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EMBEDDING NON-ARITHMETIC HYPERBOLIC MANIFOLDS

ALEXANDER KOLPAKOV, STEFANO RIOLO, AND LEONE SLAVICH

Abstract. This paper shows that many hyperbolic manifolds obtained by

glueing arithmetic pieces embed into higher-dimensional hyperbolic manifolds

as codimension-one totally geodesic submanifolds. As a consequence, many

Gromov–Pyatetski-Shapiro and Agol–Belolipetsky–Thomson non-arithmetic

manifolds embed geodesically. Moreover, we show that the number of com-

mensurability classes of hyperbolic manifolds with a representative of volume

≤ v that bounds geometrically is at least vCv, for v large enough.

1. Introduction

A complete finite-volume hyperbolic n-manifold M embeds geodesically if it

can be realised as a totally geodesic embedded submanifold of a complete finite-

volume hyperbolic (n+ 1)-manifold X.

There are two main tools known so far to prove that a given manifold as

above embeds: first, arithmetic techniques such as those used in [15, 16, 19,

23, 28], and, second, explicit geometric and combinatorial constructions using

Coxeter polytopes as in [17, 24, 25, 31, 32]. The manifolds which are shown

to embed geodesically in those papers are arithmetic. Some non-arithmetic 3-

manifolds which embed geodesically are produced in [20] by means of a right-

angled hyperbolic 4-polytope. In this paper we show that many non-arithmetic

manifolds of arbitrary dimension embed geodesically.

A piece P of a hyperbolic manifold M = Hn/Γ is a complete, connected hy-

perbolic n-manifold with totally geodesic boundary obtained by cutting M open

along a collection of pairwise disjoint, embedded, totally geodesic hypersurfaces

S1, . . . , Sm.

Let us fix a totally real number field k. Let Mj = Hn/Γj, j = 1, . . . , s (possibly

s = 1), be an arithmetic hyperbolic manifold of simplest type with quadratic

form fj defined over k (c.f. Section 2.1). Let Pj be a piece of Mj, and M be

a complete finite-volume hyperbolic manifold obtained by glueing the boundary

components of P1, . . . , Ps in pairs via isometries.

We prove the following:

Theorem 1.1. If each Γj is contained in O(fj, k), then M embeds geodesically. If

M is orientable, the manifold into which it embeds can be chosen to be orientable.

Theorem 1.1 is an extension of the recent result by Reid and two of the authors

[19], where s = 1 and M = M1 = P1.

A. K. and S. R. were supported by the SNSF project no. PP00P2-170560.
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2 ALEXANDER KOLPAKOV, STEFANO RIOLO, AND LEONE SLAVICH

Under the hypothesis above, we say that M admits a decomposition into

arithmetic pieces. If such a decomposition has more than one piece, the mani-

fold M is usually non-arithmetic. Indeed, Theorem 1.1 applies to many of the

Gromov–Piatetski-Shapiro non-arithmetic manifolds [16] (several explicit 2- and

3- dimensional examples can be constructed, c.f. [29] for a 4-dimensional one)

and their generalisations [15, 27, 28, 35], as well as to the ones introduced by

Agol [1] and Belolipetsky–Thomson [5] (c.f. also [26]).

In the latter case M is always “quasi-arithmetic” (c.f. [26, 33, 34] for this

notion), in contrast to the former case [33]. In both cases, there are infinitely

many commensurability classes of such manifolds [28, 33], and thus we have:

Corollary 1.2. There are infinitely many pairwise incommensurable non-arith-

metic hyperbolic manifolds of any dimension n ≥ 2 that embed geodesically. They

can be chosen to be closed or cusped, quasi-arithmetic or not, in any combination.

A non-trivial property for manifolds which embed geodesically is to bound

geometrically. A complete (orientable) hyperbolic manifold M of finite volume

bounds geometrically if it is isometric to ∂W , for a complete (orientable) hyper-

bolic manifold W of finite volume with totally geodesic boundary. If M bounds

geometrically a manifold W , it clearly embeds geodesically in the double of W .

Despite the fact that to bound geometrically is a very strong requirement

[18, 22], for any n ≥ 2 there is a constant c > 0 such that the number βn(v) of n-

dimensional geometric boundaries of volume ≤ v is at least vcv, for v sufficiently

big [11]. For n ≥ 4, the number µn(v) of all hyperbolic n-manifolds with volume

≤ v satisfies vcv ≤ µn(v) ≤ vdv for v large enough [10], so that βn and µn have the

same the growth rate (while usually µn(v) = ∞ for n = 2 or 3). The geometric

boundaries constructed in [11] are arithmetic. The same lower bound is provided

for the number of non-arithmetic 3-manifolds that bound geometrically, and for

the number of 4-manifolds with connected geodesic boundary by virtue of an

explicit construction [20].

Theorem 1.1 allows us to improve significantly such considerations on geomet-

rically bounding manifolds. Indeed, let Cn(v) denote the number of commensu-

rability classes of hyperbolic n-manifolds admitting a representative of volume

≤ v, and Bn(v) be the number of such classes represented by a geometric bound-

ary of volume ≤ v. Of course Bn(v) ≤ Cn(v) ≤ µn(v). As shown by Gelander

and Levit [15], for all n ≥ 2 we have Cn(v) ≥ vcv, for v large enough. Following

their arguments and applying Theorem 1.1, we prove:

Theorem 1.3. For every n ≥ 2, there exists c > 0 such that Bn(v) ≥ vcv for v

sufficiently large.

Thus, there is plenty of geometric boundaries in any dimension, and for n ≥ 4

the growth rate of their commensurability classes is roughly the same of that of

all hyperbolic n-manifolds. An analogous statement holds when restricting the
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count to either cusped or closed manifolds. In the latter case, it holds for with

the extra requirement that each M geometrically bounds a compact W .

The manifolds that we build in order to prove Theorem 1.3 are non-arithmetic.

Indeed, there is an upper bound of the form vb(log v)ε (and vb in the compact case)

for the growth rate of commensurabilty classes of arithmetic hyperbolic manifolds

of any dimension n ≥ 2 [2, 4]. In other words, “most” hyperbolic manifolds are

non-arithmetic.

