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Abstract

The buoyancy–induced parallel flow in a vertical cylindrical porous layer with annular cross–section

is analysed. A radial thermal gradient caused by a uniformly distributed heat source is assumed

to induce the buoyant flow. The layer boundaries are modelled as isothermal and permeable

to an external fluid reservoir. The onset of the convective instability is analysed by linearising

the governing equations for the perturbations. The governing parameters driving the instability

are the heat–source Rayleigh number and the ratio between the internal radius and the external

radius. Neutral stability curves and the critical values of the Rayleigh number, the perturbation

wave number and the angular frequency are computed numerically. It is shown that axisymmetric

modes form the most dangerous type of instability.

Keywords: Porous medium, Linear stability, Natural Convection, Normal modes, Internal

heating, Cylindrical layer, Vertical buoyant flow
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a dimensionless parameter, equation (6)

êz unit vector along the z axis
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F (r) function, equation (7)

fn, hn eigenfunctions, equation (15)

g modulus of g

g gravitational acceleration

H complex parameter, equation (17)

k wave number, equation (15)

K permeability

Lφ dimensionless arc length of a cell

n integer

p difference between the pressure and the hydrostatic pressure

P pressure perturbation, equation (11)

Pn Fourier coefficient, equation (13)

q̇ power per unit volume of the internal heat source

r radial coordinate

r1, r2 internal, external radius

R Rayleigh number, equation (3)

R̂, k̂, Ω̂ modified parameters, equation (19)

t time

T temperature

T̄ average temperature

Ts boundary temperature

u velocity

u, v, w r, φ, z velocity components

w̄b average vertical velocity in the basic flow

z vertical axial coordinate

Greek Symbols

α average thermal diffusivity

β thermal expansion coefficient of the fluid

γ aspect ratio, equation (6)

ε perturbation parameter, equation (11)

η complex growth rate, equation (15)

θ temperature perturbation, equation (11)

θn Fourier coefficient, equation (13)

λ average thermal conductivity

µ dynamic viscosity
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ξ real part of η

ρ reference fluid density

σ heat capacity ratio

φ angular coordinate

ψ perturbation streamfunction

ω imaginary part of −η
Ω real parameter, equation (18)

Superscripts, subscripts

b basic solution, equation (7)

c critical values

1. Introduction

The onset of thermal instability in a fluid–saturated porous medium has a widespread interest

in the heat transfer community, as may be inferred from the quite abundant literature on this

topic; see Nield and Bejan [1]. There are several areas of engineering and physics within which

such investigations are applied. We just mention the analysis of contaminant diffusion in the soil,

the extraction of hydrocarbons, the CO2 sequestration processes, and the use of metal foams for

the optimised design of heat exchangers. If most of the studies published in the last decades are

focussed on the thermal instability of the Rayleigh–Bénard type, where the fluid is initially at

rest while experiencing a purely conductive heat transfer, there are other analyses devoted to side

heating conditions or internal heating conditions in vertical porous layers, where a stationary and

parallel buoyant flow may give rise to a multi–cellular instability pattern. A survey of the latter

type of instability may be found in Chapter 7 of Nield and Bejan [1]. Recent important results

have been discussed by several authors [2–8]. In particular, Barletta and Celli [6] proved that

the parallel buoyant flow in a plane vertical porous layer with a uniform internal heat source may

become unstable even in the absence of a temperature difference between the boundaries.

The aim of this paper is to develop and extend the stability analysis presented in Barletta and

Celli [6] by investigating the effect of curvature when a vertical annular porous layer is considered

instead of a plane vertical layer. The plane layer behaviour of Barletta and Celli [6] is then found

as a limiting case where the aspect ratio between the internal radius and the external radius of the

annulus tends to unity. The present stability analysis is carried out by assuming small–amplitude

perturbations of the basic buoyant flow. The linear dynamics of perturbations is determined by

employing a modal analysis. The resulting eigenvalue problem is solved numerically, thus providing

the neutral stability curves and the critical values for the onset of the instability as a function of
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the aspect ratio of the annulus.

