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L∞-ESTIMATES IN OPTIMAL TRANSPORT FOR NON QUADRATIC COSTS
December 7, 2022

CRISTIAN E. GUTIÉRREZ AND ANNAMARIA MONTANARI

Abstract. For cost functions c(x, y) = h(x−y), with h ∈ C2 (Rn
\ {0})∩C1 (Rn) homogeneous

of degree p > 1, we show L∞-estimates of Tx − x on balls, where T is an h-monotone map.

Estimates for the interpolating mappings Tt = t(T − I) + I are deduced from this.
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1. Introduction

This note originates looking into the recent and very interesting paper by M. Goldman

and F. Otto [GOdf] containing a new proof of the regularity of optimal maps for the

Monge problem when the cost is quadratic. Our intention has been to investigate the

validity of similar results for powers costs |x − y|p with 1 < p < ∞, and in that endeavor

we came up with local L∞-estimates for monotone and interpolating maps relative to

that cost, inequalities (2.5) and (3.7), respectively; these extend [GOdf, Lemma 3.1]. More

generally, our estimates hold when the cost is given by a C2 function that is homogeneous
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2 C. E. GUTIÉRREZ AND A. MONTANARI

of degree p. Since we believe that these estimates may be useful to obtain regularity

results for optimal transport when p , 2, and may have independent interest, it is our

purpose to present them here. Moreover, we are able to show that these estimates suffice

to prove, with modifications, several important steps in parallel with those carried out in

[GOdf] toward the super-linear growth as in Prop. 3.3, eq. (3.15) of that paper; we will

not provide these details in this note. However, a missing part is a replacement for p , 2

of the so called quasi-orthogonality property proved in [GOdf, Step 3, proof of Prop. 3.3].

Recent regularity results for general cost functions are considered in [OPRdf] but they

do not include the case of non quadratic power costs, see Remark 3.1. We mention that

global L∞ estimates for optimal maps in terms of the p-Wasserstein distance are proved

in [BJM].

The note is organized as follows. Section 2 contains a detailed proof of the L∞-estimate

(2.5) on general balls. In Section 3, we introduce a notion of monotonicity (3.1) that is

equivalent to (2.2) and used it to prove in Section 3.1 the estimate (3.7) for interpolating

maps. Section 3.2 shows, as a consequence, L∞-estimates for the densities of the transport

problem. Section 3.3 shows that the quantity on the right hand side of the L∞-estimate

(2.5) is comparable to an integral of a fluid flow. Section 4 is self-contained and shows

an L∞-estimate for monotone maps minus an arbitrary affine function, Lemma 4.1, which

implies point-wise differentiability of locally integrable monotone maps, see Lemma 4.4

and Theorem 4.5. Finally and for convenience, we include an appendix with the formula

(5.1) which is the starting point to prove the main estimate in Section 2.

Acknowledgements. We would like to thank Craig Evans for useful comments and

for pointing out Krylov’s work [Kry83]; see Remark 4.6. We like to thank also Luigi

Ambrosio for pointing out the connection between monotone maps and maps of bounded

deformation, and useful comments. C.E.G was partially supported by NSF grant DMS–

1600578, and A.M. was partially supported by a grant from GNAMPA of INdAM.

We would like to thank the anonymous referee for a careful reading of the paper and

for useful suggestions.

2. L∞-estimates

If c(x, y) : D × D∗ → [0,+∞) is a general cost function, then from optimal transport

theory, the optimal map for the Monge problem is given by T = Nc,φ where φ is c-concave
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and

Nc,φ(x) =
{
m ∈ D∗ : φ(x) + φc(m) = c(x,m)

}
with φc(m) = infx∈D

(
c(x,m) − φ(x)

)
, see for example [GH09, Sect. 3.2]. This implies that

(2.1) c (x,Tx) + c
(
y,Ty

)
≤ c

(
x,Ty

)
+ c

(
y,Tx

)
assuming Tx is single valued for a.e. x ∈ D. In our analysis below we will only use that T

satisfies (2.1); and that T is optimal will not be used.

We assume that the cost c has the form c(x, y) = h(x− y) where h ≥ 0 is a convex function

in Rn with h ∈ C1(Rn) ∩ C2 (Rn
\ {0}). What we have in mind is to obtain L∞-estimates for

u(x) = Tx − x, as in the paper by Goldman and Otto [GOdf, Lemma 3.1], but when h is

positively homogenous of degree p for some 1 < p < ∞. For this c, (2.1) obviously reads

(2.2) h (x − Tx) + h
(
y − Ty

)
≤ h

(
x − Ty

)
+ h

(
y − Tx

)
, 1

that is, T is h-monotone, or equivalently

(2.3) h (−u(x)) + h
(
−u(y)

)
≤ h

(
x − y − u(y)

)
+ h

(
y − x − u(x)

)
.

Defining

G(a, b) = h(a − b) − h(a) − h(b),

and assuming that h is even, the inequality (2.3) reads

(2.4) − G
(
x − y,u(y)

)
≤ G

(
y − x,u(x)

)
+ 2 h(x − y).

Our purpose is then to prove the following local L∞-estimate.

Theorem 2.1. Suppose h ∈ C1(Rn) ∩ C2 (Rn
\ {0}) is nonnegative, even, convex, positively

homogeneous of degree p, for some p > 1, and minx∈Sn−1 h(x) = m > 0. If T is a map satisfying

the monotonicity condition (2.2) for a.e. x, y ∈ Rn and u(x) = Tx − x, then

(2.5)

sup
y∈BβR(x0)

|u(y)| ≤


L1 R

(
R−p
>

BR(x0) |u(x)|p dx
)1/(n+p)

if 1
Rp

>
BR(x0) |u(x)|p dx ≤

(
1 − β

2

)n+p (p − 1) C2

(n + 1) C1 ωn

L2 R
(
R−p
>

BR(x0) |u(x)|p dx
)1/(p−1)

if 1
Rp

>
BR(x0) |u(x)|p dx ≥

(
1 − β

2

)n+p (p − 1) C2

(n + 1) C1 ωn
,

1It can be proved that each multivalued map that is h-monotone is single valued a.e.; the proof will appear

elsewhere. See also Footnote 4 below.
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for each R > 0, x0 ∈ Rn, and 0 < β < 1 with positive constants C1,C2 depending only on p,n

and h, with ωn = |B1|; and with L1 depending only on p,n and h, and L2 depending only on p,n, h

and β.

Proof. Our goal is to estimate the supremum of |u| over a ball by the Lp-norm of u over

a slightly larger ball. To do this, the idea is to use (5.1) and estimate the integrals by

integrating (2.4) in x. The strategy of the proof is as follows:

(1) using (5.1) we can write (2.6);

(2) since h ∈ C1, h is even with minSn−1 h > 0, it follows from the convexity and

homogeneity of h a lower bound for the left hand side of (2.6) in terms of |u(y)|;

(3) we estimate B in (2.6) from above also in terms of |u(y)|, using that h is C2 (Rn
\ {0})

and ∇h is homogenous of degree p − 1;

(4) next, using at this point that T is h-monotone, we obtain an upper bound for A in

(2.6) in terms of an average of |u(x)|;

(5) optimizing the resulting inequality (2.9) in r, yields the desired estimate.

