
This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

A. Garbugli, L. Rosa, L. Foschini, A. Corradi and P. Bellavista, "A Framework for TSN-

enabled Virtual Environments for Ultra-Low Latency 5G Scenarios," ICC 2022 - IEEE

International Conference on Communications, Seoul, Korea, Republic of, 2022, pp.

5023-5028

The final published version is available online at

https://dx.doi.org/10.1109/ICC45855.2022.9839193

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the

publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://dx.doi.org/10.1109/ICC45855.2022.9839193

A Framework for TSN-enabled Virtual

Environments for Ultra-Low Latency 5G Scenarios

Andrea Garbugli, Lorenzo Rosa, Luca Foschini, Antonio Corradi, Paolo Bellavista

University of Bologna

Department of Computer Science and Engineering

Bologna, Italy

name.surname@unibo.it

Abstract—The recent trend of moving cloud computing ca-
pabilities to the edge of the network is reshaping the way
applications and their middleware supports are designed, de-
ployed, and operated. This new model envisions a continuum
of virtual resources between the traditional cloud and the
network edge, which is potentially more suitable to meet the
heterogeneous Quality of Service (QoS) requirements of the
supported application domains. Yet, mission-critical applications
such as those in manufacturing, automation, or automotive,
still rely on communication standards like the Time-Sensitive
Networking (TSN) protocol and 5G to ensure a deterministic
network behavior: in this context, virtualization might introduce
unacceptable network perturbations. In this paper, we demon-
strate that latency-sensitive applications can execute in virtual
machines without disruptions to their network operations. We
propose a novel approach to support the TSN protocol in virtual
machines through a precise clock synchronization method and
we implement it in integration with state-of-the-art and highly-
efficient network virtualization techniques. Our experimental
results show that it is possible to achieve deterministic and ultra-
low latency end-to-end communication in the cloud continuum,
for example providing a guaranteed sub-millisecond latency
between remote virtual machines.

Index Terms—time-sensitive networking, cloud continuum,
network virtualization, ultra-low latency

I. INTRODUCTION

The widespread adoption of the Internet of Things (IoT)

concept is driving an unprecedented process of digitalization

in many application domains, such as automotive, industry

4.0, healthcare, and smart cities. The exponential growth in

the number of connected devices is fueling this transition by

collecting huge volumes of raw data that a new generation of

IoT applications should transform into insightful information.

This, in turn, is enabling innovative processes, services, and

products to be offered in any industrial and societal sector.

A distinguishing characteristic of such transformation is the

high heterogeneity that stems from devices with different

computing power, battery life, mobility, etc. As a consequence,

several IoT applications with extremely different goals and

quality requirements have to coexist with each other, using

heterogeneous technologies and resources, i.e., communication

protocols, storage, computing capacity, energy requirements,

and security [1].

This coexistence is one of the factors pushing the well-

established traditional cloud computing paradigm to show its

limitations. The traditional cloud-centric model, where few

datacenters collect and process all data generated by physically

distant IoT devices, is not suitable to handle the heterogeneous

requirements of IoT applications. Hence, a recent trend is to

integrate the traditional cloud infrastructures with a hierarchy

of virtualized computing resources, sometimes identified as

fog nodes, physically located between traditional cloud data-

centers and IoT datasources. The resulting computing model is

a fluid dissemination of virtualized resources named as Cloud-

to-Thing Continuum (C2TC). In C2TC, providers can offer

cloud-like features even outside datacenters, for example by

assigning slices of the resources to different applications to

satisfy their requirements, by guaranteeing isolation and by

distributing the workload at all levels of the infrastructure.

Notwithstanding the potential advantages provided by the

C2TC model, its adoption is currently quite limited in real-

world production environments. In particular, applications in

several areas may have stringent performance constraints that

are difficult to fulfill while using resource virtualization: for

example, software components in industrial automation or

healthcare should communicate with ultra-low latency (ULL),

which entails that the network infrastructure should guarantee

sub-millisecond communications between remote processes.

Designing, implementing, and deploying real systems that

work under such tight deadlines is currently a still open

research challenge, even exacerbated by the adoption of vir-

tualization [2], [3].

