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A B S T R A C T 

In many in vestigations in volving accretion on a central point mass, ranging from observational studies to cosmological 
simulations, including semi-analytical modelling, the classical Bondi accretion theory is the standard tool widely adopted. 
Previous works generalized the theory to include the effects of the gravitational field of the galaxy hosting a central black hole 
and of electron scattering in the optically thin limit. Here, we apply this extended Bondi problem, in the general polytropic case, 
to a class of new two-component galaxy models recently presented. In these models, a Jaffe stellar density profile is embedded in 

a dark matter halo such that the total density distribution follows a r −3 profile at large radii; the stellar dynamical quantities can 

be expressed in a fully analytical way. The hydrodynamical properties of the flow are set by imposing that the gas temperature at 
infinity is proportional to the virial temperature of the stellar component. The isothermal and adiabatic (monoatomic) cases can be 
solved analytically; in the other cases, we explore the accretion solution numerically. As non-adiabatic accretion inevitably leads 
to an exchange of heat with the ambient, we also discuss some important thermodynamical properties of the polytropic Bondi 
accretion and provide the expressions needed to compute the amount of heat exchanged with the environment as a function of 
radius. The results can be useful for the subgrid treatment of accretion in numerical simulations, as well as for the interpretation 

of observational data. 

Key words: hydrodynamics – galaxies: elliptical and lenticular, cD – galaxies: ISM – galaxies: nuclei – X-rays: galaxies – X- 
rays: ISM. 

1  I N T RO D U C T I O N  

Theoretical and observational studies indicate that galaxies host 
at their centre a massive black hole (MBH) that has grown its 
mass predominantly through gas accretion (see e.g. Kormendy & 

Richstone 1995 ). A generic accretion flow may be broadly classified 
as quasi-spherical or axisymmetric, and what mainly determines the 
deviation from spherical symmetry is the angular momentum of the 
flow itself. A perfect spherical flow is evidently possible only when 
the angular momentum is exactly zero. Spherical models are a useful 
starting point for a more advanced modelling, and thus gas accretion 
towards a central MBH in galaxies is often modelled with the classical 
Bondi ( 1952 ) solution. For example, in semi-analytical models and 
cosmological simulations of the co-evolution of galaxies and their 
central MBHs, the mass supply to the accretion discs is linked to the 
temperature and density of their environment by making use of the 
Bondi accretion rate (see e.g. Fabian & Rees 1995 ; Volonteri & Rees 
2005 ; Booth & Schaye 2009 ; Wyithe & Loeb 2012 ; Curtis & Sijacki 
2015 ; Inayoshi, Haiman & Ostriker 2016 ). In fact, in most cases, 
the resolution of simulations cannot describe in detail the whole 
complexity of accretion, and so Bondi accretion does represent an 
important approximation to more realistic treatments (see e.g. Barai, 
Prog a & Nag amine 2012 ; Ciotti & Ostriker 2012 ; Ram ́ırez-Velasquez 

� E-mail: antonio.mancino6@unibo.it 

et al. 2018 ; Gan et al. 2019 and references therein). Recently, Bondi 
accretion has been generalized to include the effects on the flow of 
the gravitational field of the host galaxy and of electron scattering 
at the same time preserving the (relative) mathematical tractability 
of the problem. Such a generalized Bondi problem has been applied 
to elliptical galaxies by Korol, Ciotti & Pellegrini ( 2016 , hereafter 
KCP16 ), who discussed the case of a Hernquist ( 1990 ) galaxy model 
for generic values of the polytropic index. Restricting to isothermal 
accretion, also taking into account the effects of radiation pressure 
due to electron scattering, Ciotti & Pellegrini ( 2017 , hereafter CP17 ) 
showed that the whole accretion solution can be found analytically 
for the Jaffe ( 1983 ) and Hernquist galaxy models with a central 
MBH; quite remarkably, not only can the critical accretion parameter 
be explicitly obtained, but it is also possible to write the radial 
profile of the Mach number via the Lambert–Euler W -function 
(see e.g. Corless et al. 1996 ). Then, Ciotti & Pellegrini ( 2018 , 
hereafter CP18 ) further extended the isothermal accretion solution 
to the case of Jaffe’s two-component (stars plus dark matter) galaxy 
models (Ciotti & Ziaee Lorzad 2018 , hereafter CZ18 ). In these 
‘JJ’ models, a Jaffe stellar profile is embedded in a dark matter 
(DM) halo such that the total density distribution is also a Jaffe 
profile, and all the rele v ant dynamical properties can be written 
with analytical expressions. CP18 derived all accretion properties 
analytically, linking them to the dynamical and structural properties 
of the host galaxies. These previous results are summarized in 
Table 1 . 
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Table 1. Main properties of accretion solutions in one- and two-component galaxy models with central MBH. 

KCP16 CP17 CP18 MCP21 (this paper) 

Galaxy models Hernquist ( 1990 ) Hernquist ( 1990 ), Jaffe ( 1983 ) JJ models ( CZ18 ) J3 models (CMP19) 
Type of accretion Polytropic Isothermal Isothermal Polytropic 
Number of sonic points One or two One or two (Hernquist), One (Jaffe) One One or two b 

Sonic radius Analytic a Analytic Analytic Analytic/numerical c 

λt Analytic a Analytic Analytic Analytic/numerical c 

Mach number profile Numerical Analytic Analytic Analytic/numerical c 

a The general expression can be written as a function of the polytropic index, but only special cases were given explicitly. 
b Function of the polytropic index γ . 
c In the isothermal ( γ = 1) and monoatomic adiabatic ( γ = 5/3) cases, it is analytic; in the 1 < γ < 5/3 case, only a numerical exploration is possible. 

In this paper, we extend the study of CP18 to a different family 
of two-component galaxy models with a central MBH in the general 
case of a polytropic gas. In this family (J3 models; Ciotti, Mancino & 

Pellegrini 2019 , hereafter CMP19 ), the stellar density follows a Jaffe 
profile, while the total follows a r −3 law at large radii; thus, the 
DM halo (resulting from the difference between the total and the 
stellar distributions) can reproduce the Navarro–Frenk–White profile 
(Navarro, Frenk & White 1997 , hereafter NFW ) at all radii. As 
we are concerned with polytropic accretion, we also clarify some 
thermodynamical aspect of the problem, not al w ays stressed. In fact, 
it is obvious that for a polytropic index γ �= γ ad (the adiabatic index 
of the gas, with γad = C p / C V ), the flow is not adiabatic and heat 
exchanges with the environment are una v oidable. We investigate in 
detail this point, obtaining the expression of the radial profile of the 
heat e xchange (i.e. radiativ e losses) of the fluid elements as they move 
towards the galaxy centre. Qualitatively, an implicit cooling/heating 
function is contained in the polytropic accretion when γ �= γ ad . 

The paper is organized as follows. In Section 2 , we recall the 
main properties of the polytropic Bondi solution, and in Section 3, 
we list the main properties of the J3 models. In Section 4 , we set 
up and discuss the polytropic Bondi problem in J3 galaxy models, 
while in Section 5 , we investigate some important thermodynamical 
properties of accretion. The main results are finally summarized in 
Section 6 , while some technical detail is given in the appendix. 

2  B O N D I  AC C R E T I O N  IN  G A L A X I E S  

In order to introduce the adopted notation, and for consistency with 
previous works, in this section, we summarize the main properties of 
Bondi accretion, both on a point mass (i.e. an MBH) and on an MBH 

at the centre of a spherical galaxy. In particular, the flow is spherically 
symmetric, and the gas viscosity and conduction are neglected. 

2.1 The classical Bondi accretion 

In the classical Bondi problem, a spatially infinite distribution of 
perfect gas is accreting on to an isolated central point mass (an MBH 

in our case) of mass M BH . The pressure p and density ρ are related 
by 

p = 

k B ρ T 

〈 μ〉 m p 
= p ∞ 

×
(

ρ

ρ∞ 

)γ

, (1) 

where k B = 1 . 38 × 10 −16 erg K 

−1 is Boltzmann’s constant, 〈 μ〉 is 
the mean molecular weight, m p = 1 . 67 × 10 −24 g is the mass of the 
proton, and γ ≥ 1 is the polytropic index. 1 Finally, p ∞ 

and ρ∞ 

are 

1 In principle, γ ≥ 0; in this paper, we consider 0 ≤ γ < 1 as a purely academic 
interval. 

the gas pressure and density at infinity, and c s = 

√ 

γp/ρ is the local 
polytropic speed of sound. As some confusion unfortunately occurs 
in the literature, it is important to recall that in general, γ is not the 
adiabatic index γ ad of the gas 2 (e.g. Clarke & Carswell 2007 ). 