Let us set ω =
u(y)
|u(y)|

and r = δ |u(y)|, with δ > 0 to be chosen; u(y) , 0. Applying the

identity (5.1) with v(x){ −G(x − y,u(y)) and the ball Br(y){ Br(y + rω) yields

v(y + rω) = −G(rω,u(y))

= −

?
Br(y+rω)

G
(
x − y,u(y)

)
dx

+
n
rn

∫ r

0
ρn−1

∫
|x−y−rω|≤ρ

〈DΓ(x − y − rω),Dx
(
G

(
x − y,u(y)

))
〉 dx dρ

= A + B.(2.6)
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We first estimate the left hand side of (2.6) from below. Write

− G(rω,u(y))

= −G(δu(y),u(y)) = h(δu(y)) + h(u(y)) − h
(
δu(y) − u(y)

)
= δ

(
h(δu(y))

δ
+

h(u(y)) − h
(
δu(y) − u(y)

)
δ

)
= δ

(
h(δu(y))

δ
+

h(−u(y)) − h
(
δu(y) − u(y)

)
δ

)
since h is even

= δ

(
h(δu(y))

δ
+
∇h (ξ) · −δu(y)

δ

)
, with ξ an intermediate point between −u(y) and δu(y) − u(y).

Since h is C1(Rn) and homogenous of degree p > 1, i.e., h(λx) = λp h(x) for λ > 0, it follows

that ∇h(λx) = λp−1
∇h(x) and so

h(δu(y))
δ

+
∇h (ξ) · −δu(y)

δ
=

h
(
δ|u(y)|

u(y)
|u(y)|

)
δ

− ∇h (ξ) · u(y)

= δp−1
|u(y)|p h

(
u(y)
|u(y)|

)
− ∇h

(
|ξ|
ξ
|ξ|

)
· u(y)

= δp−1
|u(y)|p h

(
u(y)
|u(y)|

)
− |ξ|p−1

∇h
(
ξ
|ξ|

)
· u(y)

= δp−1
|u(y)|p h

(
u(y)
|u(y)|

)
− |u(y)|p

(
|ξ|
|u(y)|

)p−1

∇h
(
ξ
|ξ|

)
·

u(y)
|u(y)|

= |u(y)|p
δp−1 h

(
u(y)
|u(y)|

)
−

(
|ξ|
|u(y)|

)p−1

∇h
(
ξ
|ξ|

)
·

u(y)
|u(y)|

 := |u(y)|p f (δ, y).

If δ→ 0+ we get ξ→ −u(y) and

f (δ, y) = δp−1 h
(

u(y)
|u(y)|

)
−

(
|ξ|
|u(y)|

)p−1

∇h
(
ξ
|ξ|

)
·

u(y)
|u(y)|

→ −∇h
(
−u(y)
|u(y)|

)
·

u(y)
|u(y)|

.

Since h is convex, then for each x0 and x we have h(x) ≥ h(x0) +∇h(x0) · (x− x0). Applying

this inequality with x0 =
−u(y)
|u(y)|

and x = 0 yields

h(0) ≥ h
(
−u(y)
|u(y)|

)
+ ∇h

(
−u(y)
|u(y)|

)
·

u(y)
|u(y)|

and since h(0) = 0,

h
(
−u(y)
|u(y)|

)
≤ −∇h

(
−u(y)
|u(y)|

)
·

u(y)
|u(y)|

.



6 C. E. GUTIÉRREZ AND A. MONTANARI

If h is strictly positive in the unit sphere, then

0 < m = min
x∈Sn−1

h(x) ≤M = max
x∈Sn−1

h(x)

by continuity. Therefore we get the inequality

0 < m ≤ −∇h
(
−u(y)
|u(y)|

)
·

u(y)
|u(y)|

≤ max
x∈Sn−1

|∇h(x)|.

We next show that f (δ, y)→ −∇h
(
−u(y)
|u(y)|

)
·

u(y)
|u(y)|

as δ→ 0+ uniformly in y , 0. In fact,

f (δ, y) + ∇h
(
−u(y)
|u(y)|

)
·

u(y)
|u(y)|

= δp−1 h
(

u(y)
|u(y)|

)
−

(
|ξ|
|u(y)|

)p−1

∇h
(
ξ
|ξ|

)
·

u(y)
|u(y)|

+ ∇h
(
−u(y)
|u(y)|

)
·

u(y)
|u(y)|

= D1 + D2.

We have D1 ≤M δp−1, and from the homogeneity of ∇h

D2 = −∇h
(
ξ
|u(y)|

)
·

u(y)
|u(y)|

+ ∇h
(
−u(y)
|u(y)|

)
·

u(y)
|u(y)|

,

so

|D2| ≤

∣∣∣∣∣∣∇h
(
ξ
|u(y)|

)
− ∇h

(
−u(y)
|u(y)|

)∣∣∣∣∣∣ .
Sinceξ is an intermediate point between−u(y) and δu(y)−u(y), ξ = −u(y)+t δu(y) for some

0 < t < 1, so
∣∣∣∣∣ ξ
|u(y)|

−
−u(y)
|u(y)|

∣∣∣∣∣ < δ. Since ∇h is uniformly continuous in a neighborhood of

Sn−1 the uniform convergence of f follows.

Therefore, we get the following lower bound for the left hand side of (2.6): there exists

δ0 > 0 depending only on h and independent of y such that

(2.7) − G(rω,u(y)) ≥
m
2
δ |u(y)|p, for 0 < δ < δ0,

with ω = u(y)/|u(y)| and r = δ |u(y)|, for each y with u(y) , 0. On the other hand, if δ ≥ δ0,

then
r
|u(y)|

≥ δ0, implying obviously that |u(y)| ≤
r
δ0

, and obtaining the bound |u(y)| ≤
α
δ0

for 0 < r ≤ α.

We now turn to estimate the right hand side of (2.6). Let us first calculate DzG(z, v):

DzG(z, v) = Dh(z − v) −Dh(z).

Hence

Dx
(
G

(
x − y,u(y)

))
= (DzG)(x − y,u(y)) = Dh(x − y − u(y)) −Dh(x − y),
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and so

B =
n
rn

∫ r

0
ρn−1

∫
|x−y−rω|≤ρ

〈
DΓ(x − y − rω),Dh(x − y − u(y)) −Dh(x − y)

〉
dx dρ.

Let us analyze the inner integral

I(ρ, r, y) =

∫
|x−y−rω|≤ρ

〈
DΓ(x − y − rω),Dh(x − y − u(y)) −Dh(x − y)

〉
dx.

Making the change of variables z = x − y − rω yields

I(ρ, r, y) =

∫
|z|≤ρ

〈
DΓ(z),Dh(z + rω − u(y)) −Dh(z + rω)

〉
dz.

We have that Dh is homogenous of degree p − 1 so

Dh(z + rω) = Dh
(
|z + rω|

z + rω
|z + rω|

)
= |z + rω|p−1 Dh

( z + rω
|z + rω|

)
.

Write, with e1 a fixed unit vector in Sn−1,∫
|z|≤ρ
〈DΓ(z),Dh(z + rω)〉 dz

=

∫
|z|≤ρ

〈
DΓ(z),Dh

( z + rω
|z + rω|

)〉
|z + rω|p−1 dz

=

∫
|v|≤ρ

〈
DΓ(Ov),Dh

( Ov + r Oe1

|Ov + r Oe1|

)〉
|Ov + r Oe1|

p−1 dv, with O rotation around 0 with Oe1 = ω

=

∫
|v|≤ρ

〈
O (DΓ(v)) ,Dh

( Ov + r Oe1

|Ov + r Oe1|

)〉
|Ov + r Oe1|

p−1 dv

=

∫
|v|≤ρ

〈
DΓ(v),Ot

(
Dh

( Ov + r Oe1

|Ov + r Oe1|

))〉
|Ov + r Oe1|

p−1 dv.

