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Abstract: We enumerate and characterize some classes of alternating and reverse alternating involutions
avoiding a single pattern of length three or four. If on one hand the case of patterns of length three is trivial,
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such as Motzkin and Fibonacci numbers.
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1. Introduction

A permutation π avoids a pattern τ whenever π does not contain any subsequence order-isomorphic to τ.
The theory of permutation patterns goes back to the work of Knuth [9], who, in the 1970s, introduced the

definition of pattern avoidance in connection to the stack sorting problem. The first systematic study of these
objects appears in the paper by Simion and Schmidt ( [16]). Nowadays, the theory is very rich and widely
expanded, with hundreds of papers appearing in the last decades (see e.g. [8] and references therein).

More recently permutation patterns have been studied over a particular subset of the symmetric group.
In particular pattern avoidance has been studied over involutions (see e.g. [1, 4, 7, 8]) and over alternating
permutations (see e.g. [3, 5, 6, 8, 10–12, 22, 23]), i.e., permutations π = π1 . . . πn such that πi < πi+1 if and only
if i is odd.

The enumeration of alternating involutions is due to Stanley (see [18] and also his survey on alternating
permutations [19]). However, to the best of our knowledge, pattern avoiding alternating involutions has not
been studied so far.

In this paper, we consider alternating involutions that avoid some patterns of length three or four. If on one
hand the case of patterns of length three is trivial, on the other hand, the length four case is more challenging
and involves sequences of combinatorial interest, such as Motzkin and Fibonacci numbers.

2. Preliminaries

2.1 Permutations

Let Sn be the symmetric group over the symbols {1, 2, . . . n}. We will often write permutations in Sn in one line
notation as π = π1 . . . πn. An involution is a permutation π such that π = π−1. The reverse of a permutation
π = π1π2 . . . πn is πr = πnπn−1 . . . π1 and the complement of π is πc = n + 1 − π1 n + 1 − π2 . . . n + 1 − πn.
The reverse-complement of π is πrc = (πr)c = (πc)r. Notice that (π−1)rc = (πrc)−1. In particular the reverse-
complement of an involution is an involution.
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A descent in a permutation π is an index i such that πi > πi+1. Denote by Des(π) the set of descents of π
and by des(π) its cardinality.

Recall that a left-to-right minimum (ltr minimum from now on) of a permutation π is a value π(i) such
that π(j) > π(i) for every j < i. A left-to-right maximum (ltr maximum from now on) is a value π(i) such that
π(j) < π(i) for every j < i. The definition of right-to-left (rtl) minimum and maximum is analogous.

Lemma 2.1. In any involution π the ltr minima form an involution themselves, i.e., a ltr minimum m is at
position i if and only if i is a ltr minimum. The same is true for rtl maxima.

Proof. We will consider only the case of ltr minima, since the other case is analogous. Denote by m1,m2, . . . ,mk

the left-to-right minima of π, and by i1, i2 . . . , ik their respective positions. We want to show that

{m1,m2, . . . ,mk} = {i1, i2 . . . , ik}.

Suppose on the contrary that there exists an index j such that ij is not the value of a left-to-right minimum.
Then, to the left of ij in π there is a symbol a less than ij . In other terms, there exist two integers a, h such
that π(h) = a, a < ij and h < mj . In this situation, mj is not a left-to-right minimum, since it is preceded by
h, and h < mj , contradiction.

Example 2.1. Consider the involution π = 7 9 4 3 5 6 1 10 2 8. The ltr minima of π are 7,4,3,1 and they form
an involution themselves. The same is true for the rtl maxima 8 and 10.

Given a word w = w1 . . . wj whose letters are distinct numbers, the standardization of w is the unique
permutation π in Sj order isomorphic to w. If two words w and u have the same standardization we write
u ∼ w.

The decomposition into connected components of a permutation π is the finest way to write π as π =
w1w2 . . . wk, where each wi is a permutation of the symbols from |w1|+ |w2|+ . . .+ |wi−1|+ 1 to |w1|+ |w2|+
. . .+ |wi−1|+ |wi|. Each wi is called a connected component of π. A permutation is said to be connected if it is
composed by only one connected component.

Example 2.2. The decomposition into connected components of the permutation π = 34215786 is π = w1w2w3,
where w1 = 3421, w2 = 5, w3 = 786.

2.2 Alternating permutations

A permutation π = π1 . . . πn is said to be alternating if πi < πi+1 if and only if i is odd and reverse alternating
if and only if πi > πi+1 if and only if i is odd. Equivalently, a permutation π is alternating whenever Des(π) =
{2, 4, 6, . . .}.

Example 2.3. The permutation π = 4615273 is alternating, while σ = 5372614 is reverse alternating.

Denote by Sn (In, An, RAn, AIn and RAIn, respectively) the set of permutations (involutions, alternating
permutations, reverse alternating permutations, alternating involutions, reverse alternating involutions, respec-
tively) of length n.

The following lemma will be useful in the sequel.

Lemma 2.2. i) Let π = π1 . . . πn ∈ RAIn. Then 1 is in even position, n is in odd position, hence π1 is even
and πn is odd.

ii) Let π = π1 . . . πn ∈ AIn. Then 1 is in odd position, n is in even position, hence π1 is odd and πn is even.

2.3 Pattern avoidance

A permutation σ = σ1 . . . σn ∈ Sn avoids the pattern τ ∈ Sk if there are no indices i1, i2, . . . , ik such that the
subsequence σi1σi2 . . . σik is order isomorphic to τ.

Denote by Sn(τ) the set of permutations of length n avoiding τ and let S(τ) :=
⋃
n Sn(τ). We will keep this

notation also when Sn is replaced by other subsets of permutations, such as In, An, etc.
Notice that an involution avoids τ if and only if it avoids τ−1.
The next trivial lemma will be useful in the sequel.