2. Mathematical model

By analogy with the system studied by Barletta and Celli [6], we consider a vertical porous

annulus with infinite height, internal radius r1 and external radius r2. A fluid saturates the porous

medium. Cylindrical coordinates (r, φ, z) are chosen so that the vertical coordinate, z, is also the

axis of the cylinder. A uniform internal heat source, with power per unit volume q̇, is present inside

the annulus. We can devise conditions such that q̇ is caused by the Joule heating due to a stationary

electric current in the porous medium or, alternatively, caused by an exothermic chemical reaction.

The boundaries r = r1 and r = r2 are considered to be both isothermal and permeable, with a

uniform temperature, Ts, and the pressure equal to the hydrostatic pressure of the fluid. The latter

condition models perfect permeability of the boundary to an external fluid reservoir at rest. By

introducing the local difference between the pressure and the hydrostatic pressure, p, the boundary

conditions are that p = 0 at both r = r1 and r = r2. A sketch of the porous layer and of the

boundary conditions is shown in Fig. 1.

2.1. Governing equations

The governing equations for the seepage flow in the porous cylinder are based on the Oberbeck–

Boussinesq approximation and on Darcy’s law [1]. Hence, we write

∇ · u = 0, (1a)
µ

K
u = −∇p+ ρgβ

(
T − T̄

)
êz, (1b)

σ
∂T

∂t
+ u · ∇T = α

(
∇2T +

q̇

λ

)
, (1c)

which express the local mass balance equation (1a), the local momentum balance equation (1b)

and the heat transport equation (1c). In equations (1), u is the seepage velocity with components

(u, v, w) along the (r, φ, z) directions, T is the temperature field and t is the time. Furthermore,

in equations (1), µ, β and ρ are the fluid dynamic viscosity, thermal expansion coefficient and

reference density, while α is the average thermal diffusivity of the saturated medium, λ is the

average thermal conductivity of the saturated porous medium, K its permeability and σ the ratio

between the volumetric heat capacity of the saturated porous medium and that of the fluid. Here,

the volumetric heat capacity means the product between the density and the specific heat. When

we consider the volumetric heat capacity of the saturated porous medium, this is intended as the

weighted average between the solid and the fluid. We also note that the average thermal diffusivity

α is defined as the ratio between the average thermal conductivity λ and the volumetric heat
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Figure 1: A sketch of the cylindrical porous layer and of the boundary conditions: longitudinal section (a); transverse

section (b).

capacity of the fluid. The modulus of the gravitational acceleration is g and êz is the unit vector

along the z axis.

The constant T̄ denotes the average temperature in an annular cross–section (z = constant)

evaluated for the basic state to be defined in the forthcoming Section 2.4. The local balance

equations (1) can be rewritten in a dimensionless form by means of the scaling

1

r2
(r, z)→ (r, z),

α

σr22
t→ t,

K

µα
p→ p,

r2
α

u =
r2
α

(u, v, w)→ (u, v, w) = u, λ
T − T̄
q̇r22

→ T. (2)

The Rayleigh number R is defined as

R =
ρgβq̇Kr32
λµα

, (3)

using the outer radius, r2, as the length scale. From equations (1)–(3), we obtain

∇ · u = 0, (4a)

u = −∇p+RT êz, (4b)

∂T

∂t
+ u · ∇T = ∇2T + 1. (4c)

We mention that the dimensional average temperature T̄ defines the reference temperature within

the Oberbeck–Boussinesq approximation. Thus, when either T = T̄ (by using dimensional temper-

atures) or T = 0 (by using the dimensionless temperature), the buoyancy force is zero.
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2.2. Experimental support for the mathematical model

The above described mathematical model is based on two important features:

(a) The combined use of the Oberbeck–Boussinesq approximation and of Darcy’s law as a framework

for modelling convection in porous media;

(b) A uniform internal heat source acting in a solid material as a cause of buoyant fluid flow.