Similarly,∫
|z|≤ρ

〈
DΓ(z),Dh(z + rω − u(y))

〉
dz

=

∫
|z|≤ρ

〈
DΓ(z),Dh

(
z + rω − u(y)
|z + rω − u(y)|

)〉
|z + rω − u(y)|p−1 dz

=

∫
|v|≤ρ

〈
DΓ(Ov),Dh

(
Ov + r Oe1 − u(y)
|Ov + r Oe1 − u(y)|

)〉
|Ov + r Oe1 − u(y)|p−1 dv, with O rotation around 0 with Oe1 = ω

=

∫
|v|≤ρ

〈
DΓ(v),Ot

(
Dh

(
Ov + r Oe1 − u(y)
|Ov + r Oe1 − u(y)|

))〉
|Ov + r Oe1 − u(y)|p−1 dv

=

∫
|v|≤ρ

〈
DΓ(v),Ot

(
Dh

(
Ov + r Oe1 − |u(y)|Oe1

|Ov + r Oe1 − |u(y)|Oe1|

))〉
|Ov + r Oe1 − |u(y)|Oe1|

p−1 dv, since ω = u(y)/|u(y)|.
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Then

I(ρ, r, y) =

∫
|v|≤ρ

〈
DΓ(v), |v + (r − |u(y)|) e1|

p−1 OtDh
(

Ov + (r − |u(y)|)Oe1

|Ov + (r − |u(y)|)Oe1|

)
− |v + r e1|

p−1 OtDh
( Ov + r Oe1

|Ov + r Oe1|

)〉
dv.

We write

B =
n
rn

∫ r

0
ρn−1 I(ρ, r, y) dρ = n

∫ 1

0
tn−1 I(r t, r, y) dt.

Now making the change of variables v = rζ in the integral I yields

I(r t, r, y)

=

∫
|ζ|≤t

〈
DΓ(rζ), |rζ + (r − |u(y)|) e1|

p−1 OtDh
(

O(rζ) + (r − |u(y)|)Oe1

|O(rζ) + (r − |u(y)|)Oe1|

)
− |rζ + r e1|

p−1 OtDh
(

O(rζ) + r Oe1

|O(rζ) + r Oe1|

)〉
rn dζ

= rp
∫
|ζ|≤t

〈
DΓ(ζ), |ζ + (1 − |u(y)|/r) e1|

p−1 OtDh
(

Oζ + (1 − |u(y)|/r)Oe1

|Oζ + (1 − |u(y)|/r)Oe1|

)
− |ζ + e1|

p−1 OtDh
( Oζ + Oe1

|Oζ + Oe1|

)〉
dζ

and next letting r = δ |u(y)| as before yields

B = n |u(y)|p δp
∫ 1

0
tn−1

∫
|ζ|≤t

〈
DΓ(ζ), |ζ + (1 − 1/δ) e1|

p−1 OtDh
(

Oζ + (1 − 1/δ)Oe1

|Oζ + (1 − 1/δ)Oe1|

)
− |ζ + e1|

p−1 OtDh
( Oζ + Oe1

|Oζ + Oe1|

)〉
dζ dt

= n |u(y)|p δ
∫ 1

0
tn−1

∫
|ζ|≤t

〈
DΓ(ζ),OtDh

(
δO(ζ) + (δ − 1)Oe1

|δO(ζ) + (δ − 1)Oe1|

)〉
|δ ζ + (δ − 1) e1|

p−1 dζ dt

− n |u(y)|p δp
∫ 1

0
tn−1

∫
|ζ|≤t

〈
DΓ(ζ),OtDh

(
O(ζ) + Oe1

|O(ζ) + Oe1|

)〉
|ζ + e1|

p−1 dζ dt

= n |u(y)|p δF(δ),

where

F(δ) =

∫ 1

0
tn−1

∫
|ζ|≤t

〈
DΓ(ζ),OtDh

(
δO(ζ) + (δ − 1)Oe1

|δO(ζ) + (δ − 1)Oe1|

)〉
|δ ζ + (δ − 1) e1|

p−1 dζ dt

− δp−1
∫ 1

0
tn−1

∫
|ζ|≤t

〈
DΓ(ζ),OtDh

(
O(ζ) + Oe1

|O(ζ) + Oe1|

)〉
|ζ + e1|

p−1 dζ dt.

Let us set

F1(δ) =

∫ 1

0
tn−1

∫
|ζ|≤t

〈
DΓ(ζ),OtDh

(
δO(ζ) + (δ − 1)Oe1

|δO(ζ) + (δ − 1)Oe1|

)〉
|δ ζ + (δ − 1) e1|

p−1 dζ dt

=

∫ 1

0
tn−1

∫
|ζ|≤t

〈
DΓ(ζ),OtDh (δO(ζ) + (δ − 1)Oe1)

〉
dζ dt;

and

F2(δ) = δp−1
∫ 1

0
tn−1

∫
|ζ|≤t

〈
DΓ(ζ),OtDh

(
O(ζ) + Oe1

|O(ζ) + Oe1|

)〉
|ζ + e1|

p−1 dζ dt.
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Since ∫ 1

0
tn−1

∫
|ζ|≤t

〈
DΓ(ζ),OtDh (−Oe1)

〉
dζ dt = 0

it follows that

F1(δ) =

∫ 1

0
tn−1

∫
|ζ|≤t

〈
DΓ(ζ),Ot (Dh (δO(ζ) + (δ − 1)Oe1) −Dh (−Oe1))

〉
dζ dt

and so

|F1(δ)| ≤
∫ 1

0
tn−1

∫
|ζ|≤t
|DΓ(ζ)| |Ot (Dh (δO(ζ) + (δ − 1)Oe1) −Dh (−Oe1)) | dζ dt

≤

∫ 1

0
tn−1

∫
|ζ|≤t
|DΓ(ζ)| |Dh (δO(ζ) + (δ − 1)Oe1) −Dh (−Oe1) | dζ dt since O is a rotation.

Since Oe1 is a unit vector and h ∈ C2 (Rn
\ {0}), it follows that h is C2 in a small neighborhood

of Sn−1 and we can then write for δ small (and |ζ| ≤ 1)

W := Dh (δO(ζ) + (δ − 1)Oe1)−Dh (−Oe1) =

∫ 1

0
D2h (−Oe1 + sδ(Oζ + Oe1)) δ (Oζ + Oe1) ds.

Since |ζ| ≤ 1 we then get the bound |W| ≤ C δ, and inserting this estimate in the definition

of F1 we obtain |F1(δ)| ≤ C δ. In addition, since Dh is continuous, it is bounded in Sn−1

and so |F2(δ)| ≤ C′ δp−1. Therefore, F(δ) → 0 uniformly in y as δ → 0+ when p > 1.

Consequently, there exists δ1 > 0 such that F(δ) ≤
m
4 n

for 0 < δ ≤ δ1 and so

B ≤
m
4
|u(y)|p δ

for 0 < δ ≤ δ1. Combining this with (2.7) and (2.6) yields the inequality

(2.8)
m
4
|u(y)|p δ ≤ A, for 0 < δ < δ̄

with δ̄ = min{δ0, δ1} independent of y -depending only on n, p and h- and with r = δ |u(y)|.
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We next estimate A from above. To do this will use (2.4). From (2.6)

A = −

?
Br(y+rω)

G
(
x − y,u(y)

)
dx ≤

?
Br(y+rω)

(
G

(
y − x,u(x)

)
+ 2 h(x − y)

)
dx

=

?
Br(y+rω)

G
(
y − x,u(x)

)
dx + 2

?
Br(y+rω)

h(x − y) dx

=

?
Br(y+rω)

(
h(y − x − u(x)) − h(y − x) − h(u(x))

)
dx + 2

?
Br(y+rω)

h(x − y) dx

=

?
Br(y+rω)

h(y − x − u(x)) dx −
?

Br(y+rω)
h(u(x)) dx +

?
Br(y+rω)

h(x − y) dx, since h is even

≤

?
Br(y+rω)

h(y − x − u(x)) dx +

?
Br(y+rω)

h(x − y) dx, since h ≥ 0

= A1 + A2.

Let us estimate Ai:

A1 =

?
Br(y+rω)

h
(
|y − x − u(x)|

y − x − u(x)
|y − x − u(x)|

)
dx

=

?
Br(y+rω)

|y − x − u(x)|p h
(

y − x − u(x)
|y − x − u(x)|

)
dx

≤ max
x∈Sn−1

h(x)
?

