slice processing through Cloud2FEM: (a) slice of the raw point cloud, (b) derived centroids and polylines before simplification, (c) final clean
eometry ready to be used in the mesh generation step.

Fig. 3. Cloud2FEM software architecture and libraries involved.

the .inp format [9], which can be visualized also by open-source
software packages, see e.g. FreeCAD [10]. Anyway, the matrix of
nodal coordinates and the connectivity matrix of the FEs can be
found unencrypted in the .inp file (text format), and so they can
be used in any available FE software.

2.1. Software architecture

Cloud2FEM is a Python-based software [11]. Its graphics (see
.g. Fig. 1) is realized with the help of the PyQt5 library [12],
upplemented by the PyQtGraph library [13] for 2D plotting and
diting, and by the VisPy [14] library for 3D visualization. On
he back-end, various open source libraries are employed. At the
ase, NumPy [15] is widely utilized for array computing. The
nput point cloud data in the .pcd or .ply format is converted
nto a Python data type by means of the pyntcloud library [16].
he Shapely package [17] is adopted to manipulate 2D geometric
ntities with ease, and ezdxf [18] is exploited to export 2D slices
n the .dxf format. The code consists of a main file, two .ui files
here the graphic entities are stored, and four thematic modules
ith the functions utilized for 3D visualization, conversion of a
oint cloud in a set of sorted geometric entities, conversion of
eometric entities in a FE mesh, manual editing of points and
olylines. The code structure and the libraries involved are shown
n Fig. 3.

.2. Software functionalities

The main functionalities of Cloud2FEM are here listed:

– Loading a point cloud in .pcd or .ply formats and visu-
alizing it with the 3D viewer. Since the 3D visualization
of a large point cloud can be computationally demanding,
the software uses a graphical accelerated tool to support
real large dataset visualization. Nevertheless, the user can
choose between three possible predefined resolutions (10,
50 and 100%) to get a smoother interaction.

– Visualizing the extreme [Zmin, Zmax] coordinates of the loaded
point cloud.

– Slicing of the point cloud. The user can choose between
two slicing rules, i.e. fixed number of slices or fixed step
height. The function activated by the ‘‘Generate slices’’ but-
ton extracts slices from the loaded point cloud, according to
the specified slicing parameters. Every slice, named by its Z
coordinate, can be selected from the drop-down list on the
left panel and visualized in the 2D viewer. The whole set of
slices can be visualized in the 3D viewer by checking the
corresponding checkbox on the left panel.

– Simplifying and ordering the slices. Every slice, consisting
of an unordered array of points, is processed through the
algorithm called by the ‘‘Generate Centroids’’ button to get
a new smaller array of ordered points that can be used
to efficiently describe the geometry of the slice. The cen-
troids can be visualized in the 2D viewer by checking the
corresponding checkbox in the left panel.

– Generating polylines. The centroids data generated by the
software in a previous step is utilized to get a set of raw
polylines. These are automatically simplified to get a cleaner
and lightweight geometric representation. Both the raw and
the clean polylines can be visualized in the 2D viewer by
checking the corresponding checkbox in the left panel.

– Generating polygons. A more descriptive data type is auto-
matically derived from the polylines obtained in a previous
step. Each slice is described by means of polygons, made of
inner and outer bounds. This geometric representation can
be exported in the .dxf file format.

– Generating the mesh. A FE mesh is automatically generated
from the polygons data. The X and Y dimensions of the
voxels are set according to the grid visible in the 2D viewer,
while the Z dimension depends on the adopted slicing pa-
rameters. The output can be exported in a text file format
organized according to the Abaqus notation (.inp) [9].

– Saving and opening a project. The data handled by the
software can be stored and retrieved to allow discontin-
uous work sessions. Furthermore, since the data is stored
using the built-in Python shelve module, advanced users can

easily exploit the data in other Python-based software.

3



Giovanni Castellazzi, N. Lo Presti, A.M. D’Altri et al. SoftwareX 18 (2022) 101099
Fig. 4. Example of generation of a FE mesh based on a point cloud of a benchmark structure by means of the Cloud2FEM software: (a) point cloud used as input
visualized at 100% resolution, (b) slicing of the point cloud, (c) slice example with local modification, (d) FE mesh (output).

– Editing of points and centroids. To eliminate criticalities in
the slices, points and centroids can be removed individually
or in bulk with graphic tools in the 2D viewer.

