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Abstract

In this paper block upper triangular systems of linear difference equations are
considered, in which the coefficient matrices are not assumed invertible. The
relationship between the exponential properties of such a system and its
associated block diagonal system is studied. The reason it is important to
study triangular systems is that any system of linear difference equations is

kinematically similar to an upper triangular system. In the bounded invertible
case, it is known that for equations on the intervals J = Z+ or Z−, a block
upper triangular system has an exponential dichotomy if and only if the
associated block diagonal system has one. However when J = Z, only the

sufficiency holds. The sufficiency extends to the noninvertible case, provided
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the off-diagonal matrices are bounded. However the necessity does not hold
even when J = Z+ or Z−. Nevertheless if certain conditions are added, then
the necessity does hold and it is also shown that these conditions are needed

since it turns out that if both the triangular and diagonal systems have
dichotomies, then these extra conditions must hold.

Mathematics Subject Classification. 34D05, 34C25.
Key words.

1 Introduction

In this paper we consider a block upper triangular system

x(k + 1) = A(k)x(k) =


A11(k) A12(k) · · · A1p(k)

0 A22(k) · · · A2p(k)
· · · · · ·
0 0 · · · App(k)

x(k), (1)

where Aij(k) is ni × nj with
∑p

i=1 ni = n, and its associated block diagonal
system

x(k + 1) = D(k)x(k) =


A11(k) 0 · · · 0

0 A22(k) · · · 0
· · · · · ·
0 0 · · · App(k)

x(k) (2)

on an interval J , which we take to be Z, Z+ or Z−. For a system x(k + 1) =
A(k)x(k), we define its transition matrix Φ(k,m) as A(k−1) · · ·A(m) for k > m
in J and as I for k = m in J . (Note when J = Z−, it is to be understood that the
equation x(k + 1) = A(k)x(k) holds for k ≤ −1 but that the transition matrix
Φ(k,m) is defined for m ≤ k ≤ 0.) It is not assumed that A(k) is invertible or
that its norm is uniformly bounded. The question we are concerned with is the
relation between the exponential dichotomy properties of (1) and (2).

The reason it is important to study triangular systems is that any system of
linear difference equations is kinematically similar to an upper triangular system.
To prove this, consider the system

x(k + 1) = A(k)x(k), k ∈ J. (3)

Suppose first that A(k) is invertible for all k. Choose a fixed m ∈ J . Then for
all k ∈ J , its transition matrix Φ(k,m) is invertible and applying Gram-Schmidt
to its columns we may write Φ(k,m) = S(k)R(k), where S(k) is orthogonal and
R(k) is upper triangular. Note that Φ(k+1,m) = A(k)Φ(k,m) = A(k)S(k)R(k)
but also Φ(k + 1,m) = S(k + 1)R(k + 1). So S∗(k + 1)A(k)S(k) = R(k +
1)R−1(k). This means the kinematic similarity x = S(k)y takes equation (3)
into the equation y(k + 1) = B(k)y(k), where B(k) is the upper triangular
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R(k+1)R−1(k). This completes the proof for the invertible case. Consider now
the general case. For all k ∈ J and i = 1, 2, ..., there exists an invertible matrix
Ai(k) such that |Ai(k) − A(k)| < 1/i. We know there exist Si(k) orthogonal
and Ri(k) upper triangular such that (Si(k+1))∗Ai(k)Si(k) is upper triangular.
Since |Si

k| ≤ 1 for all k and i, we may use Cantor’s diagonalization method to
find a subsequence Sji(k) → S(k) for all k. Then (Sji(k))∗ → S∗(k) for all k.
Then since (Sji(k))∗Sji(k) = I for all i and k it follows that S∗(k)S(k) = I for
all k. So S(k) is orthogonal for all k. However for all i and k we also know that
(Sji(k + 1))∗Aji(k)Sji(k) is upper triangular. So the limit S∗(k + 1)A(k)S(k)
is also upper triangular. Hence the proof is complete.

In the invertible case, some results relating the dichotomy properties of (1) and
(2) have already been proved. When A(k) is invertible and uniformly bounded, it
follows from Theorem 4.1 in [7] that when J = Z+ or Z−, (1) has an exponential
dichotomy if and only if (2) has one. However when J = Z, if (2) has an
exponential dichotomy then (1) has one but the converse is not true in general.
We are not aware of any results in the noninvertible case.

When A(k) is neither invertible nor bounded, it turns out that in one direction
the results are much more complicated. First we look at the less complicated
direction. Consider system (1) on J = Z+, Z− or Z, where Aij(k) is bounded for
i ̸= j. Then in Theorem 1 in Section 3, we use the roughness theorem to show
that if the diagonal system (2) has an exponential dichotomy on J , system (1)
also has one and with projection of the same rank. We also give an example to
show that the boundedness condition is necessary, even for invertible systems.

In Section 4 we first consider invertible systems and show even when they are
unbounded, (1) having an exponential dichotomy on Z+ or Z− implies (2) has
an exponential dichotomy also. However we show by example that the same
result does not hold for Z even if A(k) is bounded.

When A(k) is not invertible, in Section 5 we show by examples that it can
happen that (1) has an exponential dichotomy on Z+ or Z−, but (2) does not
have an exponential dichotomy. In the invertible case, we were able to show
that if (1) has an exponential dichotomy on Z+ or Z−, then the projection can
be taken as upper triangular. However one of the examples in Section 5 shows
that, in general, this is not true in the noninvertible case.

In Theorem 3 in Section 6, we show that for J = Z+, Z− and Z, exponential
dichotomy on J for (1) implies the same for (2) provided that for the exponential
dichotomy of (1), the projection can be taken in upper triangular form with each
diagonal block having rank independent of k. For Z this seems to be a new result
even in the bounded invertible case. In Section 7 we prove a converse to this.
In Theorems 4, 5 and 6 we show for J = Z+, Z− and Z respectively that if
both (1) and (2) have an exponential dichotomy on J , then the projection for
(1) can be taken in upper triangular form with each diagonal block having rank
independent of k with the projection for (2) being the diagonal part. It seems
that for Z this result is new even in the bounded, invertible case. In Section
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8 we specialize our results to upper triangular systems, that is, block upper
triangular systems where the blocks are scalars.

In Section 2 we prove some results about exponential dichotomies in block di-
agonal systems which are needed later.

Note that for differential equations, exponential dichotomy of triangular systems
have been studied in [1] and [4]. Also a result for exponential trichotomy for
triangular systems of linear difference equations is given in [5].

In all that follows, we denote the transition matrix of (1) or (2) by Φ(k,m) and
by Φi(k,m) the transition matrix of xi(k + 1) = Aii(k)xi(k).

2 Block diagonal systems

In this section we study exponential dichotomies in block diagonal systems.
First we recall the definition of exponential dichotomy from [2].

Definition. We say system (3) with transition matrix Φ(k,m) has an expo-
nential dichotomy on an infinite interval J of integers if there is a projection
function P (k) of constant rank such that

Φ(k,m)P (m) = P (k)Φ(k,m)

for k ≥ m in J and A(k) : NP (k) → NP (k+1) is invertible for k, k+1 in J so
that Φ(k,m) : NP (m) → NP (k) is invertible for k ≥ m in J and either
(i) there exist positive constants K and α such that for k ≥ m in J

|Φ(k,m)P (m)| ≤ Ke−α(k−m), |Φ(m, k)(I − P (k))| ≤ Keα(k−m),

where Φ(m, k) is the inverse of Φ(k,m) : NP (m) → NP (k) or, equivalently,
(ii) there are positive constants M , K and α such that

|P (k)|, |I − P (k)| ≤ M for k ∈ J,

and for k ≥ m in J

|Φ(k,m)ξ| ≤ Ke−α(k−m)|ξ|, ξ ∈ RP (m),

|Φ(k,m)ξ| ≥ K−1eα(k−m)|ξ|, ξ ∈ NP (m).

When x(k + 1) = A(k)x(k) has a dichotomy on Z or Z+, we refer to RP (m)
as the stable subspace at m. It follows from Lemma 3.1 in [2] that this is just
the subspace of initial values at m of solutions bounded in k ≥ m. Similarly,
when the dichotomy is on Z or Z−, we refer to NP (m) as the unstable subspace
at m and by Lemma 3.1 in [2], this is just the subspace of initial values at
m of solutions bounded in k ≤ m. If we just say stable subspace or unstable
subspace, it is understood that m = 0.

The following proposition is the main result of this section. Note that (ii) is
a strengthening of what is proved in (i), as in (ii) it is not assumed that the
dichotomy for (2) has a projection in block diagonal form.

4



Proposition 1. (i) System (2) has an exponential dichotomy on J = Z+, Z−
or Z with projection P (k) in the block diagonal form

P (k) =


P1(k) 0 0 · · · · 0
0 P2(k) 0 · · · · 0
0 0 P3(k) · · · · ·
0 0 0 · · · · ·
0 0 0 · · · Pp−1(k) 0
0 0 0 · · · · Pp(k)

 , (4)

if and only if for all i,
xi(k + 1) = Aii(k)xi(k) (5)

has an exponential dichotomy on J with projection Pi(k).

(ii) System (2) has an exponential dichotomy on J = Z+, Z− or Z if and only
if for all i, (5) has an exponential dichotomy on J with projection, say, Pi(k).
Moreover the projection P (k) of the dichotomy for (2) can be taken as in (4).
Hence when J = Z+ or Z, the stable subspace for (2) is the Cartesian product
RP1(0)×RP2(0)× · · · ×RPp(0); when J = Z− or Z, the unstable subspace for
(2) is the Cartesian product NP1(0)×NP2(0)× · · · × NPp(0).

Proof. (i) First we prove the necessity. So suppose that (2) has an exponential
dichotomy on J = Z+, Z− or Z with constants K, α and projection P (k) in the
block diagonal form (4). Since

diag(A11(k)P1(k), . . . , App(k)Pp(k)) = A(k)P (k) = P (k + 1)A(k)

= diag(P1(k + 1)A11(k), . . . , Pp(k + 1)App(k)),

the invariance of Pi(k) with respect to (5) follows from the invariance of P (k)
with respect to (2). Next suppose for some i, Φi(k,m)y = 0 for some y ∈
NPi(m) and k ≥ m. Then x = (0, . . . , y, . . . , 0) with y in the ith place is in
NP (m) and, if Φ is the transition matrix for (2),

Φ(k,m)x = diag(Φ1(k,m), . . . ,Φp(k,m))x = (0, . . . ,Φi(k,m)y, . . . , 0) = 0.