On the proof. The proof of Theorem 1.1 can be rougly resumed as follows:

we embed the pieces into which the n-manifold M decomposes into (n + 1)-

dimensional pieces in such a way that the latter can be glued back together.

More precisely, let S1, . . . , Smj be the hypersurfaces of Mj that produce the

piece Pj. We show that each Mj embeds geodesically in an (n + 1)-manifold

Xj in such a way that Mj intersects in Xj orthogonally a finite collection of

pairwise disjoint embedded totally geodesic hypersurfaces Y1, . . . , Ymj of Xj with

Yi ∩Mj = Si (c.f. Figure 1, right).

By cutting Xj open along Y1, . . . , Ymj , we obtain an (n+ 1)-dimensional piece

Qj in which Pj is totally geodesically embedded, and intersects ∂Qj orthogonally

with Pj ∩ ∂Qj = ∂Pj.

By carefully performing this construction for each j = 1, . . . , s, we can en-

sure that the isometries between the boundary components of the original pieces

P1, . . . , Ps extend to isometries between the boundary components of Q1, . . . , Qs.

By glueing these pieces together according to the respective isometries, we pro-

duce a hyperbolic (n+1)-manifold X into which M embeds geodesically. In both

the present paper and in [19], the main difficulties arise when proving that the

manifolds considered embed without the need to pass to a finite index cover.

The two main tools which we employ are the embedding theorem from [19] (c.f.

Theorem 2.2) for arithmetic hyperbolic manifolds of simplest type, together with

the crucial fact that arithmetic hyperbolic lattices of simplest type are separable

on geometrically finite subgroups (c.f. Theorem 2.1), as follows from the work

[7] by Bergeron, Haglund and Wise. We point out that the separability Theorem

2.1 is used in [19] to prove the embedding Theorem 2.2.

In order to use the results of [7], we need to show that the fundamental group

of the “abstract glueing” Mj ∪S1 Y1 ∪S2 . . . ∪Smj Ymj , contains a geometrically

finite subgroup in which π1(Mj) injects, once we pass to finite-index subgroups

of some π1(Yk), k = 1, . . . ,mj. We provide a geometric proof of this fact, which

requires a more careful argument than the one given in [7, Lemma 7.1].

The counting of geometric boundaries in Theorem 1.3 basically follows by ap-

plying Theorem 1.1 to the arguments of Gelander and Levit: we glue pieces as

prescribed by some decorated graphs, whose number grows super-exponentially

in function of the bound on the number of vertices. The resulting manifolds em-

bed geodesically by Theorem 1.1. To conclude, we need to show that each of these

manifolds M can be chosen so to admit a fixed-point-free, orientation-reversing,
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isometric involution ι. Indeed, if M embeds geodesically in an orientable X, a

priori we cannot ensure that M disconnects X (so that M bounds geometrically).

If it is not the case, by cutting X along M and quotienting out one of the two

resulting boundary components by ι, we have that M bounds geometrically.

Structure of the paper. In Section 2 we briefly review arithmetic manifolds of

simplest type and state Theorems 2.1 and 2.2. In Section 3 we prove Proposition

3.1, which is the key ingredient for the proof of Theorems 1.1 and 1.3. The

latter are proved in Section 4. We conclude the paper by Section 5, with some

comments about manifolds that do not embed geodesically.

Acknowledgements. The authors are grateful to Jean Raimbault (Institut de

Mathématiques de Toulouse) for stimulating discussions on the topic. A.K. and

L.S. enjoyed the hospitality and atmosphere of the Oberwolfach Mini-Workshop

“Reflection Groups in Negative Curvature” (1915b) in April 2019, during which

some parts of this paper were discussed. L.S. would like to thank the Department

of Mathematics at the University of Neuchâtel for hospitality during his stay in

March 2019.

2. Preliminaries

With a slight abuse of notation, let Jn denote both the quadratic form −x2
0 +

x2
1 +· · ·+x2

n over Rn+1, as well as the associated diagonal matrix. We identify the

hyperbolic space Hn with the upper half-sheet {x ∈ Rn+1 : Jn(x) = −1, x0 > 0}
of the hyperboloid {x ∈ Rn+1 : Jn(x) = −1} and, by letting O(n, 1) = {A ∈
GL(n+1,R) : AtJnA = Jn}, also identify Isom(Hn) with the index two subgroup

O+(n, 1) < O(n, 1) preserving the upper half-sheet of the hyperboloid.

2.1. Arithmetic manifolds of simplest type. Let k be a totally real algebraic

number field, together with a fixed embedding into R which we refer to as the

identity embedding. Let Rk denote the ring of integers of k. Let V be an (n+1)-

dimensional vector space over k (by choosing a basis, we can assume V = kn+1),

equipped with a non-degenerate quadratic form f defined over k.

We say that the form f is admissible if it has signature (n, 1) at the identity

embedding, and signature (n+1, 0) at all remaining Galois embeddings of k into

R. Under the assumptions above, the form f is equivalent over R to the quadratic

form Jn, and for any non-identity Galois embedding σ : k → R, the quadratic

form fσ (obtained by applying σ to each coefficient of f) is equivalent over R
to x2

0 + · · · + x2
n. An arithmetic subgroup of O(f,R) is a subgroup Γ < O(f,R)

commensurable (in the wide sense) with O(f,Rk).

In order to define arithmetic subgroups of O+(n, 1) we notice that, given an

admissible quadratic form f over k of signature (n, 1), there exists T ∈ GL(n+

1,R) such that T−1O(f,R)T = O(n, 1). A subgroup Γ < O+(n, 1) is called

arithmetic of simplest type if Γ is commensurable with the image in O(n, 1) of an
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arithmetic subgroup of O(f,R) under the conjugation map above. A hyperbolic

manifold M = Hn/Γ is called arithmetic of simplest type if Γ is so.