– Editing of polylines. A set of tools in the 2D viewer allows for
an advanced graphic editing of the polylines. Vertices can be
added, removed or moved, polylines can be joined, removed
or drawn from scratch if geometric data is missing from the
original point cloud.

– Copy of the polylines of a slice. The polylines of a slice can
be copied to other to speed up the editing process.

3. Illustrative example

An illustrative example of the automated generation of a con-
forming FE mesh based on a point cloud of a pseudo-actual
benchmark structure by means of the Cloud2FEM software is
shown in Fig. 4. The structure has a height equal to 12 m, a
square base with a length of 6 m and its walls are roughly 1 m
thick. Fig. 4(a) shows the point cloud used as input (5,977,514

points). The representation of the initial geometry of the bench-
mark through slices composed of closed polygons is shown in
Fig. 4(b). An example of slice is shown in Fig. 4(c), where a local
modification through ad-hoc tools is also highlighted. Finally,
Fig. 4(d) shows the FE mesh (composed of 38,882 nodes and
31,638 8-node hexahedral FEs) generated through the Cloud2FEM
software, i.e. the main output of the software, ready to be used
for structural analysis purposes. It should be noted that the visu-
alization in Fig. 4(d) has been obtained through the open-source
software FreeCAD [10].

The parameters adopted in the example in Fig. 4 are:

– Slicing with a fixed step height of 0.2 m, from 0.025 m to
11.97 m.

– Slice thickness St equal to 0.005 m.
– Minimum wall thickness Mwt equal to 0.3 m.
– X and Y grid dimensions set equal to 0.2 m.

It should be highlighted that these parameters are here listed
to guarantee the reproducibility of the model in Fig. 4. For the
sake of example, the influence of the voxel size on the structural
4



Giovanni Castellazzi, N. Lo Presti, A.M. D’Altri et al. SoftwareX 18 (2022) 101099

p
i
c

p
b

erformance of voxel-based numerical models has been assessed
n [19]. Accordingly, the choice of the voxel dimensions can be
onducted in agreement with the suggestions given in [6,7,19].
Moreover, St refers to the tolerance in the Z direction, i.e. a

oint P belongs to the slice Zi if its Z coordinate ZP is included
etween the limits Zi − St

2 ≤ ZP ≤ Zi + St
2 . At first, the value of St

can be typically set equal to 5 mm and then, if needed, adjusted
depending on the density of the actual point cloud. Furthermore,
Mwt refers to a tolerance used by the software to correctly identify
distinct portions in a slice, and it can be set depending on the
actual minimum wall thickness or, if smaller, on dimension of the
smaller opening measurable in the structure.

Finally, it should be highlighted that point clouds made of
up to 150 million points have been easily manipulated with
Cloud2FEM (on a commercial laptop equipped with 16 GB of RAM
and a dedicated GPU).

4. Impact

The impact of the Cloud2FEM software on common practices
in structural analysis of cultural heritage buildings appears signif-
icant. First of all, Cloud2FEM allows non-skilled users to generate
solid and robust FE models of existing/historical buildings starting
from raw dense point clouds of any complexity and any level of
completeness. Indeed, the software herein discussed guarantees
its usability also in case of non-comprehensive point clouds,
e.g. point clouds surveyed only on the external building surfaces,
which are the most common case encountered in practice. This
allows the direct and automatic exploitation of point clouds for
structural purposes, i.e. for the generation of voxel-based FE
models which demonstrated to be particularly appealing for both
model updating [20] and seismic assessments,8. Therefore, this
software represents a generalization of the procedures used in [6–
8], characterized by the possibility to deal with a larger range of
cases and by a smoother user experience.

Cloud2FEM usage appears preferable with respect to standard
3D CAD-based procedures, given its speediness and robustness.
Indeed, it always guarantees the generation of robust conforming
solid FE meshes, and it allows to save user-time with respect
3D CAD approaches [6]. In particular, it requires no CAD skills
from the user, who needs basically no training to be able to use
Cloud2FEM.

Therefore, Cloud2FEM could become the starting point for ad-
vanced structural assessments of cultural heritage structures [4,
8,21–24], used by both research groups and consultancy pro-
fessional teams. For example, it will be thoroughly used in the
H2020-funded HOLAHERIS project [25]. The simplicity of the
Cloud2FEM usage also encourages its adoption in student and
teaching activities (e.g. theses, homework, etc.).