Since Φ(k,m) is one to one on NP (m), it follows that x = 0 and hence y = 0.
So for each i, Φi(k,m) is one to one on NPi(m) when k ≥ m. By invariance,
Φi(k,m) maps NPi(m) into NPi(k). So the rank of Pi(k) is less than or equal
to the rank of Pi(m) for all i. However, the sums of the ranks are equal and
so the rank of Pi(k) is equal to the rank of Pi(m) for all i. Hence Φi(k,m)
maps NPi(m) bijectively onto NPi(k) and we denote by Φi(m, k) : NPi(k) →
NPi(m) the inverse of Φi(k,m) restricted to NPi(m). Then we see that the
inverse Φ(m, k) : NP (k) → NP (m) of Φ(k,m) restricted to NP (m) satisfies

Φ(m, k) = diag(Φ1(m, k), . . . ,Φp(m, k)).

Next since for k ≥ m,

Φ(k,m)P (m) = diag(Φ1(k,m)P1(m), . . . ,Φp(k,m)Pp(m))
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and

Φ(m, k)(I− P (k)) = diag(Φ1(m, k)(I− P1(k)), . . . ,Φp(m, k)(I− Pp(k))),

it follows from the inequalities

|Φ(k,m)P (m)| ≤ Ke−α(k−m), |Φ(m, k)(I− P (k))| ≤ Ke−α(k−m)

that for each i

|Φi(k,m)Pi(m)| ≤ Ke−α(k−m), |Φi(m, k)(I− Pi(k))| ≤ Ke−α(k−m),

provided we are using a matrix norm which has the property that if A is a
partitioned matrix [Aij ], then for each i, j, |Aij | ≤ |A|. Hence, for all i, (5)
has an exponential dichotomy on J with projection Pi(k). Thus the necessity
is proved.

The sufficiency is proved by reversing these arguments.

(ii) Note first that it follows from (i) that if for each i, (5) has an exponential
dichotomy on J with projection Pi(k), then (2) has an exponential dichotomy
on J with projection P (k) as in (4).

Now assume that (2) has an exponential dichotomy on J with projection P (k),
where we are not assuming P (k) is in block diagonal form. We first suppose
J = Z+ or Z−.

First we prove the case p = 2. Consider first the case of Z+. For m ≥ 0, define
Vi(m) as the subspace of initial values of solutions of (5) which are bounded in
k ≥ m. Since a solution (x1(k), x2(k))) of (2), with p = 2, is bounded on k ≥ m
if and only if for each i, xi(k) is a bounded solution of (5) on k ≥ m, and since
RP (m) is the subspace of initial values of solutions of (2) which are bounded
in k ≥ m, it follows that

RP (m) = V1(m)× V2(m).

For i = 1, 2 we let Wi be subspaces such that Rni = Vi(0)⊕Wi and for m ≥ 0
define

Wi(m) = Φi(m, 0)(Wi),

so that

W (m) := Φ(m, 0)(W1×W2) = Φ1(m, 0)(W1)×Φ2(m, 0)(W2) = W1(m)×W2(m).

Since W1 × W2 is a complementary subspace to RP (0), it follows from the
proof of Proposition 3.2 in [2], that (2) has an exponential dichotomy on Z+

with projection Q(k) having the same range as P (k) and nullspace W (k). In
particular, for m ≥ 0

RP (m)⊕W (m) = Rn1 × Rn2 .
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It follows that

V1(m)⊕W1(m) = Rn1 , V2(m)⊕W2(m) = Rn2 .

For i = 1, 2, let Qi(m) be the projection with range Vi(m) and nullspace
Wi(m) = Φi(m, 0)(Wi). Then

Q(m) =

(
Q1(m) 0

0 Q2(m)

)
,

since it is a projection with the same range as P (m) and nullspace W (m).
Then it follows from (i) that for i = 1, 2, (5) has an exponential dichotomy
with projection Qi(k). Since we already observed above that that (2) has an
exponential dichotomy on Z+ with projection Q(k), this completes the proof of
(ii) for Z+ when p = 2.

Now consider the case of Z−. For m ≤ 0 and i = 1, 2, define Vi(m) as the
subspace of those ξi ∈ Rni for which there is a solution xi(k) of (5) which is
bounded in k ≤ m with xi(m) = ξi. Since (x1(k), x2(k))) is a solution of (2),
with p = 2, which is bounded on k ≤ m if and only if for each i, xi(k) is a
solution of (5) bounded in k ≤ m, and since NP (m) is the subspace of initial
values at m of solutions of (2) which are bounded in k ≤ m, we have

NP (m) = V1(m)× V2(m).

Next for i = 1, 2 define

Wi(m) = {ξ : Φi(0,m)ξ ∈ Wi} = Φi(0,m)−1(Wi),

where Wi is a fixed complement of Vi(0) in Rni . Then

W (m) := Φ(0,m)−1(W1 ×W2)
= Φ1(0,m)−1(W1)× Φ2(m, 0)−1(W2)
= W1(m)×W2(m).

From the proof of Proposition 3.2 in [2], since W1 × W2 is a complement to
NP (0) = V1 × V2, we know that (2) has an exponential dichotomy on Z−
with projection Q(k) having the same nullspace as P (k) and range W (k). In
particular

W (m)⊕NP (m) = Rn1 × Rn2 .

It follows that

W1(m)⊕ V1(m) = Rn1 , W2(m)⊕ V2(m) = Rn2 .

For i = 1, 2 define Qi(m) as the projection with range Wi(m) and nullspace
Vi(m). Then

Q(m) =

(
Q1(m) 0

0 Q2(m)

)
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is the projection with the same nullspace as P (m) and range V (m). It follows
from (i) that for i = 1, 2, (5) has an exponential dichotomy with projection
Qi(k). This completes the proof of (ii) for Z− when p = 2.

The proof of (ii) for general p ≥ 2 follows by induction on p using the p = 2
case. Thus the proof of (ii) is completed for Z+ and Z−.

Finally, suppose that (2) has an exponential dichotomy on Z. By the Z+ and Z−
cases, the stable subspace for (2) is the Cartesian productRP+

1 (0)×· · ·×RP+
p (0)

and the unstable subspace for (2) is the Cartesian product NP−
1 (0) × · · · ×

NP−
p (0), where P±

i (k) is the projection of the dichotomy of (5) on Z±. We
know that

(RP+
1 (0)× · · · × RP+

p (0))⊕ (NP−
1 (0)× · · · × NP−

p (0)) = Rn1 × · · · × Rnp .

From this it follows that RP+
i (0)⊕NP−

1 (0) = Rni for all i. Hence, by the proof
of Corollary 3.3 in [2], each equation (5) has an exponential dichotomy on Z with
projection Pi(k) (say) such that RPi(0) = RP+

i (0) and NPi(0) = NP−
i (0).

Then it follows from (i) that the projection for the dichotomy of (2) on Z is as
in (4).

3 Diagonal exponential dichotomy implies up-
per triangular exponential dichotomy

In Theorem 1, we show if (2) has an exponential dichotomy on Z+, Z− or Z,
then (1) has one also provided a certain boundedness condition holds.

Theorem 1. Consider system (1) on J = Z+, Z− or Z, where Aij(k) is bounded
for i ̸= j. Then if the diagonal system (2) has an exponential dichotomy, system
(1) also has one and with projection of the same rank.

Proof. We define the matrix

S =


In1 0 · · · 0
0 βIn2

· · · 0
· · · · · ·
0 0 · · · βp−1Inp

 ,

where β > 0. A simple calculation shows that with A(k) as in (1),

S−1A(k)S = Aβ(k) =


A11(k) βA12(k) · · · βp−1A1p(k)

0 A22(k) · · · βp−2A2p(t)
· · · · · ·
0 0 · · · Akk(t)

 ,

that is, the submatrices Aij(k) for i < j are multiplied by βj−i. We see that
the constant kinematic similarity x = Sv takes (1) into the system v(k + 1) =
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Aβ(k)v(k). However, the latter system is a small perturbation of (2) when β is
small. Then it follows from the roughness theorem in [3] for perturbed systems
of the form A(k)+B(k) that v(k+1) = Aβ(k)vk has an exponential dichotomy
if β is sufficiently small. Since (1) is kinematically similar to v(k+1) = Aβ(k)vk,
it follows from Remark 3.4.13 (4) in [6] that (1) has an exponential dichotomy
also.

The following example shows that boundedness is essential in this result, even
for invertible systems.

Example. Consider the system

x(k + 1) =
1

2
x(k) + 22ky(k), y(k + 1) =

1

2
y(k).

This is an upper triangular system, for which the diagonal part has an expo-
nential dichotomy on Z+ with projection of rank 2. The solution with initial
value (2/3, 1) is ((2/3)2k, (1/2)k) and hence is unbounded. On the other hand
((1/2)k, 0) is a bounded solution. Hence if the upper triangular system has an
exponential dichotomy, the corresponding projection P (k) must be of rank 1.
However it follows from the second Remark after Theorem 21 that if both the
upper triangular and the diagonal system have an exponential dichotomy, the
projections have the same rank. So the upper triangular system cannot have an
exponential dichotomy.

Remark. If Aii(k) is invertible for all i and k, we can replace the boundedness
of Aij(k) in Theorem 1 by the boundedness of A−1

ii (k)Aij(k) for i ̸= j. This
would be proved by using Theorem 5.2 in [2] which establishes the roughness of
exponential dichotomy for perturbed systems of the form A(k)[I +B(k)].

4 Invertible systems

Now we consider the converse of Theorem 1 for invertible systems. Note that
Theorem 2 below does not hold for equations on Z, as we see from the example
at the end of this section. To prove Theorem 2, we use the following lemma
from [1].

Lemma 1. Consider the Cartesian product of vector spaces

U = U1 × U2 × · · · × Up,

where p ≥ 2. If V is a subspace of U , there is a projection P on U with range

1Matteo: with some documentclass the Remarks have a number and they are labelled, it
depends on the journal. So if they are numbered I would use a label. Ken: We can fix this
up when we decide which journal.

9



V , which has the form

P =


P1 P12 P13 · · · · P1p

0 P2 P23 · · · · P2p

0 0 P3 · · · · ·
0 0 0 · · · · ·
0 0 0 · · · Pp−1 Pp−1,p

0 0 0 · · · 0 Pp

 , (6)

where Pi is a projection on Ui for i = 1, . . . , p.

