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Chapter 14
On deformations of toric Fano varieties

Andrea Petracci

Abstract In this note we collect some results on the deformation theory of toric Fano
varieties.

14.1 Introduction

A Fano variety is a normal projective variety - over C such that its anticanonical
divisor � - is Q-Cartier and ample. Fano varieties constitute the basic building
blocks of algebraic varieties, according to the Minimal Model Program. The geom-
etry of Fano varieties is a well studied area. In particular, moduli (and consequently
deformations) of Fano varieties constitute a very interesting and important topic in
algebraic geometry, e.g. [21, 62, 69].

Here we will concentrate on deformations and smoothings of toric Fano varieties.
These varieties occupy a prominent role in Mirror Symmetry, a large part of which
is based on the phenomenon of toric degeneration as in [17, 18, 30, 43].

Toric Fano varieties correspond to certain polytopes which are called Fano poly-
topes. The goal of this note is to present some combinatorial criteria on Fano poly-
topes which can detect whether the corresponding toric Fano variety is smoothable,
i.e. can be deformed to a smooth (Fano) variety.

Special attention is given to toric Fano threefolds with Gorenstein singularities.
These varieties correspond to the 4319 reflexive polytopes of dimension 3, which
were classified by Kreuzer and Skarke [66]. In this case, thanks to the use of the soft-
ware M���� [22], we were able to produce a lot of examples for the combinatorial
criteria discussed in this note.

Andrea Petracci
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Italy, e-mail: andrea.petracci@alumni.sns.it
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288 Andrea Petracci

14.1.1 Outline

In §14.2.1 the very classical theory of infinitesimal deformations of algebraic vari-
eties is recalled. In §14.2.2 we survey some properties of smoothings of algebraic
varieties. In §14.2.3 two well-studied deformation invariants for Fano varieties are
introduced.

In §14.3.1 we recall some results on the deformation theory of a�ne toric varieties.
We provide an example in §14.3.2.

The core of this note is §14.4. We recall the definition of Fano polytopes in §14.4.1.
In §14.4.2 we present a couple of su�cient conditions that ensure that a toric Fano
variety is non-smoothable. The rigidity of toric Fano varieties is examined in §14.4.3.
In §14.4.4 and §14.4.5 we study the smoothability of toric Fano surfaces and toric
Fano threefolds with isolated singularities; an example is presented in §14.4.6.
In §14.4.7 we present another su�cient condition that ensures that a toric Fano
threefold is non-smoothable. In §14.4.8 we include more results on deformations of
toric Fano varieties.

In §14.5 we write down the lists of the reflexive polytopes of dimension 3 which
satisfy the several combinatorial conditions considered in §14.4.

14.1.2 Notation and conventions

We work over C, but everything will hold over a field of characteristic zero with
appropriate modifications.

In §14.3 and §14.4 we assume that the reader is familiar with the basic notions
of toric geometry, which can be found in [3, 41]. All toric varieties considered
here are normal. A lattice is a finitely generated abelian group. The letters # , # , #̃
stand for lattices and " ," , "̃ for their duals, e.g. " = HomZ (# ,Z); the duality
pairing " ⇥ # ! Z and its extension "R ⇥ #R ! R are denoted by h·, ·i.

In a real vector space of finite dimension a polytope is the convex hull of finitely
many points, or equivalently a compact subset which is the intersection of finitely
many closed halfspaces. We refer the reader to the book [99] for the geometry of
polytopes.

14.2 Deformations

14.2.1 Infinitesimal deformations

Let (Comp) be the category of noetherian complete local C-algebras with residue
field C. For every ' 2 (Comp) we denote by m' the maximal ideal of '. Let (Art)
be the subcategory of (Comp) whose objects are artinian, i.e. local finite C-algebras.
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A functor of Artin rings is a functor � from the category (Art) to the category of
sets such that � (C) is the set with one element. We will only consider functor of
Artin rings which satisfy some additional properties: Schlessinger’s axioms (H1)
and (H2) [91] and Fantechi–Manetti condition (L) [37, (2.9)]. We will not specify
these conditions here, but we refer the reader to [37, §2] for a quick introduction.
Precise formulations and additional details about the notions we introduce below can
be found in any reference about deformation theory, e.g. [13,36,50,70,91,92,95,97].

A natural transformation (or briefly map) of functors q : � ! ⌧ is called smooth
if the lifting property in Grothendieck’s definition of formally smooth morphisms
holds, i.e. for every local surjection �

0 ⇣ � in (Art) the natural map � (�0) !
� (�) ⇥

⌧ (�) ⌧ (�0) is surjective; in particular, if q is smooth then q(�) : � (�) !
⌧ (�) is surjective for all � 2 (Art). A functor � is called smooth if the map from �

to the trivial functor is smooth.
For a functor �, the set � (C[C]/(C2)) has a natural structure of a C-vector space,

denoted by T� and called the tangent space of �. One can prove that � is the trivial
functor if and only if T� = 0. If q : � ! ⌧ is a map, then the function q(C[C]/(C2))
is linear and denoted by Tq : T� ! T⌧.

If ' 2 (Comp) one can consider the functor ⌘' = Hom(·, ') prorepresented
by '. A map ⌘' ! � is equivalent to a pro-object of � on ' = lim �� '/m

=+1
'

, i.e.

an element of the set lim �� � ('/m
=+1
'

). A hull for a functor � is a ring ' 2 (Comp)
together with a smooth morphism q : ⌘' ! � such that Tq is bijective. A hull exists
if and only if T� has finite dimension. If a hull exists, it is unique. Provided that T�
has finite dimension A , then � is smooth if and only if the hull of � is isomorphic
to C[[C1, . . . , CA ]].

For a functor �, consider the set E made up of pairs (c, b), where c : �0 ! �

is a surjection in (Art) such that m�
0 · (ker c) = 0 and b 2 � (�). A C-vector

space + is called an obstruction space for � if there exists a function l : E !›
(c,b )2E ker c ⌦C + such that the two following conditions are satisfied:

1. for every (c, b) 2 E, l(c, b) 2 ker c ⌦C + ;
2. for every (c, b) 2 E, we have thatl(c, b) = 0 if and only if there exists b 0 2 � (�0)

which maps to b.

There are infinitely many obstruction spaces for a functor � because any vector space
containing an obstruction space is an obstruction space. A functor � is smooth if and
only if 0 is an obstruction space for �; in this case we also say that � is unobstructed.
There is a notion of compatible obstruction spaces for a map q : � ! ⌧: this will
be a linear map oq from an obstruction space of � to an obstruction space of ⌧ with
some compatibility properties with respect to q.

The following is an important smoothness criterion. Assume that q : � ! ⌧ is
a map with compatible obstruction map oq from an obstruction space of � to an
obstruction space of ⌧. If Tq is surjective and oq is injective, then q is smooth.

Let - be a scheme of finite type over C. We denote by Def
-

the functor of
(infinitesimal) deformations of - . If ' 2 (Comp), a pro-object of Def

-
on '

is called a formal deformation of - over '. If ' is a hull for Def
-

, then the
corresponding formal deformation of - over ' is called the miniversal deformation
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of - . We say that - is rigid if all deformations of - are trivial. If - is reduced,
then the tangent space of Def

-
is Ext1 (⌦- ,O- ); in this case - is rigid if and

only if Ext1 (⌦- ,O- ) = 0. If - is either normal or reduced and local complete
intersection (l.c.i. for short), then Ext2 (⌦- ,O- ) is an obstruction space for Def

-
.

If - is smooth, then H8 (- ,)- ) = Ext8 (⌦- ,O- ) for all 8 � 0. In particular, if - is
smooth and a�ne then it is rigid.

Proposition 1 If - is a smooth Fano variety, then H8 (- ,)- ) = 0 for each 8 � 2. In
particular, the infinitesimal deformations of - are unobstructed, i.e. Def

-
is smooth.

Proof Let = be the dimension of - . Since the anticanonical line bundlel_
-

is ample,
by Kodaira–Nakano vanishing we have H8 (- ,⌦=�1

-
⌦l_

-
) = 0 whenever 8+=�1 > =,

i.e. 8 � 2. We conclude because the tangent sheaf )- is isomorphic to ⌦=�1
-
⌦ l_

-
.⇤

Let - be a scheme of finite type over C and let Def lt
-

be the subfunctor of Def
-

made up of the locally trivial deformations of - . The tangent space of Def lt
-

is H1 (- ,)- ) and H2 (- ,)- ) is an obstruction space for Def lt
-

.