Lemma 2.3. The reverse-complement map is a bijection between AI2n+1(τ) and RAI2n+1(τ rc), between AI2n(τ)
and AI2n(τ rc) and between RAI2n(τ) and RAI2n(τ rc).
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2.4 Motzkin paths

A Motzkin path of length n is a lattice path starting at (0, 0), ending at (n, 0), consisting of up steps U of the
form (1, 1), down steps D of the form (1,−1), and horizontal steps H of the form (1, 0), and lying weakly above
the x-axis. As usual, a Motzkin path can be identified with a Motzkin word, namely, a word w = w1w2 . . . wn of
length n in the alphabet {U,D,H} with the constraint that the number of occurrences of the letter U is equal
to the number of occurrences of the letter D and, for every i, the number of occurrences of U in the subword
w1w2 . . . wi is not smaller than the number of occurrences of D. In the following we will not distinguish between
a Motzkin path and the corresponding word. Denote by Mn the set of Motzkin path of length n and by Mn

its cardinality, the n-th Motzkin number (see sequence A001006 in [17]). The diod decomposition of a Motzkin
path m of even length 2n is the decomposition of m as m = d1d2 . . . dn, where each di is a subword of m of
length two. Each di in the diod decomposition of a Motzkin path is called a diod of m.

3. General results

In this section, we prove two general results that will be used in the paper.

Lemma 3.1. Let τ be any permutation of {3, . . . ,m}, m ≥ 3, Then

|AIn(12τ)| = |AIn(21τ)|.

Proof. We closely follow [15], where a similar result is proved for doubly alternating permutations, i.e., alter-
nating permutations whose inverse is also alternating.

Our goal is to find a bijection between AIn(12τ) = AIn(12τ, 12τ−1) and AIn(21τ) = AIn(21τ, 21τ−1).
We will use the diagrammatic representation of a permutation, i.e., we will identify a permutation π in Sn

with a n × n diagram with a dot at position (i, πi), for every i (notice that Ouchterlony [15] uses a slightly
different definition for the diagram of a permutation).

A dot, d, in the diagram of a permutation π is called active if d is the 1 or 2 in any 12τ, 12τ−1, 21τ or 21τ−1

pattern in π, or inactive otherwise. Also the pair of dots (d1, d2) is called an active pair if d1d2 is the 12 in a
12τ or 12τ−1 pattern or the 21 in a 21τ or 21τ−1 pattern.

We now define a Young diagram, λπ, consisting of the part of the diagram of π which contains the active
dots. For any two dots d1, d2, let Rd1,d2 be the smallest rectangle with bottom left coordinates (1, 1), such that
d1, d2 ∈ Rd1,d2 . Define

λπ =
⋃
Rd1,d2 ,

where the union is overall active pairs (d1, d2) of π. It is clear from the definition that λπ is indeed a Young
diagram. Since π is an involution, its diagram is symmetric with respect to the main diagonal, and for every
active dot in position (i, j) there is also an active dot in position (j, i), hence λπ is a Young diagram symmetric
with respect to the main diagonal.

A rook placement of a Young diagram λ is placement of dots in its boxes, such that all rows and columns
contain exactly one dot. If some of the rows or columns are empty we call it a partial rook placement. Further-
more, we say that a rook placement on λ avoids the pattern τ if no rectangle, R ⊆ λ, contains τ. Notice that
the rook placement on λπ induced by an involution π is symmetric.

Now, it has been proved by Jaggard [7, Theorem 4.2], that the number of symmetric rook placements on
the self-conjugate shape µ avoiding the patterns 12τ and 12τ−1 is equal to the number of symmetric rook
placements on the self-conjugate shape µ avoiding the patterns 21τ and 21τ−1.

We call two permutations π and σ of the same size a-equivalent if they have the same inactive dots, and
write π ∼a σ.

In the sequel, we will need the following three facts that are immediate consequences of Lemma 6.4, Lemma
6.3, and Lemma 6.2 in [15], respectively.

(I) π ∼a σ ⇒ λπ = λσ.

(II) If π ∈ AIn(12τ, 12τ−1) ∪AIn(21τ, 21τ−1) and π ∼a σ then σ is doubly alternating.

(III) If π ∈ AIn and rp(λπ) is the partial rook placement on λπ induced by π, then

π ∈ AIn(12τ, 12τ−1)⇔ rp(λπ) is 12-avoiding and π ∈ AIn(21τ, 21τ−1)⇔ rp(λπ) is 21-avoiding.

Now we are ready to construct a bijection

φ : AIn(12τ, 12τ−1)→ AIn(21τ, 21τ−1).
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Let π ∈ AIn(12τ, 12τ−1), so that the restriction of π to λπ is a partial 12-avoiding symmetric rook placement.
By Jaggard’s theorem (ignoring the empty rows and columns) and by point (I) there exists a unique 21-avoiding
(partial) symmetric rook placement on λπ with the same rows and columns empty, which we combine with the
inactive dots of π to get φ(π). By point (II), φ(π) is doubly alternating and, since its diagram is symmetric, it
is an involution. By point (III) it avoids 21τ (and hence also 21τ−1). It is also clear from Jaggard’s theorem
that φ is indeed a bijection.

Example 3.1. Consider the permutation π = 593716482 ∈ AI9(12435). Notice that π contains the pattern
21435. Here τ = 435. The diagram of π is the following

The blue dots are the active dots of π and the red Young diagram is λπ. Now applying to λπ the procedure
described in the above proof we get φ(π) = 195736482 ∈ AI9(21435).

It follows from the previous lemma and Lemma 2.3 that if τ is any permutation of {1, . . . , k − 2} then

|AI2n(τ k − 1 k)| = |AI2n(τ k k − 1)| and |RAI2n+1(τ k − 1 k)| = |RAI2n+1(τ k k − 1)|.

Notice that similar relations do not hold for RAI2n, in fact, numerical computations show that, for general
n, |RAI2n(1234)| 6= |RAI2n(1243)| and |RAI2n(1234)| 6= |RAI2n(2134)|.

