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CLASSIFICATION OF FINITE IRREDUCIBLE
CONFORMAL MODULES FOR K ′

4

LUCIA BAGNOLI AND FABRIZIO CASELLI

Abstract. We classify the finite irreducible modules over the conformal superalgebraK ′

4
by

their correspondence with finite conformal modules over the associated annihilation superal-
gebra A(K ′

4). This is achieved by a complete classification of singular vectors in generalized
Verma modules for A(K ′

4
). We also show that morphisms between generalized Verma mod-

ules can be arranged in infinitely many bilateral complexes.

1. Introduction

Finite simple conformal superalgebras were completely classified in [13] and consist of the
following list: Cur g, where g is a simple finite−dimensional Lie superalgebra, Wn(n ≥ 0),
Sn,b, S̃n (n ≥ 2, b ∈ C), Kn(n ≥ 0, n 6= 4), K ′

4, CK6. The finite irreducible modules over
the conformal superalgebras Cur g, K0, K1 were studied in [8]. Boyallian, Kac, Liberati and
Rudakov classified all finite irreducible modules over the conformal superalgebras of type W
and S in [3]; Boyallian, Kac and Liberati classified all finite irreducible modules over the
conformal superalgebras of type Kn in [1]. The classification of all finite irreducible modules
over the conformal superalgebras of type Kn, for n ≤ 4, had been previously studied also
by Cheng and Lam in [11]. Finally, a classification of all finite irreducible modules over the
conformal superalgebra CK6 was obtained in [2] and [23] with different approaches. For n = 4
the conformal superalgebra K4 is not simple and its the derived subalgebra K ′

4 is instead a
simple conformal superalgebra.

A possible strategy for studying modules over conformal superalgebras is the following.
If R is a conformal superalgebra one considers the Lie superalgebra g = A(R), called the
annihilation superalgebra of R. The annihilation superalgebra has a fundamental role since
the study of the finite modules over R is equivalent to the study of finite conformal modules
over g. Furthermore, if R is Z-graded then g is also Z-graded and one can reduce the problem
to finite Verma modules of g, i.e. induced modules Ind(F ) = U(g) ⊗U(g≥0) F , where F is a
finite dimensional g≥0-module [18, 11].

This is the case for the simple conformal superalgebra K ′
4, and its annihilation superalgebra

A(K ′
4). The main goal of this paper is therefore to classify irreducible conformal modules

for K ′
4 through the classification of all degenerate (i.e., non irreducible) finite Verma modules

for A(K ′
4); in turn, this is equivalent to the classification of (highest weight) singular vectors

in these modules, i.e. vectors which are annihilated by A(K ′
4)>0. The final result is much

richer than in the ”standard” conformal contact superalgebras Kn where, up to duality, there
is only one family of singular vectors, all of degree 1: we show that for A(K ′

4) there are four

2010 Mathematics Subject Classification. 08A05, 17B05 (primary), 17B65, 17B70 (secondary).
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ules, singular vectors.
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2 LUCIA BAGNOLI AND FABRIZIO CASELLI

families of singular vectors of degree 1, four families of singular vectors of degree 2 and two
”exceptional” singular vectors of degree 3.

Since the classification of singular vectors in finite Verma modules is equivalent to the
classification of morphisms between such modules, we show that these morphisms can be
arranged in an infinite number of bilateral complexes in a picture (see Figure 1) which is
similar to those obtained for the exceptional linearly compact Lie superalgebras E(1, 6),
E(3, 6), E(3, 8) and E(5, 10) (see [17, 18, 19, 20, 4, 6]). In a subsequent publication we
will compute the homology of these complexes and provide an explicit construction of all
irreducible quotients.

The paper is organized as follows. In section 2 we collect all preliminaries on conformal
superalgebras which are needed, in section 3 we describe the conformal superalgebra K ′

4 and
in section 4 its annihilation superalgebra A(K ′

4). In section 5 we show explicitly how the
conformal superalgebra K ′

4 acts on a finite Verma module. In section 6 we deduce the crucial
conditions that must be satisfied by a singular vector and we show that singular vectors have
degree at most 3. Finally, section 7, 8, 9 contain the classification of singular vectors of degree
2, 3, 1 respectively.

2. Preliminaries on conformal superalgebras

In this section we introduce some notions on conformal superalgebras. For further details
see [15, Chapter 2], [12], [3], [1].
Let g be a Lie superalgebra; a formal distribution with coefficients in g, or equivalently a
g−valued formal distribution, in the indeterminate z is an expression of the following form:

a(z) =
∑

n∈Z

anz
n,

with an ∈ g for every n ∈ Z. We denote the vector space of formal distributions with
coefficients in g in the indeterminate z by g[[z, z−1]]. We denote by Res(a(z)) = a−1 the
coefficient of z−1 of a(z). The vector space g[[z, z−1]] has a natural structure of C[∂z]−module.
We define for all a(z) ∈ g[[z, z−1]] its derivative:

∂za(z) =
∑

n∈Z

nanz
n−1.

A formal distribution with coefficients in g in the indeterminates z and w is an expression of
the following form:

a(z, w) =
∑

m,n∈Z

am,nz
mwn,

with am,n ∈ g for every m,n ∈ Z. We denote the vector space of formal distributions
with coefficients in g in the indeterminates z and w by g[[z, z−1, w, w−1]]. Given two formal
distributions a(z) ∈ g[[z, z−1]] and b(w) ∈ g[[w,w−1]], we define the commutator [a(z), b(w)]:

[a(z), b(w)] =

[∑

n∈Z

anz
n,
∑

m∈Z

bmw
m

]
=

∑

m,n∈Z

[an, bm]z
nwm.

Definition 2.1. Two formal distributions a(z), b(z) ∈ g[[z, z−1]] are called local if

(z − w)N [a(z), b(w)] = 0 for N ≫ 0.
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3

We call δ−function the following formal distribution in the indeterminates z and w:

δ(z − w) =
∑

m,n:m+n=−1

zmwn.

See Corollary 2.2 in [15] for the following equivalent condition of locality.