Recently, various technologies for C2TC scenarios emerged

at different levels, and are starting to show to be successful

in coping with these strict constraints [4]. In Local Area

Networks (LAN), these consist of standards like DetNet or

Time-Sensitive Networking (TSN) [5], an extension to the

Ethernet protocol designed to achieve a deterministic network

behavior in safety-critical contexts. For larger distances, the

5G standard is on the way to wider adoption, providing an

ultra-reliable, low-latency option [6]. However, an efficient

use of those technologies requires the cooperation of several

actors. For example, LANs are generally under the direct

control of an organization, whereas WAN communications

are delegated to specialized service providers. Thus, if the

goal is to guarantee a maximum 1ms latency between two

remote processes (e.g., two industrial controllers in remote

factories), each involved actor should optimize its operations:

application developers should design their components to use

Host

Userspace

Host

Kernel

VM1

device driver

eth0

eth0

VM2

frontend driver

eth0eth0

@ @

backend driver

tap0
@ @

virtual switch

eth1

VM3

frontend driver

eth0

@ @

backend driver

vhost-user-0

@ @

virtual switch

eth2

DPDK library �<

Fig. 1: Network virtualization approaches. On the left, direct device assignment. On the right, paravirtualization with kernel-

level (center) or user-level (right) network virtualization.

at most 0.4ms, leaving the remaining latency budget to the

external provider operations [7]. Consequently, very often the

current trend of applications in mission-critical domains is

to avoid any form of additional overhead, including resource

virtualization, thus trading flexibility for performance.

In this paper, we claim that even such a small latency budget

of about 0.4ms suffice to operate virtualized applications

under ULL constraints, thus enabling the whole potential

of the C2TC model even in the most demanding scenarios

of interest nowadays. To prove that, we propose a novel

virtualization approach that enables TSN-based applications

to run unmodified in virtual machines: our key contribution

is the introduction of a precise clock synchronization method

for applications running in remote VMs. We then compare

how different network virtualization techniques affect the

communication latency of these applications. We show that

while traditional kernel-based approaches struggle to meet

our demanding deadline, recent kernel-bypassing technologies

consume only about 30% of the target latency budget.

II. BACKGROUND

This section provides a concise introduction to the Time-

Sensitive Networking protocol for applications with stringent

QoS requirements, along with a concise taxonomy of the main

approaches to I/O and network virtualization.

A. Time-Sensitive Networking (TSN)

The Time-Sensitive Networking (TSN) protocol consists

of a set of standards that aim to make Ethernet networks

deterministic to support real-time industrial traffic [5].

The first critical requirement of real-time applications is

to have a time synchronization mechanism so that all the

communication participants have a unique time reference.

In the context of TSN, this mechanism is provided by the

IEEE 802.1AS standalone protocol that extends the Precision

Time Protocol (PTP) with a specialized profile called generic

Precision Time Protocol (gPTP). This extension defines two

main entities, the Clock Master (CM) and the Clock Slave

(CS), that each network participant can associate with a

network device. In this way, the device can take part in the

clock synchronization process [4].

A second standard (IEEE 802.1Qbv) defines a new traffic

shaper, called Time-Aware Shaper (TAS), designed to schedule

network frames that belong to different types of time-critical

flows. Specifically, the standard defines time-aware commu-

nication windows, called time-aware traffic windows, each

associated with a specific queue of a network device. Each

window can be used to transmit different classes of traffic,

and for this reason, it is divided into time slots that repeat

cyclically: frames belonging to the same class of traffic are

buffered until the next opening of the time slot associated with

their class. In this way, assured traffic is guaranteed to have

low latency and jitter, and best-effort traffic cannot interfere

with it. In practice, windows and slots are defined through a

Gate Control List (GCL) that identifies the moments in time

when one or more queues are open for frame transmission [4].

Therefore, TAS is applicable for ULL requirements but needs

to have all time windows synchronized, which is why it must

be used in conjunction with PTP.

B. Network virtualization techniques

A key challenge for applications running in virtual machines

is to obtain efficient access to I/O devices, especially if

network performance is critical. Currently, the two prominent

I/O virtualization techniques are direct device assignment and

paravirtualization. With direct device assignment, a dedicated

device instance is assigned exclusively to a VM and be-

comes invisible to the host (passthrough). If this instance

corresponds to the physical device (physical function, PF),

each VM requires a dedicated physical network adapter. To

mitigate this effect, recent devices support hardware-assisted

virtualization (e.g., SR-IOV [8]) that makes them appear as

multiple separate devices called virtual functions (VFs), which

can be assigned to different VMs. Either way, this technique

avoids any involvement of the hypervisor: VMs can access the

network as if they were physical hosts and achieve optimal

network performance. However, the direct assignment also

tightly couples network devices and VMs, strongly limiting

the flexibility properties of virtualization, e.g., live migration.