When τ is an increasing sequence it is possible to provide a more explicit bijection f between |AI2n(τ k−1 k)|
and |AI2n(τ k k − 1)|. Such a bijection has been defined for the first time by J. West [21] for permutations and
has been used by M. Bóna [3] to prove a conjecture by J. B. Lewis about alternating permutations. To this aim,
Bóna proved that f preserves the alternating property when the length of the permutation is even. Here we recall
the definition of the map f : St(12 . . . k−1 k)→ St(12 . . . k k−1). Consider a permutation π ∈ St(12 . . . k−1 k)
and define the rank of the element πi to be the maximum length of an increasing subsequence ending at πi.
Since π avoids 12 . . . k − 1 k, the maximal rank of an element is k − 1. Let R be the set of elements of π whose
rank is k − 1, and P the set of their positions. The permutation ρ = f(π) is obtained as follows.

• if j /∈ P, ρj = πj ,

• if j ∈ P, ρj is the smallest unused element of R that is larger than the closest entry of rank k − 2 to the
left of πj .

Notice that, if k = 3, the map f reduces to the classic Simion-Schmidt bijection ( [16], [21]).
In the following lemma ,we prove that f preserves also the property of being an involution and we describe

what happens in the odd case.

Lemma 3.2. The map f is a bijection between AI2n(12 . . . k−1 k) and AI2n(12 . . . k k−1). Moreover, f maps
bijectively the subset of AI2n+1(1234) of those permutations having 2n+1 at position 2 to the set AI2n+1(1243).

Proof. First of all, we notice that, in an involution π, all the elements of a given rank form an involution. To
prove this fact it is sufficient to observe that elements of π of rank 1 are the ltr minima of the permutation,
which form an involution (see Lemma 2.1). We can consider the involution obtained by removing from π the
elements of rank 1 and proceed inductively.

Now we want to prove that f sends involutions of length n to involutions of length n (for every length n).
Also in this case we can obtain the result by induction on k. When k = 3, we noticed above that f coincides
with the Simion-Schmidt map ( [16]), and it is well-known that this map sends involutions to involutions. If
k > 3, we can delete from π the elements of rank 1 and standardize, obtaining an involution π′ which avoids
12 . . . k − 2 k − 1. If we apply the map f, we obtain an involution avoiding 12 . . . k − 1 k − 2 which can be
obtained from f(π) by removing the elements of rank 1 and standardizing. Hence also f(π) is an involution. The
fact that f preserves the alternating property (when the length is even) has been proved by Bóna [3, Theorem
1].

ECA 3:1 (2023) Article #S2R4 4
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Now we turn our attention to the second assertion. We want to prove that f−1 maps bijectively the set
AI2n+1(1243) onto the set Y2n+1 = AI2n+1(1234) ∩ {π ∈ S2n+1 |π(2) = 2n+ 1}.

The fact that the injective map f−1 preserves the alternating property has been already observed by Bóna [3,
Corollary 1]. Moreover, f−1 preserves the involutory property, as proved above.

Now consider π ∈ AI2n+1(1243). The symbol 2n+ 1 appears at even position a. Suppose that a ≥ 4. Then
π2 = 2n, otherwise π1 π2 2n+ 1 2n ∼ 1243. As a consequence, π2n+1 = a > 2 = π2n which is impossible since
π is alternating. Hence a = 2 and π2 = 2n+ 1.

Since for every π ∈ AI2n+1(1243), π(2) = 2n+ 1, the symbols 2n+ 1 and 2 have rank 2. The map f−1 fixes
the elements of rank k − 2 or less, hence it fixes the positions of 2n+ 1 and 2.

With similar arguments one can show that f(Y2n+1) ⊆ AI2n+1(1243) and conclude that f(Y2n+1) =
AI2n+1(1243).

Example 3.2. Consider the permutation π = 5 9 7 10 1 8 3 6 2 4 ∈ AI10(1234). The elements of rank 1 are 5
and 1, the elements of rank 2 are 9,7,3 and 2, the elements of rank 3 are 10, 8, 6 and 4. Then f(π) =
5 9 7 8 1 10 3 4 2 6 ∈ AI10(1243).

4. Patterns of length three

The following proposition is an easy consequence of Proposition 3.1 in [15]. See also [14].

Proposition 4.1. We have

|AIn(123)| = |AIn(213)| = |AIn(231)| = |AIn(231)|
= |RAIn(132)| = |RAIn(231)| = |RAIn(312)| = |RAIn(321)| = 1,

|AIn(132)| = |RAIn(213)| =

{
1 if n is even or n = 1

0 otherwise,

|AIn(321)| = |RAIn(123)| =

{
2 if n is even and n ≥ 4

1 otherwise.

5. Patterns 4321 and 1234

We recall the definition of a bijection Φ between the set In(4321) of 4321-avoiding involutions of the symmetric
group Sn and the set Mn of Motzkin paths of length n (see [1]), that is essentially a restriction to the set
In(4321) of the bijection appearing in [2].

Consider an involution τ avoiding 4321 and determine the set exc(τ) = {i|τ(i) > i} of its excedances. Start
from the empty path and create the Motzkin path Φ(τ) by adding a step for every integer 1 ≤ i ≤ n as follows:

• if τ(i) = i, add a horizontal step at the i-th position;

• if τ(i) > i, add an up step at the i-th position;

• if τ(i) < i, add a down step at the i-th position.

The map Φ is a bijection whose inverse can be described as follows.
Given a Motzkin path M, let A = (a1, . . . , ak) be the list of positions of up steps in M, written in increasing

order, and let B = (b1, . . . , bk) the analogous list of positions of down steps. Then Φ−1(M) is the involution τ
given by the product of the cycles (ai, bi) for 1 ≤ i ≤ k.

Lemma 5.1. Φ maps the set RAI2n(4321) onto the set M̂2n of Motzkin paths of length 2n whose diods are
either of the forms UH, HD or UD.

Proof. Let τ ∈ RAI2n(4321). For every integer k = 1, 2, . . . , 2n−1, if k is odd, and hence a descent of τ , τkτk+1

is mapped by Φ to one of the following pairs: UH, UD, HD.

Theorem 5.1. We have
|RAI2n(4321)| = Mn.
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Proof. The previous lemma allows us to define a bijection Φ̂ : RAI2n(4321) → Mn. Let m = d1d2 . . . dn be a
Motzkin path (of even length) whose diods di are either of the form UH, UD or HD. Define ∆(m) := s1 . . . sn ∈
Mn where

si =


U if di = UH

D if di = HD

H if di = UD.