Proposition 2.2. Two formal distributions a(z), b(z) ∈ g[[z, z−1]] are local if and only if
[a(z), b(w)] can be expressed as a finite sum of the form:

[a(z), b(w)] =
∑

j

(a(w)(j)b(w))
∂jw
j!
δ(z − w),

where the coefficients (a(w)(j)b(w)) are formal distributions in the indeterminate w. More-
over, if a(z) and b(z) are local then necessarily (a(w)(j)b(w)) = Resz(z − w)j[a(z), b(w)].

Definition 2.3 (Formal Distribution Superalgebra). Let g be a Lie superalgebra and F a
family of mutually local g−valued formal distributions in the indeterminate z. The pair
(g,F) is called a formal distribution superalgebra if the coefficients of all formal distributions
in F span g.

We define the λ−bracket between two local formal distributions a(z), b(z) ∈ g[[z, z−1]] as
the generating series of the (a(z)(j)b(z))’s:

[a(z)λb(z)] =
∑

j≥0

λj

j!
(a(z)(j)b(z)). (1)

The λ-bracket of formal distributions satisfies some algebraic properties which are the mo-
tivation of the following definition. If V is any Z2-graded vector space we denote by p its
parity function. As customary, whenever we write p(v) for some v ∈ V we always implicitly
assume that v is a homogeneous element of V .

Definition 2.4 (Conformal superalgebra). A conformal superalgebra R is a left Z2−graded
C[∂]−module endowed with a C−linear map, called λ−bracket, R⊗R→ C[λ]⊗R, a⊗ b 7→
[aλb], that satisfies the following properties for all a, b, c ∈ R:

(i) p(∂a) = p(a);
(ii) [∂aλb] = −λ[aλb], [aλ∂b] = (λ+ ∂)[aλb];
(iii) [aλb] = −(−1)p(a)p(b)[b−λ−∂a];
(iv) [aλ[bµc]] = [[aλb]λ+µc] + (−1)p(a)p(b)[bµ[aλc]].

We refer to properties (ii), (iii), (iv) in Definition 2.4 as the conformal linearity, conformal
symmetry and conformal Jacobi identity respectively. We call n−products the coefficients
(a(n)b) that appear in [aλb] =

∑
n≥0

λn

n!
(a(n)b) and give an equivalent definition of conformal

superalgebra.

Definition 2.5 (Conformal superalgebra). A conformal superalgebra R is a left Z2−graded
C[∂]−module endowed with a C−bilinear product (a(n)b) : R ⊗ R → R, defined for every
n ≥ 0, that satisfies the following properties for all a, b, c ∈ R:

(i) p(∂a) = p(a);
(ii) (a(n)b) = 0, for n≫ 0;
(iii) (∂a(0)b) = 0 and (∂a(n)b) = −n(a(n−1)b) for all n ≥ 1;
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4 LUCIA BAGNOLI AND FABRIZIO CASELLI

(iv) (a(n)b) = −(−1)p(a)p(b)
∑

j≥0(−1)j+n ∂j

j!
(b(n+j)a) for all n ≥ 0;

(v) (a(m)(b(n)c)) =
∑m

j=0

(
m
j

)
((a(j)b)(m+n−j)c) + (−1)p(a)p(b)(b(n)(a(m)c)) for all m,n ≥ 0.

Using conditions (iii) and (iv) in Definition 2.5 it is easy to show that for all a, b ∈ R,
n ≥ 0:

(a(n)∂b) = ∂(a(n)b) + n(a(n−1)b). (2)

In particular, by the first part of (iii) in Definition 2.5, the map ∂ : R → R, a 7→ ∂a is a
derivation with respect to the 0−product.

Remark 2.6. Let F be a formal distribution superalgebra in the indeterminate z which is a
vector subspace of C[[z]] and is invariant under the operator ∂z . Then the formal distribution
algebra F , endowed with λ−bracket (1) and operator ∂ = ∂z is a conformal superalgebra (for
a proof see [15, Proposition 2.3]).

We say that a conformal superalgebra R is finite if it is finitely generated as a C[∂]−module.
An ideal I of R is a C[∂]−submodule of R such that a(n)b ∈ I for every a ∈ R, b ∈ I, n ≥ 0.
A conformal superalgebra R is simple if it has no non-trivial ideals and the λ−bracket is
not identically zero. We denote by R′ the derived subalgebra of R, i.e. the C−span of all
n−products.

Definition 2.7. A moduleM over a conformal superalgebra R is a Z2−graded C[∂]−module
endowed with C−linear maps R → EndCM , a 7→ a(n), defined for every n ≥ 0, that satisfy
the following properties for all a, b ∈ R, v ∈M :

(i) a(n)v = 0 for n≫ 0;
(ii) (∂a)(n)v = [∂, a(n)]v = −na(n−1)v for all n ≥ 0;

(iii) [a(m), b(n)]v =
∑

j

(
m
j

)
(a(j)b)(m+n−j)v for all m,n ≥ 0.

A module M is called finite if it is a finitely generated C[∂]−module.
We can construct a conformal superalgebra starting from a formal distribution superalgebra
(g,F). Let F be the closure of F under all the n−products, ∂z and linear combinations. By
Dong’s Lemma, F is still a family of mutually local formal distributions (see [15]) and it turns
out that F is a conformal superalgebra. We will refer to F as the conformal superalgebra
associated with (g,F).
Let us recall the construction of the annihilation superalgebra associated with a conformal

superalgebra R. Let R̃ = R[y, y−1], set p(y) = 0 and ∂̃ = ∂ + ∂y. We define the following

k−products on R̃, for all a, b ∈ R, f, g ∈ C[y, y−1], k ≥ 0:

(af(k)bg) =
∑

j∈Z+

(a(k+j)b)
(∂jy
j!
f
)
g.