The equation of continuity reads 

4 π r 2 ρ � = Ṁ B , (2) 

where � ( r) is the modulus of the gas radial velocity, and Ṁ B is the 
time-independent accretion rate on to the MBH. Bernoulli’s equation, 
by virtue of the boundary conditions at infinity, is 

� 2 

2 
+ 

∫ p 

p ∞ 

dp 

ρ
− GM BH 

r 
= 0 . (3) 

Notice that, unless γ = γ ad , the integral at the left-hand side is not 
the enthalpy change per unit mass (see Section 5 ). The natural scale 
length of the problem is the Bondi radius 

r B ≡ GM BH 

c 2 ∞ 

, (4) 

and, by introducing the dimensionless quantities 

x ≡ r 

r B 
, ˜ ρ ≡ ρ

ρ∞ 

, M ≡ � 

c s 
, (5) 

where M is the local Mach number, equations ( 2 ) and ( 3 ) become, 
respectively (for γ �= 1), 

x 2 M ˜ ρ
γ+ 1 

2 = λ, 

(M 

2 

2 
+ 

1 

γ − 1 

)
˜ ρ γ−1 = 

1 

x 
+ 

1 

γ − 1 
, (6) 

where 

λ ≡ Ṁ B 

4 πr 2 B ρ∞ 

c ∞ 

, (7) 

is the (dimensionless) accretion parameter. Once M BH , ρ∞ 

, and c ∞ 

are assigned, if λ is known it is possible to determine the accretion 
rate Ṁ B and derive the profile M ( x), thus solving the Bondi ( 1952 ) 
problem. As well known, λ cannot assume arbitrary values. In fact, 
by elimination of ˜ ρ in between equations ( 6 ), one obtains the identity 

g( M ) = � f ( x) , � ≡ λ
− 2( γ−1) 

γ+ 1 , (8) 

where ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

g( M ) ≡ M 

− 2( γ−1) 
γ+ 1 

(M 

2 

2 
+ 

1 

γ − 1 

)
, 

f ( x) ≡ x 
4( γ−1) 
γ+ 1 

(
1 

x 
+ 

1 

γ − 1 

)
. 

(9) 

2 γad ≡ C p / C V is the ratio of specific heats at constant pressure and volume; 
for a perfect gas, it al w ays exceeds unity. 
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Since both g and f have a minimum, the solutions of equation ( 8 ) 
exist only when g min ≤ � f min , i.e. � ≥ � cr ≡ g min / f min . For γ < 5/3, ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

g min = 

γ + 1 

2( γ − 1) 
, M min = 1 , 

f min = 

γ + 1 

4( γ − 1) 

(
4 

5 − 3 γ

)5 −3 γ
γ+ 1 

, x min = 

5 −3 γ
4 ; 

(10) 

therefore, from equation ( 8 ), the classical Bondi problem admits 
solutions only for 

λ ≤ λcr ≡
(

f min 

g min 

) γ+ 1 
2( γ−1) 

= 

1 

4 

(
2 

5 − 3 γ

) 5 −3 γ
2( γ−1) 

. (11) 

Notice that for γ = 5/3, f min → 1, x min → 0, and λ ≤ 1/4. When γ
> 5/3, instead, x min → 0 and f min = 0, and so no accretion can take 
place: γ = 5/3 is then a hydrodynamical limit for the classical Bondi 
problem. 

For λ = λcr (the critical solutions), x min indicates the position 
of the sonic point, i.e. M ( x min ) = 1. When λ < λcr , instead, two 
regular sub-critical solutions exist, one everywhere supersonic and 
another everywhere subsonic; the position x min marks the minimum 

and maximum value of M , respectively, for these two solutions (see 
e.g. Bondi 1952 ; Frank, King & Raine 1992 ; Krolik 1998 ). 

In the γ = 1 (isothermal) case, p = c 2 ∞ 

ρ, and c s = c ∞ 

, while 
equation ( 8 ) becomes 

g( M ) = f ( x) − �, � ≡ ln λ, (12) 

where now ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

g( M ) ≡ M 

2 

2 
− ln M , 

f ( x) ≡ 1 

x 
+ 2 ln x . 

(13) 

Solutions of equation ( 12 ) exist provided that g min ≤ f min − � ; g min = 

1/2 occurs for M min = 1, while f min = 2 − ln 2 is reached at x min = 

1/2. Therefore, in the isothermal case, 

λ ≤ λcr ≡ e f min − g min = 

e 3 / 2 

4 
, (14) 

in agreement with the limit of equation ( 11 ) for γ → 1. 

2.2 Bondi accretion with electron scattering in galaxy models 

For future use, we now resume the framework used in the previous 
works ( KCP16 ; CP17 ; CP18 ) to discuss the Bondi accretion on to 
MBHs at the centre of galaxies, also in presence of radiation pressure 
due to electron scattering (see e.g. Taam, Fu & Fryxell 1991 ; Fukue 
2001 ; Lusso & Ciotti 2011 ; Raychaudhuri, Ghosh & Joarder 2018 ; 
Ram ́ırez-Velasquez et al. 2019 ; Samadi, Zanganeh & Abbassi 2019 ), 
and including the additional gravitational field of the galaxy. The 
radiation feedback, in the optically thin regime, can be implemented 
as a reduction of the gravitational force of the MBH by the factor 

χ ≡ 1 − L 

L Edd 
, L Edd = 

4 πc GM BH m p 

σT 
, (15) 

where L is the accretion luminosity, L Edd is Eddington’s luminosity, 
c is the speed of light in vacuum, and σ T = 6.65 × 10 −25 cm 

2 is the 
Thomson cross-section. The (relative) gravitational potential of the 
galaxy, in general, can be written as 

	 g = 

GM g 

r g 
ψ 

(
r 

r g 

)
, (16) 

where r g is a characteristic scale length of the galaxy density 
distribution (stars plus dark matter), ψ is the dimensionless galaxy 
potential, and finally M g is the total mass of the galaxy. For galaxies 
of infinite total mass, as the J3 models, M g = R g M ∗ is a mass scale 
[see equations ( 20 ) and ( 22 )]. By introducing the two parameters 

R ≡ M g 

M BH 
, ξ ≡ r g 

r B 
, (17) 

where r B is again defined as in equation ( 4 ), the total relative potential 
becomes 

	 T = 

GM BH 

r B 

[
χ

x 
+ 

R 

ξ
ψ 

(
x 

ξ

)]
. (18) 

Of course, when R → 0 (or ξ → ∞ ), the galaxy contribution to the 
total potential vanishes, 3 and the problem reduces to classical case. In 
the limit of L = L Edd (i.e. χ = 0), the radiation pressure cancels the 
gravitational field of the MBH, then the problem describes accretion 
in the potential of the galaxy only, in absence of electron scattering 
and an MBH; when L = 0 (i.e. χ = 1), the radiation pressure has no 
effect on the accretion flow. Therefore, for MBH accretion in galaxies 
and in the presence of electron scattering, the Bondi problem reduces 
to the solution of equations ( 12 ) and ( 13 ), or ( 8 ) and ( 9 ), where f is 
no w gi ven by 

f ( x) = 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

χ

x 
+ 

R 

ξ
ψ 

(
x 

ξ

)
+ 2 ln x , γ = 1 , 

x 
4( γ−1) 
γ+ 1 

[
χ

x 
+ 

R 

ξ
ψ 

(
x 

ξ

)
+ 

1 

γ − 1 

]
, 1 < γ ≤ 5 

3 
, 

(19) 

while the function g (and, in particular, the value of g min ) is unchanged 
by the presence of the galaxy. Of course, 	 g affects the values of x min , 
f min , and of the critical λ (which now we call λt ). Two considerations 
are in order here. First, 	 g can produce more than one minimum for 
the function f (see the case of Hernquist galaxies in CP17 ); in this 
circumstance, the general considerations after equations ( 8 ) and ( 12 ) 
force to conclude that λt is determined by the absolute minimum 

of f . Secondly, for a generic galaxy model, one cannot expect to be 
able to determine analytically the value of x min ; quite surprisingly, 
in a few cases, it has been shown that this is possible (see CP18 and 
references therein). In the following, we add another analytical case 
to this list. 

3  T H E  J 3  G A L A X Y  M O D E L S  

The J3 models ( CMP19 ) are an extension of the JJ models ( CZ18 ), 
adopted in CP18 to study the isothermal Bondi accretion in two- 
component galaxies with a central MBH. The J3 models are an 
analytically tractable family of spherical models with a central 
MBH, with a Jaffe ( 1983 ) stellar density profile, and with a total 
density distribution such that the DM halo (obtained as the difference 
between the total and stellar density profiles) is described very well 
by the NFW profile; in the case of JJ models, instead, the DM profile 
at large radii declines as r −4 instead of r −3 . 