Set now Φ̂ = ∆ ◦ Φ.

Example 5.1. Consider π = 6 2 8 4 5 1 10 3 9 7 ∈ RAI10(4321). Then

Φ(π) = and Φ̂(π) =

Theorem 5.2. We have
|RAI2n−1(4321)| = Mn −Mn−2.

Proof. Consider a permutation π ∈ RAI2n(4321). By Lemma 2.2, π2n is odd. Now consider the element
2n − 1 in π. Notice that this element is at position 2n or 2n − 1, otherwise π would contain the pattern
2n 2n − 1 π(2n − 1) π(2n) ∼ 4321 (notice that 2n appears before 2n − 1 because π is an involution and
π2n−1 > π2n).

If π2n = 2n − 1, the permutation π′ obtained from π by removing the element 2n − 1 and standardizing is
an arbitrary element of RAI2n−1(4321) which ends with its maximum element.

If π2n−1 = 2n− 1, write π as π =
(
··· k ··· 2n−2 2n−1 2n
··· 2n ··· j 2n−1 k

)
.

If k > j, consider the permutation π′ obtained from π by removing the element 2n − 1 and standardizing.
π′ is an arbitrary element of RAI2n−1(4321) which does not end with its maximum element.

If k < j, we must have k = 2n − 3 and j = 2n − 2, otherwise π would contain 4321. Hence we can write
π = π′ 2n 2n− 2 2n− 1 2n− 3, where π′ is an arbitrary permutation in RAI2n−4(4321).

As a consequence, |RAI2n(4321)| = |RAI2n−1(4321)|+ |RAI2n−4(4321)|.

The preceding lemma implies that the sequence (|AI2n−1(4321)|)n≥1 coincides with sequence A102071 in [17].

Theorem 5.3. We have

|AIn(1234)| = |RAIn(4321)| and |RAIn(1234)| = |AIn(4321)|.

Proof. The Robinson-Schensted map RS (see e.g. [20]) associates an involution π with a standard Young Tableau
whose descent set D is equal to the descent set of π. If we apply the inverse of the map RS to the transposed
Tableau we get another involution π′ whose descent set is [n − 1] \ D. In particular, π is alternating if and
only if π′ is reverse alternating. Moreover, by the properties of the map RS, π avoids 1234 if and only if the
corresponding tableau has at most three columns, hence the transposed tableau has at most three rows and π′

avoids 4321.

Theorems 5.1, 5.2 and 5.3 and Lemma 2.3 imply the following result.

Corollary 5.1. We have
|RAI2n(4321)| = |AI2n(1234)| = Mn

and
|RAI2n−1(1234)| = |AI2n−1(4321)| = |RAI2n−1(4321)| = |AI2n−1(1234)| = Mn −Mn−2.

We now give an explicit formula for the cardinalities of the sets RAI2n(1234) and AI2n(4321).

Theorem 5.4. We have

|RAI2n(1234)| = |AI2n(4321)| = Mn+1 − 2Mn−1 +Mn−3.

Proof. We proceed as in the proof of Theorem 5.2. Consider a permutation π ∈ AI2n+1(4321). The symbol 2n
is either at position 2n or 2n+ 1, otherwise π would contain 4321.

If π2n+1 = 2n, the permutation π′ obtained from π by removing the element 2n+ 1 and standardizing is an
arbitrary element of AI2n(4321) which ends with its maximum element.

If π2n = 2n, set π =
(
··· k ··· 2n−1 2n 2n+1
··· 2n+1 ··· j 2n k

)
.

If j < k, the permutation π′ obtained from π by removing the element 2n and standardizing is an arbitrary
element of AI2n(4321) which does not end with its maximum element.
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If j > k, the element j = 2n− 1 must be fixed and k = 2n− 2, otherwise π would contain an occurrence of
4321. Removing from π the last four elements we get an arbitrary permutations in AI2n−3(4321).

Hence |AI2n+1(4321)| = |AI2n(4321)|+ |AI2n−3(4321)| and the assertion now follows from Corollary 5.1.

6. Pattern 3412

Theorem 6.1. We have

|RAI2n(3412)| = |AI2n+2(3412)| = |AI2n+1(3412)| = |RAI2n+1(3412)| = Mn.

Proof. We recall that also the set In(3412) corresponds bijectively to the setMn via a map Ψ whose definition
coincides with the definition of the map Φ of Section 5 (see [1]). It is easily seen that Ψ maps the set RAI2n(3412)

to the set of Motzkin paths inM2n whose diods are either of the form UH, HD, or UD. Hence the map Ψ̂ = ∆◦Ψ
is a bijection between RAI2n(3412) and Mn, where ∆ is the map defined in the proof of Theorem 5.1.

We observe that any permutation in AIt(3412) begins with 1, hence, a permutation π ∈ AI2n+1(3412) can
be written as π = 1π′, where π′ is an arbitrary permutation in RAI2n(3412). Moreover, any permutation π in
AI2n+2(3412) ends with its maximum element, hence it can be can be written as π = 1π′ 2n+ 2 where π′ is an
arbitrary permutation in RAI2n(3412).

The last equality follows from Lemma 2.3.

7. Patterns 2143, 2134 and 1243

Theorem 7.1. We have
|AI2n(1243)| = |AI2n(2143)| = |AI2n(2134)| = Mn

and
|AI2n−1(2134)| = |RAI2n−1(1243)| = Mn −Mn−2.

Proof. It is an immediate consequence of Lemma 2.3, Lemma 3.1 and Corollary 5.1.

Theorem 7.2. We have

|AI2n+1(1243)| = |AI2n+1(2143)| = |RAI2n+1(2143)| = |RAI2n+1(2134)| = Mn.