In particular if f = ym and g = yn we have for all k ≥ 0:

(aym(k)by
n) =

∑

j∈Z+

(
m

j

)
(a(k+j)b)y

m+n−j. (3)

We observe that ∂̃R̃ is a two sided ideal of R̃ with respect to the 0−product. The quo-

tient LieR := R̃/∂̃R̃ has a structure of Lie superalgebra with the bracket induced by the
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5

0−product, i.e. for all a, b ∈ R, f, g ∈ C[y, y−1],

[af, bg] =
∑

j∈Z+

(a(j)b)
(∂jy
j!
f
)
g. (4)

Definition 2.8. The annihilation superalgebra A(R) of a conformal superalgebra R is the
subalgebra of LieR spanned by all elements ayn with n ≥ 0 and a ∈ R.
The extended annihilation superalgebra A(R)e of a conformal superalgebra R is the Lie
superalgebra C∂ ⋉ A(R). The semidirect sum C∂ ⋉ A(R) is the vector space C∂ ⊕ A(R)
endowed with the structure of Lie superalgebra uniquely determined by the bracket

[∂, aym] = −∂y(ay
m) = −maym−1,

for all a ∈ R, and the fact that A(R) and C∂ are Lie subalgebras.

For all a ∈ R we consider the following formal power series in A(R)[[λ]]:

aλ =
∑

n≥0

λn

n!
ayn.

For all a, b ∈ R, we have: [aλ, bµ] = [aλb]λ+µ and (∂a)λ = −λaλ (for a proof see [5]). This
notation is coherent with the definition of conformal modules in the following sense.

Proposition 2.9 ([8]). Let R be a conformal superalgebra. If M is a finite conformal R-
module then M has a natural structure of A(R)e-module, where the action of ayn on M is
uniquely determined by aλv =

∑
n≥0

λn

n!
ayn.v for all v ∈ V . Viceversa ifM is a A(R)e-module

such that for all a ∈ R, v ∈M we have ayn.v = 0 for n≫ 0 then M is also a finite conformal
module by letting aλv =

∑
n

λn

n!
ayn.v.

One usually refers to Proposition 2.9 by saying that a module over a conformal superalgebra
R is the same as a continuous module over the Lie superalgebra A(R)e. Proposition 2.9
reduces the study of modules over a conformal superalgebra R to the study of a class of
modules over its (extended) annihilation superalgebra.

In some cases one can even avoid to use the extended annihilation algebra and simply
consider the annihilation algebra. Recall that a Lie superalgebra g is Z-graded if g =

⊕
n∈Z gn

with [gn, gm] ⊆ gn+m for all n,m ∈ Z. We say in this case that g has finite depth d ≥ 0 if
gn = 0 for all n < −d and g−d 6= 0.

Proposition 2.10 ([1]). Let g be the annihilation superalgebra of a conformal superalgebra
R. Assume that g satisfies the following conditions:

L1: g is Z−graded with finite depth d;
L2: there exists t ∈ g such that the centralizer of t is contained in g0;
L3: there exists Θ ∈ g−d such that gi−d = [Θ, gi], for all i ≥ 0.

Finite modules over R are the same as modules V over g, called finite conformal, that satisfy
the following properties:

(1) for every v ∈ V , we have gn.v = 0 for n≫ 0;
(2) V is finitely generated as a C[Θ]−module.

Remark 2.11. We point out that condition L2 is automatically satisfied when g contains a
grading element, i.e. an element t ∈ g such that [t, b] = deg(b)b for all b ∈ g.
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6 LUCIA BAGNOLI AND FABRIZIO CASELLI

Let g =
⊕

i∈Z gi be a Z−graded Lie superalgebra. We will use the notation g>0 =
⊕

i>0 gi,
g<0 =

⊕
i<0 gi and g≥0 =

⊕
i≥0 gi. We denote by U(g) the universal enveloping algebra of g.

Definition 2.12. Let F be a g≥0−module. The generalized Verma module associated with
F is the g−module Ind(F ) defined by,

Ind(F ) := Indg
g≥0

(F ) = U(g)⊗U(g≥0) F.

If F is a finite dimensional irreducible g≥0−module we will simply say that Ind(F ) is
a finite Verma module. We will identify Ind(F ) with U(g<0) ⊗ F as vector spaces via the
Poincaré−Birkhoff−Witt Theorem. The Z−grading of g induces a Z−grading on U(g<0) and
Ind(F ). We will invert the sign of the degree, so that we have a Z≥0−grading on U(g<0) and
Ind(F ). We will say that an element v ∈ U(g<0)k is homogeneous of degree k. Analogously
an element m ∈ U(g<0)k ⊗ F is homogeneous of degree k.

Proposition 2.13. Let g =
⊕

i∈Z gi be a Z−graded Lie superalgebra. If F is an irreducible
finite−dimensional g≥0−module, then Ind(F ) has a unique maximal submodule. We denote
by I(F ) the quotient of Ind(F ) by the unique maximal submodule.

Proof. First we point out that a submodule V 6= {0} of Ind(F ) is proper if and only if it does
not contain nontrivial elements of degree 0. Indeed, if V contains an element v0 6= 0 of degree
0, then it contains 1⊗F = g≥0.v0, due to irreducibility of F . Therefore g<0.F = Ind(F ) ⊆ V .
The union S of all proper submodules is still a proper submodule of Ind(F ), since S does not
contain nontrivial elements of degree 0, thus S is the unique maximal proper submodule. �

Definition 2.14. Given a g−module V , we call singular vectors the elements of:

Sing(V ) = {v ∈ V | g>0.v = 0} .

Homogeneous components of singular vectors are still singular vectors so we often assume
that singular vectors are homogeneous without loss of generality. In the case V = Ind(F ) for
a g≥0−module F , we will call trivial singular vectors the elements of Sing(V ) of degree 0 and
nontrivial singular vectors the nonzero elements of Sing(V ) of positive degree.

Theorem 2.15 ([18],[11]). Let g be a Lie superalgebra that satisfies L1, L2, L3 in Proposition
2.10; then

(1) if F is an irreducible finite−dimensional g≥0−module, then the action of g>0 on F is
trivial;

(2) the map F 7→ I(F ) is a bijective map between irreducible finite−dimensional g0−modules
and irreducible finite conformal g−modules;

(3) the g−module Ind(F ) is irreducible if and only if the g0−module F is irreducible and
Ind(F ) has no nontrivial singular vectors.