Regarding feature (a), there are several experimental studies supporting Darcy’s law as suit-

ably modified to include the buoyancy force. Indeed, the classical Oberbeck–Boussinesq scheme is

adapted to fluid saturated porous media. We refer the readers to Nield and Bejan [1] for a survey of

the experiments supporting the Oberbeck–Boussinesq scheme when the fluid seepage in the porous

medium satisfies Darcy’s law. The analysis of the experiments on the convective flows in porous

media reported in this book is primarily significant for the present study when it is focussed on the

onset of cellular convection patterns as induced by thermal instability in a fluid saturated porous

medium. Chapter 6 of Nield and Bejan [1] is devoted to this subject. The cornerstone paper

by Hartline and Lister [9] deserves a special attention. In fact, the authors provide experimental

support for the emergence of the Rayleigh–Bénard instability in a fluid saturated porous medium.

Such experimental evidence was further discussed in Lister [10], where multiple data sets obtained

in different experimental studies were compared. The conclusions drawn by Hartline and Lister

[9] and by Lister [10] show clearly that the theoretical studies presented in the classical papers on

the thermal instability in porous media by Horton and Rogers [11] and by Lapwood [12] are in

excellent agreement with experiments. We mention that Lister [10] performed two experiments on

water convection in either a rubberized curled coconut fibre layer or in a a polymethylmethacrylate

beads layer. Such experiments not only support the theoretical predictions for the critical Rayleigh

number at onset of thermal instability, but also the heat transfer rates numerically evaluated for

the supercritical regime.

The natural convection flow from internal heat sources in a solid material is the ground of

feature (b). The pioneering paper by Smith and Hammitt [13] presents a comparison between

numerical and experimental results for the buoyant flow in a rectangular cavity with internal heat

generation. The internal heating is due to an electric power supplied within the cavity, while the

fluid employed in the experimental setup is water. The study by Bhowmik and Tou [14] provides an

interesting account of transient natural convection heat transfer from an array of electronic chips.

The authors discuss an experiment on the power–on unsteady natural convection heat transfer

caused by a linear array of discrete heat sources in a rectangular channel where the liquid coolant

is water with Prandtl number 5.5. Lee et al. [15] present an experiment where they simulate how

the thermal load from the decay of heat-generating debris causes a natural convection response

in a fluid vessel during a severe nuclear reactor accident. The method employed by these authors
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to obtain the internal heating is by the Joule effect due to an alternating electric current in an

internal solid heater within the vessel filled with water. They also demonstrated the feasibility of

their method in order to simulate a uniform volumetric heat source.

2.3. Boundary conditions

In dimensionless form, the pressure and temperature boundary conditions are expressed as

p = 0, T = a at r = γ and r = 1, (5)

where γ is the aspect ratio and a is a dimensionless parameter given by

γ =
r1
r2
, a = λ

Ts − T̄
q̇r22

. (6)

As it will become clearer in the next Section 2.4, the value of a depends on the net flow rate across

the porous annulus.

2.4. Basic buoyant flow

A steady and axisymmetric parallel flow in the vertical z direction exists. It is defined by the

solution of equations (4) and (5) and expressed as

ub = 0 = vb, wb(r) = R [a+ F (r)],

Tb(r) = a+ F (r), pb = 0, with F (r) =

(
1− r2

)
ln(γ)−

(
1− γ2

)
ln(r)

4 ln(γ)
. (7)

Here, the subscript “b” serves to denote the “basic” flow. The flow is caused entirely by the

buoyancy force as may easily be inferred from the velocity being proportional to the Rayleigh

number R. The value of the parameter a is correlated to the flow rate across a z = constant

cross–section,

w̄b =
2

1− γ2

∫ 1

γ
wb r dr = R

[
a+

1− γ2 +
(
1 + γ2

)
ln(γ)

8 ln(γ)

]
. (8)

There exists a special case,

a = −
1− γ2 +

(
1 + γ2

)
ln(γ)

8 ln(γ)
, (9)

which defines a condition of zero flow rate in the basic state. Such a condition corresponds to

when the fluid is confined within an annulus which is very considerably taller than its outer radius.