Proof. By Lemmas 2.3, 3.1 and 3.2, it suffices to show that |AI2n+1(1234)∩{σ ∈ S2n+1 |σ(2) = 2n+ 1}| = Mn.
If π is a permutation in this last set, removing 2n+ 1 and 2 from π and standardizing we get an arbitrary

permutation π̂ in I2n−1(1234) with either Des(π̂) = {3, 5, 7, . . . 2n − 3} or Des(π̂) = {1, 3, 5, 7, . . . 2n − 3}. In
other words, this permutation is reverse alternating or it is reverse alternating only to the right of the second
position. Hence we have

|AI2n+1(1234) ∩ {σ ∈ S2n+1 |σ(2) = 2n+ 1}|
= |I2n−1(1234) ∩ {σ ∈ S2n−1 | Des(σ) = {3, 5, 7, . . . 2n− 3}}|+ |RAI2n−1(1234)|.

We want to show that the sum on the right-hand side of the previous equality is equal to Mn. We proceed
by induction on n. The assertion is trivial when n = 2 or n = 3. Assume that the assertion is true for
every m < n. We know by Corollary 5.1 that |RAI2n−1(1234)| = Mn −Mn−2. Consider a permutation ρ in
I2n−1(1234)∩{σ ∈ S2n−1 | Des(σ) = {3, 5, 7, . . . 2n−3}}. Notice that ρ(2) = 2n−2 and ρ(3) = 2n−1, otherwise
the permutation would contain the subsequence ρ(1) ρ(2) 2n−2 2n−1 ∼ 1234. Removing 2, 3, 2n−2 and 2n−1
and standardizing we get an arbitrary permutation in I2n−5(1234)∩ {σ ∈ S2n−5 | Des(σ) = {3, 5, 7, . . . 2n− 7}}
or in RAI2n−5(1234). By the inductive hypothesis we have

|I2n−5(1234) ∪ {σ ∈ S2n−5 | Des(σ) = {3, 5, 7, . . . 2n− 7}}|+ |RAI2n−5(1234)| = Mn−2.

This completes the proof.

Example 7.1. Consider π = 5 11 9 10 1 7 6 8 3 4 2 ∈ AI11(1234). If we remove 11 and 2 from π and standardize
we get the involution π̂ = 4 8 9 1 6 5 7 2 3 with Des(π̂) = {3, 5, 7}. Removing from π̂ the symbols 8,9,2 and 3 we
get the involution 2 1 4 3 5 ∈ RAI5(1234).

Consider now the permutation π = 9 11 7 8 5 10 3 4 1 6 2. If we remove 11 and 2 from π and standardize we
get the involution π̂ = 8 6 7 4 9 2 3 1 5 ∈ RAI9(1234).

Theorem 7.3. We have
|RAI2n(2143)| = Mn−1.
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Proof. Let π be a permutation in RAI2n(2143). The maximum of π is in position 1, otherwise 2 1π2n−1 π2n
would be an occurrence of 2143 in π. Write π as 2n π̂ 1. Then the standardization of π̂ is an arbitrary permutation
in AI2n−2(2143). The assertion now follows from Theorem 7.1.

8. Patterns 3421 and 4312

Notice that these two patterns are inverse of each other. Hence AIn(3421) = AIn(4312) = AIn(3421, 4312)
and the same is true for reverse alternating involutions. The following theorem shows that all these classes are
enumerated by the Fibonacci numbers Fn (sequence A000045 in [17]).

Theorem 8.1. We have
|AIn(3421, 4312)| = |RAIn(3421, 4312)| = Fn−1,

where Fk is the k-th Fibonacci number.

Proof. Let π ∈ RAI2n(3421, 4312). The last element of π is odd and the position of 2n is odd by Lemma 2.2.
Notice that the symbol 2n − 1 can be either at position 2n or 2n − 1, otherwise π would contain the

subsequence 2n 2n− 1 π(2n− 2) π(2n− 1) whose standardization is 4312.
If π2n = 2n− 1, then π = π′ 2n 2n− 1, where π′ is an arbitrary permutation in RAI2n−2(3421, 4312).
If π2n−1 = 2n−1, let y = π2n−2 and x = π2n. If x > y, removing from π the symbol 2n−1 and standardizing

we obtain an arbitrary permutation in RAI2n−1(3421, 4312) which does not end with its maximum.
If x < y, notice that either π(2n − 2) = 2n − 2 or π(2n − 3) = 2n − 2 (otherwise π would contain the

patterns). If π(2n − 2) = 2n − 2, then π(2n − 3) is forced to be 2n (because π is alternating), so we can
write π = τ 2n 2n − 2 2n − 1 2n − 3, where τ ∈ RAI2n−4(3421, 4312). We associate to π the permutation
π′ = τ 2n− 2 2n− 3 2n− 1. Such π′ is an arbitrary permutation in RAI2n−1(3421, 4312) which ends with its
maximum and in which 2n− 3 precedes the maximum.

If π(2n− 3) = 2n− 2, we write π = σ′ 2n σ′′ 2n− 2 2n− 3 2n− 1 x and we associate to π the permutation
π′ = σ′ 2n− 2 σ′′ 2n− 3 x 2n− 1 which is an arbitrary permutation in RAI2n−1(3421, 4312) which ends with
its maximum and in which 2n− 3 follows the maximum.

As a consequence

|RAI2n(3421, 4312)| = |RAI2n−1(3421, 4312)|+ |RAI2n−2(3421, 4312)|.

Let π ∈ RAI2n+1(3421, 4312). The last element of π is odd and the position of 2n+ 1 is odd by Lemma 2.2.
Notice that the symbol 2n+ 1 is either at position 2n+ 1 or 2n− 1, otherwise π would contain the subsequence
2n 2n+ 1 π(2n− 1) π(2n) ∼ 3421.

If π2n+1 = 2n+ 1, then π = π′ 2n+ 1, where π′ is an arbitrary permutation in RAI2n(3421, 4312).
If π2n−1 = 2n + 1, write π = τ 2n + 1 x 2n − 1. Then π′ = τ 2n − 1 x is an arbitrary permutation in

RAI2n(3421, 4312) with 2n − 1 as a fixed point. We observed above that such permutations are in bijection
with RAI2n−1(3421, 4312).

As a consequence

|RAI2n+1(3421, 4312)| = |RAI2n(3421, 4312)|+ |RAI2n−1(3421, 4312)|. (1)

Hence we can conclude that
|RAIm(3421, 4312)| = Fm−1.