We recall the notion of duality for conformal modules (see for further details [3], [5]). Let
R be a conformal superalgebra and M a conformal module over R.

Definition 2.16. The conformal dual M∗ of M is defined by

M∗ = {fλ :M → C[λ] | fλ(∂m) = λfλ(m), ∀m ∈M} .

The structure of C[∂]−module is given by (∂f)λ(m) = −λfλ(m), for all f ∈ M∗, m ∈ M .
The λ−action of R is given, for all a ∈ R, m ∈M , f ∈M∗, by:

(aλf)µ(m) = −(−1)p(a)p(f)fµ−λ(aλm).
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7

Definition 2.17. Let T :M → N be a morphism of R−modules, i.e. a linear map such that
for all a ∈ R and m ∈M :

i: T (∂m) = ∂T (m),
ii: T (aλm) = aλT (m).

The dual morphism T ∗ : N∗ →M∗ is defined, for all f ∈ N∗ and m ∈M , by:

[T ∗(f)]λ (m) = −fλ (T (m)) .

3. The conformal superalgebra K ′
4

In this section we introduce and study the contact Lie superalgebras and related confor-
mal superalgebras. Let

∧
(N) be the Grassmann superalgebra in the N odd indeterminates

ξ1, ..., ξN . Let t be an even indeterminate and
∧
(1, N) = C[t, t−1]⊗

∧
(N) which we consider as

an associative algebra in the natural way omitting the symbol ∧ between the indeterminates
ξi’s. We also consider the Lie superalgebra of derivations of

∧
(1, N):

W (1, N) =

{
D = a∂t +

N∑

i=1

ai∂i | a, ai ∈
∧
(1, N)

}
,

where ∂t =
∂
∂t

and ∂i =
∂
∂ξi

for every i ∈ {1, ..., N}.

Let us consider the contact form ω = dt−
∑N

i=1 ξidξi. The contact Lie superalgebra K(1, N)
is defined by:

K(1, N) =
{
D ∈ W (1, N) | Dω = fDω for some fD ∈

∧
(1, N)

}
.

We denote by K ′(1, N) the derived algebra [K(1, N), K(1, N)] of K(1, N). Analogously, let∧
(1, N)+ = C[t]⊗

∧
(N). We consider the Lie superalgebra of derivations of

∧
(1, N)+:

W (1, N)+ =

{
D = a∂t +

N∑

i=1

ai∂i | a, ai ∈
∧
(1, N)+

}
.

The Lie superalgebra K(1, N)+ is defined by:

K(1, N)+ =
{
D ∈ W (1, N)+ | Dω = fDω for some fD ∈

∧
(1, N)+

}
.

One can define on
∧
(1, N) a Lie superalgebra structure as follows: for all f, g ∈

∧
(1, N) we

let:

[f, g] =
(
2f −

N∑

i=1

ξi∂if
)
∂tg − ∂tf

(
2g −

N∑

i=1

ξi∂ig
)
+ (−1)p(f)

( N∑

i=1

∂if∂ig
)
. (5)

It is useful to restate (5) in a more explicit way. We adopt the following notation: we let I be
the set of (finite) sequences of elements in {1, . . . , N}; for notational convenience we usually
write I = i1 · · · ir instead of I = (i1, . . . , ir) and we think of I as a monoid by juxtaposition
(i.e. if I = i1 · · · ir and J = j1 · · · js we let IJ = i1 · · · irj1 · · · js); if I = i1 · · · ir ∈ I we let
ξI = ξi1 · · · ξir and |I| = r. For m,n ∈ Z and I, J ∈ I we have

[tmξI , t
nξJ ] = (2n− 2m− n|I|+m|J |)tm+n−1ξIJ + (−1)|I|tm+n

∑

i

∂iξI ∂iξJ . (6)

We recall that K(1, N) ∼=
∧
(1, N) as Lie superalgebras via the following map (see [10]):

∧
(1, N) −→ K(1, N)
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8 LUCIA BAGNOLI AND FABRIZIO CASELLI

f 7−→ 2f∂t + (−1)p(f)
N∑

i=1

(ξi∂tf + ∂if)(ξi∂t + ∂i).

From now on we will always identify elements of K(1, N) with elements of
∧
(1, N). We

consider on K(1, N) the standard grading, i.e. for every tmξi1 · · · ξis ∈ K(1, N) we have
deg(tmξi1 · · · ξis) = 2m+ s− 2.
Next target is to realize K(1, N)+ as the annihilation superalgebra of a conformal superalge-
bra. In order to do this, we construct a formal distribution superalgebra using the following
family of formal distributions:

F =

{
A(z) :=

∑

m∈Z

(tmA)z−m−1 = Aδ(t− z), ∀A ∈
∧
(N)

}
.

Note that the set of all the coefficients of formal distributions in F spans
∧
(1, N).

Proposition 3.1. The pair (
∧
(1, N),F) is a formal distribution superalgebra. More precisely,

for all I, J ∈ I we have

(ξI(z)(0)ξJ(z)) = (|I| − 2)∂zξIJ(z) + (−1)|I|
N∑

i=1

(∂iξI ∂iξJ)(z); (7)

(ξI(z)(1)ξJ(z)) = (|I|+ |J | − 4)ξIJ(z);

(ξI(z)(n)ξJ(z)) = 0 for n > 1.

In particular the conformal superalgebra associated with (
∧
(1, N),F) is F̄ = C[∂z]F .