We point out that equations (6) and (9) implicitly define the constant reference temperature T̄

employed in equation (1b).
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We mention that the basic flow defined by equation (7) entails a uniform distribution of pb,

throughout the annular region 1 < r < γ, with pb = 0 everywhere. This yields both pb = 0 and

∂pb/∂r = 0 for the whole region 1 < r < γ. The feature of the basic flow ∂pb/∂r = 0 is consistent

with ub = 0, which is a consequence of equation (4b) and which is also evidenced in equation (7).

Then, we have ub = 0 for the whole region 1 < r < γ. As a consequence, one can infer that

ub = 0 at the boundaries, i.e., for r → 1 and for r → γ. One can correctly say that for the basic

flow, and only for the basic flow, the boundaries satisfy simultaneously the constraints pb = 0 and

ub = 0. The latter condition describes absence of flow across the boundaries r = 1 and r = γ,

or impermeability of such boundaries, which is a logical consequence of having assumed a purely

vertical basic flow. However, the boundary conditions for the basic flow and for the perturbed flow,

to be discussed in Section 3, are those specified by equation (5) constraining the boundaries to be

permeable with p = 0.

2.5. Pressure–temperature formulation

By evaluating the divergence of equation (4b) and by employing equation (4a), we can rewrite

equations (4) and (5) as

∇2p = R
∂T

∂z
, (10a)

∂T

∂t
−∇p · ∇T +RT

∂T

∂z
= ∇2T + 1, (10b)

p = 0, T = a at r = γ, 1. (10c)

The advantage in the formulation (10) relies on the reduced number of unknowns (p, T ) to be

determined with respect to equations (4), where the unknowns are (u, p, T ).

3. Linear stability analysis

It is well-known that stationary solutions of the governing equations might be unstable under

certain parametric conditions. In our case, the basic flow (7) may be stable or unstable depending

on the parameters γ and R. By introducing the perturbation parameter ε, where |ε| � 1 is assumed,

we will carry out a linear stability analysis of the perturbations superposed onto the basic flow (7).

Hence, by employing equation (7), we write

p(r, φ, z, t) = εP (r, φ, z, t), T (r, φ, z, t) = a+ F (r) + εθ(r, φ, z, t), (11)

where (P, θ) are the perturbations. If we substitute equation (11) into equations (10) and if we

neglect terms of O
(
ε2
)
, then we obtain the linearised governing equations for the unknowns (P, θ),
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namely

∇2P = R
∂θ

∂z
, (12a)

∂θ

∂t
− F ′(r) ∂P

∂r
+R [a+ F (r)]

∂θ

∂z
= ∇2θ, (12b)

P = 0, θ = 0 at r = γ, 1, (12c)

where primes serve to denote derivatives with respect to r. The dependence on the angular coor-

dinate φ can be managed by using the Fourier series,

P (r, φ, z, t) =
∞∑
n=0

Pn(r, z, t) cos(nφ),

θ(r, φ, z, t) =
∞∑
n=0

θn(r, z, t) cos(nφ). (13)

Thus, we obtain for n = 0, 1, 2, . . .