2.2. Immersed hypersurfaces. Let us fix an admissible quadratic form f de-

fined over k. By interpreting f as a form of signature (n, 1) on Rn+1 = kn+1⊗R,

we identify the hyperbolic space Hn with the appropriate half-sheet of the hy-

perboloid {x ∈ Rn+1 : f(x) = −1}, and the group of isometries Isom(Hn) with

O+(f,R). A vector v in Rn+1 is said to be a k-vector if it lies in kn+1. Given a

k-vector v, we say that v is space-like if f(v) > 0. Given a space-like k-vector v,

let us denote by v⊥ the subspace {w ∈ Rn+1 : bf (w, v) = 0}, where bf denotes

the symmetric bilinear form associated with f . Let Hv denote the intersection

v⊥ ∩Hn, which is a totally geodesic subspace of Hn, isometric to Hn−1.

If Γ is an arithmetic subgroup of O(f,R), it is easy to see that the stabiliser

of Hv in Γ is itself an arithmetic group of simplest type acting on Hv. We

simply restrict the form f to v⊥ and notice that it is still admissible and defined

over the same field k. We call totally geodesic subspaces of Hn of the form

Hv, where v is a space-like k-vector, Γ-hyperplanes. If the group Γ is torsion-

free, so that M = Hn/Γ is a manifold, the image of Hv in M will be a totally

geodesic, properly immersed hypersurface with fundamental group isomorphic

to StabΓ(Hv). Vice versa, every properly immersed totally geodesic hypersurface

of M can be constructed in this way (c.f. [3, Corollary 5.11]).

2.3. Embedding and separability. In this section, we introduce two results

about arithmetic manifolds of simplest type that will be put to essential use later

on. The first one, due to Bergeron, Haglund and Wise [7], concerns separability

of geometrically finite subgroups in arithmetic lattices of simplest type.

Let Γ be a discrete subgroup of Isom(Hn). A finitely generated subgroup

G < Γ is separable in Γ if for every g ∈ ΓrG there exists a finite-index subgroup

Γ′ < Γ such that G < Γ′ and g 6∈ Γ′. The group Γ is geometrically finite extended

residually finite (“GFERF” for short) if any geometrically finite subgroup G < Γ

is separable in Γ.

Theorem 2.1. Hyperbolic arithmetic lattices of simplest type are GFERF.

Since all the groups we will deal with are finitely generated, we define a geo-

metrically finite group as one such that Vol(Nε(C(Γ))) <∞, where C(Γ) is the

convex core of Hn/Γ. By [9, p. 289], this condition is equivalent to the existence

of a (possibly non-connected) finite-sided fundamental polyhedron for the action

of Γ on Hn.

Now, let M = Hn/Γ be an arithmetic manifold of simplest type, and let H be

a Γ-hyperplane. As mentioned previously, there exists a π1-injective immersion

of the manifold S = H/StabΓ(H) into M . The stabiliser of H in Γ is easily

seen to be geometrically finite subgroup of Γ, and is therefore separable in Γ

by Theorem 2.1. This fact was already well known without need of Theorem
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2.1; c.f. [6, 21]. As a consequence, there exists a finite-index subgroup Γ′ < Γ

such that StabΓ(H) < Γ′, and such that S lifts to a totally geodesic embedded

hypersurface in M ′ = Hn/Γ′.

The construction above provides an abundance of examples of hyperbolic man-

ifolds of simplest type that embed geodesically. This naturally suggests to go

the opposite way: we start with an arithmetic n-manifold of simplest type, and

we want to realise it as an embedded totally geodesic hypersurface in an (n+ 1)-

arithmetic manifold of simplest type. The second result shows that this can often

be done [19].

Theorem 2.2. Let M = Hn/Γ be an arithmetic manifold of simplest type whose

form f is defined over a field k. If Γ < O(f, k) then, for any positive q ∈ Q,

the manifold M embeds geodesically in an arithmetic manifold X = Hn+1/Λ of

simplest type with form f ⊕ 〈q〉 and Λ < O(f ⊕ 〈q〉, k). If M is orientable, X

can be chosen to be orientable.

The technical point of the statement is that the fundamental group Γ of M is

required to be contained in the group O(f, k) of k-points of O(f,R). However,

this is not too restrictive. In even dimensions, all hyperbolic arithmetic lattices

are of simplest type, and lie in the group of k-points of the corresponding or-

thogonal group (c.f. [8] and [12, Lemma 4.2]). In odd dimensions, if Γ < O(f,R)

is arithmetic of simplest type, then the subgroup Γ(2) = 〈γ2 | γ ∈ Γ〉 has finite

index in Γ, and is contained in the group of k-points O(f, k). Therefore, at worst

a finite-index Abelian cover Hn/Γ(2) of Hn/Γ embeds geodesically.

3. Embedding relative to hypersurfaces

The goal of this section is to prove the following:

Proposition 3.1. Let M = Hn/Γ be an arithmetic manifold of simplest type

whose form f is defined over k, and let S = {S1, . . . , Sm} be a finite collection

of pairwise disjoint, properly embedded, totally geodesic hypersurfaces of M .

If Γ < O(f, k), then M embeds geodesically in a hyperbolic (n+ 1)-manifold X

containing m disjoint, properly embedded, totally geodesic hypersurfaces Y1, . . . ,

Ym that intersect M orthogonally, with Yi ∩M = Si for all i = 1, . . . ,m. If M

is orientable, X can be chosen to be orientable.

We prove Proposition 3.1 below in Section 3.1, assuming a technical lemma

whose proof is postponed to Section 3.4.

3.1. Proof of Proposition 3.1. By Theorem 2.2, M = Hn/Γ embeds geodesi-

cally inXΛ = Hn+1/Λ, for a torsion-free arithmetic lattice Λ < O(g, k) of simplest

type such that Γ < Λ, with g = f ⊕ 〈q〉 for a positive q ∈ Q.

We shall need more control on the embedding in the subsequent proof (c.f.

also Remark 3.2), and thus pass to a finite-index subgroup L < Λ such that

Γ < L, satisfying some additional properties described in the sequel.
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Figure 1. A schematic picture of XΛ (left) and of its finite cover X (right)

with their horizontal and vertical hypersurfaces. A piece P of M embeds

“nicely” in a piece Q of X. Each Y ′
i finitely covers Yi.

For any finite-index subgroup L < Λ such that Γ < L, let πL : Hn+1 →
Hn+1/L = XL denote the canonical projection. We call horizontal hyperplane

the L-hyperplane H of Hn+1 corresponding to the space-like vector (0, . . . , 0, 1)

in the quadratic space (Rn+2, g). The group Γ < L now acts on all Hn+1, pre-

serving the hyperplane H ∼= Hn without exchanging its two sides. We have

StabL(H) = Γ, and we call M = H/Γ ⊂ XL the horizontal hypersurface of XL.