On the contrary, the paravirtualization technique trades

performance for flexibility. For each VM, a traditional par-

avirtualized network stack splits the device driver into a

frontend driver in the guest OS and a backend driver on the

host (Fig. 1), which exchange commands using a dedicated

communication channel. This separation allows the hypervisor

to have full control of the network state, thus enabling a high

degree of flexibility but also introducing overhead on data

path operations when crossing the guest/host boundaries. In

the traditional approach, the backend driver is located on the

host kernel space and all the traffic should traverse the whole

host network stack, which involves multiple data copies and

context switches [9]. Since this overhead can be significant, it

is possible to move the backend driver in the host userspace

and use kernel-bypassing techniques such as the Data Plane

Development Kit (DPDK) [10] to directly access the physical

device with a zero-copy semantic.

The de facto standard framework for paravirtualization is

virtio [11], which allows the hypervisor to expose paravirtu-

alized devices to the guest. To reduce the network overhead,

virtio separates the data plane, used for the actual transmission

of network traffic between the host and the guest, and a control

plane to exchange control messages about the data plane. The

data plane consists of shared memory regions between the

frontend driver on the guest and the backend driver on the

host. Those memory areas, called virtqueues, are organized

as couples of ring buffers that contain data to be received

and transmitted, thus simulating the actual queues of physical

devices. Each virtual device can have zero or more queues

associated, but, importantly, devices with more than one queue

can only be used from virtual machines with two or more

virtual CPUs (vCPUs) because each queue must have its

associated thread. On the other hand, the control plane consists

of a notification mechanism that is used to detect and notify

data in the queue between the frontend and the backend driver.

For network devices, this mechanism consists of a direct inter-

process communication channel between the two drivers.

Once the VM traffic reaches the backend driver, it must be

forwarded to a network. In cloud environments, the common

practice is to connect the VMs belonging to the same tenant

to a virtualized overlay network, regardless of the host they

are running on. The key component to achieve this purpose

is the virtual switch, a software application that can isolate

and manage traffic among VMs on the same host, but also

forward data to remote switch instances through point-to-point

network tunnels. For example, Open Virtual Switch [12] is a

widely used solution for virtual networking. It can operate at

kernel level but also in combination with DPDK to process

traffic at a higher speed in the userspace. In the following, we

evaluate the performance of both these options to investigate

the cost of virtualization in ultra-low latency scenarios.

III. OUR FRAMEWORK FOR ULL END-TO-END

COMMUNICATIONS IN C2TC TSN ENVIRONMENTS

This section describes our virtualization proposal to enable

critical ULL applications based on TSN and running on top

of virtualized computing and networking resources.

Let us start with a description of the typical operation

context of this kind of application. Consider, for example, an

industrial application where a robotic appliance (subscriber)

periodically exchanges messages with a remote software com-

ponent (publisher), physically located in another factory. A

common requirement is that any of those messages should

take no more than a specified and very small amount of

time, e.g., 1ms, to reach the counterpart (end-to-end latency).

User-controlled Systems (0.4ms) Provider-controlled Systems (0.6ms)

Publisher

Application

5G Transmitter 5G Receiver

< 25 km

Provider

Infrastructure

< 25 km

5G Transmitter5G Receiver

Subscriber

Application

Fig. 2: Typical latency budget distribution in ULL applications.

KVM Host 1 KVM Host 2

vPTP vNIC

Service 1

VM1

vNIC vPTP

Service 2

VM2

vSwitch

NIC

Àptp

vNIC vPTP

Service 3

VM3

vSwitch

NIC

Àptp

TSN Switch

Fig. 3: Virtualization architecture for TSN-based networks.

Importantly, to meet this tight deadline, developers usually

have available only a small portion of the whole latency

budget, because much of the time should be allocated “ex-

ternally” to the provider in charge of wide-area transmission

propagation, as depicted in Fig. 2. Given that very often

this kind of industrial communication is periodic, the usual

solution to guarantee ULL is to reserve specific time slots

for each transmission, thus effectively making the network

deterministic, through the TSN protocol (see Section II).