1

r

∂

∂r

(
r
∂Pn
∂r

)
+
∂2Pn
∂z2

− n2

r2
Pn = R

∂θn
∂z

, (14a)

1

r

∂

∂r

(
r
∂θn
∂r

)
+
∂2θn
∂z2

− n2

r2
θn =

∂θn
∂t
− F ′(r) ∂Pn

∂r
+R [a+ F (r)]

∂θn
∂z

, (14b)

Pn = 0, θn = 0 at r = γ, 1. (14c)

We now focus on the dynamics of normal modes expressed as

Pn(r, z, t) = fn(r) eηt eikz, θn(r, z, t) = hn(r) eηt eikz, (15)

with a real wave number, k, and the complex growth rate, η. The substitution of equation (15)

into equation (14) yields

f ′′n +
1

r
f ′n −

(
n2

r2
+ k2

)
fn − ikRhn = 0, (16a)

h′′n +
1

r
h′n −

[
n2

r2
+ k2 +H + ikRF (r)

]
hn + F ′(r) f ′n = 0, (16b)

fn = 0, hn = 0 at r = γ, 1, (16c)

where we defined the modified complex parameter H as

H = η + iakR. (17)

The real part of H coincides with the real part of η and, hence, with the growth rate of the normal

mode. If we denote with ξ = Re(H) = Re(η) the exponential growth rate, then ξ > 0 defines

9



instability, ξ < 0 stability and ξ = 0 neutral stability. The imaginary part of η is equal to −ω,

where ω is the angular frequency of the normal mode. We can denote the imaginary part of H as

−Ω. Thus, by employing equation (17), we can write

Ω = ω − akR. (18)

Equations (16) form a system of homogeneous ordinary differential equations with homogeneous

boundary conditions. In fact, equations (16) yield an eigenvalue problem where the eigenfunctions

(fn, hn) are to be numerically computed together with the complex eigenvalue H, for every pre-

scribed input parameters (n, k,R). As a consequence of the definition (17), the parameter a is not

involved explicitly in the solution of the eigenvalue problem. In particular, this means that the

eigenvalue H is independent of a.

The numerical solution of equations (16) as a differential eigenvalue problem is performed via

the shooting method using an adaptive grid. We omit here the details of this procedure which is

described in Chapter 9 of the book by Straughan [16] and in Chapter 10 of the book by Barletta

[17] where details about the coding of the numerical solver are also provided. The minimum of the

neutral curve is obtained by means of an extended system as described in Barletta [17]. Numerical

data quoted below are accurate to six significant figures.

4. Discussion of the results

The onset of the convective instability is identified by the neutral stability curve, defined as the

locus in the (k,R) plane where ξ = Re(H) = 0. However, since the comparison with the instability

observed in the case of a vertical plane layer is important, it is quite convenient to rescale the

pertinent parameters governing the transition to instability,

R̂ = (1− γ)3R, k̂ = (1− γ)k, Ω̂ = (1− γ)2Ω. (19)

Such a rescaling is motivated by the change of the reference length from r2, employed in equation (2),

to the thickness r2 − r1, which is the equivalent of the natural reference length for a plane layer

[6]. By adopting the rescaled parameters defined by equation (19), the results for the plane layer

are retrieved through the asymptotic solution for γ → 1. We recall that, according to Barletta and

Celli [6], the asymptotic case γ → 1 features

R̂c = 740.027, k̂c = 1.94671, Ω̂c = 197.192, (20)

where the subscript “c” denotes the “critical” condition, namely the minimum R position along

the neutral stability curve drawn in the (k,R) plane, for a given γ.
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γ n R̂c k̂c Ω̂c

0.99 0 740.026 1.94671 197.192

1 740.035 1.94671 197.194

2 740.065 1.94670 197.201

3 740.114 1.94669 197.211

0.75 0 738.909 1.94545 197.228

1 747.021 1.94396 198.914

2 771.981 1.93864 204.022

3 815.831 1.92691 212.704

0.5 0 734.050 1.93913 197.448

1 782.121 1.92855 207.350

2 952.123 1.86815 238.931

3 1388.49 1.65609 300.100

0.25 0 722.518 1.91299 198.827

1 935.255 1.84584 240.859

2 3212.34 1.03842 440.713

Table 2: Critical values of R̂, k̂ and Ω̂, for some values of γ and n.