Proof. Let’s show that ξI(z) and ξJ(z) are local. We have:

[ξI(z), ξJ(w)] =
∑

m,n∈Z

[tmξI , t
nξJ ]z

−m−1w−n−1

=
∑

m,n∈Z

(
(n (2− |I|)−m (2− |J |)) tm+n−1ξIJ + (−1)|I|tm+n

N∑

i=1

∂iξI ∂iξJ

)
z−m−1w−n−1

We let h = m+ n− 1 in the former sum and l = m+ n in the latter and we obtain

[ξI(z), ξJ(w)]

=
∑

h,m∈Z

((h−m+ 1) (2− |I|)−m (2− |J |)) thξIJ
z−m−1

w−(m−h−2)

+
∑

l,m∈Z

(−1)r
N∑

i=1

tl∂iξI∂iξJ
z−m−1

w−(m−l−1)

=
∑

h,m∈Z

(h + 1)(2− |I|)thξIJw
−h−2z−m−1wm +

∑

h,m∈Z

m(|I|+ |J | − 4)thξIJw
−h−1z−m−1wm−1

+
∑

l,m∈Z

(−1)|I|
N∑

i=1

tl∂iξI∂iξJw
−l−1z−m−1wm
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9

= (|I| − 2)∂w(ξIJ(w))δ(z − w) + (|I|+ |J | − 4)ξIJ(w)∂wδ(z − w)

+ (−1)|I|
N∑

i=1

(∂iξI ∂iξJ)(w)δ(z − w).

All results follow. �

We can say something more about the conformal superalgebra F̄ associated with the formal
distribution superalgebra (K(1, N),F).

Proposition 3.2. The conformal superalgebra F̄ = C[∂z ]F is a free C[∂z]−module.

Proof. If A1, A2, . . . , As is a basis of
∧
(N) then A1δ(t−z), A2δ(t−z), . . . , Asδ(t−z) is a basis

of F . Let us consider a finite linear combination, with coefficients in C[∂z], of elements of
this basis:

s∑

i=1

Pi(∂z)Aiδ(t− z) = 0,

where Pi(∂z) ∈ C[∂z ] for every 1 ≤ i ≤ s. From linear independence of the Ai’s, we obtain
for every 1 ≤ i ≤ s:

Pi(∂z)δ(t− z) = 0.

Therefore every coefficient Pi must be 0. �

We will identify F̄ = C[∂z] ⊗ F with KN := C[∂] ⊗
∧
(N). We also identify ∂z with ∂

and every A(z) ∈ F with A ∈
∧
(N). We will refer to KN as the conformal superalgebra

associated with K(1, N). For all I, J ∈ I the λ−bracket is given by

[ξIλξJ ] = (|I| − 2)∂ξIJ + (−1)|I|
N∑

i=1

∂iξI∂iξJ + λ(|I|+ |J | − 4)ξIJ , (8)

by Proposition 3.1. In [1] it is shown that the annihilation superalgebra of KN is A(KN) =
K(1, N)+ and that it satisfies conditions L1, L2, L3. Thus, the study of finite irreducible
modules over the conformal superalgebra KN is reduced to the study of singular vectors of
Verma modules on K(1, N)+.
Now we concentrate in the special case N = 4, because the conformal superalgebra K4 is
not simple. The derived superalgebra K ′

4 is one of the exceptional cases appearing in the
classification of finite simple conformal superalgebras in [13]. Our main target is to study all
finite irreducible modules over the conformal superalgebra K ′

4.
In order to describe K ′

4 explicitly we need to introduce the following terminology. Let V be
a vector space and B = {bi}i∈I be a basis of V . An element v ∈ V can be uniquely expressed
as v =

∑
i cibi. The support of v with respect to B is SuppB v = {bi : ci 6= 0}. We will

usually drop the index B if there is no risk of confusion.
Recall that we denote by I the set of all sequences with entries in {1, 2, 3, 4}. We also

denote by I6= the set of sequences in I with distinct entries and by I< the set of sequences
in I with strictly increasing entries. For typographical reasons we simply denote by i1 · · · ir
the sequence (i1, . . . , ir).
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10 LUCIA BAGNOLI AND FABRIZIO CASELLI

Proposition 3.3. The element ξ1234 /∈ K ′
4. More precisely:

K ′
4 = 〈{∂kξI , ∂

lξ1234 : I ∈ I<, I 6= 1234, k ≥ 0, l > 0}〉.

Proof. By Proposition 3.2, we know that
{
∂kξI : k ≥ 0, I ∈ I<

}
is a basis for K4. We first

show that ξ1234 /∈ K ′
4. Since the j−products are bilinear maps, it is sufficient to show that

ξ1234 does not belong to Supp(ξI (j)ξJ), for all I, J ∈ I<. This is an immediate consequence
of (8).

Now we show that every element ∂kξI with k > 0 or I 6= 1234 lies in K ′
4:

(1) if k > 0, then ∂kξI =
(
−1

2 (0)
∂k−1ξI

)
by (8);

(2) if k = 0 and I 6= 1234 let i ∈ {1234} be such that ξiI 6= 0. Then we have ξI =
−(ξi (0)ξiI) by (8).

�

Proposition 3.4. The element t−1ξ1234 /∈ K ′(1, 4). More precisely:

K ′(1, 4) = 〈{tkξI , t
lξ1234 : I ∈ I<, I 6= 1234, k, l ∈ Z, l 6= −1}〉.

Proof. We know that
{
tkξI : k ∈ Z, I ∈ I<

}
is a basis for K(1, 4). Let us first show that

t−1ξ1234 /∈ K ′(1, 4). Since the bracket (5) is bilinear, it is sufficient to prove that t−1ξ1234
does not belong to Supp[tmξI , t

nξJ ] for all m,n ∈ Z and I, J ∈ I<. Indeed, if t−1ξ1234 ∈
Supp[tmξI , t

nξJ ] then necessarily m+n = 0 and |I|+ |J | = 4, but these conditions imply that
the coefficient 2n− 2m− n|I|+m|J | in (6) vanishes, leading to a contradiction.

Next we show that every monomial tnξI with n 6= −1 or I 6= 1234 belongs to K ′(1, 4):

(1) recall that [t, tnξI ] = deg(tnξI)t
nξI . In particular, if deg(tnξI) 6= 0 the result follows.

(2) if deg(tnξI) = 0, then either n = 0 and I = ij, or n = 1 and I = ∅. The result follows
since ξij = −[ξkij , ξij] (for any k 6= i, j) and t = −[tξ1, ξ1].

�

4. The annihilation superalgebra of K ′
4

Motivated by Proposition 2.10 and Theorem 2.15, we want to understand the structure of
A(K ′

4).
Let us recall some notions on central extensions of Lie superalgebras.