Theorem 2. If the invertible block upper triangular system (1) has an exponen-
tial dichotomy on Z+ or Z−, then the projection for the exponential dichotomy
of (1) can be taken as

P (k) =


P1(k) P12(k) P13(k) · · · · P1p(k)
0 P2(k) P23(k) · · · · P2p(k)
0 0 P3(k) · · · · ·
0 0 0 · · · · ·
0 0 0 · · · Pp−1(k) Pp−1,p(k)
0 0 0 · · · · Pp(k)

 , (7)

where the Pi(k) are projections. Moreover, the block diagonal system (2) has an
exponential dichotomy with projection given by

P̃ (k) =


P1(k) 0 0 · · · · 0
0 P2(k) 0 · · · · 0
0 0 P3(k) · · · · ·
0 0 0 · · · · ·
0 0 0 · · · Pp−1(k) 0
0 0 0 · · · · Pp(k)

 . (8)

Proof. Note the invertible case occurs exactly when Aii(k) is invertible for all i
and k. In the case of Z+ (resp. Z−), denote by V the stable (resp. unstable)
subspace for (1) at k = 0. Then it follows from Lemma 1 that there is a
projection P of the upper triangular form (6) with range V . In the case of Z−,
we replace P by I − P so that P has nullspace V . By Proposition 3.2 in [2],
(1) has an exponential dichotomy on Z+ (resp. Z−) with projection P (k) with
P (0) = P .

We recall that Φi(k,m) is the transition matrix for xi(k + 1) = Aii(k)xi(k).
Then, for all k and m, the transition matrix for (2) is

Ũ(k,m) =


Φ1(k,m) 0 · · · 0

0 Φ2(k,m) · · · 0
· · · · · ·
0 0 · · · Φp(k,m)

 ,
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whereas that for (1) is

U(k,m) =


Φ1(k,m) Φ12(k,m) · · · Φ1p(k,m)

0 Φ2(k,m) · · · Φ2m(k,m)
· · · · · ·
0 0 · · · Φp(k,m)

 .

Note that because of the invertibility, the identity U(k, ℓ)U(ℓ,m) = U(k,m)
holds for all k, ℓ,m and similarly for Ũ . Then we take

P̃ (0) =


P1 0 0 · · · · 0
0 P2 0 · · · · 0
0 0 P3 · · · · ·
0 0 0 · · · · ·
0 0 0 · · · Pp−1 0
0 0 0 · · · · Pp

 , P̃ (k) = Ũ(k, 0)P̃ (0)Ũ(0, k).

Now, by invariance,
P (k) = U(k, 0)P (0)U(0, k),

which has the upper triangular form as given in the statement of the theorem.
It is clear from its definition that P̃ (k) is invariant with respect to (2), that it
is block diagonal and that it has the same diagonal blocks as P (k).

Next we see that U(k, 0)P (0)U(0,m) = U(k,m)P (m) and Ũ(k)P̃ (0)Ũ−1(m) =
Ũ(k,m)P̃ (m) only differ in the (i, j)-entries, i < j, with those in Ũ(k,m)P̃ (m)
being zero. It follows that

|Ũ(k,m)P̃ (m)| ≤ |U(k,m)P (m)| ≤ Ke−α(k−m), m ≤ k

where we have used the fact that the exponential dichotomy of (1) implies the
existence of positive constants K and α such that

|U(k,m)P (m)|, |U(m, k)(I− P (k))| ≤ Ke−α(k−m), m ≤ k.

(Note we use a matrix norm with the property that if A = [aij ] and B = [bij ]
and |aij | ≤ |bij | for all i, j, then |A| ≤ |B|.) Similarly

|Ũ(m, k)(I− P̃ (k))| ≤ |U(m, k)(I− P (k))| ≤ Ke−α(k−m), m ≤ k.

The Theorem follows.

Remark. It follows from Theorems 1 and 2 that when A(k) in (1) is invertible
and bounded, (1) has an exponential dichotomy on J = Z+ or Z− if and only
if (2) has an exponential dichotomy on J = Z+ or Z−. Note this follows from
Theorem 4.1 in Pötzsche [7].

Remark. Note that it follows from Lemma 2 below that P (k) in (7) and P̃ (k)
in (8) have the same rank. Hence if (1) and (2) are invertible and both have
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exponential dichotomies on Z+ or Z−, then the corresponding projections have
the same rank. Clearly this holds for Z also. Here we show this holds also in the
noninvertible case. Choosing εik arbitrarily small such that Aii(k) + εikIni

is
invertible for i = 1, . . . , p and all k, we can ensure that the coefficient matrices
in (1) and (2) with Aii(k) replaced by Aii(k) + εikIni

are invertible. Then
it follows from the roughness theorem, that if the εik are small enough, the
perturbed systems have exponential dichotomies with projections of the same
rank as for the unperturbed systems. However for the perturbed invertible
systems, these ranks are equal. So they are equal for the unperturbed systems.
This applies to all of Z+, Z− and Z.

Example. Now we present an example for Z which shows that Theorem 2 does
not hold even for invertible systems. It is based on an example for differential
equations in [1]. When δ ̸= 0, the system

x(k + 1) = A(k)x(k), k ∈ Z,

where

A(k) =



(
2 δ

0 1/2

)
(k ≥ 0)(

1/2 δ

0 2

)
(k ≤ −1)

has an exponential dichotomy on Z but the corresponding diagonal system does
not.

Note that the diagonal system has exponential dichotomies on Z+ and Z−,
both with projections of rank 1. Then it follows from Theorem 1 that the upper
triangular system also has exponential dichotomies on Z+ and Z−, both with
projections of rank 1. The solution (x(k), y(k)) of this system with value (x0, y0)
at k = 0 is given by

(x(k), y(k)) =

{(
(x0 + 2δy0/3)2

k − (2δy0/3)2
−k, y02

−k
)

(k ≥ 0)

((x0 − 2δy0/3)2
−k + (2δy0/3)2

k, y02
k
)

(k ≤ 0).

So the stable subspace is spanned by the vector (−2δ, 3) and the unstable sub-
space by (2δ, 3). Since these are independent, it follows from Corollary 3.3 in [2]
that the upper triangular system has an exponential dichotomy on Z. However
the diagonal system does not have an exponential dichotomy on Z because it
has the nontrivial bounded solution (0, 2−|k|). Note that the projection at k = 0
for the dichotomy of the upper triangular system is(

1/2 −δ/3
−3/(4δ) 1/2

)
which is not upper triangular.
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5 Some examples

In this section we give three examples which show that Theorem 2 does not
hold in general for noninvertible systems on Z+ or Z−. Note in the previous
section we gave an example which shows that Theorem 2 does not hold even for
invertible systems in the case of Z. The first example below shows that if (1) has
an exponential dichotomy on Z+, it does not follow that, unlike the invertible
case, the projection can be chosen upper triangular. The second and third
examples show, both for Z+ and Z−, that even if the projection can be chosen
upper triangular, it does not follow that the diagonal system has a dichotomy.

(i) Consider the two-dimensional system

x(k + 1) = A(k)x(k), k ≥ 0, (9)

where

A(0) =

(
0 a
0 b

)
, A(k) =

(
a1(k) 0
0 a2(k)

)
, k ≥ 1,

with ab ̸= 0, a2(1) = 0, such that

x(k + 1) = A(k)x(k)

has an exponential dichotomy on k ≥ 1 with stable subspace spanned by e2 =
(0, 1) (a1(k) = 2, a2(k) = 0 for k ≥ 1 is an example of this). Then (9) has an
exponential dichotomy on k ≥ 0 but the corresponding diagonal system does not.
Moreover (9) does not have an exponential dichotomy on k ≥ 0 with respect to
an upper triangular projection.

We show first that the diagonal system does not have an exponential dichotomy
on Z+. Indeed all the solutions x(k), k ≥ 0, of the diagonal system satisfy
x(k) = 0 for k ≥ 2. So NΦ(2, 0) = R2. From Remark 2.1 (v) in [2] we see that
the stable space at k = 0 has dimension 2. On the other hand, the subspace
of initial values of bounded solutions at k = 1 is the span of e2. Hence the
diagonal system cannot have an exponential dichotomy because the rank of the
projection would not be constant.

Now we prove that (9) has an exponential dichotomy on Z+. By assumption (9)
has an exponential dichotomy on k ≥ 1 with stable subspace e2. Next we see
that Φ(1, 0)−1(span{e2}) = A(0)−1(span{e2}) = span{e1}, where e1 = (1, 0).
So by Theorem 4.3 in [2] we can extend the exponential dichotomy from k ≥ 1
to k ≥ 0. Hence (9) has an exponential dichotomy on k ≥ 0. Note also from
(11) in [2] it follows that the stable subspace at k = 0 is spanned by e1.

Finally we show that (9) does not have an exponential dichotomy on k ≥ 0
with an upper triangular projection. Suppose P (k) is such an upper triangular
projection. Since RP (0) is the span of e1 and RP (1) is the span of e2, we have

P (0) =

(
1 α
0 0

)
, P (1) =

(
0 0
β 1

)

13



for some α, β. Since P (k) is upper triangular, β = 0. Then from P (1)A(0) =
A(0)P (0) we get (

0 0
0 b

)
=

(
0 0
0 0

)
,

a contradiction since ab ̸= 0.

(ii) Here is another example for Z+. System (1) with

A(0) =

(
0 1
0 0

)
, A(k) =

(
2 0
0 1/2

)
, k ≥ 1,

has an exponential dichotomy on k ≥ 0 with an upper triangular projection but
the diagonal system does not have an exponential dichotomy on k ≥ 0.

The system defined above has an exponential dichotomy on k ≥ 1 with projec-
tion

P (k) =

(
0 0
0 1

)
, k ≥ 1.

Note that A(0)−1(RP (1)) is the span of e1. So dim (A(0)−1(RP (1))) = 1.
Therefore, by Theorem 4.3 in [2], (or Remark 4.1 following it), we can extend
the exponential dichotomy to k ≥ 0 with the projection unchanged for k ≥ 1.
Further it follows from the same Remark 4.1 in [2] that RP (0) has to be equal

to A(0)−1RP (1) = span{e1}. So P (0) =

(
1 c
0 0

)
for some c ∈ R so that P (0)

is upper triangular.

However the diagonal system does not have an exponential dichotomy on k ≥ 0
since in the diagonal system A(0) = 0. Hence at k = 0 the subspace of initial
values of bounded solutions has dimension 2 whereas at k = 1 the dimension is
1.