5. Conclusions

The Cloud2FEM software supplies a FE mesh generator which
receives as input the point cloud of an existing/historical struc-
ture, and gives as output the solid FE model of the structure.
Cloud2FEM is based on open-source Python libraries with graphi-
cal interface, which demonstrated to be particularly user-friendly.
The data processing follows the initial slicing of the point cloud
along with the vertical direction, the automatic recognition of
closed polygons on each slice, and the slice stacking using the
concept of voxel. Finally, the voxelized volume is exported into
3D solid hexahedron-based FE meshes ready to be used for struc-
tural purposes.

Ad-hoc graphical tools have been developed to help the user
adjusting local potential criticalities in the slices, also when
partial information is missing in the point cloud. Accordingly,
Cloud2FEM allows the generation of solid FE models of exist-
ing/historical buildings starting from point clouds of any level of
completeness, i.e. also in the case of non-comprehensive point
clouds, which is the most common case encountered in practice.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the
Marie Sklodowska-Curie grant agreement No. 101029792 (HOLA-
HERIS project, "A holistic structural analysis method for cultural
heritage structures conservation").

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.softx.2022.101099.

References

[1] Riveiro B, DeJong MJ, Conde B. Automated processing of large point clouds
for structural health monitoring of masonry arch bridges. Autom Constr
2016;72:258–68. http://dx.doi.org/10.1016/j.autcon.2016.02.009.

[2] Truong-Hong L, Laefer DF. Validating computational models from laser
scanning data for historic facades. J Test Eval 2013;41(3):481–96. http:
//dx.doi.org/10.1520/jte20120243.

[3] Armesto J, Lubowiecka I, Ordóñez C, Rial FI. FEM modeling of struc-
tures based on close range digital photogrammetry. Autom Constr
2009;18(5):559–69. http://dx.doi.org/10.1016/j.autcon.2008.11.006.

[4] Korumaz M, Betti M, Conti A, Tucci G, Bartoli G, Bonora V, et al. An
integrated terrestrial laser scanner (TLS), deviation analysis (DA) and
finite element (FE) approach for health assessment of historical structures,
a minaret case study. Eng Struct 2017;153:224–38. http://dx.doi.org/10.
1016/j.engstruct.2017.10.026.

[5] Bartoli G, Betti M, Bonora V, Conti A, Fiorini L, Kovacevic VC, et al. From
TLS data to FE model: A workflow for studying the dynamic behavior
of the pulpit by Giovanni Pisano in Pistoia (Italy). Proc Struct Integ
2020;29:55–62.

[6] Castellazzi G, D’Altri AM, Bitelli G, Selvaggi I, Lambertini A. From laser
scanning to finite element analysis of complex buildings by using a semi-
automatic procedure. Sensors 2015;15(8):18360–80. http://dx.doi.org/10.
3390/s150818360.

[7] Castellazzi G, D’Altri AM, de Miranda S, Ubertini F. An innovative numerical
modeling strategy for the structural analysis of historical monumen-
tal buildings. Eng Struct 2017;132:229–48. http://dx.doi.org/10.1016/j.
engstruct.2016.11.032.

[8] Degli Abbati S, D’Altri AM, Ottonelli D, Castellazzi G, Cattari S, de Mi-
randa S, et al. Seismic assessment of interacting structural units in complex
historic masonry constructions by nonlinear static analyses. Comput Struct
2019;213:51–71.

[9] Abaqus
®

. Theory manual, version 6.20. 2020.
[10] Riegel J, Mayer W, van Havre Y. FreeCAD. 2016.
[11] Python language reference, version 3.8.5. Python Software Foundation;

2020, [Online]. Availablewww.python.org [Accessed 23 July 2020].
[12] PyQt5 - Python bindings for Qt v5. 2021, [Online]. Available: https://pypi.

org/project/PyQt5/ [Accessed 20 October 2021].
[13] PyQtGraph. Scientific graphics and GUI library for Python, v0.11.1.

2021, [Online]. Available: https://pypi.org/project/pyqtgraph/ [Accessed 21
January 2021].

[14] VisPy. Interactive visualization in Python, v0.6.6. 2021, [Online]. Available:
https://pypi.org/project/vispy/ [Accessed 21 January 2021].

[15] NumPy. Package for array computing with python, v1.21.2. 2021, [Online].
Available: https://pypi.org/project/numpy/ [Accessed 13 October 2021].