By Lemma 2.3, we have also |AI2n+1(3421, 4312)| = |RAI2n+1(3421, 4312)|.
Consider now π ∈ AI2n(3421, 4312). By Lemma 2.2, π1 is odd and the symbol 1 is in odd position. Notice

that either π(1) = 1 or π(3) = 1 otherwise π would contain the subsequence π1 π2 2 1, whose standardization is
3421.

If π1 = 1, the standardization of π2 . . . π2n is an arbitrary permutation in RAI2n−1(3421, 4312). If π(3) = 1,
write π = 3π2 1 τ. The standardization of the word π2 3 τ is an arbitrary permutation π′ in RAI2n−1(3421, 4312)
which fixes the symbol 2.

Observe that, if π ∈ RAI2n−1(3421, 4312), then π(1) = 2 or π(2) = 2, namely RAI2n−1(3421, 4312) = A∪B
where A = RAI2n−1(3421, 4312) ∩ {π ∈ S2n−1 |π(2) = 1} and B = RAI2n−1(3421, 4312) ∩ {π ∈ S2n−1 |π(2) =
2}.

The set A corresponds bijectively to the set RAI2n−3(3421, 4312) by removing the first two elements, hence
the set B corresponds bijectively to the set RAI2n−2(3421, 4312) by equation (1).

Hence,
|AI2n(3421, 4312)| = |RAI2n−1(3421, 4312)|+ |RAI2n−2(3421, 4312)|

ECA 3:1 (2023) Article #S2R4 8

http://oeis.org/A000045


Marilena Barnabei, Flavio Bonetti, Niccolò Castronuovo, and Matteo Silimbani

and
|AIm(3421, 4312)| = Fm−1.

Example 8.1. Consider the set RAI6(3421, 4312), whose elements are

α = 2 1 6 4 5 3 β = 2 1 4 3 6 5 γ = 4 2 6 1 5 3 δ = 4 2 3 1 6 5 ε = 6 2 4 3 5 1.

The permutations β and δ correspond to 2 1 4 3 and 4 2 3 1, namely, the elements of the set RAI4(3421, 4312),
whereas the permutations α, γ and ε correspond to 2 1 4 3 5, 4 2 5 1 3 and 5 2 3 4 1, respectively, namely, the
elements of RAI5(3421, 4312).

9. Patterns 2431, 4132, 3241 and 4213.

Notice that the two patterns 2431 and 4132 are inverse of each other. Hence AIn(2431) = AIn(4132) =
AIn(2431, 4132) and the same is true for reverse alternating involutions and for the pair of patterns (3241, 4213).

Theorem 9.1. We have

|RAI2n(2431, 4132)| = |RAI2n(3241, 4213)| = |RAI2n+1(3241, 4213)| = |AI2n+1(2431, 4132)| = 2n−1.

Proof. Consider a permutation π ∈ RAI2n(2431, 4132). We want to show that π = τ ′ 2n τ ′′, where τ ′ is a
permutation of the symbols 1, 2, . . . , i− 1 and τ ′′ is a permutation of the symbols i, . . . , 2n− 1.

Suppose on the contrary that there exists an element b in τ ′ such that b > i, so that π = . . . b . . . 2n . . . i. Let
a = π2n−1. Since π is alternating, we have a > i, hence 2n− 1 follows 2n in π and the subsequence b 2n 2n− 1 i
is order-isomorphic to 2431.

As a consequence, the word 2n τ ′′ is itself a reverse alternating involution avoiding 132, and there exists
only one of such permutations, as observed in Section 4, while the word τ ′ is an arbitrary permutation in
RAIj(2431, 4132), j even.

We can conclude that

|RAI2n(2431, 4132)| =
∑

j even, j<2n

|RAIj(2431, 4132)| = 2n−1,

where the last equality follows from the previous one by induction.
The facts that

|RAI2n(2431, 4132)| = |RAI2n(3241, 4213)| and |RAI2n+1(3241, 4213)| = |AI2n+1(2431, 4132)|

follow by Lemma 2.3.
Consider now a permutation π in RAI2n+1(4213, 3241).
Write π = m1 w1m2 w2 . . .mk wk, where the m′is are the ltr maxima of π and the w′is are words. Since π is

alternating and avoids the patterns 4213 and 3241, it follows that for every i = 1, 2 . . . , k − 1 the word wi with
is non empty and that wi < wi+1, namely, every symbol in wi is smaller than any symbol in wi+1.

As a consequence miwi is an interval for every i. Obviously mk = 2n + 1 and its position is π2n+1 since π
is an involution. Suppose that π2n+1 6= 2n+ 1. Since π2n < π2n+1, the symbol 2n should appear to the left of
2n + 1 in π, but this contradicts the fact that mkwk is an interval. Hence 2n + 1 is the last element of π and
removing it from π we get an arbitrary permutation in RAI2n(4213, 3241), so we have

|RAI2n(4213, 3241)| = |RAI2n+1(4213, 3241)|.

Theorem 9.2. We have

|RAI2n+1(2431, 4132)| = |AI2n+1(3241, 4213)| =
⌊

2n−1 · 5
3

⌋
.

To prove this theorem, we need the following lemma.

Lemma 9.1. The number of connected permutations in RAI2l+1(4132, 2431) is⌊
2l + 1

4

⌋
.
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Proof. Let τ ∈ RAI2l+1(4132, 2431) be a connected permutations. Consider the position i of 2l + 1 in τ. This
position is odd by lemma 2.2 and i 6= 2l + 1 since τ is connected.

If i = 2l−1, we can remove from τ the symbols 2l+1 and 2l−1 obtaining an arbitrary connected permutation
τ in RAI2l−1(2431, 4132).

If i < 2l − 1, let a = τ2l, b = τ2l−1 and c = τ2l−2.
We can write τ =

( ··· a ··· i ··· b ··· 2l−2 2l−1 2l 2l+1
w1 2l w2 2l+1 w3 2l−1 w4 c b a i

)
where, since τ is alternating, c < b > a < i.