Br(y+rω)
|y − x − u(x)|p dx

≤M
?

Br(y+rω)
2p−1 (

|y − x|p + |u(x)|p
)

dx

= 2p−1 M
?

Br(y+rω)
|y − x|p dx + 2p−1 M

?
Br(y+rω)

|u(x)|p dx;

A2 =

?
Br(y+rω)

h
(
|x − y|

x − y
|x − y|

)
dx =

?
Br(y+rω)

|x − y|p h
(

x − y
|x − y|

)
dx ≤M

?
Br(y+rω)

|x − y|p dx.

We then obtain

A ≤ 2p−1 M
?

Br(y+rω)
|u(x)|p dx +

(
2p−1 + 1

)
M
?

Br(y+rω)
|x − y|p dx,
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with M = maxx∈Sn−1 h(x). We have?
Br(y+rω)

|x − y|p dx =
1

|Br(0)|

∫
|x−y−rω|≤r

|x − y|p dx

=
1

|Br(0)|

∫
|z|≤1
|r(z + ω)|p rn dz with rz = x − y − rω

= rp
?

B1(0)
|z + ω|p dz ≤ 2p rp.

Let us now fix a ball BR(x0), and suppose y ∈ BβR(x0) with 0 < β < 1, R > 0. Then

Br(y + rω) ⊂ BR(x0) for r ≤
1 − β

2
R and so?

Br(y+rω)
|u(x)|p dx ≤

1
|Br(0)|

∫
BR(x0)

|u(x)|p dx.

Combining these estimates with the lower bound (2.8) and the upper bound for A we

obtain
m
4
|u(y)|p δ ≤

M1

rn

∫
BR(x0)

|u(x)|p dx + M2 rp, for 0 < δ < δ̄

with δ̄ structural constant independent of y and with r = δ |u(y)|, for y ∈ BβR(x0) and

r ≤ (1 − β)R/2; M1 = 2p−1M/ωn, M2 = 2p(2p−1 + 1)M. Therefore, if y ∈ BβR(x0), 0 < r ≤

(1 − β)R/2, and δ =
r
|u(y)|

< δ̄, then we obtain the bound

(2.9) |u(y)|p−1
≤

C1

rn+1

∫
BR(x0)

|u(x)|p dx + C2 rp−1 := H(r),

with Ci constants depending only on p,n, and M/m; C1 =
2p+1

ωn
(M/m), C2 = 2p+2(2p−1 +

1)(M/m). On the other hand, if y ∈ BβR(x0), 0 < r ≤ (1 − β)R/2, and δ =
r
|u(y)|

≥ δ̄, then

|u(y)| ≤
r
δ̄
≤

1 − β
2 δ̄

R.

So for any y ∈ BβR(x0) and any 0 < r ≤ (1 − β)R/2 we obtain

|u(y)| ≤ max
{
H(r)1/(p−1),

r
δ̄

}
.

Since the constant C2 in the definition of H(r) can be enlarged with the last estimate

remaining to hold, we can take C2 so that C2 ≥ 1/δ̄p−1 and in this way H(r)1/(p−1)
≥

r
δ̄

, and

so max
{
H(r)1/(p−1),

r
δ̄

}
= H(r)1/(p−1). Therefore we obtain the estimate

(2.10) sup
y∈BβR(x0)

|u(y)| ≤ min
0<r≤(1−β)R/2

H(r)1/(p−1).
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Set

∆ =

∫
BR(x0)

|u(x)|p dx,

so H(r) = C1 ∆ r−(n+1) + C2 rp−1. The minimum of H over (0,∞) is attained at

r0 =

(
(n + 1) C1 ∆

(p − 1) C2

)1/(n+p)

,

H is decreasing in (0, r0) and increasing in (r0,∞), and

min
[0,∞)

H(r) = H(r0) =

(n + 1
p − 1

)−(n+1)/(n+p)

+

(
n + 1
p − 1

)(p−1)/(n+p) (C1 ∆)(p−1)/(n+p) C(n+1)/(n+p)
2 .

If r0 < (1 − β)R/2, then min0<r≤(1−β)R/2 H(r) = H(r0). On the other hand, if r0 ≥ (1 − β)R/2,

that is, ∆ ≥

(
1 − β

2
R
)n+p (p − 1) C2

(n + 1) C1
:= ∆0, then we have

min
0<r<(1−β)R/2

H(r) = H
(

1 − β
2

R
)

= C1 ∆

(
1 − β

2
R
)−(n+1)

+ C2

(
1 − β

2
R
)p−1

= C1 ∆

(
1 − β

2
R
)−(n+1)

+ C2 ∆
1
∆

(
1 − β

2
R
)p−1

≤ C1 ∆

(
1 − β

2
R
)−(n+1)

+
n + 1
p − 1

C1 ∆

(
1 − β

2
R
)−(n+1)

= C1
p + n
p − 1

(
1 − β

2
R
)−(n+1)

∆ := K2 R−(n+1) ∆.

We then obtain the following estimate valid for all 0 < β < 1

(2.11) sup
y∈BβR(x0)

|u(y)|p−1
≤


K1 ∆(p−1)/(n+p) if ∆ ≤ ∆0

K2 R−(n+1) ∆ if ∆ ≥ ∆0,

with K1 =

(n + 1
p − 1

)−(n+1)/(n+p)

+

(
n + 1
p − 1

)(p−1)/(n+p) C(p−1)/(n+p)
1 C(n+1)/(n+p)

2 , K2 = C1
p + n
p − 1

(
1 − β

2

)−(n+1)

,

and ∆ =
∫

BR(x0) |u(x)|p dx.

This completes the proof of the theorem. �

Remark 2.2. Suppose x0 ∈ Rn, lim
R→0+

1
Rp

?
BR(x0)

|u(x)|p dx = 0 and x0 is a Lebesgue point of

|u(x)|p. Then (2.5) implies that u(x) is Lipschitz at x0. In fact, first notice that since x0 is
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a Lebesgue point, the condition on the limit implies u(x0) = 0. Now, pick for example

β = 1/2. Then there exists R0 > 0 such that

1
Rp

?
BR(x0)

|u(x)|p dx ≤
(1
4

)n+p (p − 1) C2

(n + 1) C1ωn
, for 0 < R < R0

and so supBR/2(x0) |u(x)| ≤ C0 R from (2.5) for 0 < R < R0, with C0 a positive con-

stant depending only on n, p and h. If y ∈ BR0/2(x0) and R = 2 |y − x0|, then |u(y)| ≤

supB|y−x0 |(x0) |u(x)| ≤ 2 C0 |y − x0|. In particular, this implies |Ty − Tx0| ≤ C |y − x0| for

y ∈ BR0/2(x0).

3. Estimates for the displacement interpolating map

In order to prove the desired estimates we first give a condition equivalent to (2.2)

resembling the classical notion of monotone map. We will assume for this that h ∈ C2(Rn).

In fact, from (2.2) we can write

0 ≤ h(y − Tx) − h(y − Ty) −
(
h(x − Tx) − h(x − Ty)

)
=

∫ 1

0
〈Dh(y − Ty + s(Ty − Tx)),Ty − Tx〉ds −

∫ 1

0
〈Dh(x − Ty + s(Ty − Tx)),Ty − Tx〉ds

=

∫ 1

0
〈Dh(y − Ty + s(Ty − Tx)) −Dh((x − Ty + s(Ty − Tx)),Ty − Tx〉ds

=

∫ 1

0

∫ 1

0
〈D2h(x − Ty + s(Ty − Tx) + t(y − x))(y − x), (Ty − Tx)〉dt ds

= 〈A(x, y)(x − y),Tx − Ty〉.