For each hypersurface S ∈ S of M , we now choose a Γ-hyperplane Hv of

H for an appropriate space-like vector v in the quadratic space (Rn+1, f) such

that Hv projects to S ⊂ M . Notice, that such v is not unique, while any two

choices differ only by an element of Γ. Now interpret each v as a space-like

vector in the quadratic space (Rn+2, g). We call the corresponding L-hyperplane

V ⊂ Hn+1 a vertical hyperplane, and Y = πL(V ) a vertical hypersurface of

XL. Let Y = {Y1, . . . , Ym} be the collection of vertical hypersurfaces, with Yi
associated with Si for each i = 1, . . . ,m.

Each Y ∈ Y is the image of an immersion ι : V/StabL(V ) → XL, which is

not necessarily an embedding. Note also that the vertical hypersurfaces are not

necessarily pairwise disjoint. Moreover, since V ⊥ H and πL(V ∩ H) = S,

each Y intersects M orthogonally in the corresponding S, but there might be

other intersections in XL between Y and M , or between two distinct vertical

hypersurfaces (c.f. Figure 1, left).

Our goal is to produce a finite index subgroup L < Λ such that the following

properties hold (c.f. Figure 1, right):

(1) the group L contains Γ (so that M lifts to XL, as already mentioned);

(2) the vertical hypersurfaces of XL are all embedded and pairwise disjoint;

(3) the intersection Yi ∩M equals Si for all i = 1, . . . ,m.

Let GL denote the subgroup of L generated by the stabiliser Γ = StabL(H) of

the horizontal hyperplane, together with the stabilisers StabL(V1), . . ., StabL(Vm)

of the vertical hyperplanes.

Remark 3.2. Since Γ < L, the group GL is independent of the particular choice

of the vertical hyperplanes V1, . . . , Vm with πL(Vi) = Yi. Indeed, if πL(V ) =
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πL(V ′) ∈ Y then γ(V ) = V ′ for some γ ∈ Γ. Therefore StabL(V ) and StabL(V ′)

are conjugate by γ, and they generate the same subgroup together with Γ.

Consider now the abstract glueing

(1) A = M ∪S1 V1/StabL(V1) ∪S2 . . . ∪Sm Vm/StabL(Vm).

The following lemma (which reminds of the Klein–Maskit combination theorem,

c.f. also [7, Lemma 7.1]) will be proved in Section 3.4 by applying Poincaré’s

fundamental polyhedron theorem:

Lemma 3.3. There exists a finite-index subgroup L < Λ, with Γ < L, such that

GL is geometrically finite and A embeds π1-injectively into XL with fundamental

group GL.

Given that GL is geometrically finite, Theorem 2.1 implies that GL is separable

in L. A separability argument due to Scott [30] implies that there exists a finite

cover X → XL such that A embeds in X as follows: M and each Vi/StabL(Vi)

is a totally geodesic hypersurface of X, each Vi/StabL(Vi) intersects M along

Si orthogonally and any two distinct hypersurfaces of the form Vi/StabL(Vi),

i = 1, . . . ,m, are disjoint. Thus, the proof of Proposition 3.1 is complete up to

Lemma 3.3.

In order to prove Lemma 3.3, we will find L < Λ such that XL can be obtained

by pairing a finite number of thick convex cells in Hn+1 isometrically along their

facets, with each cell having a finite number of facets. This easily implies that

the group L admits a finite-sided fundamental polyhedron, and is therefore geo-

metrically finite. These cells will be obtained from the Voronöı decomposition of

XL with respect to an appropriate choice of a finite set of points in the horizontal

hypersurface M , as we now explain.

3.2. Relative Voronöı decompositions. Recall that, given a metric space

(X, d) and a collection X of points, the Voronöı decomposition of X with respect

to X is the decomposition of X into cells Cp = {x ∈ X | d(x, p) ≤ d(x, q) ∀q ∈
X , q 6= p}, p ∈X .

Let M = Hn/Γ be a hyperbolic manifold, πΓ : Hn → M the canonical projec-

tion, X ⊂M a finite set, and X̃ = π−1
Γ (X ). Consider the Voronöı decomposi-

tions of M and Hn with respect to X and X̃ , respectively. Each cell C ⊂ Hn of

the decomposition is a convex n-polytope which projects down to a cell πΓ(C) of

M . There is a unique x ∈ X̃ such that x ∈ C, called the centre of C. Similarly,

πΓ(x) is the centre of πΓ(C).

A finite-sided fundamental domain DM ⊂ Hn for the action of Γ can be con-

structed by pairing together a finite number of such cells of Hn isometrically

along some of their facets. This domain naturally satisfies the hypothesis of

Poincaré’s fundamental polyhedron theorem; c.f. [13] for a detailed exposition.



EMBEDDING NON-ARITHMETIC HYPERBOLIC MANIFOLDS 9

Figure 2. A non-admissible choice for a pair of points on a surface with

two disjoint geodesics (top), compared to an admissible choice (bottom). In

the non-admissible case, there are points of S2 which are closer to x ∈ S1

rather than y ∈ S2. In the admissible case, all points of S1 are closer to x and

all points of S2 are closer to y.

Let now S = {S1, . . . , Sm} be a finite collection of pairwise disjoint, prop-

erly embedded, totally geodesic hypersurfaces of M . We will be interested in

Voronöı decompositions that are “coherent” with respect to S .

Definition 3.4. Given M and S as above, we say that a finite set X ⊂ S1 ∪
. . . ∪ Sm is admissible with respect to S if in the Voronöı decomposition of M

associated with X each S ∈ S is covered only by the cells whose centres lie in

S.

In other words, we require the Voronöı decomposition of each S ∈ S with

respect to X ∩S to coincide with the induced decomposition obtained by inter-

secting the cells of the Voronöı decomposition of M with S.

A random choice of X may not be admissible, as shown in Figure 2.

Claim 3.5. Given M and S as above, with M of finite volume, there exists an

admissible set X .