Definition 4.1. Let g be a Lie superalgebra. A 2−cocycle on g is a bilinear map ψ : g×g → C

that satisfies the following conditions:

(1) ψ(a, b) = −(−1)p(a)p(b)ψ(b, a),
(2) (−1)p(a)p(c)ψ(a, [b, c]) + (−1)p(a)p(b)ψ(b, [c, a]) + (−1)p(a)p(c)ψ(c, [a, b]) = 0,

for all a, b, c ∈ g. The set of all 2−cocycles on g is denoted by Z2(g,C).

Remark 4.2. We denote the set of linear maps g → C by C1(g,C) and we call its elements
1−cochains. For every 1−cochain f ∈ C1(g,C), it is possible to construct a 2−cocycle δf on
g. For all a, b ∈ g we define:

δf(a, b) = f([a, b]).

It is a straightforward verification that δf is a 2−cocycle on g. The map δ : C1(g,C) →
Z2(g,C), f → δf , is called coboundary operator.
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11

Definition 4.3. We denote by B2(g,C) the image of δ : C1(g,C) → Z2(g,C). Two
2−cocycles ψ1, ψ2 ∈ Z2(g,C) are cohomologous when ψ1 − ψ2 ∈ B2(g,C). We denote by

H2(g,C) the quotient Z2(g,C)
B2(g,C)

.

Definition 4.4. A Lie superalgebra ĝ is a central extension of g by a one−dimensional center
CC if there exist two (Lie superalgebras) homomorphisms i : CC → ĝ and s : ĝ → g such
that the following sequence is exact:

0 → CC
i
−→ ĝ

s
−→ g → 0,

and Ker(s) lies in the center of ĝ.

Definition 4.5. Two central extentions ĝ1 and ĝ2 of g by a one−dimensional center CC are
isomorphic if there exists an isomorphism of Lie superalgebras Φ : ĝ1 → ĝ2 such that the
following diagram is commutative:

0 // CC

Id
��

i1
// ĝ1

Φ
��

s1
// g

Id

��

// 0

0 // CC
i2

// ĝ2
s2

// g
d

// 0.

Next result is certainly well-known but we include a sketch of the proof for completeness
and for the reader’s convenience.

Proposition 4.6. There is a bijection between (isomorphism classes of) central extensions of
g by a one−dimensional center and elements of H2(g,C). If ψ ∈ Z2(g,C) the corresponding
central extension is, up to isomorphism, ĝ = g⊕ CC where:

[C, a] = 0 and [a, b]ĝ = [a, b]g + ψ(a, b)C,

for all a, b ∈ g.

Proof. Let

0 → CC
i
−→ ĝ

s
−→ g → 0,

be a central extension of g. In particular, ĝ ∼= g ⊕ Ci(C) as vector spaces and we have the
following relation between the bracket [·, ·]ĝ in ĝ and the bracket [·, ·]g in g for all a, b ∈ g,
α, β ∈ C:

[a + αi(C), b+ βi(C)]ĝ = [a, b]g + ψ(a, b)i(C),

where ψ : g× g → C is a 2−cocycle.
Conversely, given ψ ∈ C2(g,C), we can construct a central extension ĝ of g. We define
ĝ := g ⊕ CC. For all a, b ∈ g, α, β ∈ C, we set i(αC) := αC, s(a + αC) := a and
[a + αC, b + βC]ĝ := [a, b]g + ψ(a, b)C. It follows directly from the definition of 2−cocycles
that it is a central extension.
Finally we show that two isomorphic central extensions ĝ1 ∼= g⊕CC and ĝ2 ∼= g⊕CC corre-
spond to cohomologous 2−cocycles. Since ĝ1 and ĝ2 are isomorphic, we have an isomorphism
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12 LUCIA BAGNOLI AND FABRIZIO CASELLI

Φ : ĝ1 → ĝ2 such that the following diagram is commutative:

0 // CC

Id
��

i1
// ĝ1

Φ
��

s1
// g

Id

��

// 0

0 // CC
i2

// ĝ2
s2

// g
d

// 0.

Thus for all a ∈ g, α ∈ C:

Φ(a + αC) = a+ ρ(a)C + αC, (9)

where ρ ∈ C1(g,C).
We call ψ1(resp. ψ2) the 2−cocycle that corresponds to ĝ1(resp. ĝ2). We have for all a, b ∈ g:

Φ([a, b]ĝ1) = Φ([a, b]g + ψ1(a, b)C)

= [a, b]g + (ρ([a, b]g) + ψ1(a, b))C.

But from the fact that Φ is an isomorphism we also have:

Φ([a, b]ĝ1) = [Φ(a),Φ(b)]ĝ2

= [a + ρ(a)C, b+ ρ(b)C]ĝ2

= [a, b]g + ψ2(a, b)C.

Therefore, δρ+ ψ1 = ψ2.
Analogously, if ψ1, ψ2 ∈ Z2(g,C) are cohomologous, i.e. ψ1 − ψ2 = δη ∈ B2(g,C), then we
can construct an isomorphism between the central extensions defined by ψ1 and ψ2 as in (9)
letting ρ := η. �

The following proposition is the main result of this section.

Proposition 4.7. There exists a (unique) surjective morphism of Lie superalgebras φ :
LieK ′

4 → K ′(1, 4) such that for all m ∈ Z

φ(ξIy
m) = tmξI , for all I ∈ I<, I 6= 1234

φ(∂ξ1234y
n) = −mξ1234t

m−1

and Ker(φ) = C ∂ξ1234. The annihilation superalgebra of K ′
4 is a central extension of

K(1, 4)+ by a one−dimensional center CC:

A(K ′
4) = K(1, 4)+ ⊕ CC.

The extension is given by the 2−cocycle ψ ∈ Z2(K(1, 4)+,C) which computed on basis ele-
ments returns non−zero values in the following cases only (up to skew-symmetry of ψ):

ψ(1, ξ1234) = −2,

ψ(ξi, ∂iξ1234) = −1.