Proposition 2 Let - be a reduced scheme of finite type over C such that - is either
l.c.i. or normal. If H0 (- , EGC1 (⌦- ,O- )) = 0, then all deformations of - are locally
trivial, i.e. Def lt

-
= Def

-
.

Proof The local-to-global spectral sequence for Ext gives the following exact se-
quence.

0! H1 ()- ) ! Ext1 (⌦- ,O- ) ! H0 (EGC1 (⌦- ,O- ))
! H2 ()- ) ! Ext2 (⌦- ,O- )

The vanishing of H0 (EGC1 (⌦- ,O- )) implies that the inclusion q : Def lt
-
õ! Def

-

induces an isomorphism on tangent spaces and an injection on obstruction spaces.
Therefore q is smooth, and consequently surjective. ⇤

In particular, all deformations of a smooth scheme are locally trivial.
Let - be a reduced scheme of finite type over C with isolated singularities.

For each singular point G 2 - , let *G be an a�ne open neighbourhood of G such
that*G \ {G} is smooth. Then define

Def loc
-

:=
÷

G2Sing(- )
Def

*G
.

The tangent space of Def loc
-

is H0 (- , EGC1 (⌦- ,O- )). If - is either l.c.i. or normal,
then H0 (- , EGC2 (⌦- ,O- )) is an obstruction space for Def loc

-
. There is an obvious

map Def
-
! Def loc

-
which restricts a deformation of - to a deformation of *G for

each G.

Proposition 3 Let - be a reduced scheme of finite type over C with isolated sin-
gularities. Assume that - is either l.c.i. or normal. If H2 (- ,)- ) = 0 then there
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are no local-to-global obstructions for the infinitesimal deformations of - , i.e. the
map Def

-
! Def loc

-
is smooth.

Proof We consider the local-to-global spectral sequence for Ext•(⌦- ,O- ). The
second page is give by ⇢ ?,@

2 = H? (EGC@ (⌦- ,O- )). Since - has isolated singu-
larities, the sheaves EGC@ (⌦- ,O- ) are supported on isolated points for @ � 1; in
particular they do not have higher cohomology. This means that ⇢ ?,@

2 is supported
on the lines ? = 0 and @ = 0. Therefore, in ⇢2 the only non-zero di�erential is

32 : H0 (EGC1 (⌦- ,O- )) �! H2 ()- ).

We obtain that the bottom left corner of the third page ⇢3 is the following.

H3 ()- ) 0 0 0

coker 32 0 0 0

H1 ()- ) 0 0 0

H0 ()- ) ker 32 H0 (EGC2 (⌦- ,O- )) H0 (EGC3 (⌦- ,O- ))

In ⇢3 the only non-zero di�erential is

33 : H0 (EGC2 (⌦- ,O- )) �! H3 ()- ).

The bottom left corner of the fourth page ⇢4 is the following.

coker 33 0 0 0

coker 32 0 0 0

H1 ()- ) 0 0 0

H0 ()- ) ker 32 ker 33 H0 (EGC3 (⌦- ,O- ))

From the fourth page on, the pieces of total degree  3 do not change any more.
Therefore we have two short exact sequences:

0 �! H1 ()- ) �! Ext1 (⌦- ,O- ) �! ker 32 �! 0,

0 �! coker 32 �! Ext2 (⌦- ,O- ) �! ker 33 �! 0.

These can be joined to construct the following long exact sequence.

0 �! H1 ()- ) �! Ext1 (⌦- ,O- ) �! H0 (EGC1 (⌦- ,O- ))
32�!

32�! H2 ()- ) �! Ext2 (⌦- ,O- ) �! H0 (EGC2 (⌦- ,O- ))

So far we did not use the assumption H2 ()- ) = 0. From this vanishing, via
the long exact sequence above we deduce that the map Def

-
! Def loc

-
induces a

surjection on tangent spaces and an injection on obstruction spaces. ⇤



292 Andrea Petracci

14.2.2 Smoothings

Here we discuss smoothability conditions for schemes of finite type over C. We
will only consider the case of equidimensional schemes and we will refer the reader
to [50, §29] for a more general treatment, which uses the Lichtenbaum–Schlessinger
functors.

If - is a proper scheme overC, a smoothing of - is a proper flat morphismX ! ⌫

such that ⌫ is an integral scheme of finite type over C of positive dimension and
there exists a closed point 10 2 ⌫ such that the fibre over 10 is - and all the other
fibres are smooth. By restricting to a curve in ⌫ and normalising it, we may require
that the base ⌫ is a smooth a�ne curve and that the maximal ideal corresponding
to 10 is principal. We say that - is smoothable if it admits a smoothing.

For every = � 0, set (= := SpecC[C]/(C=+1). If - is a scheme of finite type over C
with pure dimension 3, then a formal smoothing of - is a formal deformation {-= !
(=}= of - over C[[C]] such that there exists < such that C< is in the 3th Fitting ideal
of ⌦

-</(< . We refer the reader to [35, §20.2] for the definition and the properties of
Fitting ideals. We say that - is formally smoothable if it admits a formal smoothing.
It is clear that if - is formally smoothable, then every open subscheme of - is
formally smoothable.

Remark 4 If {-= ! (=}= is a formal deformation of - over C[[C]] and C< is in
the 3th Fitting ideal of ⌦

-</(< , then for all = � < we have that C= is in the 3th
Fitting ideal of ⌦

-=/(= .
The proof of this fact is as follows. We have O-= = O-=+1/C=+1O-=+1 . Since the

formation of Fitting ideals commutes with base change, we have the equality

Fitt3 (⌦-=/(= ) = (Fitt3 (⌦-=+1/(=+1 ) + C=+1O-=+1 )/C=+1O-=+1 .

Therefore if C= 2 Fitt3 (⌦-=/(= ) then C= 2 Fitt3 (⌦-=+1/(=+1 )+C=+1O-=+1 , hence C=+1 2
CFitt3 (⌦-=+1/(=+1 ) ✓ Fitt3 (⌦-=+1/(=+1 ) as C=+2 = 0 in O-=+1 .

Lemma 5 Let - be a Cohen–Macaulay proper scheme over C of pure dimension 3.
Let ⌫ be a smooth curve over C, 10 2 ⌫ be a closed point, and c : X ! ⌫ be a
proper flat morphism such that the fibre over 10 is - . Let b be the formal m10 -adic
completion of c at 10, i.e. b = {X ⇥⌫ SpecO⌫,10/m=+1

10
! SpecO⌫,10/m=+1

10
}=.

Then:

1. if c is a smoothing of - , then b is a formal smoothing of -;
2. if b is a formal smoothing of - , then there exists an open neighbourhood ⌫0 of 10

in ⌫ such that X ⇥⌫ ⌫0 ! ⌫
0 is a smoothing of - .

Proof This proof comes from [14, Section 0E7S].
Notice that b does not change if we restrict c to an open neighbourhood of 10

in ⌫. Therefore, in order to prove the statements (1) and (2) we can arbitrarily restrict
to an open neighbourhood of 10 in ⌫. Hence we may assume that ⌫ is a�ne and the
maximal ideal corresponding to the point 10 is principal, generated by C 2 O⌫.
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We consider the set , ✓ X made up of the points G 2 X such that the local
ring of the fibre X

c (G) at G is Cohen–Macaulay. By [44, 12.1.7], , is open in X.
As c is closed, ⌫ \ c(X \,) is an open neighbourhood of 10 in ⌫. Therefore, if we
restrict ⌫ to an open neighbourhood of 10 in ⌫, we may assume that all fibres of c
are Cohen–Macaulay. By [14, Lemma 02NM], we may assume that c has relative
dimension 3.

Let � ✓ OX be the 3th Fitting ideal of ⌦X/⌫. For each =, set

(= = SpecO⌫,10/m=+1
10

= SpecO⌫/C=+1O⌫

and -= = X ⇥⌫ (=; let �= ✓ O-= be the 3th Fitting ideal of ⌦
-=/(= . Since Fitting

ideals commute with base change, we have O-= = OX/C=+1OX and �= = �O-= =
(� + C=+1OX)/C=+1OX .