Proof. First assume that M is compact, which implies that the hypersurfaces Si
are compact as well. For each i = 1, . . . ,m, let δi > 0 be the minimum distance

between Si and
⋃
j 6=i Sj. The set of open balls {Bx(δ/2) : x ∈ Si} is an open

covering of Si. By compactness, we can extract a finite cover, which gives a

finite set Xi = {x1, . . . , xmi} ⊂ Si whose δ/2-neighbourhoods cover Si. The set

X =
⋃
i Xi of points of M is obviously admissible with respect to S .

If M is non-compact, some δi might be zero. In this case, we change our

argument as follows: truncate the cusps ofM , so thatM decomposes as the union

of a compact set Mc and a finite number of cusps, each of the form E × [0,∞),

where E is a compact Euclidean manifold (the section of the corresponding cusp).

In this way, each Si is similarly decomposed as the union of a compact set Si∩Mc

and a finite number of cusps (possibly none).

For every i, apply the above argument of the compact case to each Euclidean

cusp section E of M which Si intersects, in order to obtain a finite set of points
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Figure 3. Partitioning the facets of a tessellation of H2 into two types,

with those of the first type coloured red. The intersection of the cells with the

lifts of all the Si’s is coloured blue.

in E × {0}. The key property here is that, in the Voronöı decomposition of E

with respect to S ∩ (E×{0}), each set of the form Si∩ (E×{0}) will be covered

by cells centred on Si. Let X ′
i be the set of all points in Si obtained in this way

over all cusps of M .

Now that we have dealt with the ends of M , we turn to the compact part

Mc. Apply once more the same argument of the compact case to each set of the

form Si ∩Mc in order to obtain another finite set of points X ′′
i in Si ∩Mc. Set

Xi = X ′
i ∪X ′′

i , and X =
⋃
i Xi. The latter is admissible with respect to S :

the ends of each Si are covered by the cells centred on X ′
i , while Si ∩Mc are

covered by the cells centred on X ′′
i . �

Given a complete hyperbolic manifold M with a collection S of hypersurfaces

and an admissible set X as above, it will be useful to partition the facets of the

cells of Hn into two types (c.f. Figure 3):

Definition 3.6. Let C be a cell of the Voronöı decomposition of Hn associated

with X , and F be a facet of C. We say that F is of the first type if it intersects

a lift S̃ of some S ∈ S . The facets of C that are not of the first type are called

facets of the second type.

The same terminology is adopted for the bounding hyperplanes of C, depend-

ing on the type of the facet they contain.

3.3. Nestedness of bounding hyperplanes. Let M = Hn/Γ be a hyperbolic

manifold, and consider the Voronöı decomposition of Hn associated with some

finite set X ⊂ M . Given two discrete subgroups G,G′ < Γ, let C,C ′ be two

cells centred at the same point x ∈ X̃ ⊂ Hn, and B,B′ two disjoint bounding

hyperplanes for any of C or C ′. There is a unique halfspaceH (resp. H′) bounded

by B (resp. B′) containing x.

We say that B and B′ are nested if either H ⊂ H′ or H′ ⊂ H. The halfspaces

H and H′ cannot be disjoint, since both of them contain x. Clearly, if both B
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Figure 4. The fundamental domains CH and CV for two translations along

two geodesics H and V in the plane. The bounding hyperplanes for CH are

drawn in red while those for CV are drawn in green. On the left, H and

V are not orthogonal, and the two fundamental domains are nested. The

intersection CH ∩ CV = CH is not a fundamental domain for G = 〈GH , GV 〉.
On the right, the H and V are orthogonal, so there is no nesting and CH ∩CV

is a fundamental domain for G.

and B′ bound the same cell C, they are not nested. Otherwise, it is not clear a

priori whether B and B′ are nested or not.

This is best explained by considering the simple case where H and V are two

non-orthogonal geodesics in H2 intersecting in a point x, as shown in Figure 4,

with each of the stabilisers GH and GV of H and V respectively generated by a

hyperbolic translation.

The endpoints of the geodesic V can lie outside of the Voronöı domain (centred

at x) for the translation H (c.f. Figure 4, left). If the translation length along

V is chosen large enough, the fundamental domain CH of GH ends up being

contained in the fundamental domain CV of GV . In this situation some of the

bounding hyperplanes for the two domains are nested.

If V and H are orthogonal (c.f. Figure 4, right), no matter how short the

translation along H is, if the translation length along V is chosen large enough

the bounding hyperplanes of CH and CV are disjoint, and CH ∩ CV is indeed a

fundamental domain for the group G generated by the two translations (a free

group on two generators).

If we allow arbitrarily large translation length along H, then nesting phenom-

ena can be avoided even if V and H are not orthogonal, simply because the

endpoints of the H and V are distinct. However, in what follow we will rather

forego taking subgroups of GH .

3.4. Proof of Lemma 3.3. Let us fix R > 0. Since Γ is separable in Λ, there

exists a finite-index subgroup LR < Λ containing Γ such that every hyperbolic

element g ∈ LR r Γ has translation length greater than R.

If XΛ and XLR are non compact, fix also an arbitrary truncation of the cusps

of XLR . We can furthermore require that any parabolic element in g ∈ LR r Γ

has Euclidean translation length (relative to the chosen cusp truncation) greater

than R.
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Let us fix a set X of points in the horizontal hypersurface M of XLR which

is admissible with respect to S = {S1, . . . , Sm}. Consider the Voronöı decom-

position of the horizontal hyperplane H ⊂ Hn+1 into n-dimensional convex cells,

which is clearly preserved by the action of StabLR(H). A (possibly disconnected)

fundamental domain DM ⊂ H for the action of Γ on H can be obtained by con-

sidering a set of cells of the Voronöı decomposition of H.

Now, we extend orthogonally each bounding hyperplane of the decomposition

of H to a hyperplane in Hn+1, to get a decomposition of Hn+1 into (n + 1)-

dimensional convex cells. The fundamental domain DM ⊂ H extends to a finite-

sided fundamental domain DM ⊂ Hn+1 for the action of StabLR(H) on Hn+1.

The facets of DM can be partitioned into two types, which they inherit from

those of DM .