We need a lemma in order to prove Proposition 4.7.

Lemma 4.8. The element ∂ξ1234y
0 ∈ LieK ′

4 is central.
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13

Proof. By (3) and (4) we have, for all ayl ∈ LieK ′
4, with a ∈ K ′

4:[
∂ξ1234y

0, ayl
]
=

(
∂ξ1234(0)a

)
yl = 0.

In the last equality we used the fact that
(
∂ξ1234(0)a

)
is computed as the restriction of the

0−product in K4 and (iii) in Definition 2.5. �

We adopt the following notation. Given a proposition P , we let

χP =

{
1 if P is true,

0 if P is false.

Remark 4.9. Recall that by the definition of LieK ′
4, for all a ∈ K ′

4 and m ∈ Z, we have
∂aym = −maym−1 and that ξ1234 /∈ K ′

4 by Proposition 3.3. Hence, every monomial ∂kP (ξ)yn

can be represented in LieK ′
4 as a scalar multiple of a monomial ξIy

n for some I 6= 1234 or of
a monomial ∂ξ1234y

n.
More precisely we have that the set {ξIy

m, ∂ξ1234y
m : m ∈ Z, I ∈ I<, I 6= 1234} is a basis

of LieK ′
4.

Proof of Proposition 4.7. By Remark 4.9 we know that there exists a unique linear map φ
satisfying the prescribed conditions. It is clear from its definition that φ is surjective and so
we only need to prove that φ is a morphism of Lie superalgebras. We have to distinguish four
cases:

(1) Let I, J ∈ I< with I, J 6= 1234 and ξIJ 6= ±ξ1234, and m,n ∈ Z. In LieK ′
4 we have,

by (3) and (4) and j−products (7):

[ξIy
m, ξJy

n] =
∑

j∈Z+

(
m

j

)
(ξI (j)ξJ)y

m+n−j

= (ξI (0)ξJ)y
m+n +m(ξI (1)ξJ)y

m+n−1

= (|I| − 2)∂ξIJy
m+n + (−1)|I|

4∑

i=1

∂iξI ∂iξJ y
m+n +m(|I|+ |J | − 4)ξIJy

m+n−1

= (2n− 2m− n|I|+m|J |)ξIJy
m+n−1 + (−1)|I|

4∑

i=1

∂iξI ∂iξJ y
m+n.

Therefore, by (6), we have:

[φ(ξIy
m), φ(ξJy

n)] =
[
tmξI , t

nξJ
]

= (2n− 2m− n|I|+m|J |)tm+n−1ξIJ + (−1)|I|tm+n
4∑

i=1

∂iξI ∂iξJ

= φ([ξIy
m, ξJy

n]).

(2) Let I, J ∈ I< with |I|, |J | 6= 4 and ξIJ = ξ1234, and m,n ∈ Z. We proceed like in the
previous case and we have

[ξIy
m, ξJy

n] = (ξI (0)ξJ)y
m+n +m(ξI (1)ξJ)y

m+n−1

= (|I| − 2)∂ξ1234y
m+n.
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14 LUCIA BAGNOLI AND FABRIZIO CASELLI

and so in K ′(1, 4) we have

[φ(ξIy
m), φ(ξJy

n)] =
[
tmξI , t

nξJ
]

= (2− |I|)(m+ n)tm+n−1ξ1234

= φ([ξIy
m, ξJy

n]).

(3) Let m,n ∈ Z. We have f = ∂ξ1ξ2ξ3ξ4y
m and g = ∂ξ1ξ2ξ3ξ4y

n in LieK ′
4, with m, l ∈ Z.

In LieK ′
4 we have, using bracket (4) and n−products (7):

[∂ξ1234y
m, ∂ξ1234y

n] =
∑

j∈Z+

(
h

j

)
(∂ξ1234 (j)∂ξ1234)y

m+n−j = 0.

by (iii) of Definition 2.5, (2) and (6). On the other hand

[φ(∂ξ1234y
m), φ(∂ξ1234y

n)] =
[
−mξ1234t

m−1,−nξ1234t
n−1

]
= 0,

by (6).
(4) Finally, let J ∈ I<, J 6= 1234 and m,n ∈ Z. First, we point out that (∂ξ1234 (j)ξJ) =

−j(ξ1234 (j−1)ξJ) = 0 for all j ≥ 2 by (7). Therefore in LieK ′
4 we have

[
∂ξ1234y

m, ξJy
n
]
= (∂ξ1234(0)ξJ)y

m+n +m(∂ξ1234 (1)ξJ)y
m+n−1

= −m(ξ1234 (0)ξJ)y
m+n−1

= −2mχJ=∅ ∂ξ1234 y
m+n−1 −m

4∑

i=1

∂iξ1234∂iξJ y
m+n−1.

In K ′(1, 4) we have, using bracket (6):

[φ(∂ξ1234y
m), φ(ξJy

n)] =
[
−mξ1234t

m−1, ξJt
n
]

= −χJ=∅m(−2n− 2m+ 2) tm+n−2ξ1234 −m

4∑

i=1

∂iξ1234 ∂iξJ t
m+n−1

= φ([∂ξ1234y
m, ξJy

n]).

The previous computations imply that the kernel of the map φ : LieK ′
4 −→ K ′(1, 4) is

Kerφ = 〈∂ξ1ξ2ξ3ξ4〉 and so the following sequence is exact:

0 → 〈∂ξ1ξ2ξ3ξ4〉
i
−→ LieK ′

4

φ
−→ K ′(1, 4) → 0.

By Lemma 4.8 the Lie superalgebra LieK ′
4 is therefore a central extension of K ′(1, 4) by the

one−dimensional center 〈∂ξ1ξ2ξ3ξ4〉.
In particular, we point out that φ : LieK ′

4/C∂ξ1ξ2ξ3ξ4 → K ′(1, 4) is an isomorphism. In the
previous computations we computed all the possible brackets between monomials in LieK ′

4,
therefore in particular all the possible brackets between monomials in A(K ′

4) and we can
observe that the central element ∂ξ1234 lies in the support of the bracket of two basis elements
only in the case (2) of the previous computations. The other parts of the statement follow.