(iii) Here is an example on Z−. The system

x(k + 1) = A(k)x(k), k ≤ −1

with

A(−1) =

(
0 1
0 0

)
, A(k) =

(
1/2 0
0 2

)
, k ≤ −2,

has an exponential dichotomy on k ≤ 0 with upper triangular projection but the
diagonal system does not have an exponential dichotomy on k ≤ 0.

The system x(k + 1) = A(k)x(k), k ≤ −2 has an exponential dichotomy on
k ≤ −1 with projection

P (k) =

(
1 0
0 0

)
, k ≤ −1.

A(−1) is one to one on NP (−1) and N (A(−1)) is the span of e1 which co-
incides with the range of P (−1). So by Theorem 4.4 in [2] and its proof, the
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dichotomy can be extended to k ≤ 0 with P (k) unchanged for k ≤ −1 and with
P (0) any projection with nullspace equal to A(−1)(NP (−1)) = span{e1} since
A(−1)(RP (−1)) = {0}. So we can take

P (0) =

(
0 0
0 1

)
.

Hence we can extend the exponential dichotomy to k ≤ 0. Note also the pro-
jection P (k) is upper triangular for all k ≤ 0.

However the diagonal system does not have an exponential dichotomy on k ≤ 0.
In fact, the diagonal system has an exponential dichotomy with projection of
rank 1 on k ≤ −1. So if the system did have an exponential dichotomy on k ≤ 0,
the projection would be of rank 1; since in the diagonal system A(−1) = 0, this is
impossible because A(−1) must be one to one on the nullspace of the projection
at k = −1.

6 Noninvertible systems: upper triangular ex-
ponential dichotomy implies diagonal expo-
nential dichotomy

The examples given in the previous two sections show that the upper triangular
system (1) may have an exponential dichotomy on either Z+, Z− or Z but
the corresponding diagonal system (2) does not. These examples suggest that
we need to add the condition that the projection can be chosen block upper
triangular and examples (ii) and (iii) in the previous section suggest that we
also need to add the condition that the rank of the projections along the diagonal
do not vary with k. This we do in Theorem 3 below. First we prove a Lemma.

Lemma 2. Let P be a block upper triangular projection

P =


P1 P12 P13 · · · · P1p

0 P2 P23 · · · · P2p

0 0 P3 · · · · ·
0 0 0 · · · · ·
0 0 0 · · · Pp−1 Pp−1,p

0 0 0 · · · · Pp

 .

Then

rankP =

p∑
i=1

rankPi

and for i = 1, . . . , p, if η ∈ NPi, there exist ηj ∈ RPj, j = 1, . . . , i − 1, such
that (η1, . . . , ηi−1, η, 0, . . . , 0) ∈ NP .

Proof. First we prove the lemma for p = 2 so that

P =

(
P1 P12

0 P2

)
.
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Then P 2 = P implies that

P1P12 + P12P2 = P12.

So
P2η = 0 =⇒ P12η = P1P12η. (10)

Hence if P2η = 0, then P12η ∈ RP1 and P1ξ + P12η = 0 if and only if P1(ξ +
P12η) = 0. Then

NP = {(ξ, η) : P2η = 0, P1ξ + P12η = 0}

= {(ξ, η) : P2η = 0, P1(ξ + P12η) = 0}

= {(ξ1 − P12η, η) : ξ1 ∈ NP1, η ∈ NP2}.

(11)

So (ξ1, η) → (ξ1 − P12η, η) is a one to one linear mapping of NP1 ×NP2 onto
NP . It follows that

dim NP = dim NP1 + dim NP2

and hence that
rankP = rankP1 + rankP2.

We see next that if η ∈ NP2, then (−P12η, η) ∈ NP . So (η1, η) ∈ NP with
η1 = −P12η, where η1 = −P12η ∈ RP1, using (10). This proves the lemma for
p = 2. Next suppose the lemma holds for some p − 1 > 1. We prove it for p.

Suppose P has p blocks. Let

Qi =


Pi Pi,i+1 Pi,i+2 · · · Pi,p

0 Pi+1 Pi+1,i+2 · · · Pi+1,p

0 0 Pi+2 · · · ·
0 0 0 · · · ·
0 0 0 Pp−1 Pp−1,p

0 0 0 · Pp

 , i = 1, . . . , p

and write

P =


P1 P12 P13 · · · · P1p

0 P2 P23 · · · · P2p

0 0 P3 · · · · ·
0 0 0 · · · · ·
0 0 0 · · · Pp−1 Pp−1,p

0 0 0 · · · · Pp

 =

(
P1 P̄12

0 Q2

)
.

By the p = 2 case,
rankP = rankP1 + rankQ2
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and by the induction hypothesis,

rankQ2 =

p∑
i=2

rankPi.

It follows that

rankP =

p∑
i=1

rankPi.

Next
NP = {(ξ1 − P̄12η, η) : ξ1 ∈ NP1, η ∈ NQ2}

and P̄12η ∈ RP1. By the induction hypothesis, given ηp ∈ NPp there exist
ηi ∈ RPi, i = 2, . . . , p− 1 such that

(η2, . . . , ηp−1, ηp) ∈ NQ2.

Then, with
η1 = −P̄12(η2, . . . , ηp−1, ηp) ∈ RP1

we find that
(η1, η2, . . . , ηp−1, ηp) ∈ NP.

Finally, if ηi ∈ NPi then (ηi, 0 . . . , 0) ∈ NQi, and then applying the previous
part to the projection P in the form

P =


P1 P12 P13 · · · · ∗
0 P2 P23 · · · · ∗
0 0 P3 · · · · ·
0 0 0 · · · · ·
0 0 0 · · · Pi−1 ∗
0 0 0 · · · · Qi


we see that ηj ∈ RPj , j = 1, . . . , i− 1 exist such that

(η1, . . . , ηi−1, ηi, 0 . . . , 0) ∈ NP.

This completes the proof of the lemma by induction.

Remark. Replacing P with I−P we see that for any i = 1, . . . , p and ξi ∈ RPi

there exists ξj ∈ NPj , j = 1, . . . , i−1 such that (ξ1, . . . , ξi−1, ξi, 0, . . . , 0) ∈ RP .
In particular, if

P =

(
P1 P12

0 P2

)
,

we have

R
(
P1 P12

0 P2

)
= {(ξ + P12η, η) : ξ ∈ RP1, η ∈ RP2}

and P12η ∈ R(I− P1) = NP1.

Now we can prove the following theorem, where the conditions imposed are
suggested by the examples in the previous two sections.
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Theorem 3. Suppose the block upper triangular system (1) has an exponential
dichotomy on J = Z+, Z− or Z, such that the projection for the exponential
dichotomy of (1) can be taken in the block upper triangular form (7), where for
each i the rank of Pi(k) does not depend on k. Then the block diagonal system
(2) has an exponential dichotomy with projection in the diagonal form (8).

Proof. First we consider the cases Z+ and Z− with p = 2. We assume

x(k + 1) = A(k)x(k) =

(
A11(k) A12(k)

0 A22(k)

)
x(k) (12)

has an exponential dichotomy with projection P (k) which has the form

P (k) =

(
P1(k) P12(k)
0 P2(k)

)
. (13)

Corresponding to the diagonal system,

x(k + 1) = D(k)x(k) =

(
A11(k) 0

0 A22(k)

)
x(k), (14)

we take

P̃ (k) =

(
P1(k) 0
0 P2(k)

)
. (15)

We divide the rest of the proof into several steps.

Step 1: Invariance of P̃ (k).

It follows from

P (k + 1)A(k) = A(k)P (k), k, k + 1 ∈ J,

that
P̃ (k + 1)D(k) = D(k)P̃ (k), k, k + 1 ∈ J.

So P̃ (k) is invariant with respect to (2).

Step 2: For k, k + 1 ∈ J , D(k) maps the nullspace of P̃ (k) one to one onto the
nullspace of P̃ (k + 1).

This is clearly the case if and only if for i = 1, 2, Aii(k) maps the nullspace of
Pi(k) one to one onto the nullspace of Pi(k + 1). By the invariance we know
that P (k+1)A(k) = A(k)P (k) and hence Pi(k+1)Aii(k) = Aii(k)Pi(k). Hence
Aii(k) maps the nullspace of Pi(k) into the nullspace of Pi(k+1). By hypothesis,
we know that these two nullspaces have the same dimension. So we just have
to prove that Aii(k) is either one to one on the nullspace of Pi(k) or onto the
nullspace of Pi(k + 1). We begin by proving the claim for i = 1.

Since A(k) is one to one on the nullspace of P (k), it follows that A11(k) is one
to one on the nullspace of P1(k). In fact if A11(k)x1 = 0 for some x1 in the
nullspace of P1(k), then A(k)(x1, 0) = 0; this means (x1, 0) ∈ NP (k) ∩NA(k).
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Since A(k) is one to one on NP (k), it follows that (x1, 0) is zero and hence that
x1 = 0. So A11(k) maps the nullspace of P1(k) one to one onto the nullspace of
P1(k + 1).

Let η ∈ NP2(k + 1). By the case p = 2 of Lemma 2, there exists η1 such
that (η1, η) is in the nullspace of P (k + 1). Then there exists (ξ0, η0) in the
nullspace of P (k) which is mapped by A(k) to (η1, η); notice that η0 ∈ NP2(k)
and A22(k)η0 = η. So A22(k) maps the nullspace of P2(k) onto the nullspace
of P2(k + 1). Hence A22(k) maps the nullspace of P2(k) one to one onto the
nullspace of P2(k + 1). Thus we have shown that D(k) maps the nullspace of
P̃ (k) one to one onto the nullspace of P̃ (k + 1).

Step 3: First dichotomy inequality.

The transition matrix for (12) is

U(k,m) =

(
Φ1(k,m) Φ12(k,m)

0 Φ2(k,m)

)
and the transition matrix for (14) is

Ũ(k,m) =

(
Φ1(k,m) 0

0 Φ2(k,m)

)
.

We see that U(k,m)P (m) and Ũ(k,m)P̃ (m) only differ in the (1, 2)−entry with
that in Ũ(k,m)P̃ (m) being zero. It follows that

|Ũ(k,m)P̃ (m)| ≤ |U(k,m)P (m)| ≤ Ke−α(k−m), m ≤ k

where K and α are the constants for the exponential dichotomy of (12). (Note
we use a matrix norm with the property that if A = [aij ] and B = [bij ] and
|aij | ≤ |bij | for all i, j, then |A| ≤ |B|.)