Therefore (2.2) is equivalent to

(3.1) 〈A(x, y)(x − y),Tx − Ty〉 ≥ 0

with

(3.2) A(x, y) =

∫ 1

0

∫ 1

0
D2h(x − Ty + s(Ty − Tx) + t(y − x))dt ds.

Let us analyze the matrix A(x, y). A(x, y) is clearly symmetric, and satisfies A(x, y) = A(y, x)

by changing variables in the integral. If h is homogenous of degree p > 1 and h ∈ C2(Rn),

then p ≥ 2, and D2h(z) is homogeneous of degree p − 2, i.e., D2h(µ z) = µp−2D2h(z) for all
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µ > 0. In addition, if h is strictly convex, then D2h(x) is positive definite for each x ∈ Sn−1,

i.e, there is a constant λ > 0 such that〈
D2h(x) ξ, ξ

〉
≥ λ |ξ|2

for all x ∈ Sn−1 and all ξ ∈ Rn. Since h is C2, then there is also a positive constant Λ such

that

(3.3) λ |ξ|2 ≤
〈
D2h(x)ξ, ξ

〉
≤ Λ |ξ|2, ∀x ∈ Sn−1, ξ ∈ Rn.

We then have

A(x, y) =

∫ 1

0

∫ 1

0
|x−Ty+ s(Ty−Tx)+ t(y−x)|p−2D2h

(
x − Ty + s(Ty − Tx) + t(y − x)
|x − Ty + s(Ty − Tx) + t(y − x)|

)
dt ds

and

(3.4) λΦ(x, y) |ξ|2 ≤
〈
A(x, y) ξ, ξ

〉
≤ Λ Φ(x, y) |ξ|2 ∀ξ ∈ Rn,

with

(3.5) Φ(x, y) =

∫ 1

0

∫ 1

0
|x − Ty + s(Ty − Tx) + t(y − x)|p−2dt ds.

We also have that Φ(x, y) = 0 if and only if x−Ty+s(Ty−Tx)+t(y−x) = 0 for all s, t ∈ [0, 1].

That is, Φ(x, y) = 0 if and only if x−Ty = 0, Ty−Tx = 0 and y−x = 0. Therefore Φ(x, y) > 0

if and only if Ty , x or Ty , Tx or y , x.

Remark 3.1. If c(x, y) = |x−y|p, then∇xyc(x, y) = −p |x−y|p−2

(
Id + (p − 2)

(
x − y
|x − y|

⊗
x − y
|x − y|

))
and from the Sherman-Morrison formula it follows that det∇xyc(x, y) = (p−1)

(
−p |x − y|p−2

)n
.

So condition [OPRdf, (C4)] does not hold for p , 2.

Remark 3.2. To illustrate the notion of h-monotonicity, suppose T satisfies (3.1) and is C1.

Then writing y = x + δω with |ω| = 1 yields

A(x, x + δω) =

"
[0,1]2

D2h (x − T(x + δω) + s(T(x + δω) − Tx) + t δω) dt ds→ D2h (x − Tx)

as δ→ 0 and

〈A(x, x + δω)(−δω),Tx − T(x + δω)〉 ≥ 0.

Dividing the last expression by δ2 and letting δ→ 0 we obtain〈
D2h (x − Tx)ω,

∂T
∂x

(x)ω
〉
≥ 0,
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where
∂T
∂x

is the Jacobian matrix of T evaluated at x. Since h is C2, the matrix D2h is

symmetric and we get 〈
ω,D2h (x − Tx)

∂T
∂x

(x)ω
〉
≥ 0

for each unit vectorω. Therefore, if T is h-monotone and C1, the matrix D2h (x − Tx)
∂T
∂x

(x)

is positive semidefinite for each x; notice that
∂T
∂x

(x) is not necessarily symmetric. In

particular, when n = 1, T is h-monotone if and only if T is non decreasing.

3.1. L∞-estimates of the interpolating map. Let T be a h-monotone map, i.e., satisfies

(2.2), and consider the interpolating map defined by

(3.6) Ttx = t Tx + (1 − t) x, 0 ≤ t ≤ 1.

Theorem 3.3. Suppose the assumptions of Theorem 2.1 hold. Assume in addition that h is strictly

convex, h ∈ C2(Rn) (and so p ≥ 2). If the integral E =
∫

B1(0) |Tx− x|p dx is sufficiently small, then

given 0 < β < 1 there exists 0 < β < β̄ < 1 depending only on β and the ellipticity constants λ,Λ

in (3.3) such that

(3.7) T−1
t

(
Bβ(0)

)
⊂ Bβ̄(0) for all 0 ≤ t ≤ 1,

that is,
⋃

0≤t≤1 T−1
t

(
Bβ(0)

)
⊂ Bβ̄(0).

Proof. The inclusion is obvious if t = 0. Let x ∈ T−1
t

(
Bβ(0)

)
. If |x| ≤ β, then we are done. Let

β < β0 < 1, consider the ball Bβ0(0), and suppose that |x| ≥ β0. From (2.5) applied in B1(0),

we will show that is not possible if E is sufficiently small, i.e., smaller than
λ

2 Λ
(β0−β). We

have y = Ttx ∈ Bβ(0), and Br(y) ⊂ Bβ0(0) with r = β0 − β. Let [y, x] be the straight segment

between y and x, and let z ∈ ∂Br(y) ∩ [y, x]. So |z − y| = r, and |z| < β0. Applying (3.1) at

x, z yields

0 ≤ 〈A(x, z)(Tz − Tx), z − x〉 = 〈A(x, z)(Tz − z), z − x〉 + 〈A(x, z) (z − Tx) , z − x〉

= 〈A(x, z)(Tz − z), z − x〉 +
〈
A(x, z)

(1
t

(z − y) +
(
1 −

1
t

)
(z − x)

)
, z − x

〉
since Tx =

1
t

y +
(
1 −

1
t

)
x

= 〈A(x, z)(Tz − z), z − x〉 +
1
t

〈
A(x, z)

(
z − y

)
, z − x

〉
+

(
1 −

1
t

)
〈A(x, z) (z − x) , z − x〉

=: ∆.
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Since x , z, it follows from (3.5) that Φ(x, z) > 0. Also notice that
〈
A(z − x), z − y

〉
is

bounded above by a negative quantity, where we have set A = A(x, z). In fact, since z is

on the segment [y, x], the vectors z − x and z − y have opposite directions. That is, there

is µ < 0 such that z − y = µ (z − x) and so |z − y| = −µ |z − x|. Then〈
A(z − x), z − y

〉
= µ 〈A(z − x), z − x〉

≤ λµΦ(x, z) |z − x|2 = λΦ(x, z)µ |z − x| |z − x|, from (3.4)

= −λΦ(x, z) |z − y| |z − x| = −λΦ(x, z) r |z − x|.

If 0 < t ≤ 1, then 1 −
1
t
≤ 0 and once again from (3.4)

0 ≤ ∆ ≤ Λ Φ(x, z) |Tz − z| |z − x| −
1
t
λΦ(x, z) r |z − x| +

(
1 −

1
t

)
λΦ(x, z) |z − x|2.

Dividing this inequality by Λ Φ(x, z) we obtain

0 ≤ |Tz − z| |z − x| −
1
t
λ
Λ

r |z − x| +
(
1 −

1
t

)
λ
Λ
|z − x|2

= |z − x|
(
|Tz − z| −

1
t
λ
Λ

r +
(
1 −

1
t

)
λ
Λ
|z − x|

)
≤ |z − x|

(
ε −

1
t
λ
Λ

r +
(
1 −

1
t

)
λ
Λ
|z − x|

)
if |Tz − z| ≤ ε from (2.5) for E small

≤ |z − x|
(
−

1
t
λ

2 Λ
r +

(
1 −

1
t

)
λ
Λ
|z − x|

)
if ε ≤

λ
2Λ

r
(
≤

λ
t 2 Λ

r
)

≤ |z − x|
(
−

1
t
λ

2 Λ
r
)

since 1 −
1
t
≤ 0.