Since c is flat of relative dimension 3, the zero locus of � is the singular locus
of c. Moreover, the fibre over 10 is the closed subset V(C). Therefore, the fibre of 10

is the unique singular fibre if and only if C 2
p
�.

(1) If c is a smoothing, then there exists < such that C< 2 �. Since �< =
(� + C<+1OX)/C<+1OX , this implies that C< 2 �<. So b is a formal smoothing.

(2) If b is a formal smoothing, then C< 2 �< = (� + C<+1OX)/C<+1OX for some <.
So in OX we have the equality C< = ? + C<+1

@, for some ? 2 � and @ 2 OX .
Writing C< (1 � C@) = ? and noticing that the function 1 � C@ does not vanish at the
points of - = V(C), we deduce that C< belongs to the stalk �G of � at all points G 2 - .
This implies that C< lies in � in an open neighbourhood * of - in X. Since c is
closed, by restricting ⌫ to ⌫\c(X \*) we have C< 2 �. Therefore c is a smoothing.⇤

Proposition 6 Let - be a Cohen–Macaulay scheme proper over C.

1. If - is smoothable, then every open subscheme of - is formally smoothable.
2. Assume that - is projective and H2 (- ,O- ) = 0; if - is formally smoothable,

then - is smoothable.

Proof We may assume that - is connected. Therefore - has pure dimension, say 3.
(1) This follows immediately from Lemma 5 and from the fact that if - is formally

smoothable then every open subscheme of - is formally smoothable.
(2) Set 3 := dim - . Let b = {-= ! (=}= be a formal smoothing of - , where (=

is SpecC[C]/(C=+1) as usual. Let < be such that C< is in the 3th Fitting ideal
of ⌦

-</(< .
As - is proper over C, the tangent space of Def

-
has finite dimension, there-

fore Def
-

has a hull ' 2 (Comp). Let [ = {[= : .= ! Spec '/m=+1
'

}= be the
miniversal deformation of - . By [95, Proposition 6.51] or [92, Theorem 2.5.13],
from H2 (O- ) = 0 we deduce that [ is e�ective, i.e. there exists a projective flat
morphism ⌫ ! Spec ' whose m'-adic completion is [.

By a theorem of M. Artin [11, Theorem 1.6] (see also [50, Theorem 21.3]),
the morphism ⌫ ! Spec ' is algebraizable in the following sense: there exist a
scheme / of finite type overC, a closed point I0 2 / , and a proper flat morphismX !
/ , with fibre - over I0, such that ' is the completion bO/ ,I0 of the local ring of / at I0
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and ⌫ is isomorphic, as '-schemes, to X ⇥/ Spec '. In particular, the miniversal
deformation [ is the collection {X⇥/ SpecO/ ,I0/m=+1

I0
! SpecO/ ,I0/m=+1

I0
}=. The

situation is summarised in the following cartesian squares, for all =.

.= ⌫ X

Spec '/m=+1
'

Spec ' = Spec bO/ ,I0 /

[=

As [ is miniversal, there exists a local C-algebra homomorphism

i : bO/ ,I0 = ' �! C[[C]]

such that b is induced by [ via i, i.e. -= is isomorphic to .= ⇥Spec '/m=+1
'

(=

as (=-schemes for every =. By another theorem of M. Artin [10, Corollary 2.5],
the map i has an algebraic approximation up to order < in the following sense:
there exist a smooth a�ne curve ⌫ over C with a closed point 10 2 ⌫ and a C-
morphism 5 : ⌫! / such that 5 (10) = I0 and the completion

i
0 : bO/ ,I0 = ' �! bO⌫,10 = C[[C]]

of 5 #
10

: O/ ,I0 ! O⌫,10 satisfies the following property:

i ⌘ i0 modulo C<+1
. (14.1)

Let c be the base change X ⇥/ ⌫! ⌫ along 5 : ⌫! / . Let b 0 be the formal m10 -
adic completion of c, i.e. b 0 = {X⇥/ SpecO⌫,10/m=+1

10
! SpecO⌫,10/m=+1

10
}=. The

two formal deformations b and b 0 of - over C[[C]] are in general di�erent, but they
coincide up to order< because of (14.1). This implies that C< is in the 3th Fitting ideal
of the sheaf of Kähler di�erentials of X⇥/ SpecO⌫,10/m<+1

10
! SpecO⌫,10/m<+1

10
.

Therefore, b 0 is a formal smoothing. By Lemma 5, up to restrict ⌫ to an open
neighbourhood of 10 in ⌫, we have that c : X ⇥/ ⌫! ⌫ is a smoothing. ⇤

The following theorem ensures that a projective scheme with formally smoothable
isolated singularities is smoothable, provided that some local and cohomological
conditions hold.

Theorem 7 Let - be a projective scheme over C such that:

1. - is reduced and Cohen–Macaulay;
2. - is either l.c.i. or normal;
3. H2 (- ,)- ) = 0 and H2 (- ,O- ) = 0;
4. - has isolated singularities and for each singular point G 2 - there exists an

open a�ne neighbourhood of G which is formally smoothable.

Then - is smoothable.
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Proof Set 3 = dim - . Let G1, . . . , GA be the singular points of - . Let*8 be an a�ne
open neighbourhood of G8 in - which is formally smoothable and such that *8 \
{G8} is smooth. Let b8 = {*8,= ! (=}= be a formal smoothing of *8 , where (=
is SpecC[C]/(C=+1) as usual.

By Proposition 3, from H2 ()- ) = 0 we deduce that the map Def
-
! Def loc

-
=Œ

A

8=1 Def
*8

is smooth. Therefore there exists a formal deformation b = {-= ! (=}=
of - over C[[C]] such that for each 8 the restriction of b to *8 is b8 , i.e. for all = the
restriction of -= to *8 is *8,=. By Remark 4 we have that b is a formal smoothing
of - . We conclude by Proposition 6. ⇤

We now see some conditions that imply that a scheme is not smoothable.

Proposition 8 Let - be a singular scheme of finite type over C of pure dimension.
Assume that at least one of the following conditions holds:

1. every infinitesimal deformation of - is locally trivial;
2. the functor Def

-
has an artinian hull.

Then - is not formally smoothable.

Proof Set 3 = dim - .
(1) Let * be a singular a�ne open subscheme of - . Let {-= ! (=}= be a

formal deformation of - over C[[C]]. Let *= be the restriction of -= to *. By (1)
we get that*= is isomorphic, as (=-scheme, to the trivial deformation* ⇥SpecC (=.
Therefore Fitt3 (⌦*=/(= ) = Fitt3 (⌦*/C)O*= . As * is singular, Fitt3 (⌦*/C) $ O* .
This implies that C= 8 Fitt3 (⌦*=/(= ).

(2) Let ' be the hull of Def
-

. Every formal deformation of - over C[[C]] is
induced by the miniversal one via a local C-algebra homomorphism 5 : ' ! C[[C]].
As every element in m' is nilpotent and C[[C]] is a domain, the homomorphism 5

factors as ' ⇣ '/m' = C õ! C[[C]]. This implies that every formal deformation
of - over C[[C]] is trivial. Using a similar argument as in (1), we can prove that -
cannot have a formal smoothing. ⇤

The following corollary, which is a direct consequence of Proposition 2, Proposi-
tion 6 and Proposition 8, gives some obstructions to the smoothability of a Cohen–
Macaulay proper scheme.

Corollary 9 Let - be a Cohen–Macaulay scheme proper over C. Let * ✓ - be an
open subscheme of - such that * is singular, reduced, and either l.c.i. or normal.
If H0 (*, EGC1 (⌦* ,O* )) = 0 or Def

*
has an artinian hull (e.g. if Ext1 (⌦* ,O* ) =

0), then - is not smoothable.

14.2.3 Invariants

Here we introduce a couple of invariants for Fano varieties.
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The Hilbert series of a Fano variety - is the power series defined by its anti-
plurigenera:

�8;1(- ,� - ) :=
’
<�0

⌘
0 (- ,�< - )C< 2 Z[[C]] .