Step 4: Second dichotomy inequality

It follows from Step 2 that Φi(k,m) : NPi(m) → NPi(k) is invertible when
k ≥ m for i = 1, 2 and hence that Ũ(k,m) : N P̃ (m) → N P̃ (k) is invertible when
k ≥ m. Then if m ≤ k, we can define Ũ(m, k) as the inverse of the map Ũ(k,m)
from the nullspace of P̃ (m) to the nullspace of P̃ (k) and, similarly Φi(m, k) :
NPi(k) → NPi(m) will be the inverse of Φi(k,m) : NPi(m) → NPi(k). Note
that Φi(m, k) are the diagonal terms of the block diagonal matrix Ũ(m, k). Now
we show that for i = 1, 2,

|Φi(m, k)ξ| ≤ Ke−α(k−m)|ξ|, ξ ∈ NPi(k), m ≤ k, (16)

where K and α are the positive constants involved in the dichotomy of (12).
First we derive a formula for the inverse of U(k,m) : NP (m) → NP (k). Note
it follows from (11) in the proof of Lemma 2 that

NP (k) = {(ξ1 − P12(k)η, η) : ξ1 ∈ NP1(k), η ∈ NP2(k)}. (17)
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So (
I −P12(k)
0 I

)
maps NP1(k)×NP2(k) = N P̃ (k) bijectively onto NP (k). Then

Û(k,m) =

(
I P12(k)
0 I

)
U(k,m)

(
I −P12(m)
0 I

)
=

(
Φ1(k,m) W (k,m)

0 Φ2(k,m)

)
maps NP1(m) × NP2(m) = N P̃ (m) bijectively onto NP1(k) × NP2(k) =
N P̃ (k), where

W (k,m) = Φ12(k,m) + P12(k)Φ2(k,m)− Φ1(k,m)P12(m)

mapsNP2(m) intoNP1(k) so thatW (k,m)Φ2(m, k) mapsNP2(k) intoNP1(k).
Hence Û(k,m) : N P̃ (m) → N P̃ (k) and, by direct multiplication, we see that

Û(m, k) :=

(
Φ1(m, k) −Φ1(m, k)W (k,m)Φ2(m, k)

0 Φ2(m, k)

)
: N P̃ (k) → N P̃ (m),

is the inverse of Û(k,m). It follows that U(k,m) : NP (m) → NP (k) has the
inverse U(m, k) given by(

I −P12(m)
0 I

)(
Φ1(m, k) −Φ1(m, k)W (k,m)Φ2(m, k)

0 Φ2(m, k)

)(
I P12(k)
0 I

)

so that if

(
ξ
η

)
∈ NP (k),

U(m, k)

(
ξ
η

)
=

(
Φ1(m, k)ξ + V (k,m)η

Φ2(m, k)η

)
,

where

V (k,m) = −Φ1(m, k)W (k,m)Φ2(m, k) + Φ1(m, k)P12(k)− P12(m)Φ2(m, k).

Now we know there exist positive constants K and α such that for m ≤ k,∣∣∣∣U(m, k)

(
ξ
η

) ∣∣∣∣ ≤ Ke−α(k−m)

∣∣∣∣ (ξη
) ∣∣∣∣.

Taking η = 0 so that, by (17), ξ ∈ NP1(k), we conclude that for m ≤ k,

|Φ1(m, k)ξ| ≤ Ke−α(k−m)|ξ|, ξ ∈ NP1(k),

assuming our norm has the properties∣∣∣∣ (x1

0

) ∣∣∣∣ = |x1| ≤
∣∣∣∣ (x1

x2

) ∣∣∣∣.
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Next taking ξ = 0 so that, by (17), η ∈ NP2(k), we conclude that for m ≤ k,

|Φ2(m, k)η| ≤ Ke−α(k−m)|η|, η ∈ NP2(k),

assuming our norm has the properties∣∣∣∣ ( 0
x2

) ∣∣∣∣ = |x2| ≤
∣∣∣∣ (x1

x2

) ∣∣∣∣.
Thus we have proved (16). Using the boundedness of the projection P (k) and
hence that of P1(k) and P2(k), it follows there exists a constant L such that

|Ũ(m, k)(I− P̃ (k))| ≤ Le−α(k−m), m ≤ k.

This completes the proof of Theorem 3 for the cases J = Z+ and Z− when
p = 2.

Now we prove Theorem 3 for the cases J = Z+ and Z− for general p ≥ 2.
Suppose we have proved it for p− 1 ≥ 2 and now we want to prove it for p. To
do this, we partition

A(k) =

(
A11(k) Ā12(k)

0 B(k)

)
where

Ā12(k) =
(
A12(k) · · · A1p(k)

)
, B(k) =


A22(k) A23(k) · · · A2p(k)

0 A33(k) · · · A34(k)
· · · · · ·
0 0 · · · App(k)

 ,

with correspondingly

P (k) =

(
P1(k) P̄12(k)
0 R(k)

)
.

Then, setting x = (x1, x̄2) where x̄2 = (x2, . . . , xp), it follows from the p = 2
case that

x1(k + 1) = A11(k)x1(k)

has an exponential dichotomy on J with projection P1(k) and that

x̄2(k + 1) = B(k)x̄2(k)

has an exponential dichotomy on J with projection R(k). However then it
follows by the induction hypothesis that for i = 2, . . . , p,

xi(k + 1) = Aii(k)xi(k)

has an exponential dichotomy on J with projection Pi(k). This completes the
induction proof for the cases J = Z+, Z−.

Now we consider the case J = Z. Suppose first p = 2. Then (12) has an
exponential dichotomy on Z with projection (13) of rank r where, for i = 1, 2.
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the rank of Pi(k) is ri and r1 + r2 = r (by Lemma 2). By the Z+ and Z−
cases, the diagonal system (14) has exponential dichotomies on Z+ and Z− with
projection (15) of rank r. By Proposition 1, for i = 1, 2, the equation xi(k+1) =
Aii(k)xi(k) has exponential dichotomies on Z+ and Z− with projection Pi(k).
Since the stable subspace on Z+ is RPi(0) and the unstable subspace on Z− is
NPi(0) and these intersect in {0} since RP (0) ∩ NP (0) = {0}, it follows from
Corollary 3.3 in [2] that for i = 1, 2, the equation xi(k + 1) = Aii(k)xi(k) has
an exponential dichotomy on Z with projection Pi(k).

This proves the case p = 2. The case for general p ≥ 2 follows easily by induction
using the p = 2 case.

7 A converse theorem

In this section we prove a converse to Theorem 3. We start with the Z+ case.
For this we need the following

Lemma 3. For any m ∈ Z+, let V (m) ⊂ Rn be the subspace of initial values
at k = m of solutions of (1) that are bounded on k ≥ m and, for i = 1, . . . , p,
let Vi(m) ⊂ Rni be the subspace of initial values at k = m of solutions of
xi(k + 1) = Aii(k)xi(k) that are bounded on k ≥ m. Then

dimV (m) ≤
p∑

i=1

dimVi(m).

Proof. Clearly the lemma holds for p = 1. Assuming it holds for p− 1 ≥ 1, we
prove it holds for p. We write (1) as

x(k + 1) =

(
B̃11(k) B̃1p(k)

0 App(k)

)
x(k), (18)

where

B̃11(k) =


A11(k) A12(k) · · · A1,p−1(k)

0 A22(k) · · · A2,p−1(k)
· · · · · ·
0 0 · · · Ap−1,p−1(k)

 , B̃1p(k) =


A1p(k)
A2p(k)
· · ·

Ap−1,p(k)


(19)

and determine the bounded solutions of (18) on k ≥ m. Let Ṽ1(m) be the
subspace of initial values at m of the bounded solutions in k ≥ m of x̃1(k+1) =
B̃11(k)x̃1(k) and Sm be the subspace of Vp(m) such that if η ∈ Sm, then the
equation

x̃1(k + 1) = B̃11(k)x̃1(k) + B̃1p(k)Φp(k,m)η

admits a bounded solution. Choose a complement W1(m) to Ṽ1(m) in Rn−np .
Then there is a unique such bounded solution for which x̃1(m) is in W1(m). Let
x̃1(m) = L(m)η; then L(m) is a linear mapping from Sm to W1(m) and

V (m) = {(ξ + L(m)η, η) : ξ ∈ Ṽ1(m), η ∈ Sm}
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is the subspace of initial values at k = m of solutions of (18) bounded on k ≥ m.
Hence

dimV (m) = dim Ṽ1(m) + dimSm ≤ dim Ṽ1(m) + dimVp(m).

By the induction hypothesis we get: dim Ṽ1(m) ≤
∑p−1

i=1 dimVi(m). The re-
quired conclusion follows.

Note that in Lemma 3 we do not need that the systems considered have an
exponential dichotomy on Z+. We only state a relation between the dimensions
of the spaces of initial conditions at k = m such that the corresponding solutions
are bounded for k ≥ m. In particular the dimensions of Vi(m) and V (m) may
depend onm. The exponential dichotomy of (1) and of the corresponding blocks
xi(k + 1) = Aii(k)xi(k) are taken into account in the next theorem.

Theorem 4. Suppose (1) has an exponential dichotomy on Z+ with projection
of rank r and that for all i, xi(k+1) = Aii(k)xi(k) has an exponential dichotomy
on Z+ with projection Pi(k) of rank ri (by Proposition 1, this is equivalent to
the exponential dichotomy of (2) with rank

∑p
i=1 ri). Then

∑p
i=1 ri = r and

the projection P (k) for the dichotomy of (1) can be taken in upper triangular
form with Pi(k) as diagonal blocks.

Proof. Note it follows from the second remark after the proof of Theorem 2
that r =

∑p
i=1 ri. We prove the theorem by induction on p. It is trivial for

p = 1. Assuming it is true for p − 1 ≥ 1, we prove it for p. We write (1) as
in (18) where B̃11(k), B̃1p(k) are as in (19). Let x(k) = (x̃1(k), xp(k)) where
x̃1(k) = (x1(k), . . . , xp−1(k)); we rewrite the transition matrix Φ(k,m) of (18)
for k ≥ m as follows

Φ(k,m) =

(
Φ̃1(k,m) Φ̃1p(k,m)

0 Φp(k,m)

)
(20)

so that Φ̃1(k,m) is the transition matrix of the equation x̃1(k+1) = B̃11(k)x̃1(k),
and Φp(k,m) is the transition matrix of the equation xp(k + 1) = App(k)xp(k).