Table 2 reports some values of (R̂c, k̂c, Ω̂c) versus γ and n. The general evidence is that the

dependence on n is very weak when the annulus has a small curvature (γ = 0.99) even if, also in

this case, R̂c increases with n. On the other hand, the dependence on n becomes more and more

dramatic as γ decreases. This phenomenon is apparent especially with regard to the values of R̂c.

In the case γ = 0.25, reported in Table 2, the critical values for n = 3 could not be computed and,

hence, they are omitted in the table. A possible reason is that, with γ = 0.25 and n = 3, the value

of R̂c becomes so large that numerical accuracy is lost. Moreover, Table 2 shows that the critical

values for γ = 0.99 and n = 0 coincide to within six significant figures with the asymptotic values

obtained by Barletta and Celli [6] and reported above in equation (20). Table 2 suggests that the

smallest value of R̂c corresponds to when n = 0 (axisymmetric modes) and that it decreases with γ.

Thus, a departure from the plane layer geometry by having an increased curvature of the annulus

causes the basic flow to be destabilised at decreasing values of R̂c.

Figure 2 illustrates how R̂c varies with γ for n = 0, 1, 2, 3. As has already been commented on

when discussing the data in Table 2, the modes with n = 0 are those which trigger the instability

at the smallest value of R̂c. The value of R̂c for n = 0 decreases slightly when γ decreases from

1 to γ = 0.146052, and thereafter R̂c increases rapidly as γ decreases still further. The minimum
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Figure 2: Variation of R̂c, k̂c and Ω̂c wth γ for n = 0 (thick line) and for n = 1, 2, 3 (thin lines).

value which occurs at γ = 0.146052 is R̂c = 718.208. Generally, Figure 2 shows that k̂c decreases

and Ω̂c increases as γ decreases from 1, although there is an exception in a narrow region with

0 < γ < 0.011879 where k̂c increases once more as γ decreases. We reckon that, with such small

values of γ, the sensitivity to the change of the aspect ratio is mainly due to the boundary conditions

at the inner boundary which may turn out to be poorly realistic in the limit γ → 0.

The critical values discussed so far result from minimising R̂ in the (k̂, R̂) plane along the neutral

stability curves. Then, Figure 3 displays the neutral stability curves in the (k̂, R̂) plane for a few

sample aspect ratios, γ = 0.99, 0.75, 0.5, 0.25, illustrating the effect of a gradual departure from the

zero curvature limit, γ → 1, analysed by Barletta and Celli [6]. The behaviour is monitored for

the modes n = 0, 1, 2 as higher values of n yield higher threshold values of R̂ for the transition to

instability, as already illustrated through Table 2 and Figure 2. As evidenced above, the effect of n
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Figure 3: Neutral stability curves in the (k̂, R̂) plane for n = 0 (thick line) and for n = 1, 2 (thin lines).

Different frames correspond to different aspect ratios, γ. The dotted line in the frame

with γ = 0.99 corresponds to the data for the plane slab [6].

is extremely small, hardly visible, when γ is close to 1, while this effect is more and more significant

as γ decreases. In the frame for γ = 0.99, the curves with n = 0, 1, 2 cannot be distinguished. On

the other hand, they are substantially different from one another when γ = 0.25. For this value of

γ, there is a very large difference between the neutral stability curves with n = 1 and n = 2. This

result indicates that, when γ is small, non–axisymmetric modes act in a markedly different way

with respect to each other and to the axisymmetric modes, which is not the case for γ → 1. Finally,

we mention that Figure 3 shows clearly that the data for γ = 0.99 yield neutral stability curves

which are almost indistinguishable from one another, and from the one (dotted curve) reported in

Barletta and Celli [6] for the plane slab case, i.e. the limit γ → 1.
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ψ = const. θ = const.