The (anticanonical) degree of a Fano variety - is the positive rational num-
ber (� - )=, where = = dim - . If - is Gorenstein, i.e.  - is Cartier, then the
degree is an integer. The degree can be recovered from the Hilbert series because,
up to a constant which depends on the dimension of - , it is the leading term of the
Hilbert polynomial of � - .

The following proposition shows that the Hilbert series and the anticanonical
degree are deformation invariants for Fano varieties with Gorenstein log terminal
singularities.

Proposition 10 Let ( be a noetherian scheme over Q and let c : - ! ( be a proper
flat morphism whose geometric fibres are Fano varieties with Gorenstein log terminal
singularities. Then the Hilbert series and the degree of the fibres are locally constant
on (.

Proof The morphism c is a relatively Gorenstein. Therefore, by [47, V.9.7], the du-
alising sheaflc is a line bundle on - and its restriction to each fibre -B is O-B ( -B ).

By Serre duality and Kawamata–Viehweg vanishing [63, Theorem 2.70], we
get H1 (-B ,O-B (�< -B )) = 0 for all < � 0 and B 2 (. By cohomology and base
change [48, Theorem III.12.11], for all < � 0, we get that the sheaf c⇤l⌦�<c

is
locally free and has rank ⌘0 (-B ,O-B (�< -B )) at the point B 2 (. This implies that
the Hilbert series of the fibres is locally constant on (. ⇤

14.3 Deformations of a�ne toric varieties

14.3.1 Toric singularities

In this section we will consider deformations of toric singularities, that is a�ne toric
varieties. We refer the reader to [3, 41] for an introduction to toric geometry.

If - is an a�ne toric variety of dimension 2, then - is a cyclic quotient surface
singularity. There is extensive literature about deformations of this kind of singu-
larities, e.g. [19, 27, 64, 88, 93, 94]. In particular, it is known that every a�ne toric
variety of dimension 2 is smoothable [12].

The study of the deformation theory of a�ne toric varieties of dimension at least
3 has been initiated by K. Altmann [4–8]. For example, he computed the tangent
space of the deformation functor of an a�ne toric variety. We will not write down
the explicit description of Ext1 (⌦- ,O- ) when - is an a�ne toric variety, but we
will mention a consequence.
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Proposition 11 (Altmann [5, Corollary 6.5.1]) If - is a Q-Gorenstein a�ne toric
variety which is smooth in codimension 2 and Q-factorial in codimension 3, then -
is rigid.

Corollary 12 Every isolated Q-Gorenstein toric singularity of dimension � 4 is
rigid.

Now we need to do a brief detour on Minkowski sums. If �0, �1, . . . , �A are
polytopes in a real vector space, their Minkowski sum is the polytope

�0 + �1 + · · · + �A := {E0 + E1 + · · · + EA | E0 2 �0, E1 2 �1, . . . , EA 2 �A }.

When we have � = �0+�1+· · ·+�A , we say that we have a Minkowski decomposition
of the polytope �. We consider Minkowski decompositions up to translation: for
instance, we consider the Minkowski decomposition � = (E + �0) + (�E + �1) to be
equivalent to � = �0 + �1 for every vector E. Moreover, in what follows we require
that the summands �9 are lattice polytopes, i.e. their vertices belong to a fixed lattice.

Altmann [5] has noticed that certain Minkowski decompositions induce deforma-
tions of a�ne toric varieties. In §14.3.2 we will see an example of this fact. For the
proof we refer the reader to the original reference [5] and to [71, 81].

Now let us concentrate on Gorenstein toric singularities. They are associated to
lattice polytopes of dimension one less than the dimension of the singularity. More
precisely, let � be a lattice polytope of dimension = � 1 in a lattice # of rank = � 1
and let *� be the a�ne toric variety associated to the cone f� = R�0 (� ⇥ {1})
in the lattice # := # � Z, i.e. *� = SpecC[f_

�
\ "], where " = " � Z is the

dual of # and f_
�

is the dual cone of f� . We have that *� has dimension = and
is Gorenstein. All Gorenstein a�ne toric varieties without torus factors arise in this
way from a lattice polytope. The isomorphism class of *� does not change if we
change � via an a�ne transformation in # o GL(# ,Z).

As usual in toric geometry, the geometric properties of*� can be deduced from
the combinatorial properties of �. For instance:

1. *� is smooth in codimension : if and only if all faces of � with dimension < :

are standard simplices;
2. *� isQ-factorial in codimension : if and only if all faces of � with dimension< :

are simplices.

It is always the case that *� is smooth in codimension 1 and Q-factorial in codi-
mension 2.

If � is a segment of lattice length < + 1, then *� is the �< surface singular-
ity SpecC[G, H, I]/(GH�I<+1). This is an isolated hypersurface singularity, therefore
it is very easy to write down the miniversal deformation: GH = I<+1+ C<I<�1+· · ·+ C1
over C[[C1, . . . , C<]]. It is clear that this singularity is smoothable.

If � is a lattice polygon, then the a�ne toric threefold *� has the following
properties:

1. *� has, at most, an isolated singularity if and only if the edges of � are unitary,
i.e. have lattice length 1;



298 Andrea Petracci

Fig. 14.1: A standard square, a standard triangle, an �1-triangle and an �2-triangle.

2. *� is Q-factorial if and only if � is a triangle.

Now we provide some examples of lattice polygons and their corresponding toric
Gorenstein a�ne threefolds.

Example 13 A lattice polygon � is called a standard square if it is a quadrilateral such
that all its lattice points are vertices, or equivalently if it is Z2

o GL2 (Z)-equivalent
to conv{(0, 0), (1, 0), (1, 1), (0, 1)} ✓ R2. If � is a standard square, then *� is the
ordinary double point (i.e. node) SpecC[G, H, I,F]/(GH � IF). This singularity is
clearly smoothable as it is a hypersurface singularity. Its miniversal deformation is
given GH � IF = C over C[[C]].

A lattice polygon � is called a standard triangle if it is a triangle such that
all its lattice points are vertices, or equivalently if it is Z2

o GL2 (Z)-equivalent
to conv{(0, 0), (1, 0), (0, 1)} ✓ R2. � is a standard triangle if and only if *� is
isomorphic to A3.

If < � 1, then a lattice polygon � is called an �<-triangle if it is a triangle such
that there are no interior lattice points and the edges have lattice lengths 1, 1,< + 1,
respectively. Equivalently, a polygon is an �<-triangle if and only if it isZ2

oGL2 (Z)-
equivalent to conv{(0, 0), (< + 1, 0), (0, 1)} ✓ R2. If � is an �<-triangle, then *�

is the 2�<-singularity SpecC[G, H, I,F]/(GH � I<+1). This singularity is clearly
smoothable as it is a hypersurface singularity.

Altmann [7] explicitly constructed the miniversal deformation of an isolated
Gorenstein toric singularity of dimension 3. (By Corollary 12 it is trivial to construct
the miniversal deformation of an isolated Gorenstein toric singularity of dimension �
4.) A consequence of his construction is the following description of the irreducible
components of the base of the miniversal deformation.

Theorem 14 (Altmann [7]) Let � be a lattice polygon with unitary edges and
let *� be the corresponding isolated Gorenstein toric singularity of dimension 3.
Let ' be the hull of Def

*�
. Then there exists a one-to-one correspondence between

minimal primes of ' and maximal Minkowski decompositions of �. Moreover, if a
minimal prime p ⇢ ' corresponds to the maximal Minkowski decomposition � =
�0 + �1 + · · · + �A , then A = dim '/p.

Corollary 15 Let � be a lattice polygon with unitary edges and let *� be the
associated isolated Gorenstein toric singularity of dimension 3. Then Def

*�
has an

artinian hull if and only if � is Minkowski indecomposable.
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= +

Fig. 14.2: The Minkowski decomposition (14.3) of the pentagon � in (14.2).

14.3.2 The a�ne cone over the del Pezzo surface of degree 7

Here we study an explicit example of what has been considered in §14.3.1. In the
lattice # = Z2 consider the pentagon

� = conv

( 
1

0

!
,

 
1

1

!
,

 
0

1

!
,

 
�1

0

!
,

 
0

�1

!)
✓ #R, (14.2)

which is depicted on the left of Figure 14.2. The toric variety associated to the face
fan of � is the smooth del Pezzo surface of degree 7, which is denoted by dP7 and
is the blow up of P2 in 2 distinct points. The anticanonical map of dP7 is a closed
embedding into P7.