Let V (m), Vi(m) = RPi(m), Ṽ1(m) be the subspaces of initial values at k = m
of bounded solutions on k ≥ m of (18), xi(k + 1) = Aii(k)xi(k), i = 1, . . . , p
and x̃1(k + 1) = B̃11(k)x̃1(k) respectively. From Lemma 3 it follows that

r = dimV (m) ≤ dim Ṽ1(m) + dimVp(m) = dim Ṽ1(m) + rp.

However, by the same lemma, dim Ṽ1(m) ≤
∑p−1

i=1 ri = r − rp. Hence

dim Ṽ1(m) = r − rp (21)

and dimV (m) = dim Ṽ1(m) + dimVp(m). As a consequence

V (m) = {(ξ + L(m)η, η) : ξ ∈ Ṽ1(m), η ∈ RPp(m)}, (22)
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where L(m) is as in the proof of Lemma 3 with Sm replaced by RPp(m).

Claim. Let W1(0) be a complement to Ṽ1(0) and set

W (k) = Φ(k, 0)(W1(0)×NPp(0)).

Then (18) has an exponential dichotomy on Z+ with projection P (k) having
range V (k) and nullspace W (k). Moreover, P (k) has the form

P (k) =

(
P̃1(k) P̃1p(k)
0 Pp(k)

)
,

where x̃1(k + 1) = B̃11(k)x̃1(k) has an exponential dichotomy with projection
P̃1(k), which has range Ṽ1(k) and nullspace W1(k) = Φ̃1(k, 0)(W1(0)).

To prove the Claim, we first observe that (18) has a dichotomy on Z+. We start
with proving that

W (0) = W1(0)×NPp(0) is a complement to V (0). (23)

In fact by construction and (21),

dimW (0) = n− np − (r − rp) + np − rp = n− r

so that dim V (0)+dim W (0) = n. Next, if (ξ, η) ∈ V (0) ∩W (0) then by (22)
we immediately have η ∈ NPp(0) ∩ RPp(0); hence η = 0, and (ξ, 0) ∈ V (0).

Then again from (22) we get ξ ∈ Ṽ1(0) and ξ ∈ W1(0) by construction; so ξ = 0
and (23) is proved. Then it follows from the proof of Proposition 3.2 in [2] that
Φ(k, 0) is one to one on W (0), that V (k)⊕W (k) = Rn for k ≥ 0 and (18) has
an exponential dichotomy on Z+ with respect to the projection P (k) with range
V (k) and nullspace W (k).

Next we prove that P (k) has the form given in the Claim. We first construct
the projection P1(k) and to this end we show that for m ≥ 0, Ṽ1(m)⊕W1(m) =
Rn−np , where, using (20),

Φ(m, 0) =

(
Φ̃1(m, 0) Φ̃1p(m, 0)

0 Φp(m, 0)

)
.

Since Φ(m, 0) is one to one on W (0), Φ̃1(m, 0) is one to one on W1(0). So
W1(m) = Φ̃1(m, 0)(W1(0)) has the same dimension n− np − (r− rp) as W1(0),

where we have used (21). Now suppose x̃1 ∈ Ṽ1(m) ∩ W1(m). Then x̃1 =
Φ̃1(m, 0)ỹ1 where ỹ1 ∈ W1(0). Then Φ̃1(k, 0)ỹ1 = Φ̃1(k,m)x̃1 is bounded in
k ≥ 0 so that ỹ1 ∈ Ṽ1(0). Hence ỹ1 = 0 and therefore x̃1 = 0. So Ṽ1(m) ∩
W1(m) = {0}. Thus Ṽ1(m)⊕W1(m) = Rn−np and we may define P̃1(m) as the
projection with range Ṽ1(m) and nullspace W1(m).

Now by the argument we used to get (22), taking N P̃1(m) = W1(m) as the
complement to Ṽ1(m) = RP̃1(m), we can show that

RP (m) = V (m) = {(ξ + L+(m)η, η) : ξ ∈ RP̃1(m), η ∈ RPp(m)},
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where L+(m) : RPp(m) → N P̃1(m). Next

NP (m) = W (m)

= Φ(m, 0)(N P̃1(0)×NPp(0))

= {(Φ̃1(m, 0)ξ1 + Φ̃12(m, 0)η1, Φ̃2(m, 0)η1) : ξ1 ∈ N P̃1(0), η1 ∈ NPp(0)}
= {(ξ + L−(m)η, η) : ξ ∈ N P̃1(m), η ∈ NPp(m)},

where L−(m) : NPp(m) → Rn−np is given by

L−(m)η = Φ̃12(m, 0)Φ̃2(0,m)η.

Now we need a lemma.

Lemma 4. Let U1 and U2 be vector spaces. Suppose there is a projection P on
U1 × U2 and projections P1, P2 on U1, U2 such that

RP = {(ξ1 + L1ξ2, ξ2) : ξ1 ∈ RP1, ξ2 ∈ RP2}
NP = {(η1 + L2η2, η2) : η1 ∈ NP1, η2 ∈ NP2},

where L1 : RP2 → U1 and L2 : NP2 → U1 are linear mappings. Then P has
the form

P =

(
P1 P12

0 P2

)
.

Proof. Given x1 ∈ U1 and x2 ∈ U2, we can write(
x1

x2

)
=

(
ξ1 + L1ξ2

ξ2

)
+

(
η1 + L2η2

η2

)
where ξ1 ∈ RP1, ξ2 ∈ RP2, η1 ∈ NP1 and η2 ∈ NP2. It follows first that
x2 = ξ2 + η2 so that

ξ2 = P2x2, η2 = (I − P2)y.

Next we see that x1 = ξ1 + L1ξ2 + η1 + L2η2 so that

P1x1 = ξ1 + P1L1ξ2 + P1L2η2.

2 Then

P

(
x1

x2

)
=

(
ξ1 + L1ξ2

ξ2

)
=

(
P1x1 − P1L1ξ2 − P1L2η2 + L1ξ2

ξ2

)
=

(
P1x1 − P1L1P2x2 − P1L2(I − P2)x2 + L1P2x2

P2x2

)
so that

P =

(
P1 −P1L1P2 − P1L2(I − P2) + L1P2

0 P2

)
.

2The red P1 was P2
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Applying this lemma to U1 = Rn−np , U2 = Rnp , P = P (m), P1 = P̃1(m),
P2 = Pp(m), L1 = L+(m) and L2 = L−(m), we deduce that P (m) has the form
given in the Claim.

Finally we show x̃1(k + 1) = B̃11(k)x̃1(k) has an exponential dichotomy with
projection P̃1(k). From Theorem 3, we deduce that the diagonal system corre-
sponding to (18) has an exponential dichotomy with projection

Pdiag(k) =

(
P̃1(k) 0
0 Pp(k)

)
,

provided that the ranks of P̃1(k) and Pp(k) do not depend on k. However
recall that Pp(k) is the projection associated with the dichotomy of xp(k+1) =

App(k)xp(k) and so it has rank rp. Next the rank of P̃1(k) is the dimension of

Ṽ1(k) which we know by (21) to be r − rp. So the diagonal system

x(k + 1) =

(
B̃11(k) 0

0 App(k)

)
x(k) (24)

has an exponential dichotomy with projection Pdiag(k). Then, by Lemma 1 (i),

x̃1(k + 1) = B̃11(k)x̃1(k) has an exponential dichotomy on Z+ with projection
P̃1(k). This completes the proof of the Claim.

Applying the inductive hypothesis to x̃1(k + 1) = B̃11(k)x̃1(k), we see that the
system

x̃1(k+1) = B̃11(k)x̃1(k) =


A11(k) A12(k) · · · A1,p−1(k)

0 A22(k) · · · A2,p−1(k)
· · · · · ·
0 0 · · · Ap−1,p−1(k)


 x1(k)

. . .
xp−1(k)

 ,

(25)
has an exponential dichotomy with projection

P̂1(k) =


P1(k) P12(k) · · · · P1,p−1(k)
0 P2(k) · · · · ·
0 0 · · · · ·
0 0 · · · Pp−2(k) Pp−2,p−1(k)
0 0 · · · 0 Pp−1(k)

 . (26)

Then we apply the Claim again, but this time under the additional assumption
that x̃1(k + 1) = B̃11(k)x̃1(k) has an exponential dichotomy with projection
P̂1(k) of rank r− rp. Then P̃1(k) defined in the Claim is P̂1(k) if we take W1(0)

to be N P̂1(0). Then we find that the new projection has the form

P̂ (m) =

(
P̂1(m) P̃1p(m)

0 Pp(m)

)
with perhaps a different P̃1p(m). So P̂ (m) is block upper triangular with the
diagonal blocks P1(m), . . . , Pp(m), as required.
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Now we consider the Z− case.

Theorem 5. Suppose (1) has an exponential dichotomy on Z− with projection
of rank r and that for all i, xi(k+1) = Aii(k)xi(k) has an exponential dichotomy
on Z− with projection Pi(k) of rank ri (by Proposition 1, this is equivalent to
the exponential dichotomy of (2) with rank

∑p
i=1 ri). Then

∑p
i=1 ri = r and

the projection P (k) for the dichotomy of (1) can be taken in upper triangular
form with Pi(k) as diagonal blocks.

Proof. Note it follows from the second remark after the proof of Theorem 2 that
r =

∑p
i=1 ri. We prove this theorem by induction on p. It is trivial for p = 1.

Assuming it is true for p− 1 ≥ 1, we prove it for p. We write (1) as

x(k + 1) =

(
B̃11(k) B̃1p(k)

0 App(k)

)
x(k), (27)

where B̃11(k) and B̃1p(k) are as in (19). To proceed further, we need a lemma
but before that we need a definition.

Definition. The difference equation x(k+1) = A(k)x(k) on Z− is said to have
the backward unique bounded (BUB) property if for all m ≤ 0, the only solution
x(k) which is bounded in k ≤ m and satisfies x(m) = 0 is the trivial solution.

Remark. If x(k+1) = A(k)x(k) has an exponential dichotomy on Z− with pro-
jection P (k), then it has the BUB property. For let x(k) be a solution bounded
in k ≤ m with x(m) = 0. From Lemma 3.1 in [2], we have x(k) ∈ NP (k) so that
0 = x(m) = Φ(m, k)x(k). Since Φ(m, k) is one to one on NP (k), this implies
that x(k) = 0 for k ≤ m.