If bai ∼ 312, since τ avoids 2431, the elements of w1 and w2 are smaller than the elements of w4 c b a i that,
in turn, are smaller than the elements of w3. But now, if a 6= i− 1, we would have an occurence of 4132. Hence
a = i− 1, and this is impossible since τ is connected (w1 would be a connected component of τ).

Hence bai ∼ 213. Notice that we must have cba ∼ 231 and we can write

τ =
(
··· a ··· c ··· b ··· i ··· 2l−2 2l−1 2l 2l+1
w1 2l w21

2l−2 w22
2l−1 w3 2l+1 w4 c b a i

)
,

where, as above, w1 < w4 < w3 < w22 < w21 .
The word w1 is empty, since τ is connected. If i 6= 2l − 3, we have τ2l−3 > τ2l−2, since τ is alternating.

Hence 2l − 3 must follow 2l − 2. So we can conclude that also w21 is empty and c = 2. Since τ2 < τ3, 3 must
follows 2 in τ so b = 3 and w22 is also empty.

Iterating these arguments one can show that

τ = 2l 2l − 2 2l − 1 2l − 4 2l − 3 . . . l − 1 2l + 1 l − 3 l − 2 . . . 2 3 1 l + 1.

In particular i = l + 1. Since i is odd, this implies that 2l + 1 ≡ 1 mod 4.
As a consequence, the number of connected permutations in RAI2l+1(4132, 2431) is the same as the number

of connected permutations in RAI2l−1(4132, 2431) if 2l+ 1 ≡ 3 mod 4 and increases by one if 2l+ 1 ≡ 1 mod 4.
As an example, when 2l + 1 = 21 such permutations are

4 2 6 1 8 3 10 5 12 7 14 9 16 11 18 13 20 15 21 17 19

8 6 7 4 10 2 3 1 12 5 14 9 16 11 18 13 20 15 21 17 19

12 10 11 8 9 6 14 4 5 2 3 1 16 7 18 13 20 15 21 17 19

16 14 15 12 13 10 11 8 18 6 7 4 5 2 3 1 20 9 21 17 19

20 18 19 16 17 14 15 12 13 10 21 8 9 6 7 4 5 2 3 1 11

(notice that all of them but the last one have 21 at position 19 and the last one has 21 in position 11). When
2l + 1 = 23 such permutations are

4 2 6 1 8 3 10 5 12 7 14 9 16 11 18 13 20 15 22 17 23 19 21

8 6 7 4 10 2 3 1 12 5 14 9 16 11 18 13 20 15 22 17 23 19 21

12 10 11 8 9 6 14 4 5 2 3 1 16 7 18 13 20 15 22 17 23 19 21

16 14 15 12 13 10 11 8 18 6 7 4 5 2 3 1 20 9 22 17 23 19 21

20 18 19 16 17 14 15 12 13 10 22 8 9 6 7 4 5 2 3 1 23 11 21

(all of them have the symbol 23 in position 21).
Since when 2l + 1 = 5 there is only one of such permutations, the number of connected permutations in

RAI2l+1(4132, 2431) is
⌊
2l+1
4

⌋
.

Now we turn to the proof of Theorem 9.2.

Proof of Theorem 9.2. Let π ∈ RAI2n+1(2431, 4132). Consider the last connected component τ of π and write
π = στ.

Now, σ is an arbitrary permutation in RAI2k(2431, 4132), with k ≥ 0 (notice that σ has even length, since
τ is connected and π is alternating) and τ ′, the standardization of τ, is an arbitrary connected permutation in
RAI2n+1−2k(2431, 4132), with l ≥ 0.

Hence, by Lemma 9.1 and by Theorem 9.1, we have

|RAI2n+1(2431, 4132)| = 2n−1 +

n−1∑
k≥1

2k−1
⌊

2n+ 1− 2k

4

⌋
+

⌊
2n+ 1

4

⌋
,

where the first summand of the right-hand side corresponds to the case τ = 2n + 1 and the third summand
corresponds to the case |τ | = 2n+ 1.
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Now it can be shown by induction that

|RAI2n+1(2431, 4132)| =
⌊

2n−1 · 5
3

⌋
.

The fact that |AI2n+1(3241, 4213)| = |RAI2n+1(2431, 4132)| follows by Lemma 2.3.

Notice that {|RAI2n+1(2431, 4132)|}n is sequence A081254 in [17].
On the contrary, the sequence enumerating AI2n(3241, 4213) and AI2n(2431, 4132), whose first terms are

1, 2, 5, 9, 17, 31, 59, . . . , is not present in [17].

10. Patterns 2413 and 3142

The set AIn(2413, 3142) coincides with the set of alternating Baxter involutions of length n.
We recall that a Baxter permutation of length n is a permutation π ∈ Sn such that, for every 1 ≤ i ≤ j ≤

k ≤ l ≤ n,

if πi + 1 = πl and πj > πl then πk > πl and if πl + 1 = πi and πk > πi then πj > πi.

In [15] the author shows that the set of doubly alternating Baxter permutations coincides with the set of
doubly alternating permutations avoiding 2413 and 3142 = 2413−1.

An involution is clearly doubly alternating. As a consequence, the set AIn(2413, 3142) coincides with the
set of alternating Baxter involutions of length n. A recurrence relation for this sequence has been found in [13]
and the corresponding sequence in [17] is A347546.

Moreover we have

|AI2n+1(2413, 3142)| = |RAI2n+1(2413, 3142)| = |RAI2n(2413, 3142)|,

where the first equality follows from Lemma 2.3 and the second one is a consequence of the fact that each
permutation in RAI2n+1(2413, 3142) ends with its maximum (see [13]) and this maximum can be removed,
hence obtaining any permutation in RAI2n(2413, 3142).

11. Patterns 4123, 2341

Since 4123 = 2341−1 we have AIn(4123) = AIn(2341) = AIn(4123, 2341) and the same is true for reverse
alternating involutions.

To enumerate these classes we need the following lemma.

Lemma 11.1. The number of connected permutations in RAIn(4123, 2341) is


1 if n is odd and n 6= 3

2 if n is even and n ≥ 6

0 if n = 3

1 if n = 2, 4.