Now we put the pentagon � at height 1 in the lattice # = # � Z and we consider
the cone over it:

f� = cone

8>>><
>>>:
©≠≠≠
´

1

0

1

™ÆÆÆ
¨
,

©≠≠≠
´

1

1

1

™ÆÆÆ
¨
,

©≠≠≠
´

0

1

1

™ÆÆÆ
¨
,

©≠≠≠
´

�1

0

1

™ÆÆÆ
¨
,

©≠≠≠
´

0

�1

1

™ÆÆÆ
¨

9>>>=
>>>;
✓ #R � R.

The a�ne toric variety *� = SpecC[f_
�
\ (" � Z)] is the a�ne cone over the

anticanonical embedding of dP7 and has an isolated Gorenstein canonical non-
terminal singularity at the vertex of the cone.

Altmann [7, (9.1)] shows that the hull of Def
*�

is C[[C1, C2]]/(C21 , C1C2), which
is a line with an embedded point. The reduction of the miniversal deformation, i.e.
the base change to the reduction of the hull, is induced by the unique maximal
Minkowski decomposition of the pentagon � in the following way.

In the lattice # we have the Minkowski decomposition

� = conv

( 
0

0

!
,

 
�1

0

!
,

 
0

�1

!)
+ conv

( 
0

0

!
,

 
1

1

!)
, (14.3)

which is illustrated in Figure 14.2. Following [5, (3.4)], in the lattice #̃ = # � Z41 �
Z42 we construct the cone
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f̃ = cone

8>>>>>><
>>>>>>:

©≠≠≠≠≠
´

0

0

1

0

™ÆÆÆÆÆ
¨
,

©≠≠≠≠≠
´

�1

0

1

0

™ÆÆÆÆÆ
¨
,

©≠≠≠≠≠
´

0

�1

1

0

™ÆÆÆÆÆ
¨
,

©≠≠≠≠≠
´

0

0

0

1

™ÆÆÆÆÆ
¨
,

©≠≠≠≠≠
´

1

1

0

1

™ÆÆÆÆÆ
¨

9>>>>>>=
>>>>>>;
✓ #̃R.

Notice that the the first three rays of f̃ come from the vertices of the first summand
of � in (14.3), whereas the last two rays of f̃ come from the vertices of the second
summand of � in (14.3). Let *̃ = SpecC[f̃_ \ "̃] be the a�ne toric variety
associated to the cone f̃, where "̃ denotes the dual of #̃ . One can prove that *̃
has only an isolated terminal Gorenstein singularity. Let 51 and 52 be the regular
functions on *̃ associated to the characters (0, 0, 1, 0) 2 "̃ and (0, 0, 0, 1) 2 "̃ ,
respectively. The variety *� is the zero locus of the function 51 � 52, i.e. we have a
cartesian diagram

*�

✏✏

//
*̃

c

✏✏
SpecC // A1

C

(14.4)

where c is given by the function 51 � 52 and the bottom morphism is given by
the origin of A1

C
. Since 51 � 52 is not constant and A1

C
is regular of dimension 1,

the morphism c is flat. The reduction of the miniversal deformation of *� is the
formal deformation of*� overC[[C]] obtained from the square (14.4) by base change
via SpecC[C]/(C=+1) õ! SpecC[C] = A1

C
for all =. The following proposition shows

that this is a formal smoothing.

Proposition 16 Let � be the pentagon defined in (14.2) and let *� be the cor-
responding Gorenstein toric threefold singularity. Then the collection of the base
change of c in (14.4) via SpecC[C]/(C=+1) ! SpecC[C] = A1

C
for all = is a formal

smoothing of*� . In particular,*� is formally smoothable.

Proof We want to study the closed fibres of c. The fibre over the origin of A1
C

is *� . Let us fix _ 2 C \ {0} and we consider the fibre c�1 (_) of c over the closed
point (C � _) of A1

C
corresponding to _. We consider the subcone g1 (resp. g2) of f̃

that is generated by the first three (resp. last two) rays of f̃. We consider the a�ne
toric variety, 9 = SpecC[g_

9
\ "̃], for 9 = 1, 2. We have that,1 and,2 are open

subschemes of *̃.
We have that ,1 is the open subset of *̃ where the function 52 does not vanish,

i.e.,1 = { 52 < 0} ✓ *̃, and analogously,2 = { 51 < 0} ✓ *̃. It is clear that there is
an isomorphism,1 ' A3 ⇥Gm with respect to which the function 51 |,1 becomes a
projection onto aA1-factor inA3 and the function 52 |,1 becomes the projection onto
the Gm-factor. There is also an isomorphism ,2 ' A2 ⇥ G2

m with respect to which
the function 51 |,2 becomes a projection onto a Gm-factor and the function 52 |,2

becomes a projection onto an A1-factor.
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Now c
�1 (_) \,1 = { 51 = 52 + _} \,1 is isomorphic to A2 ⇥Gm and c�1 (_) \

,2 = { 52 = 51 � _} \ ,2 is isomorphic to A1 ⇥ G2
m. Since _ < 0, it is clear

that c�1 (_) ✓ ,1 [,2. Therefore we have proved that c�1 (_) is smooth.
One can also show that the generic fibre of c is smooth over the generic point

of A1
C
. In order to prove this, it is enough to base change to the spectrum of the

field C(C) of rational function of A1
C

and pursue a similar argument, which deals
with toric varieties over the field C(C).

In particular, c is flat of relative dimension 3 and has Cohen–Macaulay fibres. As
in the proof of Lemma 5, from the fact that all non-special fibres of c are smooth we
can deduce that c induces a formal smoothing of*� . ⇤

14.4 Deformations of toric Fano varieties

14.4.1 Fano polytopes

Fano polytopes are the combinatorial-polyhedral avatars of toric Fano varieties.

Definition 17 A polytope % in a lattice # of rank = is called Fano if:

1. % has dimension =;
2. the origin 0 lies in the interior of %;
3. the vertices of % are primitive lattice elements of # .

If % is a Fano polytope, we denote by -% the complete toric variety associated to
the spanning fan (also called the face fan) of %.

If % is a Fano polytope, then -% is a Fano variety. All toric Fano varieties arise
in this way from a Fano polytope [3, §8.3]. The variety -% is Gorenstein, i.e. its
(anti)canonical divisor is Cartier, if and only if % is reflexive, i.e. the facets of %
lie on hyperplanes with height 1 with respect to the origin. The maximal toric
a�ne charts of -% (or equivalently the torus-fixed points of -%) are in one-to-one
correspondence with the facets of %. If = is the dimension of %, for every 0  :  =
there is a one-to-one correspondence between the :-dimensional torus-orbits of -%

and the (= � : � 1)-dimensional faces of %.
Fano polytopes of small dimension with specific properties have been classi-

fied [14–16,57–59,65,66,77,78,89,90,98]. We refer the reader to [60] for a survey
on the classification of Fano polytopes.

14.4.2 Two su�cient conditions for non-smoothability

It is an open problem to understand whether an arbitrary toric Fano variety is
smoothable. Here we state a couple of conditions that forbid the smoothability. Both
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conditions on a toric Fano variety - are based on the existence of an open a�ne
singular subscheme* such that* is not formally smoothable.

Theorem 18 Let # be a lattice, let % be a Fano polytope in # , and let - be the toric
Fano variety associated to the spanning fan of %. Assume that there exists a face �
of % which satisfies the following conditions:

1. for each 1-face � 0 of �, there exists a basis of # which contains the two vertices
of � 0;

2. each 2-face of � is a triangle;
3. there exists no basis of # which contains all the vertices of �.

Then - is not smoothable.

Proof Let* be the a�ne toric open subscheme of - associated to the cone spanned
by the face �. The condition (1) means that * is smooth in codimension 2. The
condition (2) means that * is Q-factorial in codimension 3. Therefore * is rigid by
Proposition 11. The condition (3) implies that * is singular. Therefore, by Corol-
lary 9, - is not smoothable. ⇤

If % is a reflexive polytope of dimension 3, then the theorem above applies if
there exists a triangular facet � with unitary edges and such that it is not a standard
triangle. Below we see that we can relax the condition of � being triangular to �
being Minkowski-indecomposable.