Two reasons currently prevent the adoption of virtualization

solutions in this scenario and limit the use of TSN protocol

to bare-metal applications only. On the one hand, current vir-

tualization techniques do not provide virtual network devices

with a paravirtualized hardware clock, forcing the PTP-based

synchronization to use a software mode which does not allow

precise time synchronization. On the other hand, VMs require

virtual network devices that support multiple queues and are

efficient in their operations, because packet I/O and processing

operations between the host and the guest machines can be a

source of significant overhead that may jeopardize the effort

towards bounded end-to-end latency. In the remainder of this

section, we describe how we address those two critical aspects

for mission critical applications.

1) Virtualized TSN protocol: Our first contribution is the

design of a virtualization approach for TSN networks (Fig. 3).

To support ULL communications, the network frame scheduler

(IEEE 802.1Qbv) requires synchronization of the clocks of all

participants in the TSN network (Section II). To achieve the

same effect in VMs, we first use a PTP service to synchronize

all physical hosts; then, we provide the guest OS with a

paravirtualized clock that is transparently synchronized with

the host’s real-time clock by the hypervisor. This approach

effectively creates a virtualized PTP clock (vPTP) that each

VM can use as a reference to synchronize its system clock

through an NTP daemon.

Once the synchronization mechanism is in place, to effec-

tively implement the time-aware traffic windows defined by the

IEEE 802.1Qbv standard, the network interfaces must support

multiple broadcast queues so that each queue can be associated

with a different class of traffic. Within VMs, paravirtualized

devices emulate multi-queue transmission support across mul-

tiple virtqueues (section II). However, an important constraint

is that a virtual device with multiple queues must be associated

with a VM with two or more virtual CPUs, because, as

discussed earlier, each queue must have its associated thread.

This assumption turns out to be true even if we provide the

VM with a physical TSN-enabled network card through a

passthrough mechanism. In this last case we can choose to

synchronize the VM using directly the physical network card

and, if this is available, use offload mechanisms of traffic

scheduling to improve performance. Due to space constraints,

in this paper we will not focus on this case.

2) Network virtualization: A crucial aspect of virtual net-

working is how efficiently the host processes packets to

and from VMs: inefficiencies at this level may prevent our

approach to meet the stringent latency deadline, making the

guest-level time-sensitive scheduling ineffective. In our frame-

work we consider two network paravirtualization techniques,

introduced in section II, that differentiate the way packets

are processed (datapath operations): in the kernel of the host,

or directly in the userspace (Fig. 1). Running the datapath

in the kernel host is currently the most mature approach,

as it guarantees broad vendor support and also enables the

integration with other kernel-based tools for monitoring and

control (e.g., Conntrack, BPF). However, this option may lead

to poor network performance because of multiple data copies

and context switches. Conversely, kernel-bypassing techniques

offer the reverse: an excellent datapath performance, as they

avoid those sources of overhead by directly interacting with

the device driver, but a high CPU utilization (one or more

host cores dedicated to poll incoming messages) and little

integration with other kernel-based tools. In the context of our

work, both options allow supporting the TSN protocol within

a VM: developers will choose the most appropriate depending

on their actual performance and resource usage constraints.

Overall, our TSN virtualization proposal enables existing

TSN-based applications to seamlessly execute in virtual ma-

chines, thus taking advantage of the virtualization properties

without any modification to their source code. Depending on

the network virtualization approach, developers can choose to

optimize the TSN traffic of the VMs for the best network

performance or the lowest resource usage.

IV. EXPERIMENTAL EVALUATION

The goal of this section is to assess the performance of our

virtualization framework. To this end, we built a simple TSN

application consisting of one publisher and one subscriber,

each running in virtual machines that execute on two remote

hosts. We then set up a latency test where the publisher

sends UDP packets with a publishing cycle of 1ms: this

traffic pattern, not uncommon in real TSN applications, puts

the entire network pipeline under stress as it magnifies any

source of latency overhead. In particular, the test measures

two representative indicators for TSN communications, end-to-

end latency and jitter. The end-to-end latency of a message is

defined as the time interval between its scheduled transmission

time on the publisher and its actual reception time by the

subscriber. The jitter measures how much the actual arrival

time of each message differs from its expected arrival time:

more precisely, if ti is the arrival time of the i-th message, its

jitter is defined as Jitter(i) = ti − (ti−1 + T), where T is

the transmission period (in this paper, T = 1ms). The clocks

of the two VMs are synchronized according to the mechanism

presented in Section III.