Hence |z − x| = 0, and therefore z = x obtaining |x| < β0, a contradiction. �

We now use this to obtain an estimate for T−1x − x, when T is the optimal map for the

cost c(x, y) = h(x − y). We have from the theory of optimal transport that T−1(Tx) = x for

a.e. x ∈ Rn. Then given 0 < β < 1 we obtain

sup
y∈Bβ(0)

|T−1y − y| = sup
T−1(Bβ(0))

|x − Tx|

≤ sup
Bβ̄(0))

|x − Tx| from (3.7) with t = 1

≤ C
(∫

B1(0)
|Tx − x|p dx

)1/(n+p)

from (2.5)

for E sufficiently small and with C a constant depending only on p,n and the structural

constants of h.



L∞-ESTIMATES FOR NON QUADRATIC COSTS, December 7, 2022 17

3.2. L∞-estimates of densities. We recall that the function F(A) = log (det A) is concave

over the set of matrices A that are positive definite, i.e.,

F ((1 − t) A + t B) ≥ (1 − t) F(A) + t F(B), 0 ≤ t ≤ 1.

Exponentiating this yields

(3.8) det ((1 − t) A + t B) ≥ (det A)1−t (det B)t , 0 ≤ t ≤ 1.

Let T be a measure preserving map (ρ0, ρ1), and let Tt = t T + (1− t) Id be the interpolating

map. Assuming the Jacobian matrix ∇T is positive definite2, we get from (3.8) that

(3.9) det (∇Tt) (x) ≥ (det∇T(x))t .

Let ρt be the measure defined by ρt = (Tt)# ρ0, that is, ρt(E) =
∫

(Tt)−1(E) ρ0(x) dx. Assuming

invertibility of the matrices involved, changing variables yields∫
(Tt)−1(E)

ρ0(x) dx =

∫
E
ρ0

(
(Tt)−1 z

) 1

det
(
(∇Tt)

(
(Tt)−1 z

)) dz.

That is, the measure ρt has density

ρ(t, z) = ρ0

(
(Tt)−1 z

) 1

det
(
(∇Tt)

(
(Tt)−1 z

))(3.10)

≤ ρ0

(
(Tt)−1 z

) 1(
det

(
(∇T)

(
(Tt)−1 z

)))t

from (3.9). On the other hand, since T is measure preserving

ρ0(x) = det (∇T(x)) ρ1(Tx)

which combined with the previous inequality yields

ρ(t, z) ≤ ρ0

(
(Tt)−1 z

) ρ1

(
T (Tt)−1 z

)
ρ0

(
(Tt)−1 z

) 
t

= ρ0

(
(Tt)−1 z

)1−t
ρ1

(
T (Tt)−1 z

)t
.

From (2.5), T(Br1(0)) ⊂ Br2(0) for 0 < r1 < r2 < 1, when E =
∫

B1(0) |Tx − x|p dx is sufficiently

small. And, from (3.7), T−1
t

(
Bβ(0)

)
⊂ Bβ̄(0) for some 0 < β < β̄ < 1 uniform for 0 ≤ t ≤ 1.

2A proof of this may be given along the lines of [Agu02, Section 5.2, Theorem 5.2.1] and [GvN07, Remark

2.9], see also [San15, Theorem 7.28, pp. 272-273] when the differentiability of c, c∗ at zero is not assumed.

Notice also that if h is homogenous of degree p, then h∗ is homogenous of degree q with 1/p + 1/q = 1.



18 C. E. GUTIÉRREZ AND A. MONTANARI

Hence T (Tt)−1
(
Bβ(0)

)
⊂ Bβ′′(0) for some 0 < β < β̄ < β′′ < 1. Therefore, assuming that

ρ0(0) = ρ1(0) = 1 and ρ0, ρ1 are Hölder continuous of order α, we obtain

ρ0

(
(Tt)−1 z

)
= 1 + ρ0

(
(Tt)−1 z

)
− 1 ≤ 1 + [ρ0]α,1

and

ρ1

(
T (Tt)−1 z

)
= 1 + ρ1

(
T (Tt)−1 z

)
− 1 ≤ 1 + [ρ1]α,1

for all z ∈ Bβ(0). Consequently

sup
z∈Bβ(0)

ρ(t, z) ≤
(
1 + [ρ0]α,1

)1−t (
1 + [ρ1]α,1

)t ;

where [ρi]α,1 = supx,y∈B1(0),x,y
|ρi(x) − ρi(y)|
|x − y|α

.

3.3. Connection with fluids. The connection between the Monge problem and fluid flows

was discovered in [BB00] for quadratic costs. It can be seen that this connection also for

general cost functions h(x − y) as above, see [G21, Remark 11.2]. Suppose ρi, i = 1, 2 are

given, v : Rn
× [0, 1] → Rn is a smooth field, and let ρ(x, t) be a smooth solution of the

continuity equation

∂tρ + divx
(
ρ v

)
= 0 for (x, t) ∈ Rn

× [0, 1] with ρ(x, i) = ρi(x), i = 0, 1.

Let T be the optimal map of the Monge problem with cost h. Given the interpolating map

Ttx = t Tx + (1 − t) x, 0 ≤ t ≤ 1, consider the field

v(x, t) = (T − Id)
(
T−1

t x
)
,

and let ρ(x, t) be solution to the continuity equation above with this v. Define

(3.11) j(x, t) = ρ(x, t) (T − Id)
(
T−1

t x
)
.
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Then∫ 1

0

∫
Bβ

1
ρ(x, t)p−1

| j(x, t)|p dxdt =

∫ 1

0

∫
Bβ

∣∣∣∣(T − Id)
(
T−1

t x
)∣∣∣∣p ρ(x, t) dxdt

=

∫ 1

0

∫
T−1

t (Bβ)
|Tz − z|p ρ(Ttz, t) |det∇Ttz| dzdt

=

∫ 1

0

∫
T−1

t (Bβ)
|Tz − z|p ρ0(z) dzdt from (3.10)

≤

∫ 1

0

∫
Bβ′
|Tz − z|p ρ0(z) dzdt from (3.7) for β < β′ < 1

assuming E =
∫

B1(0) |Tx− x|p dx is sufficiently small. Here we have assumed that ρ0(0) = 1

and ρ0 ≈ 1 in B1.

On the other hand, if β′′ < β it follows from (2.5) that

sup
|x|≤β′′

|Ttx| ≤ β′′ + sup
|x|≤β′′

|Tx − x| ≤ β′′ + Epower>0 < β,

for E sufficiently small and therefore∫ 1

0

∫
Bβ′′
|Tz − z|p ρ0(z) dzdt ≤

∫ 1

0

∫
Bβ

1
ρ(x, t)p−1

| j(x, t)|p dxdt ≤
∫ 1

0

∫
Bβ′
|Tz − z|p ρ0(z) dzdt,

for j in (3.11).

4. Differentiability ofMonotone maps

In this section, we prove that monotone maps in the standard sense that are locally

integrable are strongly differentiable a.e., Theorem 4.5. To do this, the idea used to prove

Theorem 2.1, when the map is standard monotone, can be implemented in a simpler way

to obtain in the following lemma estimates for T minus a general affine function. These

estimates coupled together with Stepanov’s differentiability Theorem yield Lemma 4.4.

Then [ACDM97, Theorem 7.4], concerning weak differentiability of functions of bounded

deformation, will yield the desired strong differentiability.

Lemma 4.1. Let A ∈ Rn×n, b ∈ Rn, T a monotone operator, 0 < β < 1, and u(x) = Tx − Ax − b.