Proposition 19 Let % be a reflexive polytope of dimension 3 and let - be the toric
Fano threefold associated to the spanning fan of %. Assume that there exists a facet �
of % such that:

1. � has unitary edges;
2. � is Minkowski-indecomposable;
3. � is not a standard triangle (i.e. the vertices of � do not form a basis of the

lattice).

Then - is not smoothable.

Proof The proof is very similar to the proof of Theorem 18. Let * be the a�ne
toric open subscheme of - associated to the cone spanned by �. The conditions (1)
and (3) means that* has an isolated singularity. Since % is reflexive,* is Gorenstein.
By Corollary 15, from (2) we deduce that Def

*
has an artinian hull. Therefore, by

Proposition 8,* is not formally smoothable. By Corollary 9, - is not smoothable.⇤

14.4.3 Rigidity

Here we will see that if a toric Fano variety has very mild singularities then it is
rigid.
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Lemma 20 Let - be a toric Fano variety. Then H8 (- ,)- ) = 0 for each 8 � 1. In
particular, all locally trivial deformations of - are trivial.

Proof Set = = dim - . Consider the smooth locus 9 : * õ! - . Let ⇡ be the toric
boundary of - . The sheaves )- and ( 9⇤⌦=�1

*
⌦ O- (⇡))__ are reflexive on - and

their restrictions to* coincide, because* is smooth and )* is isomorphic to ⌦=�1
*
⌦

l
_
*

. Therefore, since the complement of * has codimension at least 2, by [49,
Proposition 1.6] we have that )- is isomorphic to ( 9⇤⌦=�1

*
⌦ O- (⇡))__. Since ⇡ is

ample, we conclude by Bott–Steenbrink–Danilov vanishing [3, Theorem 9.3.1] (see
also [24, 40, 75]). ⇤

An immediate consequence of the lemma above is the following result.

Proposition 21 Every smooth toric Fano variety is rigid.

This result was originally proved by Bien and Brion [20]. Later de Fernex and
Hacon [38] proved the rigidity of Q-factorial terminal toric Fano varieties. The
following theorem, due to Totaro, is the most general rigidity theorem for toric Fano
varieties of which we are aware.

Theorem 22 (Totaro [96, Theorem 5.1]) A Fano toric variety which is smooth in
codimension 2 and Q-factorial in codimension 3 is rigid.

Proof By Lemma 20, H1 ()- ) = 0. By Proposition 11, the sheaf EGC1 (⌦- ,O- ) is
zero. From the five term exact sequence of Ext, which is written in the proof of
Proposition 2, we deduce that Ext1 (⌦- ,O- ) is zero. ⇤

If % is a Fano polytope, then -% satisfies the hypotheses of this theorem if and
only if all 2-faces of % are triangles and each edge, i.e. 1-face, of % has lattice length 1
and is contained in some hyperplane which has height 1 with respect to the origin.

Corollary 23 Let - be a toric Fano variety of dimension � 4. If - has isolated
singularities, then - is rigid.

In §14.4.4 and §14.4.5 we will study deformations of toric Fanos with isolated
singularities and of dimension 2 or 3.

14.4.4 Toric del Pezzo surfaces

A del Pezzo surface is a Fano variety of dimension 2. A toric del Pezzo surface is
associated to a Fano polygon, which is a Fano polytope of dimension 2.

Theorem 24 Every toric del Pezzo surface is smoothable.
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Proof Let - be an arbitrary toric del Pezzo surface. It is well known that - is
a normal Cohen–Macaulay projective variety. By Demazure vanishing [3, Theo-
rem 2.9.3], H2 (O- ) = 0. By Lemma 20, H2 ()- ) = 0. Since - is normal and of
dimension 2, - has isolated singularities. By Theorem 7 it is enough to check that
the singularities of - are formally smoothable.

The singularities of - are cyclic quotient surface singularities. This kind of
singularities is always smoothable; indeed, it is enough to pick the Artin component
of the base of the miniversal deformation [12]. ⇤

Remark 25 When the canonical divisor of a normal variety - is not Cartier, flat
deformations of - are too wild for hoping to study moduli of varieties. For a
normal Q-Gorenstein non-Gorenstein variety - one should consider a subfunctor
of Def

-
which is made up of the deformations of - in which the canonical divisor

deforms well. This is the theory ofQ-Gorenstein deformations, developed by Kollár–
Shepherd-Barron [64] (see also [1, 9, 45, 68]).

In the context of Q-Gorenstein deformations the analogous statement of Theo-
rem 24 is false: there exist non-Gorenstein toric del Pezzo surfaces which cannot
be deformed via Q-Gorenstein deformations to a smooth del Pezzo surface, e.g. the
weighted projective space P(1, 1, 3). Nonetheless, it is true that for Q-Gorenstein
deformations of del Pezzo surfaces there are no local-to-global obstructions [2,
Lemma 6]. Therefore, a del Pezzo surface is Q-Gorenstein smoothable if and only if
its singularities are Q-Gorenstein smoothable.

Since the main focus of this note is the study of deformations of Gorenstein toric
Fano threefolds, we will omit to discuss the theory of Q-Gorenstein deformations.
We refer the reader to [46, 82] for the study of toric del Pezzo surfaces which
have Q-Gorenstein smoothings.

14.4.5 Toric Fano threefolds with isolated singularities

Theorem 26 Let - be a toric Fano variety of dimension 3 with isolated singularities.
Then - is smoothable if and only if its singularities are formally smoothable.

Proof By Proposition 6, if - is smoothable then its singularities are formally smooth-
able. Conversely, suppose that the singularities of - are formally smoothable. Then
we argue as in the proof of Theorem 24: - is a normal Cohen–Macaulay projective
variety with H2 (O- ) = 0, by [3, Theorem 2.9.3], and H2 ()- ) = 0, by Lemma 20.
By Theorem 7, - is smoothable. ⇤

Corollary 27 Let % be a reflexive polytope of dimension 3 and let - be the toric
Fano threefold associated to the spanning fan of %. If each facet of % is either a
standard triangle or a standard square (see the definition in Example 13), then - is
smoothable.

Proof By Example 13 we have that the singularities of - are at most ordinary double
points (i.e. nodes). These singularities are formally smoothable. By Theorem 26 we
conclude. ⇤
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Fig. 14.3: The 3-dimensional lattice polytope % defined in (14.5) and associated to
the projective cone over the del Pezzo surface of degree 7.

The proof of this corollary is essentially a specific case of [39, §4.a]. The corollary
could have been deduced also from a more general result by Namikawa according to
which every Fano threefold with Gorenstein terminal singularities is smoothable [76].
The smooth Fano threefolds which are the smoothings of the toric Fano threefold
appearing in Corollary 27 have been studied by Galkin [42].

For 3 2 {6, 7}, let dP3 be the smooth del Pezzo surface of degree 3; it is toric. The
complete anticanonical linear system on dP3 induces a closed embedding dP3 õ! P3 .
We consider the projective cone ⇠ (dP3) ✓ P3+1 over this embedding; we have
that ⇠ (dP3) is a toric Fano threefold with a Gorenstein canonical non-terminal
isolated singularity. In §14.4.6 we will see that ⇠ (dP7) is smoothable. In [80] it is
shown that ⇠ (dP6) has two smoothings (see also [56, Example 3.3]).

14.4.6 The projective cone over the del Pezzo surface of degree 7

Here we study the deformations of an explicit toric Fano threefold with an isolated
Gorenstein non-terminal singularity.

Fix the lattice # = Z2. Consider the pentagon � ✓ #R defined in (14.2), imagine
to put it into the plane #R ⇥ {1} in #R �R ' R3, and create the pyramid over it with
apex at the point (0, 0,�1): this is the polytope

% = conv

8>>><
>>>:
©≠≠≠
´

1

0

1

™ÆÆÆ
¨
,

©≠≠≠
´

1

1

1

™ÆÆÆ
¨
,

©≠≠≠
´

0

1

1

™ÆÆÆ
¨
,

©≠≠≠
´

�1

0

1

™ÆÆÆ
¨
,

©≠≠≠
´

0

�1

1

™ÆÆÆ
¨
,

©≠≠≠
´

0

0

�1

™ÆÆÆ
¨

9>>>=
>>>;

(14.5)

in the lattice # �Z and is depicted in Figure 14.3. It is clear that % is a Fano polytope.
Let - be the toric variety associated to the spanning fan of %. Then - is the

projective cone over the anticanonical embedding of the smooth del Pezzo surface
of degree 7. The a�ne toric variety *� considered in §14.3.2 is the a�ne open
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toric subscheme of - associated to the pentagonal facet � of %. We have that - is a
Fano threefold with an isolated non-terminal canonical Gorenstein singularity at the
vertex of the cone.