The stellar and total (stars plus DM) density profiles of J3 galaxies 
are then given by 

ρ∗( r ) = 

ρn 

s 2 (1 + s) 2 
, ρg ( r ) = 

R g ρn 

s 2 ( ξg + s) 
, (20) 

3 For galaxy models of finite total mass, or with a total density profile 
decreasing at large radii at least as r −3 [as for NFW or King ( 1972 ) profiles] 
ψ can be taken to be zero at infinity (e.g. Ciotti 2021 , Chapter 2). 
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Figure 1. Left: dark-to-total mass ratio of the J3 models (solid lines) within a sphere of radius r = R e � 0 . 75 r ∗ as a function of ξg = r g / r ∗ for the minimum 

halo case α = 1 (black), α = 2 (blue), and α = 3 (red). For comparison, the analogous curves in the case of JJ models (dashed lines) are shown. Right: the 
galactic virial velocity dispersion σV (solid lines) as a function of ξg , for α = 1 (black), α = 2 (blue), and α = 3 (red). For comparison, the analogous curves in 
the case of JJ models (dashed lines) are shown. 

with 

ρn = 

M ∗
4 πr 3 ∗

, s = 

r 

r ∗
, ξg = 

r g 

r ∗
, (21) 

where r ∗ is the stellar scale length, M ∗ is the total stellar mass, r g is 
the galaxy scale length, and R g measures the total-to-stellar density; 
for example, we recall that R g /ξg gives the ratio ρg / ρ∗ for r → 0. 
The ef fecti ve radius R e of the Jaf fe profile is R e � 0 . 75 r ∗. The stellar 
and total mass profiles read 

M ∗( r) = M ∗
s 

1 + s 
, M g ( r) = M ∗R g ln 

ξg + s 

ξg 
, (22) 

so that M g ( r ) diverges logarithmically for r → ∞ . 
The DM halo density profile is therefore 

ρDM 

( r) ≡ ρg ( r) − ρ∗( r) = 

ρn 

s 2 

[ R g 

ξg + s 
− 1 

(1 + s) 2 

]
, (23) 

and, as shown in CMP19 , the condition for a no where negati ve ρDM 

is 

R g ≥ R m 

≡

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

1 

4 (1 − ξg ) 
, 0 < ξg ≤ 1 

2 
, 

ξg , ξg ≥ 1 

2 
. 

(24) 

A model with R g = R m 

is called a minimum halo model. For 
assigned ξ g , it is convenient to introduce the parameter α, defined as 

R g = αR m 

, α ≥ 1 , (25) 

and, as we shall restrict to the natural situation ξ g ≥ 1, in the following 
R g = α ξg , with α = 1 corresponding to the minimum halo model. 
Therefore, from equations ( 22 ), the relative amount of dark-to-total 
mass as a function of radius is 
M DM 

( r) 

M g ( r) 
= 1 − s 

α ξg (1 + s) ln (1 + s/ξg ) 
, (26) 

where M DM 

( r ) = M g ( r ) − M ∗( r ). In Fig. 1 (left-hand panel, solid 
lines) we plot equation ( 26 ) as a function of ξ g ≥ 1 for r = R e and 

for three values of α : the minimum halo model ( α = 1) and two 
cases with α > 1. Fractions of DM with values for the minimum halo 
case in agreement with those required by the dynamical modelling 
of early-type galaxies (see e.g. Cappellari et al. 2015 ) can be easily 
obtained. These fractions are unsurprisingly slightly larger than those 
obtained in the case of JJ models for the same values of ξ g (see dashed 
lines in Fig. 1 , left-hand panel). 

Notice that by construction, ρDM 

∝ r −3 at large radii, while, as in 
JJ models, at small radii ρDM 

∝ r −2 (i.e. the DM and stellar densities 
are locally proportional), with the exception of the minimum halo 
models, in which ρDM 

∝ r −1 . We now compare the DM profile of J3 
models with the untruncated NFW profile (Navarro et al. 1997 ) that 
in our notation can be written as 

ρNFW 

( r) = 

ρn R NFW 

q( c) s ( ξNFW 

+ s) 2 
, q( c) ≡ ln (1 + c) − c 

1 + c 
, (27) 

where ξNFW 

≡ r NFW 

/ r ∗ is the NFW scale length in units of r ∗ and, for 
a chosen reference radius r t , we define R NFW 

≡ M NFW 

( r t ) /M ∗ and c 
≡ r t / r NFW 

. The densities ρDM 

and ρNFW 

can be made asymptotically 
identical both at small and large radii by fixing 

R NFW 

= q( c) ξg , ξNFW 

= 

ξg √ 

2 ξg − 1 
. (28) 

Hence, once a specific minimum halo galaxy model is considered, 
equations ( 27 ) and ( 28 ) allow to determine the NFW profile that best 
reproduces the DM halo density profile. Cosmological simulations 
suggest for galaxies c � 10 (see e.g. Bullock & Boylan-Kolchin 
2017 ), and R NFW 

� a few tens. Moreo v er, the value of ξ g cannot be 
too large; otherwise, the DM fraction inside R e would exceed the val- 
ues derived from observations (see e.g. Napolitano, Romanowsky & 

Tortora 2010 ; see also fig. 1 in CMP19 ). For these reasons, we 
conclude that the NFW shape and the cosmological expectations are 
reproduced if we consider minimum halo models with ξ g � 10 ÷ 20. 
In the following, we choose as ‘reference model’ a minimum halo 
model with R g = ξg = 13, c = 10, R NFW 

� 20, and r NFW 

= 2 . 6 r ∗. 
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3.1 Central and virial properties of J3 models 

Now we recall a few dynamical properties of the J3 models needed 
in the following discussion (see CMP19 for more details). An MBH 

of mass M BH = μM ∗ is added at the centre of the galaxy, and the 
total (relative) potential is 

	 T ( r ) = 

	 n μ

s 
+ 	 g ( r ) , 	 n = 

GM ∗
r ∗

, μ = 

M BH 

M ∗
, (29) 

where 

	 g ( r) = 

	 n R g 

ξg 

(
ln 

ξg + s 

s 
+ 

ξg 

s 
ln 

ξg + s 

ξg 

)
; (30) 

in particular, 	 g ∝ (ln s )/ s at large radii, and 	 g ∝ − ln s near the 
centre. The stellar orbital structure is limited to the isotropic case. 
The radial component of the velocity dispersion is given by 

σ 2 
r ( r) = σ 2 

BH ( r) + σ 2 
g ( r) , (31) 

where σ BH and σ g indicate, respectively, the contribution of the MBH 

and of the galaxy potential. As shown in CMP19 , the Jeans equations 
for J3 models can be solved analytically; here, we just recall that in 
the isotropic case 

σ 2 
r ( r) ∼ 	 n ×

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

μ

3 s 
+ 

R g 

2 ξg 
− μ

3 
, r → 0 , 

R g 
ln s 

5 s 
, r → ∞ , 

(32) 

where, for mathematical consistency, we retained also the constant 
term −μ/ 3 in the asymptotic expansion of σ r near the centre, 
although this contribution is fully negligible in realistic galaxy 
models. Notice that, when ξ g ≥ 1, from equation ( 25 ) it follows 
that the constant term due to the galaxy is independent of ξ g , 
with σ 2 

g (0) = 	 n α/ 2. This latter e xpression pro vides the interesting 
possibility of adopting σ g (0) as a proxy for the observed velocity 
dispersion of the galaxy in the central regions, outside the sphere of 
influence of the central MBH. 

In order to derive an estimate of the sphere of influence of the 
MBH, it is interesting to consider the projected velocity dispersion 

σp ( R) = 

√ 

σ 2 
pBH ( R) + σ 2 

pg ( R) , where R is the radius in the projec- 

tion plane. At large radii, σ p is dominated by the galaxy contribution: 
from equation ( 32 ) one has, at the leading order, 

σ 2 
p ( R) ∼ 	 n 8 R g ln η

15 πη
, η ≡ R 

r ∗
. (33) 

At small radii, instead [ CMP19 , equations ( 57 ) and ( 58 )], 

σpg (0) = σg (0) = 

	 n R g 

2 ξg 
, σ 2 

pBH ( R) ∼ 	 n 2 μ

3 πη
. (34) 

Equation ( 34 ) allows to estimate the radius R inf of the sphere of 
influence, defined as the distance from the centre in the projection 
plane, where σ p in presence of the MBH exceeds by a factor (1 + ε) 
the galaxy projected velocity dispersion σ pg in absence of the MBH: √ 

σ 2 
pBH ( R inf ) + σ 2 

pg ( R inf ) ≡ (1 + ε) σpg ( R inf ) . (35) 

In practice, for a galaxy model with finite σ pg (0), the formula abo v e 
reduces to equation ( 36 ) in CP18 , and for ξ g ≥ 1 equation ( 34 ) yields 

R inf 

r ∗
� 

4 μ

3 πα ε (2 + ε) 
. (36) 

Notice that equation ( 36 ) is coincident with the same estimate in JJ 
models ( CP18 , equation 37 ), being the two models identical in the 
central regions. 