To prove that this communication respects the ULL con-

straints, we set a threshold of 1ms as the maximum end-to-end

latency acceptable for each message. Recall that, according to

our previous discussion, in real production environments about

the 60% of this time will be needed by the wide-area network

provider to propagate data over 5G networks which are out of

the control of the end-system developers (Fig. 3). To take this

constraint into account, we adopt the end-system developer

perspective and design our testbed as a couple of physical

hosts directly interconnected by an Ethernet cable, assuming

negligible propagation time between them. Consequently, our

ULL deadline becomes 0.4ms of end-to-end latency between

the two TSN application components.

Under those assumptions, we run the latency test for typical

values of message payload size in TSN applications, i.e.,

16, 64, and 256 bytes. Furthermore, we repeated each test

using first a virtual switch with a kernel-based datapath, and

then with the kernel-bypassing approach. Each test was run

for 100 seconds. Finally, to assess the impact of the whole

virtualization framework on the communication properties, we

also run the tests directly on the bare-metal hosts.

A. Experimental Settings

Our testbed comprises of two UP Xtreme boards, each

equipped with 4 TSN NICs (Intel I210), Intel i3-8145UE 2/4

CPU, and 8GB RAM. The two hosts are directly intercon-

nected through an Ethernet cable. Each host runs Ubuntu 20.04

with Linux kernel 5.4.0. The two TSN application components

execute in VMs that run the same OS of the host and are

managed by QEMU/KVM (v4.2.1). Network virtualization is

operated through the virtio framework [11] and OVS [12]

(v2.13.3) in the two variants, with kernel-based datapath and

with the kernel-bypassing DPDK library [10] (v19.11.7).

B. Performance Results

Fig. 4 and Fig. 5 show the results of the latency tests. Let us

first consider the behavior of the virtualized applications. We

note that the option with the kernel-based datapath struggles

to meet our target deadline: in particular, Fig. 5 shows that the

average message latency, computed every 10 seconds on all

the messages exchanged since the previous measurement, is

just below the threshold. We observe the same if we consider

0

50

100

150

200

250

300

350

400

450

500

latency threshold

16 64 256

Message Size (Bytes)

L
at
en
cy

(µ
s)

Bare-Metal OVS-Kernel OVS-DPDK

(a) End-to-end latency

−100

−75

−50

−25

0

25

50

75

100

16 64 256

Message Size (Bytes)

J
it
te
r
(µ
s)

Bare-Metal OVS-Kernel OVS-DPDK

(b) End-to-end jitter

Fig. 4: End-to-end latency and jitter for different payload sizes and network virtualization techniques.

the median values reported in Fig. 4a for all the considered

payload sides, which means that about half of the measures

exceed the ULL constraints. Even worse, despite the use

of the TSN protocol to reduce the latency variability, jitter

remains relatively high (Fig. 4b). Instead, if we consider the

kernel-bypassing approach we observe the opposite behavior:

the average latency remains just above 100 µs during all the

experiments and the overall median value is around 120 µs for

all the message sizes. That median value is about 3.25 times

lower than the kernel-based alternative and it represents just

the 30% of the total available latency budget. Even better,

the jitter is really small for all the considered cases, which

means that this option can effectively preserve the determinism

provided by TSN. At this point, it would be interesting to

investigate whether this approach could preserve this behavior

even on a saturated network, as this is what developers expect

from a TSN application. Due to space constraints we do not

discuss this aspect in this paper, but our experiments show

that latency does not change significantly when the network

between the two VMs is saturated. Therefore, we conclude

that the kernel-bypassing network virtualization approach can

effectively allow virtualized TSN applications to respect of the

ULL constraints and to preserve a reduced latency variability.

The significant difference between the considered ap-

proaches depends on the way they handle the packets between

the external network and the virtio backend driver (see Fig. 1).

In the traditional kernel-based approach, packets forwarded

by the virtual switch dataplane should still traverse the Linux

kernel networking stack, which is notoriously slow (schedul-

ing, interrupts, data copies, context switches). Then, it is not

surprising that the network performance is much better, both in

terms of latency and jitter, if we bypass that stack completely.