The discussion above applies similarly to the vertical hypersurfaces as follows.

Let Y ∈ Y correspond to S ∈ S . The set X ∩S is admissible for Y with respect

to {S}. Consider the associated Voronöı decomposition of a vertical hyperplane

V associated with Y . We can again build a fundamental domain DY for the

action of StabLR(V ) on V consisting of cells of the Voronöı decomposition of

V , and extend it to a fundamental domain DY for the action of StabLR(V ) on

Hn+1. We do this in the following way: for each cell of DM centred at a point

x ∈ S̃, we require the cell of the Voronöı decomposition of V centred at x to

belong to DY . By doing so, we obtain a one-to-one correspondence between the

cells of the domain DY and the cells of DM whose centres project down to S.

Two corresponding cells C ⊂ DM and C ′ ⊂ DY are centred at the same point

x ∈ Hn+1.

Notice that all bounding hyperplanes of the first type for the cells of DY are

also bounding hyperplanes of the first type for the cells of DM . The pairing

maps between such facets are the same both when viewed as facets of DM and

of DY . The finite set of convex cells obtained by considering only the halfspaces

bounded by the hyperplanes of the first type is a fundamental domain for the

action of the group StabLR(S̃) on Hn+1. This group is clearly a subgroup of both

StabLR(H) and StabLR(V ).

This fact is the whole purpose of our careful choice of the admissible set of

points X : the Voronöı decompositions of M and Y agree on the corresponding

S. As a consequence the fundamental domains for the associated groups of

isometries of Hn+1 share the respective facets, and the pairing maps on these

facets agree.

Since the vertical hyperplanes are pairwise disjoint and all orthogonal to the

horizontal hyperplane H, there exists R0 > 0 and a lattice L = LR0 such that

the following holds: if a bounding hyperplane B′ of a cell C ′ of DY intersects a

bounding hyperplane B of a cell C of DM , then B′ is itself of the first type and is

therefore a bounding hyperplane of C. The bounding hyperplanes of the second

type for the cells of DY are disjoint from those of the cells of DM . Moreover, the
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Figure 5. A component of the boundary at infinity of a cell C of DM

for two different values of R (increasing from left to right). Its facets of the

first type are drawn in red. Its intersection with ∂∞V is drawn in blue. The

boundary at infinity of the supporting hyperplanes of the second type of a cell

C′ of DY with the same centre of C are drawn in green. As R increases, the

green spheres became smaller and smaller, and their number increases. They

eventually become disjoint from the facets of ∂∞C of the second type.

bounding hyperplanes of the first type for the cells of DYi and DYj are disjoint

whenever i 6= j.

Let us prove the latter fact. Given a subset F of Hn, we denote by ∂∞F

its boundary at infinity, that is the intersection of the closure of F in Hn
=

Hn ∪ ∂∞Hn with ∂∞Hn. Consider a cell C for the domain DM , obtained by

extending orthogonally an n-dimensional cell C of H. Then ∂∞C consists of two

conformal copies C1, C2 of the cell C. The closest point projection Cj → C is

indeed conformal. The image in Cj of C ∩ S̃ lies on ∂∞V , for some V which

projects down to the vertical hypersurface Y associated with S. Because of this,

we see that ∂∞V is disjoint from the boundary at infinity of the facets of the

second type of C. This property holds true only because of orthogonality between

the hyperplanes H and V .

The boundary at infinity of each bounding hyperplane of a cell of the domain

DY is a conformal (n − 1)-sphere in ∂∞Hn+1 centred on ∂∞V . As R → ∞,

these spheres remain the same if they correspond to facets of the first type,

while become arbitrarily small if they correspond to facets of the second type.

At the same time, the cells of the domain DM don’t change. When the spheres

become small enough, the facets of the second type of DY become disjoint from

those of DM , as shown in Figure 5. Also, since V1, . . . , Vm are all orthogonal to

H, then ∂∞V1, . . . , ∂∞Vm can touch only in ∂∞H. Therefore, also the boundary

hyperplanes of the first type for DYi and DYj , i 6= j, eventually become disjoint.

This shows that, up to an appropriate choice of L = LR0 with sufficiently

large R0, the only intersections between the bounding hyperplanes for any of

the domains DM or DYi will either happen between the bounding hyperplanes

belonging to cells in a single fundamental domain, or between the bounding

hyperplanes of the first type belonging to a cell of DM and a cell in one of the

domains DYi (and in this case the bounding hyperplanes will coincide).
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Now we prove that since the hyperplane H is orthogonal to each Vi, there is

no nesting between the bounding hyperplanes for a cell C of DM and a cell C ′
of DYi with the same centre. Indeed, given a bounding hyperplane B of C ′, the

centre y of the conformal sphere ∂∞B belongs to ∂∞Vi, and projects down to a

point in the interior of C under the closest point projection. More importantly,

y is contained in one of the two components of ∂∞C, and this guarantees that B

and any of the bounding hyperplanes of C are not nested.

Finally, consider the domain

D = DM ∩ DY1 ∩ . . . ∩ DYm ⊂ Hn+1.

Each cell of D is the intersection of a cell C ⊂ DM with a cell C ′ ⊂ DYi , with C and

C ′ centred at a common point x ∈ Hn+1. The domain D satisfies the hypothesis of

Poincaré’s fundamental polyhedron theorem, since each of the domains DM and

DYi individually does, and there are no intersections between the hyperplanes

of the second type. Since disjoint bounding hyperplanes for DM and DYi are

not nested, all the pairing maps for the facets of these domains (which generate

Γ = StabL(H) and StabL(Vi)) survive as pairing maps between the facets of D.

The domain D is therefore a fundamental domain for GL, which is isomorphic

to the amalgamated free product

π1(M) ∗π1(S1) π1(Y1) ∗π1(S2) . . . ∗π1(Sm) π1(Ym).

Since D is finite-sided, GL is geometrically finite, and the proof of Lemma 3.3

is complete.

4. Proofs of the main theorems

We are ready to prove Theorems 1.1 and 1.3 opening this paper. As the main

result of the paper (Theorem 1.1) is established, it will follow that there are

“super-exponentially many” geometrically bounding manifolds and their com-

mensurability classes with respect to volume (Theorem 1.3).