A fundamental ingredient in Bondi accretion is the gas temperature 
at infinity T ∞ 

. As in CP18 , in the next section we shall use T V = 

〈 μ〉 m p σ
2 
V / (3 k B ) (see e.g. Pellegrini 2011 ) as the natural scale for 

T ∞ 

, where σ V is the (three dimensional) virial velocity dispersion of 
stars obtained from the Virial Theorem: 

M ∗σ 2 
V ≡ 2 K ∗ = −W ∗g − W ∗BH . (37) 

In the equation abo v e, K ∗ is the total kinetic energy of the stars, 

W ∗g = − 4 πG 

∫ ∞ 

0 
M g ( r ) ρ∗( r ) r dr (38) 

is the interaction energy of the stars with the gravitational field of the 
galaxy (stars plus DM), and the MBH contribution W ∗BH diverges 
near the origin for a Jaffe density distribution. Since we shall use σ V 

as a proxy for the gas temperature at large distance from the centre, 
we neglect W ∗BH in equation ( 37 ), so that 

σ 2 
V = − W ∗g 

M ∗
= 	 n R g ̃

 W ∗g , ˜ W ∗g = H( ξg , 0) − ln ξg 

ξg − 1 
, (39) 

where the function H( ξg , s) is given in appendix C of CMP19 . Fig. 1 
(right-hand panel) shows the trend of σ V as a function of ξ g ≥ 1 for 
three J3 (solid) and JJ (dashed) models. As expected, σ V increases 
with ξ g , and σV � 

√ 

α 	 n when r g � r ∗. For comparison, we show 

in Fig. 1 (right-hand panel) σ V for the JJ models of same parameters. 

3.2 Linking stellar dynamics to fluid dynamics 

We now link the stellar dynamical properties of the galaxy models 
with the defining parameters of Bondi accretion introduced in 
Section 2.2 . In fact, the function f in equation ( 19 ) is written in terms 
of quantities referring to the central MBH and to the gas temperature 
at infinity, while the stellar dynamical properties of the J3 models 
are written in terms of the observational properties of the galaxy 
stellar component. The two groups of parameters are summarized in 
Table 2 . 

The first accretion parameter we consider is R in equation ( 17 ). It 
is linked to the galaxy structure by the following expression 

R ≡ M g 

M BH 
= 

R g 

μ
= 

αξg 

μ
, (40) 

where the last identity derives from equation ( 25 ) with ξ g ≥ 1; notice 
that R ≈ 10 4 for ξ g of the order of tens and α of order unity, and 
μ = 0.002 (see Kormendy & Ho 2013 for this choice of μ). 

The determination of the accretion parameter ξ is more articulated. 
This quantity depends on the Bondi radius r B ; we stress again that in 
the present discussion, even in presence of the galaxy gravitational 
potential, r B is still defined in the classical sense, i.e. just considering 
the mass of the MBH, as in equation ( 4 ). Of course, r B depends on 
the gas temperature at infinity. In principle, arbitrary values of T ∞ 

could be adopted, but in real systems the natural scale for the global 
temperature is represented by the virial temperature T V defined via 
the virial velocity dispersion in equation ( 37 ). Accordingly, we set 

T ∞ 

= βT V , c 2 ∞ 

= γ
p ∞ 

ρ∞ 

= 

γβ σ 2 
V 

3 
. (41) 

From equations ( 4 ) and ( 39 ), we then obtain 

r B 

r ∗
= 

3 μ

αβγF g ( ξg ) 
, F g ≡ ξg 

˜ W ∗g ( ξg ) , (42) 

where the function F g monotonically increases with ξ g from F g (1) = 

π2 / 6 − 1 to F g ( ∞ ) = 1. F or e xample, at fix ed α, β, and γ , one has 

3 μ

αβγ
< 

r B 

r ∗
≤ 18 μ

( π2 − 6) αβγ
. (43) 
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Table 2. Galaxy structure and accretion flow parameters. 

Galaxy structure Accretion flow 

Symbol Quantity Symbol Quantity 

M ∗ Total stellar mass T ∞ 

Gas temperature at infinity 
r ∗ Stellar density scale length ρ∞ 

Gas density at infinity 
M g Total a galaxy mass c ∞ 

Speed of sound at infinity 
r g Total density scale length γ Polytropic index (1 ≤ γ ≤ 5/3) 
M BH Central MBH mass γ ad Adiabatic index ( = C p / C V ) 
μ M BH / M ∗ R M g / M BH ( = R g /μ) 
R g M g / M ∗ ( = αR m 

) β T ∞ 

/ T V 
R m 

Minimum value of R g r B Bondi radius 
ξg r g / r ∗ r min Sonic radius 
s r / r ∗ x r / r B 
σV Stellar virial velocity dispersion ξ r g / r B 
T V Stellar virial temperature λt Critical accretion parameter 
W ∗g Virial energy of stars M Mach number 

a F or e xample, from our definition M g = R g M ∗, and equation ( 20 ), M g is the total mass (stellar plus DM) inside 
a sphere of radius (e − 1) r g . 

In Fig. 2 (top left), we show the trend of r B / r ∗ as a function of ξ g 

in the minimum halo case ( α = 1) with β = 1 and μ = 0.002, for 
three values of γ ; in general, r B is of the order of a few × 10 −3 r ∗. 
Note that, for fixed ξ g , the isothermal profile (black line) is abo v e 
that in the corresponding adiabatic case (red line); in general, for 
fixed α, β, and ξ g , r B / r ∗ al w ays lies between the isothermal and the 
monoatomic adiabatic case, as shown by equation ( 43 ). Finally, by 
combining equations ( 17 ) and ( 42 ), 

ξ ≡ r g 

r B 
= 

αβγ ξg F g ( ξg ) 

3 μ
= 

R β γF g ( ξg ) 

3 
, (44) 

and so R and ξ increase with ξ g . Curiously, from the general 
definitions in equation ( 17 ), and making use of equation ( 34 ), 

R 

ξ
= 

2 σ 2 
pg (0) 

c 2 ∞ 

, (45) 

which links directly the parameters of Bondi accretion to the 
observable σ pg (0) = σ g (0). 

For observational purposes, it is also useful to express the position 
of r B in terms of the radius R inf as given in equation ( 36 ); since the 
parameter α = R g / R m 

cancels out, we have 

r B 

R inf 
= 

9 π ε (2 + ε) 

4 βγF g ( ξg ) 
, (46) 

independently of the minimum halo assumption. In Fig. 2 (bottom 

left-hand panel), we show the trend of r B / R inf when ε = 0.5 and β = 

1, for the same three values of γ as in the upper left-hand panel: r B 
≈ a few times R inf . 

Now we mo v e the discussion to the sonic radius r min , one of the 
most important properties of the accretion solution. The effects of the 
galaxy do indeed manifest themselves in the position of r min . When 
measured in terms of the scale length r ∗, it can be written, by making 
use of equation ( 42 ), as 

r min 

r ∗
= x min ( χ, R , ξ ) 

r B 

r ∗
, (47) 

where x min ≡ r min / r B gives the (absolute) minimum of f . 
Finally, we must recast the galaxy potential in equation ( 30 ) by 

using the normalization scales in equation ( 18 ) : as s / ξ g = x / ξ , it is 
immediate that in our problem 

ψ 

(
x 

ξ

)
= ln 

(
1 + 

ξ

x 

)
+ 

ξ

x 
ln 

(
1 + 

x 

ξ

)
. (48) 

4  B O N D I  AC C R E T I O N  IN  J 3  M O D E L S  

We can now discuss the full problem, investigating how the standard 
Bondi accretion is modified by the additional potential of J3 galaxies 
and by electron scattering. We show that in the isothermal case ( γ = 

1), the solution is fully analytical, as for the monoatomic adiabatic 
case ( γ = 5/3); for 1 < γ < 5/3, instead, it is not possible to obtain 
analytical expressions, and so a numerical investigation is presented. 

4.1 The γ = 1 case 

The isothermal case stands out not only because f ( x ) in equation ( 19 ) 
is not of the general family, for γ = 1, but also because the position 
of the sonic radius x min can be obtained explicitly. Indeed, for 0 < χ

≤ 1, f ( x ) ∼ χ / x for x → 0, and ∼2ln x for x → ∞ . Therefore, the 
continuous function f has at least one critical point o v er the range 0 
≤ x < ∞ , obtained by solving 

2 x min − R ln 
ξ + x min 

ξ
= χ. (49) 

As shown in Appendix A , the positive solution can be obtained for 
generic values of the model parameters in terms of the Lambert–Euler 
W function, 4 and the only minimum of f is reached at 

x min ≡ r min 

r B 
= − ξ − R 

2 
W −1 

(
− 2 ξ

R 

e −
χ+ 2 ξ
R 

)
. (50) 

Once x min is known, all the other quantities in the Bondi solution, 
such as the critical accretion parameter λt = exp ( f min − 1/2) in 
equation ( 14 ), the mass accretion rate in equation ( 2 ), and the Mach 
number profile M , can be expressed as a function of x min . Therefore, 
J3 galaxies belong to the family of models for which a fully analytical 
discussion of the isothermal Bondi accretion problem is possible (see 
Table 1 ). In particular, from CP17 and CP18 , the critical accretion 
solution reads 

M 

2 = −
{ 

W 0 

( − λ2 
t e 

−2 f 
)
, x ≥ x min , 

W −1 

( − λ2 
t e 

−2 f 
)
, 0 < x ≤ x min , 

(51) 

where f is given in equation ( 19 ) with the function ψ( x / ξ ) defined 
by equation ( 48 ). Summarizing, W −1 describes supersonic accretion, 