Proposition 28 Let - be the toric Fano threefold associated to the polytope % in
(14.5), i.e. - is the projective cone over the anticanonical embedding of the smooth
del Pezzo surface of degree 7. Then - is smoothable and can be deformed to the
smooth Fano threefold P(OP2 � OP2 (1)).

Proof By Proposition 16, - has an isolated singularity which is formally smoothable.
By Theorem 26 we know that - is smoothable. We need to know to which smooth
Fano threefold - can be deformed.

From toric geometry [3, Theorem 13.4.3], we have that the anticanonical de-
gree (� - )3 is the normalised volume of the polar polytope of %, which is 56 in
this case. Since - has Gorenstein canonical singularities, by Proposition 10 we have
that the anticanonical degree is preserved in the smoothing. By inspecting the list
of smooth Fano threefolds (see [19, 53, 54, 73, 74] or [55, §12]), there is a unique
smooth Fano threefold of anticanonical degree 56, namely P(OP2 � OP2 (1)). ⇤

14.4.7 Another su�cient condition for non-smoothability

In addition to the result of Proposition 19, here we present another obstruction for
the smoothability of a toric Fano threefold with Gorenstein singularities.

Theorem 29 ([79]) Let # be a lattice of rank 3, let " = HomZ (# ,Z), let h·, ·i : " ⇥
# ! Z be the duality pairing, let % be a reflexive polytope in # , and let - be the
toric Fano threefold associated to the spanning fan of %. Assume that there are two
adjacent facets �0 and �1 of % such that:

1. both �0 and �1 are �=-triangles for some integer = � 1 (see the definition in
Example 13);

2. �0 \ �1 is a segment with = + 2 lattice points;
3. hF1, E0i = 0, whereF1 2 " is such that �1 ✓ {E 2 #R | hF1, Ei = 1} and E0 2 #

is the vertex of �0 which does not lie on the segment �0 \ �1.

Then - is not smoothable.

With the terminology of [79], the two triangles �0 and �1 are called “two adjacent
almost-flat �=-triangles”.

Proof (Sketch of the proof of Theorem 29) We refer the reader to [79] for all the
details missing here. Let *8 be the toric open a�ne subscheme of - associated to
the facet �8 , for each 8 = 0, 1. Set* = *0 [*1.

One can show that* admits an �=-bundle structure over P1. More precisely, one
can construct a toric morphism c : * ! P1 such that, for each 8 = 0, 1, if +8 denotes
the 8th standard a�ne chart ofP1 then c�1 (+8) = *8 and the restriction c |*8 : *8 ! +8
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is the projection SpecC[G, H, I,F]/(GH � I=+1) ! SpecC[F]. This �= bundle may
be non trivial, depending on the relative position of the two triangles �0 and �1.
Set 3 = hF1, E0i. By [79, Proposition 3.5] there exists an isomorphism of coherent
sheaves on P1:

c⇤EGC1O*
(⌦* ,O* ) '

 
2 9=+1

OP1 (� 9 3 � 9).

Since 3 = 0, the sheaf on the right is a direct sum of negative line bundles on P1,
hence we have H0 (*, EGC1O*

(⌦* ,O* )) = 0. By Corollary 9, - is not smoothable.⇤

With the same technique of the theorem above one can also construct some
rigid toric Fano threefolds with only 2�1-singularities (see [79, Theorem 1.2]). This
refutes a conjecture of Prokhorov [85] according to which every Fano threefold with
compound Du Val singularities is smoothable.

14.4.8 Other methods

Here we briefly collect some other results on deformations and smoothings of toric
Fano varieties. Most of these results have been motivated by Mirror Symmetry for
Fano varieties (see [2, 3, 26, 30, 31, 61, 86, 87]).

By analysing cluster transformations of tori, Akhtar–Coates–Galkin–Kasprzyk [3]
have introduced the notion of mutation of Fano polytopes. A mutation is a combi-
natorial procedure that, under certain conditions, transforms a Fano polytope % into
another Fano polytope %0. Ilten [26] has proved that mutations of Fano polytopes
induce deformations of the corresponding toric Fano varieties; more precisely, if %
and %0 are related via a mutation, then he has constructed a flat family over P1 such
that the fibre over 0 is -% and the fibre over1 is -%

0 .
Ilten, Lewis and Przyjalkowski [52] have constructed toric degenerations of

smooth Fano threefolds with Picard rank 1.
Christophersen and Ilten [29] have constructed degenerations of smooth Fano

threefolds of low degree to certain unobstructed Fano Stanley-Reisner schemes.
Since these unobstructed Fano Stanley-Reisner schemes are also degenerations of
singular toric Fano varieties, this implies the following result.

Theorem 30 (Christophersen–Ilten [28, Proposition 4.2, Theorem 5.1, Theo-
rem 7.1]) Let - be a toric Fano threefold with Gorenstein singularities. If (� - )3 2
{4, 6, 8, 10, 12}, then - is smoothable.

Coates–Kasprzyk–Prince [32] have introduced a combinatorial gadget, called scaf-
folding, on a Fano polytope % which induces a closed embedding of the toric Fano
variety -% into a bigger toric variety . . Often -% is a complete intersection in
the Cox coordinates of . , therefore it is easy to construct embedded deformations
of -% in . . In many cases this produces smoothings of -% . For instance, Cavey
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and Prince [25] have successfully applied the sca�olding method to construct de-
formations of toric del Pezzo surfaces to del Pezzo surfaces with a single 1

:
(1, 1)

singularity.
Moreover, Prince [83] has found necessary and su�cient conditions in order to

have that the ambient toric variety. is smooth: this is the notion of cracked polytope.
He has also found a su�cient condition for a smoothing of -% to exist inside . . Via
the sca�olding method and cracked polytopes, in [84] he constructs a degeneration
of each smooth Fano threefold with very ample anticanonical bundle and Picard
rank � 2 to a Gorenstein toric Fano threefold.

14.5 Lists of reflexive polytopes of dimension 3

Below we write lists of reflexive polytopes of dimension 3 which satisfy specific
properties. There are exactly 4319 reflexive polytopes of dimension 3: the classifi-
cation is due to Kreuzer and Skarke [66]. The IDs we use are numbers between 1
and 4319 and come from the Graded Ring Database [23]. All polytopes we consider
below are reflexive of dimension 3. They correspond to toric Fano threefolds with
Gorenstein singularities. We denote by -% the toric Fano threefold associated to the
spanning fan of %.

Let Ssmoothable be the set of polytopes % such that the corresponding toric Fano
threefold -% is smoothable. It is an open question to explicitly compute Ssmoothable.

Let Ssmooth be the set of polytopes which have only standard triangles as facets.
These 18 polytopes correspond to the smooth toric Fano threefolds.

Let Sisol be the set of polytopes with unitary edges such that at least one facet is
not a standard triangle. These 137 polytopes correspond to the singular toric Fano
threefolds with isolated Gorenstein singularities.

LetSnodes be the set of polytopes such that all facets are either standard triangles or
standard squares and there is at least a square facet. These 82 polytopes correspond to
the singular toric Fano threefolds with at most ordinary double points, or equivalently
to the singular toric Fano threefolds with Gorenstein terminal singularities. By
Corollary 27 these varieties are smoothable.

Let Slow be the set of polytopes % such that the normalised volume of the po-
lar %⇤ of % belongs to {4, 6, 8, 10, 12}. These 220 polytopes correspond to the toric
Gorenstein Fano threefolds - such that (� - )3 2 {4, 6, 8, 10, 12}.

Let Sindec be the set of polytopes which contain a facet � which has unitary edges,
is Minkowski indecomposable and is not a standard triangle. By Proposition 19 the
corresponding toric Fano threefolds are not smoothable.