Then there are positive constants C1,C2 depending only on the dimension n such that
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(a) for A , 0 we have supy∈BβR(x0) |u(y)| ≤ C1 (‖A‖R)n/(n+1)
(>

BR(x0) |u(x)| dx
)1/(n+1)

if

1
R

>
BR(x0) |u(x)| dx ≤ C2 ‖A‖

(
1 − β

2

)n+1

; and

sup
y∈BβR(x0)

|u(y)| ≤ C1

((
2

1 − β

)n ?
BR(x0)

|u(x)| dx + (1 − β) R ‖A‖
)

if
1
R

?
BR(x0)

|u(x)| dx ≥ C2 ‖A‖
(

1 − β
2

)n+1

.

(b) if A = 0, then

sup
y∈BβR(x0)

|u(y)| ≤ C1

(
2

1 − β

)n ?
BR(x0)

|u(x)| dx.

Proof. By monotonicity of T,

(4.12) (u(x) − u(y)) · (x − y) ≥ −〈A(x − y), x − y〉, for a.e. x, y,

which implies

f (x) := u(y) · (x − y) ≤ u(x) · (x − y) + 〈A(x − y), x − y〉.

Let r > 0 and zr ∈ Rn both to be determined, and consider the ball Br(zr). The function f

is harmonic in all space so integrating the last inequality for x over Br(zr) and applying

the mean value theorem yields

u(y) · (zr − y) ≤
?

Br(zr)
u(x) · (x − y) dx +

?
Br(zr)
〈A(x − y), x − y〉 dx

≤

?
Br(zr)
|u(x)| |x − y| dx + ‖A‖

?
Br(zr)
|x − y|2 dx

= B + C.

Fix x0, R > 0, and pick r > 0, zr = y + r
u(y)
|u(y)|

such that Br(zr) ⊂ BR(x0); u(y) , 0. If

y ∈ BβR(x0), then the inclusion holds if r < (1 − β) R/2. Also, if x ∈ Br(zr), then |x − y| ≤ 2r.

Hence

B ≤
2 r
ωn rn

∫
BR(x0)

|u(x)| dx, C ≤ 4 ‖A‖ r2,

and consequently

|u(y)| ≤
2

ωn rn

∫
BR(x0)

|u(x)| dx + 4 ‖A‖ r := F(r) ∀y ∈ BβR(x0); r ≤ (1 − β) R/2.
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We then obtain

sup
y∈BβR(x0)

|u(y)| ≤ min
{
F(r) : 0 < r ≤ (1 − β) R/2

}
:= m.

Suppose A , 0. Set ∆ =
2
ωn

∫
BR(x0) |u(x)| dx, so F(r) =

1
rn ∆ + 4 ‖A‖ r. We have F′(r) =

−n r−(n+1)∆ + 4 ‖A‖ = 0 for r = r0 :=
( n ∆

4 ‖A‖

)1/(n+1)
. So

min{F(r) : 0 < r < +∞} = F(r0)

=
(4‖A‖

n ∆

)n/(n+1)
∆ + 4 ‖A‖

( n ∆

4‖A‖

)1/(n+1)

= Cn ‖A‖n/(n+1)
(∫

BR(x0)
|u(x)| dx

)1/(n+1)

.

If r0 <
1 − β

2
R, then m ≤ F(r0) and we obtain

(4.13) sup
y∈BβR(x0)

|u(y)| ≤ Cn (‖A‖R)n/(n+1)
(?

BR(x0)
|u(x)| dx

)1/(n+1)

when Cn
1
‖A‖R

>
BR(x0) |u(x)| dx ≤

(
1 − β

2

)n+1

; in such a case we get

sup
y∈BβR(x0)

|u(y)| ≤ Cn (1 − β) ‖A‖R.

On the other hand, if
1 − β

2
R ≤ r0, then m = F

(
1 − β

2
R
)

and we get

sup
y∈BβR(x0)

|u(y)| ≤ Cn

(
2

1 − β

)n ?
BR(x0)

|u(x)| dx + Cn (1 − β) R ‖A‖

when Cn
1
‖A‖R

>
BR(x0) |u(x)| dx ≥

(
1 − β

2

)n+1

.

If A = 0, then F(r) =
1
rn ∆ is decreasing and so

sup
y∈BβR(x0)

|u(y)| ≤ m = Cn

(
2

1 − β

)n ?
BR(x0)

|u(x)| dx.

�

Using part (b) of this lemma we will show strong differentiability of monotone maps.

Following Calderón and Zygmund [CZ61], see also [Zi89, Sect. 3.5], we recall the notion

of differentiability in Lp-sense.
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Definition 4.2. Let 1 ≤ p ≤ ∞, k is a positive integer and f ∈ Lp(Ω), with Ω ⊂ Rn open,

and let x0 ∈ Ω. We say that f ∈ Tk,p(x0)
(

f ∈ tk,p(x0)
)

if there exists a polynomial Px0 of degree

≤ k − 1
(
Px0 of degree ≤ k

)
such that(?

Br(x0)
| f (x) − Px0(x)|p dx

)1/p

= O(rk) as r→ 0(?
Br(x0)

| f (x) − Px0(x)|p dx
)1/p

= o(rk) as r→ 0

 ;

when p = ∞ the averages are replaced by ess supx∈Br(x0)| f (x) − Px0(x)| = ‖ f − Px0‖L∞(Br(x0)).

We mention the following landmark result of Calderón and Zygmund [CZ61, Thm. 5],

see also [Zi89, Thm. 3.8.1] or [St70, Chap. VIII, Sect. 6.1]:

Theorem 4.3. If 1 < p ≤ ∞ and f ∈ Tk,p(x0) for all x0 ∈ E with E ⊂ Rn measurable, then

f ∈ tk,p(x0) for almost all x0 ∈ E; emphasizing that the orders of magnitude are not necessarily

uniform in x0
3.

The case when p = ∞ is a famous theorem of Stepanov which combined with Lemma

4.1(b) yields immediately the following point-wise differentiability of monotone maps.

Lemma 4.4. Let T be a monotone map that is in L1
loc (Rn) 4 satisfying

(4.14)
?

BR(x0)
|Tx − b| dx = O (R) as R→ 0

for some vector b = bx0 , i.e, Tx ∈ T1,1(x0) for all x0 in a measurable set E. Then

‖Tx − A(x − x0) − Tx0‖L∞(BR(x0)) = o (R) as R→ 0

for almost all x0 ∈ E and some A = Ax0 ∈ R
n×n, i.e., Tx ∈ t1,∞(x0) for a.e. x0 ∈ E.

3Whether this result holds when p = 1 does not seem available in the literature.
4In general, T is a multivalued map. However, the monotonicity implies that Tx is a singleton for a.e.

x ∈ Rn. Denote dom T = {x ∈ Rn : Tx , ∅}. From [RW98, Corollary 12.38], a maximal monotone mapping T

is locally bounded at x̄ if and only if x̄ is not a boundary point of dom T. Also from [RW98, Thm. 12.63], if T

is maximal monotone, then T is continuous at x̄ if and only if T is single valued at x̄, in which case necessarily

x̄ ∈ int (dom T). For a clear and in depth presentation of the properties of monotone maps we recommend

the comprehensive book [RW98].
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Proof. For each x0 ∈ E there exist constants M(x0) ≥ 0, R0 > 0 and b ∈ Rn such that

?
BR(x0)

|Tx − b| dx ≤M(x0) R

for all 0 < R < R0, i.e., Tx ∈ T1,1(x0). Since T is monotone, from Lemma 4.1(b)

sup
BβR(x0)

|Tx − b| ≤ C(n, β)
?

BR(x0)
|Tx − b| dx ≤ C(n, β) M(x0) R

for 0 < R < R0. This means supBR(x0) |Tx − b| = O(R) as R → 0 for all x0 ∈ E, i.e.,

Tx ∈ T1,∞(x0). By Stepanov’s theorem [St70, Chap. VIII, Thm. 3, p. 250] this implies that

Tx is differentiable for a.e. x0 ∈ E, i.e., Tx ∈ t1,∞(x0) for a.e. x0 ∈ E.