4 The W function is not new in the study of isothermal flows. See e.g. Cranmer 
( 2004 ), Waters & Proga ( 2012 ), Herbst ( 2015 ), CP17 , and CP18 . 
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Figure 2. Left: Bondi radius r B in units of r ∗ (top) and R inf (bottom), as a function of the galaxy-to-stellar scale length ratio ξg = r g / r ∗ for three J3 galaxy 
models with β ≡ T V / T ∞ 

= 1, μ = 0.002, and γ = 1, 4/3, 5/3; the solid dots at r B / r ∗ � 0.0066, 0.0049, 0.0039 correspond to the minimum halo case with ξg = 

13; solid dots at r B / R inf � 9.71, 7.28, 5.82 correspond to the case ξg = 13 and ε = 0.5. Right: position of x min ≡ r min / r B (top) and r min / r ∗ (bottom) as a function 
of β = T ∞ 

/ T V , in the case of minimum halo models with ξg = 13, μ = 0.002, and χ = 1, for dif ferent v alues of the polytropic index given close to the curves. 
The black square points at r min / r B � 57.34 and r min / r ∗ � 0.23 correspond to the critical case β = βc � 1.65. 

while W 0 subsonic accretion. 5 Although equation ( 51 ) provides an 
e xplicit e xpression of M , it can be useful to have its asymptotic 
trend at small and large distances from the centre; from equation 
( A2 ) and the expansion of f ( x ), one has 

M 

2 ∼

⎧ ⎪ ⎨ ⎪ ⎩ 

2 χ

x 
+ 

2(2 ξ − R ) 

ξ
ln 

x 

x min 
, x → 0 , 

λ2 
t x 

− 2 
(

2 + 

R 

x 

)
, x → ∞ . 

(52) 

Of course, the same result can be established also by asymptotic 
expansion of equation ( 12 ). Therefore, in the central region, M ∝ 

5 As x decreases from ∞ to x min , the argument of W 0 decreases from 0 to 
− 1 / e (points A and B in Fig. A1 , left-hand panel), and M 

2 increases from 

0 to 1. As x further decreases from x min to 0, the argument of W −1 increases 
again from − 1 / e to 0 (points B and C ), and M 

2 increases from 1 to ∞ . The 
other critical solution, with M 

2 increasing for increasing x , is obtained by 
switching the functions W 0 and W −1 in equation ( 51 ). 

x −1 / 2 for χ > 0, while M ∼ √ 

2(2 − R /ξ ) ln ( x/x min ) when χ = 0 
(provided that R > 2 ξ ). 

As already found for JJ models in the isothermal case, also for J3 
models, the case χ = 0 [from equation ( 18 ) corresponding to a galaxy 
without a central MBH] reveals some interesting properties of the gas 
flo w, also rele v ant for the understanding of the more natural situation 
χ > 0. In fact, near the centre f ( x) ∼ (2 − R /ξ ) ln x, and a solution 
is possible only for R ≥ 2 ξ , with x min given by equation ( 50 ). 
When R < 2 ξ , f min = −∞ (reached at the origin), and therefore 
no accretion is possible since λt would be zero. In the special case, 
χ = 0 and R = 2 ξ , f min is again reached at the origin, but f now 

converges to f min = 2(1 + ln ξ ), with λt = ξ 2 e 3/2 . Given the similarity 
of JJ and J3 models near the centre, the fact that both models share 
the same properties at small radii is not surprising. 6 Equation ( 52 ) 

6 For a further discussion of the effect of the central density slope on the 
existence of isothermal accretion solutions with χ = 0, see CP17 and CP18 . 
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Figure 3. Critical accretion parameter λt as a function of ξg for the minimum halo case α = 1 (black), 2 (blue), and 3 (red), and χ = 1 and β = 1. The dotted 
curves refer to α = 1 and three different values of β. The left-hand panel shows the case γ = 1; the right-hand panel shows the case γ = 4/3. Notice that λt in 
the isothermal case is several order of magnitude larger than the γ = 4/3 case. 

can still be used with χ = 0 for R > 2 ξ , while for R = 2 ξ , from 

equations ( 51 ) and ( A2 ), it can be shown that M 

2 = 1 + O( x). 
We no w sho w ho w the condition R ≥ 2 ξ when χ = 0, in order 

to have accretion, imposes an upper limit on T ∞ 

. In fact, from 

equation ( 44 ), with γ = 1, the identity R / (2 ξ ) = 3 / (2 βF g ) produces 
a condition for β : 

β ≤ 3 

2 F g ( ξg ) 
≡ βc , (53) 

where the critical parameter βc depends only on ξ g . It follows that 
in absence of a central MBH, isothermal accretion in J3 galaxies is 
possible only for 

T ∞ 

≤ βc T V , i . e . , σpg (0) = σg (0) ≥ c ∞ 

, (54) 

where the last inequality derives from equation ( 45 ). 
As anticipated, the limitation R ≥ 2 ξ when χ = 0 is also rele v ant 

for the understanding of the flow behaviour when χ > 0. In fact, it 
is possible to show that by defining τ ≡ β/βc = 2 ξ/ R , for R → ∞ 

and fixed 7 τ , we have 

x min ∼

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

− τ + W −1 ( − τ e − τ ) 

2 
R , τ < 1 , √ 

χR 

2 
, τ = 1 , 

χ τ

2 ( τ − 1) 
, τ > 1 . 

(55) 

The trend of x min as a function of β is shown by the black solid line 
in Fig. 2 (top right-hand panel) for a minimum halo model with ξ g = 

13 and μ = 0.002. For example, equation ( 55 ) allows to explain the 
drop at increasing β when τ switches from being less than unity 
to being larger than unity, with x min � χ /2 independently of τ ; the 

7 As for JJ models [ CP18 , equation ( 48 )], from equation ( 50 ) it follows that 
the limit for R → ∞ is not uniform in τ . 

Figure 4. Critical temperature parameter βc ≡ 3 / [ 2 F g ( ξg )] as a function 
of ξg for J3 and JJ galaxy models. For β = T ∞ 

/ T V > 1, the isothermal 
accretion in absence of a central MBH is possible provided that β ≤ βc . In 
these circumstances, once ξg is fixed, the upper limit of β for J3 models is 
lower than that for JJ ones. 

black square point at r min � 57 . 34 r B corresponds to β = βc � 1.65, 
well approximated by the value 57 . 01 r B obtained with the previous 
equation. Equation ( 55 ) allows us to find the behaviour of λt for 
large values of R (at fixed β). For example, in the peculiar case, β = 

βc (i.e. τ = 1), an asymptotic analysis shows that λt ∼ e 3 / 2 R 

2 / 4; 
for simplicity, we do not report the expression of λt for β �= βc , 
which can, ho we ver, be easily calculated. As shown in Fig. 3 (left- 
hand panel), the presence of the galaxy makes λt several orders of 
magnitude larger than without it. For reference, in Fig. 4 (right panel) 
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we show βc as a function of ξ g , for both JJ and J3 models; it is easy 
to pro v e that 3 / 2 < βc ≤ 9 / ( π2 − 6) � 2 . 33. 

A summary of the results can be seen by inspection of Fig. 5 (top 
panels), where we show the radial profile of the Mach number for 
three dif ferent v alues of the temperature parameter ( β = 1, 2, 3). Solid 
lines show the two critical solutions, one in which the gas flow begins 
supersonic and approaches the centre with zero velocity, and the other 
in which M continuously increases towards the centre. The dotted 
lines show two illustrative sub-critical solutions with λ = 0 . 8 λt . It is 
apparent that r min decreases very rapidly with increasing temperature 
at the transition from β = 1 to β = 2: r min � 19 . 89 r ∗, 0 . 0093 r ∗, and 
0 . 0024 r ∗, for β = 1, 2, and 3, respectively. 

Finally, once the Mach number profile is known, the gas density 
profile is obtained from the first equation of the system [equation 
( 6 )] with γ = 1, i.e. 

˜ ρ( x ) = 

ρ( x ) 

ρ∞ 

= 

λ

x 2 M ( x ) 
. (56) 

Along the critical solution, by virtue of equation ( 52 ) it follows 
that ˜ ρ ∼ λt x 

− 3 / 2 / 
√ 

2 χ at the centre when χ > 0, while ˜ ρ ∼ x R /x 

at large radii. Fig. 6 (top panel) shows the radial trend of ˜ ρ for 
the critical accretion solution in our reference model, with λt � 

2.14 × 10 8 . The bottom panel shows the gas velocity profile and, 
for comparison, the isotropic velocity dispersion σ r . Notice that near 
the centre, σBH ∝ r − 1 / 2 and � = c ∞ 

M ∝ r − 1 / 2 (provided that χ
> 0), so that their ratio is constant; it can be easily shown that 
� /σBH ∼ 6 χ . The value of σ BH near the centre (i.e. of σ r if a central 
MBH is present), is then a proxy for the isothermal gas inflow 

velocity. 