Even though this speed comes at the price of dedicating 100%
of part of the CPU cores to handle packet processing (see

section II), and the overall complexity in network setup and

management increased, kernel-bypassing on the host can fully

satisfy our ULL constraints.

Finally, we compare the performance of our virtualized TSN

application against those of the same application running on

bare-metal hosts. For the 64 bytes case, the average latency

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

450

500

Test time (s)

L
at
en

cy
(µ
s)

Bare-Metal OVS-Kernel OVS-DPDK

Fig. 5: End-to-end latency averaged every 10 seconds, for 64

bytes payload size. The red line is the latency threshold.

of the bare-metal application is constantly around 175 µs and

the median is 190 µs, with a small jitter. These values are

about two times lower than the kernel-based virtualization

approach. This result is easy to explain: in the former each

UDP packet should traverse only the host kernel, whereas in

the latter packets are also managed by the guest kernel. On

the other hand, it may appear quite surprising that the kernel-

bypassing virtualization approach performs even better than

the bare-metal alternative: it is true that the host kernel is

bypassed, but packets still need to be handled by the guest

kernel. There are two main reasons for this particular behavior.

First, as we discussed, the kernel-bypassing technique is really

much more efficient than the operations in the host kernel, as

it avoids data copies. Second, the network operations in the

host kernel require a context switch to a kernel thread, whereas

the guest kernel executes in the same process that operates the

VM. Thus, on our testbed, once a single UDP packet with a

payload of 64 bytes is received by the host network device,

it takes 20 µs to be delivered to the application on the guest.

The same operation on the same packet takes 70 µs through the

host kernel. Therefore, the combination of those two factors

with a traffic pattern that magnifies any network overhead

explains this performance effect. In fact, our virtualized TSN

application appears even faster than the bare-metal equivalent

(36% lower latency, considering the median value for 64B

packets) and provides almost the same jitter. To obtain a more

appropriate comparison we would need to create a kernel-

bypassing TSN host application and confront it against our

current best option, but this is impossible as currently the TSN

scheduler is only available in the kernel.

In conclusion, these performance results demonstrate that

latency-critical TSN application can respect the ULL con-

straints even when executing in virtual machines. In particular,

kernel-based network virtualization solutions introduce a high

latency variability and struggle to meet the target deadline,

whereas kernel-bypassing techniques provide excellent results,

as they consume only 30% of the available latency budget.

V. RELATED WORK

Our TSN virtualization approach is based on several insights

from previous works. In [13], Xen and KVM are proposed

as suitable real-time hypervisors, but the work asses their

characteristics without taking into account a deterministic

network communication like one based on TSN. Another

recent work proposes a container-based architecture for the

flexible reconfiguration and redeployment of specific process

control systems, which however does not apply to virtual

machines [14]: they evaluate their proposal through a PTP-

synchronized testbed and show that low-latency QoS re-

quirements can be met, but they do not take advantage of

the deterministic scheduling techniques defined in TSN nor

do they focus on the impact of the network virtualization

technique on latency overall. Finally, the actual feasibility of

TSN virtualization is explored in [15], where three different

approaches to enhance hypervisors for time-triggered commu-

nication are briefly discussed. We adopt one of them, which

guarantees applications to run unmodified on an unmodified

hypervisor. However, their focus is more on the architectural

principles, which are only evaluated through simulations and

never validated on an actual testbed.

A crucial result of our paper is about fast packet pro-

cessing techniques, of which a detailed comparison is pre-

sented in [16]. This work shows the superior performance

of kernel-bypassing approaches over traditional techniques,

but the comparison is between containerized applications (not

VMs) with a very different traffic pattern compared to ours.

Finally, the use of kernel-bypassing techniques to meet the

constraints of ULL applications has mainly been explored

in the field of Software-Defined Networking (SDN), where

network functions executing in VMs should process packets

at high speed [7]. Our work is complementary to this effort

as it addresses the user-controlled infrastructure instead of the

provider-controlled portion.

VI. CONCLUSION AND FUTURE WORK

Resource virtualization is an enabling factor for the het-

erogeneous QoS requirements of Internet of Things appli-

cations. However, applications in mission-critical domains

have stringent ultra-low latency communication constraints.