Let Saft be the set of polytopes which contain a pair of adjacent almost-flat �=-
triangles, for some = � 1. In other words, the set Saft contains exactly all polytopes %
to which Theorem 29 applies. Therefore, the corresponding toric Fano threefolds are
not smoothable.

Let S denote the set of all reflexive polytopes of dimension 3, i.e. the set of
positive integers not greater than 4319. We have:
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Snodes ✓ Sisol ✓ S \ Ssmooth,

Ssmooth [ Snodes [ Slow ✓ Ssmoothable,

Sindec [ Saft ✓ S \ Ssmoothable.

Below we write down the elements of most of the sets mentioned above.

Ssmooth = {1, 5, 6, 7, 8, 25, 26, 27, 28, 29, 30, 31, 82, 83, 84, 85, 219, 220}

Sisol = {3, 4, 11, 12, 17, 21, 22, 23, 24, 42, 48, 49, 50, 51, 54, 68, 69, 70, 71, 72,
73, 74, 75, 76, 77, 78, 79, 80, 81, 155, 156, 158, 159, 160, 167, 168, 170, 177, 187,
188, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213,
214, 215, 216, 217, 218, 360, 363, 364, 365, 366, 376, 377, 378, 380, 385, 403, 410,
411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427,
686, 688, 689, 692, 693, 694, 695, 696, 707, 710, 725, 729, 730, 731, 732, 733, 734,
735, 736, 737, 738, 739, 740, 741, 1085, 1086, 1087, 1091, 1092, 1093, 1109, 1110,
1111, 1112, 1113, 1114, 1517, 1518, 1519, 1524, 1528, 1529, 1530, 1941, 1943,
2355, 2356}

Snodes = {4, 21, 22, 23, 24, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214,
215, 216, 217, 218, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422,
423, 424, 425, 426, 427, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740,
741, 1109, 1110, 1111, 1112, 1113, 1114, 1528, 1529, 1530, 1943, 2356}

Slow = {1946, 2711, 2756, 2817, 3043, 3051, 3053, 3079, 3314, 3319, 3329,
3331, 3349, 3350, 3390, 3393, 3406, 3416, 3447, 3452, 3453, 3505, 3573, 3620,
3625, 3626, 3667, 3683, 3702, 3727, 3728, 3731, 3733, 3735, 3736, 3738, 3739,
3740, 3756, 3760, 3762, 3777, 3790, 3791, 3792, 3795, 3796, 3844, 3845, 3846,
3848, 3853, 3857, 3868, 3869, 3874, 3875, 3879, 3901, 3903, 3922, 3923, 3927,
3928, 3933, 3936, 3937, 3938, 3946, 3962, 3964, 3965, 3966, 3967, 3981, 3983,
3984, 3985, 3991, 3995, 4003, 4004, 4005, 4006, 4007, 4022, 4023, 4024, 4027,
4031, 4032, 4041, 4042, 4043, 4044, 4056, 4058, 4059, 4060, 4070, 4074, 4075,
4076, 4080, 4088, 4092, 4094, 4095, 4102, 4104, 4117, 4118, 4119, 4122, 4124,
4131, 4132, 4133, 4134, 4135, 4143, 4144, 4145, 4149, 4159, 4160, 4161, 4167,
4168, 4169, 4170, 4179, 4180, 4181, 4182, 4183, 4184, 4186, 4190, 4191, 4194,
4200, 4202, 4203, 4205, 4206, 4214, 4215, 4216, 4217, 4218, 4219, 4220, 4225,
4228, 4229, 4231, 4232, 4233, 4235, 4236, 4238, 4239, 4241, 4244, 4245, 4246,
4247, 4249, 4250, 4251, 4252, 4254, 4255, 4256, 4258, 4260, 4261, 4263, 4267,
4268, 4269, 4270, 4272, 4273, 4275, 4278, 4280, 4281, 4282, 4284, 4285, 4286,
4287, 4288, 4290, 4291, 4292, 4293, 4294, 4295, 4297, 4298, 4299, 4300, 4301,
4303, 4304, 4307, 4308, 4309, 4310, 4311, 4312, 4313, 4314, 4315, 4317, 4318,
4319}

Sindec = {3, 12, 17, 32, 38, 48, 49, 51, 54, 88, 91, 94, 98, 99, 100, 101, 102, 103,
105, 115, 119, 121, 134, 137, 138, 141, 142, 155, 158, 159, 170, 188, 228, 235, 239,
242, 243, 247, 248, 252, 254, 256, 260, 262, 265, 271, 278, 293, 294, 298, 299, 301,
317, 318, 330, 351, 353, 360, 378, 380, 438, 439, 440, 443, 445, 455, 468, 480, 491,
492, 493, 497, 501, 502, 515, 525, 526, 529, 530, 532, 539, 541, 543, 546, 550, 553,
562, 570, 575, 604, 608, 609, 614, 620, 645, 650, 660, 663, 688, 744, 752, 753, 754,
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756, 760, 774, 775, 776, 780, 784, 790, 791, 792, 800, 834, 841, 844, 845, 852, 856,
859, 864, 866, 887, 900, 908, 912, 914, 923, 935, 963, 979, 990, 991, 1012, 1019,
1020, 1130, 1151, 1154, 1183, 1199, 1204, 1205, 1208, 1215, 1218, 1220, 1261,
1275, 1277, 1283, 1299, 1302, 1309, 1311, 1352, 1370, 1384, 1397, 1547, 1585,
1598, 1631, 1636, 1638, 1679, 1683, 1687, 1693, 1728, 1750, 1751, 1777, 1791,
1992, 2014, 2046, 2047, 2050, 2051, 2080, 2081, 2084, 2096, 2124, 2129, 2379,
2404, 2425, 2427, 2455, 2456, 2716, 2750, 2751, 2755}

Saft = {15, 16, 36, 41, 45, 53, 58, 59, 61, 65, 66, 102, 105, 110, 111, 112, 113,
116, 117, 124, 125, 128, 135, 141, 142, 144, 146, 147, 148, 149, 152, 162, 172, 179,
183, 189, 192, 193, 197, 230, 236, 244, 248, 261, 268, 271, 272, 277, 278, 279, 280,
281, 282, 286, 288, 290, 292, 302, 310, 324, 325, 327, 331, 332, 333, 334, 335, 337,
340, 343, 347, 349, 351, 355, 356, 358, 361, 362, 386, 399, 400, 407, 443, 445, 448,
452, 453, 456, 457, 463, 467, 487, 490, 496, 497, 499, 501, 502, 505, 507, 508, 509,
511, 512, 516, 523, 540, 545, 550, 563, 569, 577, 579, 581, 582, 583, 594, 599, 600,
601, 605, 606, 617, 629, 633, 658, 670, 671, 672, 674, 679, 682, 687, 705, 760, 764,
770, 771, 780, 781, 786, 787, 792, 797, 799, 809, 811, 812, 815, 816, 824, 859, 865,
868, 873, 875, 878, 883, 884, 889, 891, 892, 893, 894, 895, 902, 905, 929, 956, 960,
965, 987, 1003, 1004, 1006, 1011, 1021, 1038, 1045, 1051, 1156, 1160, 1168, 1175,
1177, 1199, 1203, 1209, 1216, 1217, 1225, 1232, 1234, 1251, 1252, 1253, 1255,
1256, 1260, 1262, 1265, 1275, 1286, 1287, 1293, 1300, 1305, 1308, 1324, 1327,
1351, 1371, 1383, 1398, 1533, 1545, 1550, 1551, 1554, 1561, 1579, 1589, 1613,
1614, 1615, 1620, 1637, 1638, 1656, 1665, 1666, 1671, 1686, 1690, 1693, 1697,
1711, 1747, 1748, 1760, 1763, 1989, 2000, 2001, 2027, 2045, 2051, 2052, 2068,
2071, 2072, 2076, 2084, 2096, 2098, 2102, 2379, 2380, 2385, 2403, 2405, 2423,
2424, 2425, 2427, 2738, 2777, 2778, 2792, 3047, 3057, 3063, 3064}

We have |Sindec [ Saft | = 442. Therefore there exist at least 442 non-smoothable
toric Fano threefolds with Gorenstein singularities.
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