4.2 The 1 < γ < 5/3 case 

When 1 < γ < 5/3, from the expression for f ( x ) we have that in one 
case the determination of x min and f min is trivial, i.e. for ξ → ∞ (or 
R → 0) : in this situation, the galaxy contribution vanishes, and the 
position of the only minimum of f reduces to x min = χ (5 − 3 γ ) / 4. 
Therefore, following KCP16 , the behaviour of the associated λt could 
be found just by carrying out a perturbative analysis (see KCP16 , 
Appendix A); ho we ver, since in our models R falls in the range 
10 3 ÷ 10 4 , we shall not further discuss this limit case. In general, 
the problem of the determination of x min (and so of λt ) cannot be 
solved analytically, as apparent by combining equations ( 19 ) and 
( 48 ), and setting df / dx = 0 ; a numerical investigation is then needed. 
As in the case of isothermal flows, we begin by considering 0 < χ

≤ 1. Of course, as f is strictly positi ve, continuous, and di vergent to 
infinity for x → 0 and x → ∞ , the existence of at least a minimum is 
guaranteed. A detailed numerical exploration shows that, in analogy 
with the isothermal case in Hernquist galaxies ( CP17 ), it is possible 
to have more than one critical point for f as a function of β an γ . 
In particular, there can be a single minimum for f , or two minima 
and one maximum. We found that for ξ g = 13 and β ≈ 1 ÷ 2, only 
one minimum is present for γ � 1.01 and γ � 1.1; instead, for 
1.01 � γ � 1.1, three critical points and two minima are present. 
When β is small (i.e. T ∞ 

is low), the absolute minimum of f is 
reached at the outer critical point; as β increases, the value of f at the 
inner critical point decreases, and the flow is finally characterized 
by two sonic points. Increasing further T ∞ 

, the inner critical point 
becomes the new sonic point, with a jump to a smaller value. Fig. 2 
(top right-hand panel) shows the position of x min as a function of 
β for dif ferent v alues of γ and confirms these trends of x min with 
T ∞ 

and γ . Notice how the location of x min (shown in the bottom 

panel) now decreases with an extremely slow decline for γ > 1. 
According with equation ( 47 ), this means that, for polytropic inde x es 
sufficiently greater than 1, the ratio r B / r ∗ decreases faster than what 
x min increases. 

In the case χ = 0, the sonic point is reached at the origin. Indeed, 
f tends to zero when x → 0 and runs to infinity for x → ∞ , and 
so x min → 0 for every choice of the model parameters. Therefore, 
from equation ( 11 ) one has λt → 0, concluding the discussion of the 
problem in absence of the central MBH since no accretion can take 
place. 

Having determined the position x min , we can compute numerically 
the corresponding value of λt , given in the polytropic case by 
equation ( 11 ) with f min = f ( x min ) obtained from equation ( 19 ). In 
Fig. 3 (right-hand panel), the critical accretion parameter is shown 
as a function of ξ g , for a reference model with γ = 4/3 and different 
values of β. We note that, at variance with the isothermal case 
(left-hand panel), λt is roughly constant for fixed β independently 
of the extension of the DM halo, while, at fixed ξ g , it increases 
for decreasing T ∞ 

. Having also determined λt , we finally solve 
numerically equation ( 8 ), obtaining the Mach profile M ( x). In Fig. 5 
(middle panels), we show M ( x) for three different values of the 
temperature parameter ( β = 1, 2, 3). The logarithmic scale allows 
to appreciate how, according to Fig. 2 , x min suddenly falls down to 
values under unity as γ increases with respect to the isothermal case. 
As an illustrative example, we show the case γ = 4/3. Although the 
trend is not very strong, the location of the sonic point, at variance 
with the γ = 1 case, mo v es a way from the centre as the temperature 
increases: r min � 0 . 025 r B , 0 . 046 r B , and 0 . 062 r B , for β = 1, 2, and 
3, respectiv ely. F or comparison, in the top axis we give the distance 
from the origin in units of r ∗, from which it can be seen that, in 
accordance with Fig. 2 (bottom panel), r min now tends to increase 
slightly, while still of the order of 10 −4 r ∗. 

Once the radial profile of the Mach number is known, both the gas 
density and temperature profiles can be obtained from the following 
relations: 

˜ ρ = 

˜ T 
1 

γ−1 = 

(
λ

x 2 M 

) 2 
γ+ 1 

, (57) 

with ˜ T = T /T ∞ 

. Fig. 6 shows the trends of ρ (top panel) and T 

(middle panel), as a function of r / r ∗, for the critical accretion solution 
in our usual reference model. The parameter β is fixed to unity, and 
the curves refer to different polytropic indexes. 

For what concerns the Mach profile for the critical accretion 
solution, an asymptotic analysis of equation ( 8 ) shows that, at the 
leading order 

M ∼
⎧ ⎨ ⎩ 

λ
− γ−1 

2 
t (2 χ ) 

γ+ 1 
4 x −

5 −3 γ
4 , x → 0 , 

λt x 
− 2 , x → ∞ . 

(58) 

Notice that all the information about the specific galaxy model in the 
two regions is contained in the parameter λt . Equation ( 58 ) allows 
us to find the asymptotic behaviour at small and large radii of the 
most important quantities concerning the Bondi accretion. Close to 
the centre, for example, ˜ ρ ∼ λt x 

− 3 / 2 / 
√ 

2 χ (as for the isothermal 
case), independently on the value of γ , and so for the gas velocity 
� = c s M , one finds 

� 2 ( r) ∼ 	 n 2 χ μ

s 
∼ 6 χσ 2 

BH ( r) . (59) 

Therefore, the central value of σ BH is a proxy for the gas inflow 

velocity also in the range 1 < γ < 5/3. Fig. 6 (bottom panel) 
shows the radial trend of � for different values of γ : notice how, 
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Figure 5. Radial profile of the Mach number for polytropic Bondi problem in a minimum halo J3 galaxy model with ξg = 13, χ = 1, and μ = 0.002, in case 
of three different values of the gas temperature ( β = 1, 2, 3). Solid lines show the two critical solutions ( λ = λt ), while dotted lines indicate the two sub-critical 
solutions ( λ = 0 . 8 λt ); the distance from the centre is given in units of both r B (bottom axis) and r ∗ [top axis, using equation ( 42 )]. In blue, we plot the subsonic 
regime and in red the supersonic one. The top panels show the isothermal case ( γ = 1): notice how, in accordance with Fig. 2 , the position of r min decreases very 
rapidly passing from β = 1 to β = 2. Middle panels show the case γ = 4/3: in accordance with the dashed black lines in Fig. 2 , r min / r ∗ decreases for increasing 
β, while r min / r ∗ decreases (note that a logarithmic scale for radius axes has been used). Finally, bottom panels show the adiabatic case ( γ = 5/3): the position 
of the sonic point is reached at the centre, the accretion solutions are al w ays subsonic (i.e. M < 1), and the wind solutions are al w ays supersonic (i.e. M > 1). 

mo ving a way from the centre, it decreases progressively faster for 
γ > 1 (see the green dashed line, corresponding to γ = 1.1), while 
deviating significantly from the isotropic stellar velocity dispersion 
profile. 

We conclude by noting that the inclusion of the effects of the 
gravitational field of a host galaxy allows to estimate the total mass 
profile, M T ( r ) = M BH + M g ( r ), under the assumption of hydrostatic 
equilibrium (see e.g. Ciotti & Pellegrini 2004 ; Pellegrini & Ciotti 
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Figure 6. Density (top), temperature (middle), and velocity (bottom) pro- 
files, as a function of r / r ∗, for the critical (i.e. λ = λt ) accretion solution of 
the polytropic Bondi problem in a minimum halo J3 galaxy model with ξg = 

13, χ = 1, and μ = 0.002. The gas temperature at infinity T ∞ 

equals the 
stellar virial temperature T V , i.e. β = 1. For comparison, the dotted line in 
the bottom panel shows the isotropic velocity dispersion profile σ r . 

2006 ). First of all, we note that the estimated mass reads 

M est ( r) = M T ( r) + 

r 2 

2 G 

d � 2 

dr 
, (60) 

whence it is clear that the hypothesis of hydrostatic equilibrium 

al w ays leads to underestimate M T in the accretion studies, where the 
velocity increases in magnitude towards the centre. Simple algebra 
shows that the expression of M est is given by 

M est ( r) = − r 2 

Gρ( r) 

dp 

dr 
= −M BH 

x 2 

˜ ρ2 −γ

d ̃  ρ

dx 
, (61) 

and, near the MBH (i.e. for x → 0), where ˜ ρ ∼ λt x 
−3 / 2 / 

√ 

2 χ , 

M est ( r) 

M BH 
∼ 3 

2 

(
λt √ 

2 χ

)γ−1 

x 
5 −3 γ

2 ; (62) 

notice that in the isothermal limit case one has M est ( r ) ∝ r . 

4.3 The γ = 5/3 case 

The monoatomic case ( γ = 5/3) presents some special behaviour 
deserving a short description. By considering equation ( 19 ) with 
γ = 5/3, it follows that f is monotonically increasing and the only 
minimum is reached at the centre (KCP17); moreo v er, for galaxy 
models with r 	 g ( r) → 0 when r → 0 (as for J3 models), one finds 
f min = χ , whence λt = χ2 /4. Therefore, χ > 0 in order to have 
accretion. 