Lemma 5. Suppose in (1), xi(k + 1) = Aii(k)xi(k) has the BUB property on
Z− for all i. Then (1) also has the BUB property on Z−. Moreover, for all
m ≤ 0, let V (m) be the subspace of those ξ ∈ Rn for which there is a solution
x(k) of (1) which is bounded in k ≤ m and such that x(m) = ξ and for each i,
let Vi(m) be the subspace of those ξi ∈ Rni for which there is a solution xi(k) of
xi(k + 1) = Aii(k)xi(k) which is bounded in k ≤ m and such that xi(m) = ξi.
Then

dimV (m) ≤
p∑

i=1

dimVi(m).

Proof. Clearly the lemma holds for p = 1. Assuming it for p− 1 ≥ 1, we prove
it for p. Write (1) as in (27) and set x̃1 = (x1, . . . , xp−1). Denote by Ṽ1(m) the

set of ξ for which there is a solution x̃1(k) of x̃1(k + 1) = B̃11(k)x̃1(k) which
is bounded in k ≤ m and such that x̃1(m) = ξ. We determine the bounded
solutions of

x̃1(k + 1) = B̃11(k)x̃1(k) + B̃1p(k)xp(k), xp(k + 1) = App(k)xp(k) (28)
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on k ≤ m. xp(k) is a bounded solution of the second equation on k ≤ m if and
only if xp(m) ∈ Vp(m). Also because xp(k + 1) = App(k)xp(k) has the BUB
property, the solution xp(k) is determined by xp(m). For η ∈ Vp(m), let xp(k)
be the unique bounded solution of xp(k + 1) = App(k)xp(k) with xp(m) = η,
and let Sm be the subspace of Vp(m) such that if η ∈ Sm, then the equation

x̃1(k + 1) = B̃11(k)x̃1(k) + B̃1p(k)xp(k),

admits a bounded solution on k ≤ m. Since by the induction hypothesis,
x̃1(k+1) = B̃11(k)x̃1(k) has the BUB property, there is a unique such bounded
solution such that x̃1(m) is in W (m), where W (m) is a complement to Ṽ1(m)
in Rn−np . The existence of such a solution is clear and the uniqueness follows
from the fact that the difference between two such bounded solutions would
be a bounded solution of x̃1(k + 1) = B̃11(k)x̃1(k) vanishing at k = m. Let
x̃1(m) = L(m)xp(m); then L(m) is a linear mapping from Sm to W (m). Hence

V (m) = {(ξ + L(m)η, η) : ξ ∈ Ṽ1(m), η ∈ Sm} (29)

is the subspace of initial values at k = m of solutions of (28) bounded on
k ≤ m. It is clear also that (28) has the BUB property since both x̃1(k + 1) =
B̃11(k)x̃1(k) and xp(k + 1) = App(k)xp(k) have. Also from (29), we have

dimV (m) = dim Ṽ1(m) + dimSm ≤ dim Ṽ1(m) + dimVp(m). (30)

By the induction hypothesis dim Ṽ1(m) ≤
∑p−1

i=1 dimVi(m). The required con-
clusion follows.

Now we go back to the proof of Theorem 5. In this case, by Lemma 3.1 in [2],
we have V (m) = NP (m) and Vi(m) = NPi(m). Hence (30) reads

n− r ≤ dimṼ1(m) + np − rp (31)

where Ṽ1(m) has been defined in the proof of Lemma 5. Next from Lemma 5
we know that

dimṼ1(m) ≤
p−1∑
i=1

dimVi(m) =

p−1∑
i=1

dimNPi(m) =

p−1∑
i=1

(ni − ri). (32)

Putting (31) and (32) together we get

dimṼ1(m) = n− np − (r − rp) (33)

and then (30) gives:

n− r = n− np − (r − rp) + dimSm.

So dimSm = np − rp and hence Sm = NPp(m) since Sm ⊂ NPp(m) and both
spaces have the same dimension. As a consequence, from (29),

V (m) = {(ξ + L(m)η, η) : ξ ∈ Ṽ1(m), η ∈ NPp(m)}, (34)

28



where L(m) is as defined in the proof of Lemma 5.

Claim. Let W1(0) be a complement to Ṽ1(0) in Rn−np and set

W (k) = Φ(0, k)−1(W1(0)×RPp(0)) := {ξ ∈ Rn : Φ(0, k)ξ ∈ W1(0)×RPp(0)}.

Then (18) has an exponential dichotomy on Z− with projection P (k) having
nullspace V (k) and range W (k). Moreover, P (k) has the form

P (k) =

(
P̃1(k) P̃1p(k)
0 Pp(k)

)
,

where x̃1(k + 1) = B̃11(k)x̃1(k) has an exponential dichotomy with projection
P̃1(k), which has nullspace Ṽ1(k) and range Φ̃1(0, k)

−1(W1(0)).

To prove the Claim, we first see that when m ≤ ℓ ≤ 0, the transition matrix
Φ̃1(ℓ,m) of x(k + 1) = B̃11(k)x(k) maps Ṽ1(m) bijectively onto Ṽ1(ℓ). Indeed

suppose ξ ∈ Ṽ1(m). Then, by (34),

(
ξ
0

)
∈ V (m) and so

(
Φ̃1(ℓ,m)ξ

0

)
= Φ(ℓ,m)

(
ξ
0

)
∈ V (ℓ)

and then Φ̃1(ℓ,m)ξ ∈ Ṽ1(ℓ), by (34) again. Moreover, if Φ̃1(ℓ,m)ξ = 0 then

Φ(ℓ,m)

(
ξ
0

)
= 0 and hence ξ = 0 because Φ(ℓ,m) : V (m) → V (ℓ) is invertible.

So Φ̃1(ℓ,m) : Ṽ1(m) → Ṽ1(ℓ) is one to one and hence invertible because both
spaces have the same dimension n− np − (r − rp), as we see in (33).

Now we see from (34) with m = 0 that

W (0) = W1(0)×RPp(0)

is a complement to V (0) in Rn. Then it follows from the proof of Proposition 3.2
in [2] that W (k)⊕ V (k) = Rn for k ≤ 0 and (27) has an exponential dichotomy
with respect to the projection P (k) with range W (k) and nullspace V (k).

We prove that P (k) has the form given in the Claim. To this end, we first prove
that Rn−np = Ṽ1(k)⊕W1(k), where

W1(k) = Φ̃1(0, k)
−1(W1(0)).

Let x ∈ Ṽ1(k) ∩W1(k). Then Φ̃1(0, k)x ∈ W1(0). Since x ∈ Ṽ1(k) and Φ̃1(0, k)
maps Ṽ1(k) onto Ṽ1(0), we have Φ̃1(0, k)x ∈ Ṽ1(0). So Φ̃1(0, k)x = 0 and hence
x = 0 since Φ̃1(0, k) is one to one on Ṽ1(k), as noted above in the first paragraph
of the proof of the Claim. Therefore Ṽ1(k) ∩W1(k) = {0}.

Next let x ∈ Rn−np . Then Φ̃1(0, k)x = v1 + w1, where v1 ∈ Ṽ1(0) and w1 ∈
W1(0). However v1 = Φ̃1(0, k)vk, for some vk ∈ Ṽ1(k). So Φ̃1(0, k)(x − vk) =
w1 ∈ W1(0). Hence x − vk ∈ W1(k) and therefore x ∈ Ṽ1(k) + W1(k). So
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Rn−np = Ṽ1(k)⊕W1(k). Then, the projection with range W1(k) and nullspace
Ṽ1(k) is well-defined and we denote it by P̃1(k) as in the statement of the
Claim. Note that since for k ≤ −1, A(k)(W1(k)) ⊂ W1(k + 1) (by definition)
and A(k)(Ṽ1(k)) = Ṽ1(k + 1) (see the first part of the proof of this Claim), it
follows that P̃1(k) is invariant with respect to x̃1(k + 1) = B̃11(k)x̃1(k).

Now by the argument we used to get (34), taking RP̃1(m) as the complement
to Ṽ1(m), we can show that

NP (m) = V (m) = {(ξ + L−(m)η, η) : ξ ∈ Ṽ1(m), η ∈ NPp(m)},

where L−(m) : NPp(m) → RP̃1(m). Next

W (m)

= {x = (ξ, η) ∈ Rn−np × Rnp : Φ(0,m)x ∈ RP̃1(0)×RPp(0)}
= {(ξ, η) : Φ̃1(0,m)ξ + Φ̃12(0,m)η ∈ RP̃1(0), Φ̃2(0,m)η ∈ RPp(0)}
= {(ξ, η) : (I− P̃1(0))[Φ̃1(0,m)ξ + Φ̃12(0,m)η] = 0, η ∈ RPp(m)}

since RPp(m) = Φ̃−1
2 (0,m)(RPp(0))

= {(ξ, η) : Φ̃1(0,m)(I− P̃1(m))ξ + (I− P̃1(0))Φ̃12(0,m)η = 0, η ∈ RPp(m)}
by invariance of P̃1(m)

= {(ξ, η) : (I− P̃1(m))ξ = L+(m)η, η ∈ RPp(m)},

where L+(m) : RPp(m) → N P̃1(m) is given by

L+(m)η = −Φ̃1(m, 0)(I− P̃1(0))Φ̃12(0,m)η,

Φ̃1(m, 0) being the inverse of Φ̃1(0,m) : Ṽ1(m) → Ṽ1(0). Thus P̃1(m)ξ is arbi-
trary but (I− P̃1(m))ξ = L+(m)η. So

RP (m) = W (m) = {(ξ + L+(m)η, η) : ξ ∈ RP̃1(m), η ∈ RPp(m)}.

Applying Lemma 4 to U1 = Rn−np , U2 = Rnp , P = P (m), P1 = P̃1(m),
P2 = Pp(m), L1 = L+(m) and L2 = L−(m), we deduce that P (m) has the form
given in the Claim.

Now according to Theorem 3, we can further deduce that the diagonal system
corresponding to (27) has an exponential dichotomy with projection
diag(P̃1(k), Pp(k)) provided that the ranks of P̃1(k) and Pp(k) do not depend
on k. However recall that Pp(k) is the projection associated with the dichotomy
of xp(k + 1) = App(k)xp(k) and so it has rank rp. Moreover from Lemma 2 we
know that

rankP (k) = rank P̃1(k) + rankPp(k).

Hence rank P̃1(k) = r − rp is independent of k. So the diagonal system corre-

sponding to (27) has an exponential dichotomy with projection diag(P̃1(k), Pp(k)).
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Then by Lemma 1, x̃1(k+1) = B̃11(k)x̃1(k) has an exponential dichotomy with
projection P̃1(k). Thus the proof of the claim is completed.