�

Following [ACDM97], a locally integrable mapping u : Rn
→ Rn is of bounded defor-

mation (u ∈ BD) if the symmetrized gradient ∇u + (∇u)t in the sense of distributions is a

matrix-valued Radon measure. For further information about bounded deformation see

[T83, Chapter II, Sects. 2 and 3]. Using this notion and Lemma 4.4 we shall prove the

following theorem.

Theorem 4.5. If T is a monotone map in L1
loc(Rn), then T is strongly differentiable a.e., that is,

T ∈ t1,∞(x0) for a.e. x0 ∈ Rn.

Proof. We first show that if T = (T1, · · · ,Tn) ∈ L1
loc(Rn) is a monotone map, then the

definitions of monotonicity and distributional derivative imply that T ∈ BD. In fact, the

symmetrized gradient of T is the matrix ai j =
1
2

(
∂Ti

∂x j
+
∂T j

∂xi

)
in the sense of distributions,

and we claim ai j is positive semidefinite in the sense of distributions. Let φ ∈ C∞0 (Rn),
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φ ≥ 0, and let ξ be a unit vector. Then

∑
i, j

ai j

(
φ
)
ξi ξ j = (−1)

1
2

∫
Rn

∑
i, j

(
Ti(x)

∂φ

∂x j
(x) + T j(x)

∂φ

∂xi
(x)

)
ξi ξ j dx

= (−1)
∫
Rn

∑
i, j

Ti(x)
∂φ

∂x j
(x) ξi ξ j dx = (−1)

∫
Rn

n∑
i=1

Ti(x) ∂ξφ(x) ξi dx

= (−1)
∫
Rn

n∑
i=1

Ti(x)
(
lim
h→0

φ(x + h ξ) − φ(x)
h

)
ξi dx

= (−1) lim
h→0

∫
Rn

n∑
i=1

Ti(x)
(
φ(x + h ξ) − φ(x)

h

)
ξi dx since Ti ∈ L1

loc and φ ∈ C∞0

= (−1)
∫
Rn

n∑
i=1

Ti(x)
(
lim
h→0

φ(x + h ξ) − φ(x)
h

)
ξi dx

= (−1) lim
h→0

1
h

∫
Rn

n∑
i=1

(Ti(z − h ξ) − Ti(z)) ξi φ(z) dz

= lim
h→0

1
h2

∫
Rn

(T(z − h ξ) − T(z)) · (−h ξ) φ(z) dz ≥ 0

which proves the claim. Invoking now a matrix-valued version of [LH90, Theorem 2.1.7],

we get that the distribution ai j can be represented with a matrix-valued Radon measure,

and therefore T ∈ BD.

Next, from [ACDM97, Theorem 7.4], if T ∈ BD, then T ∈ t1,1(x0) for a.e. x0 ∈ Rn, that is,>
BR(x0) |Tx−Ax− b| dx = o (R). This implies that T satisfies (4.14) because if x0 is a Lebesgue

point, then b = Tx0 − Ax0 and?
BR(x0)

|Tx − c| dx =

?
BR(x0)

|Tx − Ax − b + Ax + b − c| dx

≤

?
BR(x0)

|Tx − Ax − b| dx +

?
BR(x0)

|Ax + b − c| dx

= o(R) +

?
BR(x0)

|A(x − x0)| dx, if c = Tx0

≤ o(R) + ‖A‖R = O(R).

The conclusion then follows from Lemma 4.4.

�
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Remark 4.6. When T is a monotone map that is maximal, the differentiability of T a.e. was

proved by Mignot [Mig76, Thm. 3.1] using Sard’s Theorem; see also the more recent and

perhaps simpler proof of Alberti and Ambrosio [AA99, Thm. 3.2]. When T is monotone

and bounded the differentiability is proved in [Kry83, Thm. 2.2].

Remark 4.7. If φ is a convex function in Rn, then from [EG92, Thm. 3, p. 240] ∇φ ∈

BVloc(Rn). Therefore, from [EG92, Thm. 1, p. 228] ∇φ is Ln/(n−1)-differentiable a.e., that

is, ∇φ ∈ t1,n/(n−1)(x) a.e. This implies that ∇φ satisfies (4.14) and so from Lemma 4.4

∇φ ∈ t1,∞(x) a.e.

Remark 4.8. For completeness we also prove the following known fact: if f ∈ Lp
loc(Rn),

with p ≥ 1, then

lim
r→0

(?
Br(x0)

| f (x) − f (x0)|p dx
)1/p

= 0 for a.e. x0.

Define

Λ f (x0) = lim sup
r→0

(?
Br(x0)

| f (x) − f (x0)|p dx
)1/p

.

We have 0 ≤ Λ f (x0) ≤ lim supr→0

(>
Br(x0) | f (x)|p dx

)1/p
+ | f (x0)| ≤

(
M(| f |p)(x0)

)1/p + | f (x0)|

with M the Hardy-Littlewood maximal function. Since f ∈ Lp
loc(Rn), the right hand side

of the last inequality is finite for a.e. x0 and so Λ f (x0) is finite for a.e. x0. In addition, Λ

is sub-linear: Λ( f + g)(x0) ≤ Λ f (x0) + Λg(x0) and Λg(x0) = 0 for each g continuous at x0.

By localizing f with a compact support function we may assume f ∈ Lp(Rn). Given ε > 0

there exists g ∈ C(Rn) such that ‖ f − g‖p ≤ ε. For each α > 0 we then have

{x : Λ f (x) > α} ⊂ {x : Λ( f − g)(x) > α/2} ∪ {x : Λg(x) > α/2} = {x : Λ( f − g)(x) > α/2}

⊂ {x :
(
M(| f − g|p)(x)

)1/p > α/4} ∪ {x : | f (x) − g(x)| > α/4}

and so

|{x : Λ f (x) > α}| ≤ |{x : M(| f − g|p)(x) > (α/4)p
}| + |{x : | f (x) − g(x)| > α/4}|

≤
Cn

αp ‖ f − g‖pp +
4p

αp ‖ f − g‖pp ≤
C
αp ε

p.

Since ε is arbitrary, we obtain Λ f (x) = 0 for a.e. x.
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5. Appendix

Recall that Γ(x) =
1

nωn(2 − n)
|x|2−n, with n > 2 where ωn is the volume of the unit ball

in Rn. If Ω = Bρ(y) and ν is the outer unit normal, then
∂Γ
∂ν

(x − y) =
1

nωn
|x − y|1−n, for

x , y. If v ∈ C1(Rn), then by the divergence theorem and since Γ(x − y) is harmonic for

x , y it follows that∫
|x−y|≤ρ

〈DΓ(x − y),Dv(x)〉 dx = lim
ε→0+

∫
ε≤|x−y|≤ρ

divx
(
v(x) DΓ(x − y)

)
dx

= lim
ε→0+

(∫
|x−y|=ρ

v(x)
∂Γ
∂ν

(x − y) dσ(x) −
∫
|x−y|=ε

v(x)
∂Γ
∂ν

(x − y) dσ(x)
)

= lim
ε→0+

1
nωn

(
ρ1−n

∫
|x−y|=ρ

v(x) dσ(x) − ε1−n
∫
|x−y|=ε

v(x) dσ(x)
)

=

?
|x−y|=ρ

v(x) dσ(x) − v(y).

Multiplying the last identity by ρn−1 and integrating over 0 ≤ ρ ≤ r yields

(5.1) v(y) =

?
|x−y|≤r

v(x) dx −
n
rn

∫ r

0
ρn−1

∫
|x−y|≤ρ

〈DΓ(x − y),Dv(x)〉 dx dρ.
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