When λ = χ2 /4, the Bondi problem [equation ( 8 )] reduces to the 
fourth-degree equation 

M 

2 − 4 f ( x) 

χ

√ 

M + 3 = 0 , (63) 

provided that the condition on the central potential mentioned abo v e 
is satisfied; note that the dependence on the specific galaxy model is 
contained only in the function f ( x ). In the bottom panels of Fig. 5 , 
we show the radial profile of the Mach number. In this situation, 
x min = 0, and so the accretion solutions (blue lines) are subsonic 
everywhere. 

The asymptotic bahaviour of M ( x) for the critical accretion 
solution when x → ∞ is obtained from equation ( 58 ) just by fixing 
λt = χ2 / 4. When x → 0, instead, the γ = 5/3 case does not coincide 
with the limit of equation ( 58 ) for γ → 5/3 : in fact, now M → 1 
instead of infinity, and its asymptotic trend reads 

M ( x) ∼ 1 −
√ 

− 8 R x ln x 

3 ξ χ
, x → 0 ; (64) 

of course, the same situation at small radii occurs in the case of any 
other quantity deriving from Mach’s profile: for example, 

� 2 ( r ) ∼ 	 n χ μ

2 s 
, M est ( r ) ∼ 3 χ

4 
M BH . (65) 

Notice that � decreases by a factor of 2 with respect to the 1 ≤ γ < 

5/3 case, and M est differs from what would be obtained setting γ = 

5/3 and λt = χ2 / 4 in equation ( 62 ). 

5  ENTROPY  A N D  H E AT  BA L A N C E  A L O N G  T H E  

B O N D I  SOLUTI ON  

In this section, we employ the obtained polytropic solutions to 
elucidate some important thermodynamical aspects of the Bondi 
accretion, not al w ays sufficiently stressed in the literature. In fact, 
it is not uncommon to consider Bondi accretion as an ‘adiabatic’ 
problem, where no radiative losses or other forms of heat transfer 
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take place: after all, no heating or cooling functions seem to be 
specified at the outset of the problem. Obviously, this is not true, 
being the Bondi solution a purely hydrodynamical flow where all 
the thermodynamics of heat exchange is implicitly described by the 
polytropic index γ . Therefore, for given γ (and in the absence of 
shock waves), one can follow the entropy evolution of each fluid 
element along the radial streamline, and determine the reversible 
heat exchanges. Let us consider polytropic Bondi accretion with 8 γ
�= γ ad . From the expression of the entropy per unit mass S for a 
perfect gas (e.g. Chandrasekhar 1939 ), and assuming as reference 
value for S its value at infinity, we can write the change of entropy of 
an element of the accreting flow along its radial streamline, during a 
polytropic transformation, as 

DS 

Dt 
= C V ( γ − γad ) 

D ln ˜ ρ

Dt 
, � S ≡ S − S ∞ 

, (66) 

where D /D t = ∂/∂t + � · ∇ is the material deri v ati ve. Of course, 
for γ = γ ad no change of entropy occurs along regular solutions, 
being the process isentropic; instead, for γ �= γ ad , once the solution 
of the Bondi problem is known, equation ( 66 ) allows to compute 
the entropy change of a fluid element. From the second law of 
thermodynamics, the rate of heat per unit mass exchanged by the 
fluid element can be written as 

Dq 

Dt 
= T 

DS 

Dt 
. (67) 

Therefore, from equation ( 66 ), it follows that, for γ �= γ ad , a fluid 
element necessarily exchanges heat with the ambient; this fact can 
be restated in terms of the specific heat as 

Dq 

Dt 
= C DT 

Dt 
= C V 

γ − γad 

γ − 1 

DT 

Dt 
, (68) 

where C is the constant specific heat for polytropic transformations 
(see e.g. Chandrasekhar 1939 ). A third (equi v alent) expression for 
the heat exchange can be finally obtained from the first law of 
thermodynamics, i.e. 

Dq 

Dt 
= 

De 

Dt 
− p 

ρ2 

Dρ

Dt 
, (69) 

where e is the internal energy per unit mass, and, apart from an 
additive constant, h = e + p/ρ = C p T is the enthalpy per unit mass. 
In the stationary case, from equations ( 67 )–( 69 ), one has 

Q 

ρ
≡ Dq 

Dt 
= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

C V ( γ − γad ) T � · ∇ ρ

ρ
, 

C V 
γ − γad 

γ − 1 
� · ∇ T , 

� · ∇ 

(
� 2 

2 
+ h − 	 T 

)
, 

(70) 

where Q is the rate of heat exchange per unit volume, � = − � e r , ∇ = 

e r d /d r , and the last expression can be easily pro v ed (e.g. Ciotti 2021 , 
Chapter 10). Summarizing, a fluid element undergoing a generic 
polytropic transformation loses energy as it mo v es inward and heats 
when 1 < γ < γ ad , while for γ > γ ad , it experiences a temperature 
decrease. In the polytropic Bondi accretion both cases are possible, 
except for a monoatomic gas, when accretion is possible only for 
γ ≤ γ ad = 5/3 (see Section 2 ). We can now use each expression in 
equation ( 70 ) to compute the rate of heat exchange just by substituting 
in them the solution of the Bondi problem. Defining Q n = c 3 ∞ 

ρ∞ 

/r B , 

8 Notice that not necessarily γ < γ ad ; for example, one could study a γ = 5/3 
accretion in a biatomic gas with γ ad = 7/5. 

the first two expressions in equation ( 70 ), and the third one, become, 
respectively, 

Q = 

Q n λt 

x 2 
×

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

γad − γ

γ ( γad − 1) 
˜ ρ γ−2 d ̃  ρ

dx 
, 

− dE 
dx 

, 

(71) 

where, up to an additive constant, 

E ≡
[M 

2 

2 
+ 

γad 

γ ( γad − 1) 

]
˜ ρ γ−1 −

[
χ

x 
+ 

R 

ξ
ψ 

(
x 

ξ

)]
. (72) 

The situation is illustrated in Fig. 7 : the left-hand panel refers to the 
isothermal case and three values of β; the right-hand panel shows the 
case of a monoatomic gas (i.e. γ ad = 5/3) for a fixed β and different 
values of γ < γ ad . The plotted quantity is − 4 π r 2 Q ( r), i.e. the rate 
of heat per unit length exchanged by the infalling gas element. In 
practice, by integrating the curves between two radii r 1 and r 2 , one 
obtains the heat per unit time exchanged with the ambient by the 
spherical shell of thickness | r 2 − r 1 | . For comparison, the dashed 
lines correspond to the same case, i.e. isothermal accretion with 
T ∞ 

= T V . Notice how in general the profile is almost a power law 

o v er a very large radial range, and how the heat exchange decreases 
for increasing T ∞ 

and for γ approaching γ ad . 
An important region for observational and theoretical works is the 

galactic centre. The general asymptotic trend of Q , for x → 0 and χ
> 0, reads 

Q 

Q n 
∼

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

3 λγ
t (2 χ ) −

γ−1 
2 ( γ − γad ) 

2 γ ( γad − 1) 
x −

3( γ+ 1) 
2 ∼ 3 χ ( γ − γad ) 

λt γ ( γad − 1) 
˜ ρ 2 ˜ T , 

3 χ3 (5 − 3 γad ) 

80( γad − 1) 
x − 4 ∼ 3(5 − 3 γad ) 

5 χ ( γad − 1) 
˜ ρ 2 ˜ T , 

(73) 

where in the first expression, 1 ≤ γ < 5/3 and ˜ ρ ∼ λt x 
− 3 / 2 / 

√ 

2 χ , 
and in the second, γ = 5/3 and ˜ ρ ∼ ( χ/ 2) 3 / 2 x − 3 / 2 . In practice, close 
to the centre, Q is a pure power law of logarithmic slope decreasing 
from − 3 to − 4 for γ increasing from 1 to 5/3. It follows that 
the volume-integrated heat exchanges are al w ays dominated by the 
innermost region. 

We conclude by noticing the interesting fact that the heat per unit 
mass exchanged by a fluid element as it mo v es from ∞ down to 
the radius r admits a very simple physical interpretation; in fact, by 
integrating the last expression of equation ( 70 ) along the streamline, 
one obtains for this exchange the remarkable result that 

�q = 

� 2 

2 
+ �h − 	 T , �h ≡ h ( r) − h ( ∞ ) ; (74) 

the total heat exchanged by a unit mass of fluid (moving from ∞ to 
r ) can then be interpreted as the change of the Bernoulli ‘constant’ 
when the enthalpy change in equation ( 75 ) is e v aluated along the 
polytropic solution. There is an interesting alternative way to obtain 
the result abo v e. In fact, from the first law of thermodynamics, dq = 

dh − dp / ρ; thus, in our problem, we also have ∫ p 

p ∞ 

dp 

ρ
= �h − �q = 

(
1 − C 

C p 

)
�h. (75) 

This shows that the integral at the left-hand side, which appears 
in Bondi accretion through equation ( 3 ), equals � h only for γ = 

γ ad , while, in general, it is just proportional to � h . Equation ( 74 ) 
can also be obtained by inserting equation ( 75 ) in equation ( 3 ) and 
considering the total potential (galaxy plus MBH). 
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Figure 7. Absolute value of the rate of heat per unit length exchanged by the fluid element, 4 πr 2 | Q | , in units of r 2 B Q n , as a function r / r ∗, for the critical 
Bondi accretion of a minimum halo J3 model with ξg = 13, χ = 1, and μ = 0.002. Left-hand panel: isothermal case for β = 1, 1.5, and 2. Right-hand panel: 
monoatomic gas ( γ ad = 5/3) with β = 1 for different values of the polytropic index. In both panels, the dashed lines correspond to isothermal accretion with 
T ∞ 

= T V . 