To meet them, developers usually rely on standards like the

Time-Sensitive Networking (TSN) protocol combined with 5G

networks to ensure a deterministic, time-triggered network

behavior. For those applications, virtualization may introduce

a source of unpredictability that overwhelms all the flexibility

advantages. To address this concern, this paper introduced

a novel approach to execute TSN-based applications un-

der ultra-low latency (ULL) constraints in virtual machines:

our proposal combines an effective clock synchronization

approach for remote VMs with high-performance network

virtualization techniques. On a real testbed, we demonstrated

that this solution respects ULL constraints, thus effectively

enabling unmodified critical applications to benefit from the

virtualization advantages.

Future work includes surveying other kernel-bypassing

techniques, either software (e.g., XDP) or hardware (OVS

DPDK offload, RDMA, SmartNICs), to support high-

performance packet processing using less computing

resources. In the longer term, based on the considerations of

this paper, we envision that a userspace implementation of

the TSN scheduling may unleash the full potential of those

approaches.

Acknowledgements. The authors are grateful to the anonymous

reviewers for their constructive comments and suggestions.

REFERENCES

[1] L. Bittencourt, et al., “The internet of things, fog and cloud continuum:
Integration and challenges,” Internet of Things, vol. 3-4, pp. 134–155,
2018.

[2] G. Sutton, et al., “Enabling technologies for ultra-reliable and low
latency communications: From phy and mac layer perspectives,” IEEE

Communications Surveys Tutorials, vol. 21, no. 3, pp. 2488–2524, 2019.
[3] R. Ali, et al., “Urllc for 5g and beyond: Requirements, enabling

incumbent technologies and network intelligence,” IEEE Access, vol. 9,
pp. 67 064–67 095, 2021.

[4] A. Nasrallah, et al., “Ultra-low latency (ull) networks: The ieee tsn and
ietf detnet standards and related 5g ull research,” IEEE Communications

Surveys Tutorials, vol. 21, no. 1, pp. 88–145, 2019.
[5] J. Farkas, et al., “Time-sensitive networking standards,” IEEE Commu-

nications Standards Magazine, vol. 2, no. 2, pp. 20–21, 2018.
[6] P. Trakadas, et al., “A cost-efficient 5g non-public network architectural

approach: Key concepts and enablers, building blocks and potential use
cases,” Sensors, vol. 21, no. 16, 2021.

[7] Z. Xiang, et al., “Reducing latency in virtual machines: Enabling tactile
internet for human-machine co-working,” IEEE Journal on Selected

Areas in Communications, vol. 37, no. 5, pp. 1098–1116, 2019.
[8] PCI SIG. Single Root I/O Virtualization. [Online]. Available:

https://pcisig.com/specifications/iov/single root/
[9] Q. Cai, et al., “Understanding host network stack overheads,” in Pro-

ceedings of the 2021 ACM SIGCOMM 2021 Conference, ser. SIG-
COMM ’21, 2021, p. 65–77.

[10] Linux Foundation, “Data Plane Development Kit (DPDK),” 2015.
[Online]. Available: http://www.dpdk.org

[11] R. Russell, “virtio: Towards a de-facto standard for virtual i/o devices,”
SIGOPS Oper. Syst. Rev., vol. 42, no. 5, p. 95–103, Jul. 2008.

[12] B. Pfaff, et al., “The design and implementation of open vswitch,” in
12th USENIX Symposium on Networked Systems Design and Implemen-

tation (NSDI 15), Oakland, CA, May 2015, pp. 117–130.
[13] L. Abeni, et al., “Using Xen and KVM as real-time hypervisors,” Journal

of Systems Architecture, vol. 106, no. July 2019, 2020.
[14] M. Gundall, et al., “Introduction of an Architecture for Flexible Future

Process Control Systems as Enabler for Industry 4.0,” in IEEE Interna-

tional Conference on Emerging Technologies and Factory Automation,

ETFA, vol. 2020-Septe, 2020, pp. 1047–1050.
[15] L. Leonardi, et al., “Towards time-sensitive networking in heterogeneous

platforms with virtualization,” in 2020 25th IEEE International Confer-

ence on Emerging Technologies and Factory Automation (ETFA), vol. 1,
2020, pp. 1155–1158.

[16] G. Ara, et al., “Comparative evaluation of kernel bypass mechanisms
for high-performance inter-container communications,” in Proceedings

of the 10th International Conference on Cloud Computing and Services

Science - CLOSER,, INSTICC. SciTePress, 2020, pp. 44–55.