γ = 0.99 γ = 0.75

γ = 0.50 γ = 0.25

Figure 4: Streamlines (ψ = constant) and isotherms (θ = constant) in the (r, z) plane for the axisymmetric

perturbation modes (n = 0) with critical conditions and different aspect ratios γ.

A physical argument justifying the apparent equivalence of different n > 0 modes at onset of

instability when γ is very close to unity is as follows. The dimensionless arc length of a cell in the

(r, φ) plane, Lφ, can be evaluated by employing equation (13). It depends on the nonzero value of
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ψ = const. θ = const.

γ = 0.10 γ = 0.05

Figure 5: Streamlines (ψ = constant) and isotherms (θ = constant) in the (r, z) plane for the axisymmetric

perturbation modes (n = 0) with critical conditions and different aspect ratios γ.

n and is given by, approximately,

Lφ =
π(1 + γ)

2n
, (21)

where we have assumed the reference radius as the arithmetic mean between the external and

internal radii. Lφ is to be compared with the radial width of the cell,

Lr = 1− γ. (22)

If n is such that Lr � Lφ, then the non-axisymmetric modes are comparable with the axisymmetric

modes in the onset of instability. Thus, in order to see a significantly strong effect of n, one should

consider modes with

n ∼ π(1 + γ)

2(1− γ)
, (23)

or larger. Such n is greater than 102 when γ = 0.99, while it is greater than 10 when γ = 0.75 and

it decreases sensibly with smaller values of γ.

Figure 4 shows the streamlines and isotherms in the (r, z) plane for the axisymmetric pertur-

bation modes under critical conditions, R̂ = R̂c, k̂ = k̂c and Ω̂ = Ω̂c. For the purpose of drawing

the streamlines, we defined a suitable streamfunction, ψ, such that

1

r

∂ψ

∂z
and − 1

r

∂ψ

∂r
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yield the r and z components of the perturbation velocity, respectively. By decreasing gradually γ

from 0.99 to 0.25, we test of the effect of an increasing curvature of the layer on the shape of the

cellular patterns. We see that we have a substantial symmetry of the cells when γ = 0.99 which is

slightly broken when γ = 0.75. The asymmetric form of the cells is quite perceivable for γ = 0.5

and becomes even more pronounced for γ = 0.25. There is a tendency for the cells to acquire a

boundary layer structure close to the internal boundary at r = γ as γ decreases. Such a trend is

further exploited with very small values of γ, as illustrated in Fig. 5 where the aspect ratios γ = 0.1

and γ = 0.05 are considered.

5. Conclusions

The stationary and parallel buoyant flow in a vertical porous layer with an annular cross–section

has been studied. A uniform internal heat source drives the buoyant flow, leading to instability

when its intensity is sufficiently large. The internal and external cylindrical boundaries have been

modelled as permeable and with the same given temperature. The governing parameters driving

the transition to convective instability are the Rayleigh number, R, which is proportional to the

heat source intensity, and the aspect ratio, γ, between the internal radius and the external radius

of the annulus. A linear stability analysis has been carried out for the determination of the neutral

stability condition and of the critical Rayleigh number for a wide range of aspect ratios, γ. The

main focus has been the evaluation of the effects of the aspect ratio γ on the onset of the instability,

by considering the limit γ → 1 as the reference condition. Indeed, such a limit corresponds to the

case of a plane layer which was examined previously by Barletta and Celli [6]. Thus, gradually

decreasing values of γ have revealed the effects of an increasing curvature of the layer. Among the

most interesting results obtained from this study we mention the following:

• The most unstable perturbation modes are axisymmetric. The distinction between the onset

thresholds of axisymmetric and non–axisymmetric perturbation modes tends to be more and more

significant as γ decreases below unity.

• The evaluation of the critical Rayleigh number revealed that an increasing curvature of the

layer generally destabilises the basic buoyant flow. An exception to this trend emerges for very small

γ, namely a parametric domain where the assumed boundary condition at the internal boundary

appears to be difficult to implement in a real–world system.
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