6  DISCUSSION  A N D  C O N C L U S I O N S  

A recent paper ( CP18 ) generalized the Bondi accretion theory to 
include the effects of the gravitational field of the galaxy hosting 
a central MBH and of electron scattering, finding the analytical 
isothermal accretion solution for Jaffe’s two-component JJ galaxy 
models ( CZ18 ). The JJ models are interesting because almost all their 
rele v ant dynamical properties can be expressed in relatively simple 
analytical form, while reproducing the main structural properties 
of real ellipticals. Ho we ver, their DM haloes cannot reproduce the 
expected r −3 profile at large radii, characteristic of the NFW profile; 
as Bondi accretion solution is determined by the gas properties at 
‘infinity’, it is important to understand the effect of a more realistic 
DM potential at large radii. Moreo v er, in CP18, only isothermal 
solution was studied. Later, CMP19 presented two-component J3 
galaxy models, similar to the JJ ones but with the additional property 
that the DM halo can reproduce the NFW profile at all radii. J3 
models then represent an impro v ement o v er JJ ones, while retaining 
the same analytical simplicity, and so a v oiding the need for numerical 
investigations to study their dynamical properties. In this paper, we 
take advantage of J3 models to study again the generalized Bondi 
problem, further extending the investigation to the general case of 
a polytropic gas and elucidating some important thermodynamical 
properties of accretion. The parameters describing the solution are 
linked to the galaxy structure by imposing that the gas temperature 
at infinity ( T ∞ 

) is proportional to the virial temperature of the 
stellar component ( T V ) through a dimensionless parameter ( β) that 
can be arbitrarily fixed. The main results can be summarized as 
follows. 

(i) The isothermal case can be solved in a fully analytical way. In 
particular, there is only one sonic point for any choice of the galaxy 
structural parameters and of the value of T ∞ 

. It is found, ho we ver, 
that r min , the position of the sonic radius, is strongly dependent on 
T ∞ 

, with values of the order of, or larger than, the galaxy ef fecti ve 

radius ( R e ) for temperatures of the order of T V , and with a sudden 
decrease down to ≈10 −2 R e , or even lower, at increasing T ∞ 

(say 
� 1 . 5 T V ). In the absence of a central MBH (or χ = 0, i.e. when 
the gravitational attraction of the central MBH is perfectly balanced 
by the radiation pressure), accretion is possible provided that c ∞ 

≤
σ pg (0), i.e. when T ∞ 

is lower than a critical value, with σ pg (0) the 
central projected stellar velocity dispersion. 

(ii) When 1 < γ < 5/3, the Bondi accretion problem does not allow 

for an analytical solution. A numerical exploration shows that r min 

suddenly drops to values � r ∗ as γ increases at fixed T ∞ 

. Moreover, 
depending on the specific values of R , ξ , and γ , the accretion flow can 
have one or three critical points, and in very special circumstances 
two sonic points. For a given γ , quite independently of the extension 
of the DM halo, the accretion parameter λt is roughly constant at fixed 
β, with values several order of magnitudes lower than the isothermal 
case. In absence of a central MBH, no accretion can take place. 

(iii) In the monoatomic adiabatic case ( γ = 5/3), the Mach number 
profile can be obtained for a generic galaxy model by solving a fourth- 
degree algebraic equation. Ho we ver, the solution is quite impractical, 
and a numerical e v aluation is preferred. As already shown in KCP16 , 
in this case λt = χ2 / 4, so that, again, the absence of the central MBH 

makes accretion impossible. 
(iv) We consider in detail the thermodynamical properties of 

Bondi accretion when the polytropic index γ differs from the 
adiabatic index γ ad . Under this circumstance, the entropy of fluid 
elements changes along their path lines, and it is possible to compute 
the associated heat exchanges ( Q ). We provide the mathematical 
expressions to compute Q as a function of radius, once the Bondi 
problem is solved and, in particular, its asymptotic behaviour near 
the MBH. 
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APPENDIX  A :  T H E  LAMBERT  – EULER  

F U N C T I O N  

The Lambert–Euler function is a multi v alued function defined 
implicitly by 

W ( z) e W ( z) = z , z ∈ C ; (A1) 

the two real-valued branches of the W are denoted as W −1 and W 0 

(see Fig. A1 , left-hand panel). The asymptotic expansion of W 0 

reads 

W 0 ( z) = 

{ 

z + O 

(
z 2 
)
, z → 0 , 

ln z + O( ln ln z) , z → ∞ , 
(A2) 

(see e.g. de Bruijn 1981 ), while for z → 0 it can be shown that 
W −1 ( z) ∼ ln ( − z). Moreo v er, it can be pro v ed that { 

W −1 ( z e z ) = z, W 0 ( z e z ) ≥ z, for z ≤ − 1 , 

W −1 ( z e z ) ≤ z, W 0 ( z e z ) = z, for z ≥ − 1 . 
(A3) 

Therefore, W −1 ( z e z ) ≤ z, and W 0 ( z e z ) ≥ z for all values of z. 
Finally, we recall the monotonicity properties W 0 ( z 1 ) ≥ W 0 ( z 2 ) and 
W −1 ( z 1 ) ≤ W −1 ( z 2 ) for z 1 ≥ z 2 . For a general discussion of the 
properties of W , see e.g. Corless et al. ( 1996 ). 

In physics, the W - function has been used to solve problems 
ranging from Quantum Mechanics (see e.g. Valluri et al. 2009 ; 
Wang & Moniz 2019 ) to General Relativity (see e.g. Mez ̋o & Keady 
2016 ; see also Barry et al. 2000 for a summary of recent applications), 
including Stellar Dynamics ( CZ18 ). Indeed, several transcendental 
equations accruing in applications can be solved in terms of W ; 
for example, it is a simple exercise to prove that, for X > 0, the 
equation 

aX 

b + c ln X = Y , (A4) 

where a , b , c , and Y are quantities independent of X , has the general 
solution 

X 

b = 

c 

ab 
W 

(
ab 

c 
e 

b 
c Y 

)
. (A5) 

In particular, the solution of equation ( 49 ) can be obtained for 

X = 1 + 

x min 

ξ
, a = b = 1 , c = − R 

2 ξ
, Y = 1 + 

χ

2 ξ
, 

(A6) 

as 

1 + 

x min 

ξ
= c W 

(
1 

c 
e 

Y 
c 

)
. (A7) 

We note that equations ( 50 ) and ( A7 ) represent the only solution 
for x min in the isothermal accretion for generic values of the model 
parameters. This can be pro v ed as follows. The first condition for 
the general validity of equation ( A7 ) is that the argument of W must 
be ≤0. In fact, c ≤ 0 and x min ≥ 0, so that the right-hand side of 
equation ( A7 ) must be ≥0, i.e. necessarily W ≤ 0; from Fig. A1 (left- 
hand panel), this forces the argument to be ≤0. This first condition 
is al w ays true for our models. The second condition, again from the 
left-hand panel of Fig. A1 , is that the argument must be ≥ − 1 / e 
for all possible choices of the model parameters. This inequality 
is easily verified by showing, with a standard minimization of a 
function of two variables, that the minimum of the argument o v er 
the region Y ≥ 1 and c ≤ 0 is indeed not smaller than − 1 / e. Finally, 
we show that only the W −1 function appears in the solution for x min . 
This conclusion derives from the physical request that x min ≥ 0, 
i.e. that the right-hand side of equation ( A7 ) is ≥1. Let z = 1/ c . 
From the monotonicity properties of W −1 and W 0 mentioned after 
equation ( A3 ), as Y ≥ 1 we have z e Yz ≥ z e z , and so equation ( A3 ) 
yields W 0 ( z e Yz ) ≥ W 0 ( z e z ) ≥ z, i.e. c W 0 ( e Y/c /c) ≤ 1, being z ≤
0. An identical argument shows instead that c W −1 ( e Y/c /c) ≥ 1, as 
required. 
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Figure A1. Left: the two real branches W 0 (solid line) and W −1 (dashed line), where A = (0, 0) and B = ( −1 / e , −1), while C indicates the asymptotic point 
(0 , − ∞ ). Right: the two real branches of the function W ( z e z ). 
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