4.1. Proof of Theorem 1.1 (embedding hyperbolic glueings). Let M =

P1 ∪ . . . ∪ Ps satisfy the hypotheses of Theorem 1.1. Each piece Pj is obtained

from some hyperbolic n-manifold Mj of simplest type by cutting it open along

a finite collection Sj of pairwise disjoint, totally geodesic hypersurfaces. Each

manifold Mj is arithmetic of simplest type with associated quadratic form fj
defined over k.

By Proposition 3.1, the manifold Mj embeds geodesically in a hyperbolic (n+

1)-manifold Xj = Hn+1/Lj which contains a finite collection Yj of properly

embedded, pairwise disjoint totally geodesic “vertical” hypersurfaces, with each

Y ∈ Yj intersecting Mj orthogonally in the corresponding S ∈ Sj. We choose

Xj to be arithmetic of simplest type with associated form gj = fj ⊕〈q〉 for some

positive q ∈ Q which does not depend on j.
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By cutting each Xj open along the vertical hypersurfaces, we obtain some

(n+1)-dimensional pieces Q1, . . . , Qs so that Pj is a totally geodesic hypersurface

of Qj orthogonal to ∂Qj, with Pj ∩∂Qj = ∂Pj. Each boundary component of Qj

is either isometric to a vertical hypersurface Y , if Y is two-sided in Xj, or it is an

index two cover of Y , otherwise. Without loss of generality, we can assume that

all vertical hypersurfaces are two-sided. Recall the “abstract glueing” A from (1)

in Section 3.1. We can replace the fundamental groups of one-sided Yj’s by the

respective index-two subgroups, and embed the new amalgamated product in a

finite cover of Xj so that the vertical hypersurfaces be two-sided.

Our goal is to show that it is possible to choose Xj so that the pairing maps be-

tween the boundary components of P1, . . . , Ps producing M extend to isometries

between the corresponding boundary components of Q1, . . . , Qs. In this way, by

glueing these new pieces back together we will obtain an (n+1)-manifold X into

which M embeds geodesically.

Note that the boundary components of Q1, . . . , Qs are pairwise commensu-

rable: in other words, they have a common finite cover. This holds since we

extend all the quadratic forms fj using the same rational number q. Indeed,

the forms associated with the glueing locus of the various blocks Pj are pair-

wise projectively equivalent, and therefore so are their corresponding extensions.

The latter define the commensurability classes of the connected components of

∂Q1, . . . , ∂Qs.

Now we can ensure that the respective boundary components of Q1, . . . , Qs

are pairwise isometric. In order to do this, introduce a new abstract glueing

A′j obtained by attaching to Mj along each S ∈ Sj the respective V/∆, where

∆ corresponds to a common finite index cover for the two appropriate bound-

ary components of Qj and Ql. The fundamental group of A′j is geometrically

finite and therefore separable in Lj. So A′j embeds in a finite cover X ′j of Xj

corresponding to some finite index subgroup L′j < Lj.

By cutting each X ′j open along its vertical hypersurfaces, we obtain a new

collection of pieces Q′j such that the pairing maps between P1, . . . , Ps extend to

the pairing maps for Q′1, . . . , Q
′
s, as each Mj lifts to the respective Q′j. By glueing

these new blocks together with the found pairing map, and then doubling the

resulting manifold with boundary (if such boundary is non-empty), we finally

produce an (n + 1)-dimensional hyperbolic manifold X into which M embeds

geodesically.

Assume now that M is orientable. We still need some work to ensure that

the manifold X can be chosen to be orientable as well. Note that each piece

Pj is orientable. Let C ⊂ ∂Pj be a boundary component of Pj, and D ⊂ ∂Qj

the corresponding boundary component of Qj, which contains C as a totally

geodesic submanifold. The piece Qj (and so D) can be chosen to be orientable.

We furthermore require D to admit an orientation reversing isometry which acts
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by fixing C pointwise and exchanging its two sides. This can always be achieved

up to considering an appropriate finite-index cover, as we now show.

Let the vertical hypersurface Y ∈ Yj of Xj correspond to D ⊂ ∂Qj, and

S ∈ Sj correspond to C ⊂ ∂D. The hypersurfaces Mj and Y lift to two

orthogonal hyperplanes H and V , respectively, in the universal cover Hn+1 of

Xj, with H∩V corresponding to the universal cover of S. Let g be the reflection

in H, and let ∆ < Isom(Hn+1) denote the fundamental group of Y , which acts

on Hn+1 by preserving V . Clearly g fixes H ∩ V pointwise and preserves V .

We now consider the group ∆′ = ∆ ∩ g∆g−1. Since the hyperplane H is a

k-hyperplane, the reflection g lies in O(fj, k) and hence it commensurates ∆.

Therefore the group ∆′ has finite index in ∆ and we denote by Y ′ the associated

finite-index cover of Y . Since g fixes V ∩ H pointwise, it commutes with all

elements of π1(S) and therefore S lifts to Y ′. Moreover, g normalises ∆′ and this

means that g corresponds to an orientation-reversing isometric involution of Y ′

which fixes the hypersurface S pointwise, while exchanging its two sides.

Thus, in the abstract glueing A′j we can require the vertical manifolds V/∆ to

admit such an orientation-reversing involution. We can therefore freely prescribe

the orientation class of the glueing maps between the boundary components of

the pieces Q1, . . . , Qs, without changing the manifold M which we wish to embed.

In particular, we can make the resulting manifold X orientable, containing M

as a two-sided hypersurface, and the proof of Theorem 1.1 is complete.

Remark 4.1. Our embedding procedure for non-arithmetic manifolds clearly pre-

serves their type: Gromov–Pyatetski-Shapiro manifolds embed into Gromov–

Pyatetski-Shapiro manifolds, and similarly for Agol–Belolipetsky–Thomson man-

ifolds.

4.2. Proof of Theorem 1.3 (counting geometric boundaries). In this sec-

tion we follow the idea by Gelander and Levit from [15].

Let k be either Q or Q(
√

2), depending on whether we want to consider cusped

or closed manifolds, respectively. Consider the quadratic form

fn(x) =

{
−2x2

0 + x2
1 + . . .+ x2

n if k = Q ,

−
√

2x2
0 + x2

1 + . . .+ x2
n if k = Q(

√
2).