Applying the induction hypothesis, we see that the system

x̃1(k + 1) = B̃11(k)x̃1(k) =


A11(k) A12(k) · · · A1,p−1(k)

0 A22(k) · · · A2,p−1(k)
· · · · · ·
0 0 · · · Ap−1,p−1(k)


 x1(k)

. . .
xp−1(k)


(35)

has an exponential dichotomy with projection

P̂1(k) =


P1(k) P12(k) · · · · P1,p−1(k)
0 P2(k) · · · · ·
0 0 · · · · ·
0 0 · · · Pp−2(k) Pp−2,p−1(k)
0 0 · · · 0 Pp−1(k)

 . (36)

Then we apply the Claim again, but this time under the additional assumption
that x̃1(k + 1) = B̃11(k)x̃1(k) has an exponential dichotomy with projection
P̂1(k) of rank r − rp. Then it turns out that the P̃1(k) defined in the Claim is

P̂1(k) if we take W1(0) to be RP̂1(0). Then we find that the new projection has
the form

P̂ (m) =

(
P̂1(m) P̃1p(m)

0 Pp(m)

)
,

which is block upper triangular as required, but possibly with a different P̃1p(m).

Now we consider the Z case.

Theorem 6. Suppose (1) has an exponential dichotomy on Z with projection of
rank r and that for all i, xi(k + 1) = Aii(k)xi(k) has an exponential dichotomy
on Z with projection Pi(k) of rank ri (by Proposition 1, this is equivalent to the
exponential dichotomy of (2) with rank

∑p
i=1 ri). Then

∑p
i=1 ri = r and the

projection P (k) for the dichotomy of (1) is in upper triangular form with Pi(k)
as diagonal blocks.

Proof. Note it follows from the second remark after the proof of Theorem 2
that r =

∑p
i=1 ri. We prove this theorem by induction on p. First we prove

it for p = 2. Note that for any m ∈ Z, (1) has dichotomies on [m,∞) and
(−∞,m] with projection P (k), where we note that P (k) is uniquely defined for
the dichotomy of (1) on Z by Proposition 3.2 in [2]. Then we claim that

RP (m) = {(ξ1 + L+(m)ξ2, ξ2)) : ξ1 ∈ RP1(m), ξ2 ∈ RP2(m)} (37)

and

NP (m) = {(η1 + L−(m)η2, η2)) : η1 ∈ NP1(m), η2 ∈ NP2(m)}, (38)
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where L+(m) : RP2(m) → NP1(m) and L−(m) : NP2(m) → RP1(m) are
linear mappings.

To prove (37), let Sm be the subspace of RP2(m) such that if ξ2 ∈ Sm, then
the equation

x1(k + 1) = A11(k)x1(k) +A12(k)Φ2(k,m)ξ2

admits a bounded solution. There is a unique such bounded solution with
x1(m) ∈ NP1(m). Let x1(m) = L+(m)ξ2; then L+(m) is a linear mapping
from Sm to NP1(m) and

RP (m) = {(ξ1 + L+(m)ξ2, ξ2) : ξ1 ∈ RP1(m), ξ2 ∈ Sm}.

Hence

r1 + r2 = dimRP (m) = dimRP1(m) + dimSm ≤ r1 + r2.

It follows that dimSm = r2 and hence Sm = RP2(m). Then (37) follows. (38)
is proved similarly.

Applying Lemma 4 to U1 = Rn1 , U2 = Rn2 , P = P (m), P1 = P1(m), P2 =
P2(m), L1 = L+(m) and L2 = L−(m), we deduce the theorem for p = 2.

Now suppose the theorem holds for p− 1 ≥ 2. Then we prove it for p. We write
(1) as in (18) where B̃11(k), B̃1p(k) are as in (19). By Theorems 4 and 5, we
know that (18) has exponential dichotomies on Z+ and Z− with projections

P (k) =

(
P̃1(k) P̃1p(k)
0 Pp(k)

)
Q(k) =

(
Q̃1(k) Q̃1p(k)

0 Qp(k)

)
respectively, where P̃1(k) and Q̃(k) have rank r− rp and Pp(k) and Qp(k) have
rank rp. Moreover,

x̃1(k + 1) = B̃11(k)x̃1(k) (39)

has exponential dichotomies on Z+ and Z− with projections P̃1(k) and Q̃1(k)
respectively. Notice that if x̃1(k) is a nontrivial bounded solution on Z of (39)
then (x̃1(k), 0) is a nontrivial bounded solution on Z of (18). Since (18) has no
nontrivial bounded solution on Z because it has a dichotomy on Z, it follows
that (39) has no nontrivial bounded solution on Z. Since, in addition, P̃1(k)
and Q̃1(k) have the same rank, it follows from Corollary 3.3 in [2] that (39) has
a dichotomy on Z. So we may apply the induction hypothesis to deduce that
the projection for the dichotomy of (39) on Z is in upper triangular form with
Pi(k), i = 1, . . . , p− 1 as diagonal blocks. However, by the p = 2 case, we know
that the projection for the dichotomy of (18) on Z has the form

P (k) =

(
P̃1(k) P̃1p(k)
0 Pp(k)

)
,

where now P̃1(k) is the projection for the dichotomy of (39) on Z. Thus the
induction proof is completed.

32



8 Upper triangular systems

In this section we prove two theorems about upper triangular systems, that is,
block upper triangular systems where the blocks are scalars. First we give a
necessary and sufficient condition that a diagonal system have an exponential
dichotomy.

Theorem 7. The diagonal system

x(k + 1) =


a11(k) 0 · · · 0

0 a22(k) · · · 0
· · · · · ·
0 0 · · · ann(k)

x(k) (40)

has an exponential dichotomy on J = Z, Z+ or Z− with rank r if and only if
there exists I ⊂ {1, . . . , n}, where #I = r, and constants K and α > 0 such
that

|aii(k − 1) · · · aii(m)| ≤ Ke−α(k−m), for any m, k in J , m ≤ k,

for i ∈ I, and

|aii(k − 1) · · · aii(m)| ≥ K−1eα(k−m), for any m, k in J , m ≤ k,

for i /∈ I.

Remark. Note that the second inequality implies that aii(k) ̸= 0 for i /∈ I and
k, k + 1 ∈ J .

Proof. Suppose (40) has an exponential dichotomy on Z+ (resp. Z−). Then by
Proposition 1, there exists I such that the stable (resp. unstable) subspace is
span{ei : i ∈ I} (resp. span{ei : i /∈ I}), where the ei form the standard basis in
Rn. Then we may take the unstable (resp. stable) subspace as span{ei : i /∈ I}
(resp. span{ei : i ∈ I}). If (40) has an exponential dichotomy on Z, then these
must of course be the stable and unstable subspaces. Then aii(k) ̸= 0 for i /∈ I
and k, k + 1 ∈ J and there exist positive constants K and α such that

|aii(k − 1) · · · aii(m)| ≤ Ke−α(k−m), m ≤ k in J,

for i ∈ I, and

|aii(k − 1) · · · aii(m)| ≥ K−1eα(k−m), m ≤ k in J,

for i /∈ I.

Suppose conversely that the inequalities hold so that in particular aii(k) ̸= 0 for
i /∈ I and k, k + 1 ∈ J . Let P be the projection with range span{ei : i ∈ I} and
nullspace span{ei : i /∈ I}. Suppose k ≥ m in J . Then if Φ(k,m) is the transition
matrix for (40), Φ(k,m)ei = aii(k − 1) · · · aii(m)ei. Hence Φ(k,m) maps NP
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one to one onto itself so that the inverse Φ(m, k) of Φ(k,m) : NP → NP exists.
Furthermore Φ(k,m)P is a diagonal matrix with aii(k− 1) · · · aii(m) in the ith
position when i ∈ I and 0 otherwise and Φ(m, k)(I − P ) is a diagonal matrix
with [aii(k − 1) · · · aii(m)]−1 in the ith position when i /∈ I and 0 otherwise.
Clearly we have

Φ(k,m)P = PΦ(k,m), k ≥ m.

If we use the maximum norm for matrices, then for all k ≥ m there exist i ∈ I
such that

|Φ(k,m)P | = |aii(k − 1) · · · aii(m)| ≤ Ke−α(k−m)

and i /∈ I such that

|Φ(m, k)(I− P )| = |[aii(k − 1) · · · aii(m)]−1| ≤ Ke−α(k−m).

So we have an exponential dichotomy with constant projection P .

Finally we examine the relation between the exponential dichotomy of an upper
triangular system and its associated diagonal system.

Theorem 8. (i) If the diagonal system (40) has an exponential dichotomy on
J = Z, Z+ or Z− and |aij(k)| is bounded for i < j, then the upper triangular
system

x(k + 1) =


a11(k) a12(k) · · · a1n(k)

0 a22(k) · · · a2n(k)
· · · · · ·
0 0 · · · ann(k)

x(k) (41)

has an exponential dichotomy on J = Z, Z+ or Z− with projection of the same
rank.

(ii) If the upper triangular system (41) is invertible and has an exponential
dichotomy on J = Z+ or Z−, then the projection can be taken in the form

P (k) =


p1(k) p12(k) · · · p1n(k)
0 p2(k) · · · p2n(k)
· · · · · ·
0 0 · · · pn(k)

 (42)

and the diagonal system (40) has an exponential dichotomy on J = Z+ or Z−
with projection

P̃ (k) =


p1(k) 0 · · · 0
0 p2(k) · · · 0
· · · · · ·
0 0 · · · pn(k)

 . (43)

(iii) If the upper triangular system (41) has an exponential dichotomy on J =
Z+, Z− or Z with projection (42) where for each i, pi(k) = 1 for all k or 0 for
all k, then the diagonal system (40) has an exponential dichotomy on J = Z+,
Z− or Z with projection (43).

34



(iv) If both (41) and (40) have an exponential dichotomy on J = Z+ or Z− with
projections (say) P (k) and P̃ (k) respectively, then we may choose P (k) as in
(42) and P̃ (k) as in (43), that is, they coincide on the diagonal. Furthermore,
for each i, pi(k) = 1 for all k or 0 for all k.

(v) If both (41) and (40) have an exponential dichotomy on J = Z with projec-
tions (say) P (k) and P̃ (k) respectively, then P (k) has the form (42) and P̃ (k)
the form (43), that is, they coincide on the diagonal. Furthermore, for each i,
pi(k) = 1 for all k or 0 for all k.

Proof. Immediate from Theorems 1, 2, 3, 4, 5 and 6.
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