[16] Pyntcloud. Python library for working with 3D point clouds, v0.1.5.
2021, [Online]. Available: https://pypi.org/project/pyntcloud/ [Accessed 20
October 2021].
5

https://doi.org/10.1016/j.softx.2022.101099
http://dx.doi.org/10.1016/j.autcon.2016.02.009
http://dx.doi.org/10.1520/jte20120243
http://dx.doi.org/10.1520/jte20120243
http://dx.doi.org/10.1520/jte20120243
http://dx.doi.org/10.1016/j.autcon.2008.11.006
http://dx.doi.org/10.1016/j.engstruct.2017.10.026
http://dx.doi.org/10.1016/j.engstruct.2017.10.026
http://dx.doi.org/10.1016/j.engstruct.2017.10.026
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb5
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb5
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb5
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb5
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb5
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb5
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb5
http://dx.doi.org/10.3390/s150818360
http://dx.doi.org/10.3390/s150818360
http://dx.doi.org/10.3390/s150818360
http://dx.doi.org/10.1016/j.engstruct.2016.11.032
http://dx.doi.org/10.1016/j.engstruct.2016.11.032
http://dx.doi.org/10.1016/j.engstruct.2016.11.032
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb8
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb8
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb8
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb8
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb8
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb8
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb8
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb9
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb10
http://www.python.org
https://pypi.org/project/PyQt5/
https://pypi.org/project/PyQt5/
https://pypi.org/project/PyQt5/
https://pypi.org/project/pyqtgraph/
https://pypi.org/project/vispy/
https://pypi.org/project/numpy/
https://pypi.org/project/pyntcloud/


Giovanni Castellazzi, N. Lo Presti, A.M. D’Altri et al. SoftwareX 18 (2022) 101099
[17] Shapely. Python package for manipulation and analysis of planar geometric
objects, v1.7.1. 2021, [Online]. Available: https://pypi.org/project/Shapely/
[Accessed 21 January 2021].

[18] Ezdxf. A Python package to create/manipulate DXF drawings, v0.15.2. 2021,
[Online]. Available: https://pypi.org/project/ezdxf/ [Accessed 23 February
2021].

[19] Castellazzi G, D’Altri AM, de Miranda S, Ubertini F, Bitelli G, Lambertini A,
et al. A mesh generation method for historical monumental buildings:
An innovative approach. In: Proceedings of the VII european congress on
computational methods in applied sciences and engineering. Crete Island;
2016, http://dx.doi.org/10.7712/100016.1823.11948.

[20] Bassoli E, Vincenzi L, D’Altri AM, de Miranda S, Forghieri M, Castellazzi G.
Ambient vibration-based finite element model updating of an earthquake-
damaged masonry tower. Structural Control and Health Monitoring
2018;25(5):e2150.

[21] Kassotakis N, Sarhosis V, Riveiro B, Conde B, D’Altri AM, Mills J, et al. Three-
dimensional discrete element modelling of rubble masonry structures from
dense point clouds. Autom Constr 2020;119:103365.

[22] Almac U, Pekmezci I, Ahunbay M. Numerical analysis of historic struc-
tural elements using 3D point cloud data. Open Const Build Technol J
2016;10(1).

[23] Pepi C, Cavalagli N, Gusella V, Gioffrè M. An integrated approach for the
numerical modeling of severely damaged historic structures: Application
to a masonry bridge. Adv Eng Softw 2021;151:102935.

[24] Funari MF, Hajjat AE, Masciotta MG, Oliveira DV, Lourenço B. A parametric
scan-to-FEM framework for the digital twin generation of historic masonry
structures. Sustainability 2021;13(19):11088.

[25] HOLAHERIS website. 2022, [Online]. Available: https://site.unibo.it/
holaheris/en [Accessed 17 May 2022].
6

https://pypi.org/project/Shapely/
https://pypi.org/project/ezdxf/
http://dx.doi.org/10.7712/100016.1823.11948
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb20
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb20
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb20
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb20
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb20
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb20
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb20
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb21
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb21
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb21
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb21
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb21
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb22
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb22
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb22
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb22
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb22
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb23
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb23
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb23
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb23
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb23
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb24
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb24
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb24
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb24
http://refhub.elsevier.com/S2352-7110(22)00067-X/sb24
https://site.unibo.it/holaheris/en
https://site.unibo.it/holaheris/en
https://site.unibo.it/holaheris/en

	Cloud2FEM: A finite element mesh generator based on point clouds of existing/historical structures
	Motivation and significance
	Software description
	Software architecture
	Software functionalities

	Illustrative example
	Impact
	Conclusions
	Declaration of competing interest
	Acknowledgements
	Appendix A. Supplementary data
	References