Then, let f a± , fb±
, fu and fv be six non-equivalent admissible quadratic forms

fx(x) = fn−1(x) + px · x2
n,

over k, where px ∈ Rk is a prime and x is any of the six symbols a±, b±, u, v.

There are infinitely many choices for such a collection of quadratic forms [15,

Lemma 4.11].

Now, let S ′ = Hn−1/∆ be a non-orientable arithmetic manifold of simplest

type with associated form fn−1 and ∆ ⊂ O(fn−1, k). Notice that such a manifold

S ′ certainly exists. Indeed, the lattice O(fn−1, Rk) clearly contains orientation-

reversing elements, such as the reflection in the orthogonal hyperplane to any
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space-like vector in the standard basis of Rn+1. By [23, Theorem 1.2], O(fn−1, Rk)

has a torsion-free subgroup Γ′ of finite index containing an orientation-reversing

element. Take now S to be the orientation cover of the manifold S ′ = Hn−1/Γ′,

and ϕ an involution of S such that S ′ ∼= S/〈ϕ〉.

Proposition 4.2. For each symbol x ∈ {a±, b±, u, v}, there exists an arith-

metic manifold Mx = Hn/Γx of simplest type with associated form fx and Γx ⊂
O(fx, k), from which one can carve a piece Px whose boundary consists of 2 (resp.

4) copies of S if x ∈ {a±, b±} (resp. x ∈ {v, u}). Moreover, the pieces of the

form Pv can be chosen to be non-orientable.

Proof. By Theorem 2.2, for every x we can embed S geodesically into some

orientable arithmetic M ′
x = Hn/Γ′x of simplest type with Γ′x ⊂ O(fx, k). We now

apply [15, Proposition 4.3] in order to build orientable manifolds Mx such that:

(1) if x ∈ {a±, b±}, Mx contains a non-disconnecting copy of S;

(2) the manifold Mu contains two disjoint copies of S such that their union

does not disconnect Mu;

(3) the manifold Mv contains three disjoint copies of S such that their union

does not disconnect Mv.

In order to build the pieces of the form Px for x ∈ {a±, b±}, we simply cut

open Mx along S. The resulting manifold has two totally geodesic boundary

components. Similarly, in order to build Pu we cut Mu along the two copies of

S, thus obtaining a piece with four boundary components.

Finally, we build Pv in two steps. We first cut Mv open along the three copies

of S in order to obtain a manifold with six totally geodesic boundary components,

each isometric to S. We choose two boundary components which are the result of

cutting along a single copy of S in Mv and identify them isometrically using the

orientation-reversing isometry ϕ of S. By doing so, we obtain a non-orientable

piece Pv with four boundary components, each isometric to S. �

Now, for every finite 4-regular rooted simple graph with edges labelled by a±

and b±, we put Pv at the root, Pu at all the other vertices, and Px at each

x-labelled edge, whenever x ∈ {a±, b±}.
After pairing isometrically the boundary components of the various pieces as

prescribed by the graph (any identification of the boundary components of the

pieces with the edges of the graph and any pairing isometry works), we get a

hyperbolic manifold M ′ with empty boundary. Such manifold is non-orientable

because the piece Pv is non-orientable.

As follows from the proof of [15, Proposition 3.3], for m ∈ Z large enough

there are at least mcm such graph with at most m vertices, so the number of

manifolds M ′ of volume ≤ v produced in this way is at least vcv for v � 0.

These manifolds are pairwise incommensurable [15, Section 4] and therefore so

are their orientable double covers.
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For any manifold M ′ constructed above, we apply Theorem 1.1 to its orien-

tation cover M , and embed it geodesically into some orientable X. Since M

has an orientation-reversing fixed-point-free isometric involution, it also bounds

geometrically. The proof of Theorem 1.3 is complete.

5. Manifolds that do not embed geodesically

We conclude the paper with some additional observations on hyperbolic man-

ifolds that do not embed geodesically.

It can be easily shown that not all hyperbolic surfaces embed geodesically.

Indeed, consider a finite-area surface S = H2/ΓS that embeds totally geodesically

into a finite-volume 3-manifold M = H3/ΓM . Up to conjugation, we can suppose

that ΓS < ΓM , and thus for the trace fields we have KS = Q[tr γ : γ ∈ ΓS] ⊆
Q[tr γ : γ ∈ ΓM ] = KM .

As a consequence of the Mostow–Prasad rigidity, the trace field KM has to be

an algebraic number field. However, it is not hard to produce a surface S with

KS being transcendental. Nevertheless, as shown in [14], those surfaces that

embed geodesically form a countable dense subset of the moduli space.

Except for the above, it is unknown if there exists an n-dimensional (n ≥ 3)

closed or cusped hyperbolic manifold that does not embed geodesically. Notice

that there are hyperbolic manifolds which embed geodesically but do not bound

geometrically. As suggested by Alan Reid to the authors, the Seifert–Weber

dodecahedral space geodesically embeds by Theorem 2.2, but has non-integral η-

invariant and therefore does not bound geometrically by [22]. In particular, Long

and Reid’s obstruction for bounding geometrically does not give any obstruction

on embedding geodesically. See [18] for similar examples of cusped 3- and 4-

manifolds.

It would be also interesting to know if there exists a hyperbolic manifold

without finite covers that embed geodesically or, conversely, if all hyperbolic

manifolds do embed virtually.

In addition to the above list, at the moment we do not know if one of β3(v)

or B3(v) is finite for v sufficiently large (c.f. [20, Question 1.6]). Recall that

β3(v) denotes the number of 3-dimensional hyperbolic geometric boundaries of

volume ≤ v up to isometry, and B3(v) is the number of commensurability classes

of 3-dimensional hyperbolic geometric boundaries of volume ≤ v.
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(N.S.) 72 (114) (1967), 471–488; correction, ibid. 73 (115) (1967), 303.
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Dipartimento di Matematica, Università di Bologna, Piazza Porta San Donato

5, I-40126 (Italy)

Email address: stefanoadotbriolocatduniboedotfit

Dipartimento di Matematica “F. Casorati”, Università di Pavia, Via Ferrata
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