.

The number of connected permutations in AIn(4123, 2341) is

{
1 if n ≥ 4 or n = 1

0 if n = 2 or 3
.

Proof. The small cases are trivial, so we can assume n ≥ 5.
Let π ∈ RAI2n(4123, 2341) be connected. Write π = wkmk wk−1mk−1 . . .m2 w1m1 where the m′is are the

rtl maxima of π.
Since π is reverse alternating and avoids 4123, every wi with 2 ≤ i ≤ k − 1 must have length 1. For the

same reason, w1 must be empty (π ends with a descent) and the length of wk is 0 or 2.
If |wk| = 0,

π = 2n 2n− 2 2n− 1 2n− 4 2n− 3 . . . 4 5 2 3 1,

if |wk| = 2,
π = 2n− 2 2n− 4 2n 2n− 6 2n− 1 2n− 8 2n− 3 . . . 2 7 1 5 3.

In a similar way, it is possible to prove that the only connected permutation in RAI2n+1(4123, 2341) is

π = 2n 2n− 2 2n+ 1 2n− 4 2n− 1 2n− 6 2n− 3 . . . 9 4 7 2 5 1 3.

The classification of the connected permutations in AIn(4123, 2341) is fully analogous.
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Example 11.1. There are two connected permutations in RAI10(4123, 2341), namely,

8 6 10 4 9 2 7 1 5 3 and 10 8 9 6 7 4 5 2 3 1,

while the only connected permutation in RAI11(4123, 2341) is 10 8 11 6 9 4 7 2 5 1 3. The only connected per-
mutation in AI10(4123, 2341) is 9 10 7 8 5 6 3 4 1 2 and the only connected permutation in AI11(4123, 2341) is
9 11 7 10 5 8 3 6 1 4 2.

In the following theorem we find the ordinary generating functions that enumerate reverse alternating invo-
lutions avoiding 4123 and 2341 of even and odd length (sequences A052980 and A193641 in [17], respectively).
We also find the same generating function for the alternating even case. This last sequence does not appear
in [17].

Theorem 11.1. We have∑
n≥0

|AI2n+1(4123, 2341)|x2n+1 =
∑
n≥0

|RAI2n+1(4123, 2341)|x2n+1 =
x5 − x3 + x

1− 2x2 − x6
,

∑
n≥0

|RAI2n(4123, 2341)|x2n =
1− x2

1− 2x2 − x6
,

∑
n≥0

|AI2n(4123, 2341)|x2n = 1 +
x4

1− x2
+

(x5 − x3 + x)2

(1− 2x2 − x6) · (1− x2)
.

Proof. The fact that |RAI2n+1(4123, 2341)| = |AI2n+1(4123, 2341)| follows from Lemma 2.3.
Let π ∈ RAI2n+1(4123, 2341). Decompose π in connected components as π = τ1τ2 . . . τk. Denote by τ̂i

the standardization of τi. The τ̂ ′is are arbitrary connected permutations with τ̂i ∈ ∪j≥1RAI2j(4123, 2341) for
1 ≤ i ≤ k − 1 (because π is reverse alternating) and τk ∈ ∪j≥0RAI2j+1(4123, 2341). By the previous lemma
it follows that the ordinary generating function that counts connected permutations in ∪j≥1RAI2j(4123, 2341)

(by length) is F (x) = x2 +x4 + 2x6

1−x2 and the ordinary generating function that counts connected permutations

in RAI2j+1(4123, 2341) is G(x) = x+ x5

1−x2 .
As a consequence ∑

n≥0

|RAI2n+1(4123, 2341)|x2n+1 =
G(x)

1− F (x)
.

Trivial algebraic manipulations lead to the desired generating function.
Similarly, given π ∈ RAI2n(4123, 2341) we can decompose π in connected components as π = τ1τ2 . . . τk

where τ̂i ∈ ∪j≥1RAI2j(4123, 2341) for 1 ≤ i ≤ k.
As a consequence ∑

n≥0

|RAI2n+1(4123, 2341)|x2n+1 =
1

1− F (x)
.

The decomposition in connected components of a permutation π ∈ AI2n(4123, 2341) is more subtle than
the above ones because these components are not necessarily only of even or odd length. However such a
permutation π can only be

• the empty one,

• connected itself,

• of the form στ, where σ is an arbitrary permutation in ∪j≥0AI2j+1(4123, 2341) and τ is a connected
permutation in ∪j≥0RAI2j+1(4123, 2341).

By the above results and by the previous lemma we get∑
n≥0

|AI2n(4123, 2341)|x2n = 1 +
x4

1− x2
+

x5 − x3 + x

1− 2x2 − x6
· x

5 − x3 + x

1− x2

where the three summand on the left hand side correspond to the three-dotted cases.
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12. Other patterns

The following three conjectures are based on numerical evidences. The first one covers the last open case about
the patterns 1243 and 2134 and the second covers the patterns 1432 and 3214.

Conjecture 12.1. We have
|RAI2n(1243)| = |RAI2n(2134)| = Mn.

Conjecture 12.2. We have

|AI2n(1432)| = |AI2n(3214)| = |RAI2n(1432)| = |RAI2n(3214)| = Mn,

|AI2n+1(1432)| = |RAI2n+1(3214)| = Mn,

|AI2n−1(3214)| = |RAI2n−1(1432)| = Mn −Mn−2.

Conjecture 12.3. Let τ be any permutation of {4, . . . ,m},m ≥ 4. Then

|AIn(123τ)| = |AIn(321τ)|.

A classical subject in pattern avoidance is the study of Wilf-equivalent patterns. Let σ and τ two patterns
and Pn a given subset of Sn. Then σ and τ are said to be Wilf-equivalent on Pn if |Pn(σ)| = |Pn(τ)|.

A proof of Conjectures 12.1 and 12.2 would conclude the Wilf-classification of alternating and reverse al-
ternating involutions avoiding a pattern of length 4. In fact, trivial numerical experiments show that the only
Wilf-equivalences among all the other patterns not mentioned in the paper are the trivial ones given by the
reverse complement map and the inverse map.
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