�
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5. Verma modules

In this section we study the action of g := A(K ′
4) = K(1, 4)+ ⊕ CC on a finite Verma

module Ind(F ), where F is a finite−dimensional irreducible g≥0−module, on which g>0 acts
trivially. The grading on g is the standard grading of K(1, 4)+ and C has degree 0. We have:

g−2 = 〈1〉 ,

g−1 = 〈ξ1, ξ2, ξ3, ξ4〉 ,

g0 = 〈{C, t, ξij : 1 ≤ i < j ≤ 4}〉 .

Remark 5.1. The annihilation superalgebra g satisfies conditions L1, L2, L3 of Proposition
2.10. Indeed:

L1. This is obvious.
L2. The element t is a grading element, i.e. [t, a] = deg(a)a for all a ∈ g. Hence, by

Remark 2.11, t satisfies condition L2.
L3. The element Θ is chosen as −1

2
ξ∅ = −1

2
∈ g−2. Indeed for all m ≥ 0 and I ∈ I< we

have tmξI ∈ g2m+|I|−2 and

tmξI = −
1

m+ 1
[Θ, tm+1ξI ]

and C = [Θ, ξ1234].

Remark 5.2. Since Ind(F ) ∼= U(g<0)⊗F , it follows that Ind(F ) ∼= C[Θ]⊗
∧
(4)⊗F . Indeed,

let us denote by ηi the image in U(g) of ξi ∈
∧
(4), for all i ∈ {1, 2, 3, 4}. In U(g) we have

that η2i = Θ, for all i ∈ {1, 2, 3, 4}: since [ξi, ξi] = −1 in g, we have ηiηi = −ηiηi − 1 in U(g).

From now on it is always assumed that F is a finite−dimensional irreducible g≥0−module.
We will study the action of g on Ind(F ) using the λ−action notation by Proposition 2.9:

ξI λ(g ⊗ v) =
∑

j≥0

λj

j!
tjξI .(g ⊗ v),

for I ∈ I, g ∈ U(g<0) and v ∈ F . In order to find an explicit formula for ξI λ(g ⊗ v) we need
some preliminary lemmas.

We will make the following slight abuse of notation: if I, J ∈ I6= we will denote by I ∩
J (resp. I \ J) the increasingly ordered sequence whose elements are the elements of the
intersection of the underlying sets of I and J (resp. the elements of the difference of the
underlying sets of I and J). We will say I ⊆ J when the underlying set of I is contained in
the underlying set of J . Analogously we will denote by Ic the increasingly ordered sequence
whose elements are the elements of the complement of the underlying set of I. Given I =
(i1, i2, · · · ik) ∈ I6=, we will use the notation ηI to denote the element ηi1ηi2 · · · ηik ∈ U(g<0)
and we will denote |ηI | = |I| = k. We will denote ξ∗ = ξ1234 (resp. η∗ = η1234). Given
I = (i1, i2, · · · ik) and I

c = (jk+1, jk+2, · · · j4), we will denote by εI the sign of the permutation
(

1 2 ··· k k+1 ··· 4
i1 i2 ··· ik jk+1 ··· j4

)
.

We will also use the following notation: if (i1, . . . , ik) ∈ I6= and i ∈ {1, 2, 3, 4} we let
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16 LUCIA BAGNOLI AND FABRIZIO CASELLI

∂iηi1,...,ik =

{
(−1)j+1ηi1,...,îj ,...,ik if i = ij for some (necessarily unique) j

0 otherwise.

and for a ∈ C, I = (i1, i2, · · · ik), J ∈ I6=:

∂IηJ = ∂i1∂i2 . . . ∂ikηJ ∂IξJ = ∂i1∂i2 . . . ∂ikξJ ;

∂aξIηJ = a∂IηJ ∂aξIξJ = a∂IξJ ;

∂∅ηS = ηS ∂∅ξS = ξS.

Given I, J ∈ I6= we let

ξI ⋆ ηJ = χI∩J=∅ηIJ ,

ηJ ⋆ ξI = χI∩J=∅ηJI .

and we extend this notation by linearity in both arguments.
We observe that in g, by (6) and Proposition 4.7 we have

[tmξI , ξr] = −mtm−1ξIr + (−1)|I|tm∂rξI + ψ(tmξI , ξr)C.

and in particular

[tmξI , ξr] = −mtm−1ξIr + (−1)|I|tm∂rξI +χm=0χr=IcεIC (10)

for all I ∈ I6=, m ≥ 0 and r ∈ {1, 2, 3, 4}.

Lemma 5.3. Let I, L ∈ I6=, v ∈ F and m ≥ 3. We have:

tmξI(ηL ⊗ v) =

{
−6εL ⊗ Cv if m = 3, |I| = 0 and |L| = 4,

0 otherwise.

Proof. We can always assume, without loss of generality, that ηL = ηJηK with I ∩ J = ∅,
K ⊆ I.
We first point out that tmξI(ηL ⊗ v) = 0 when m > 3 because deg(tmξI) = 2m + |I| − 2 >
4 ≥ deg(ηL).

If m = 3, |I| > 0, t3ξI(ηL ⊗ v) = 0 because deg(t3ξI) = 2m+ |I| − 2 > 4 ≥ deg(ηL).
If m = 3, |I| = 0 and |L| 6= 4, t3(ηL ⊗ v) = 0 because deg(t3) = 4 > deg(ηL).
If m = 3, |I| = 0 and |L| = 4 we can assume L = 1234 without loss of generality and by

(10), we have

t3(η1234 ⊗ v) = −3(t2ξ1)η234 ⊗ v − 3η1(t
2ξ2)η34 ⊗ v − 3η12(t

2ξ3)η4 ⊗ v − 3η123(t
2ξ4)⊗ v

= 6(tξ12)η34 ⊗ v

= −6(ξ123)η4 ⊗ v

= −6⊗ Cv.

�

Lemma 5.3 describes the terms of degree at least 3 in the variable λ in the λ-action of K ′
4

on a Verma module. Next target is to study the terms of degree 0, 1 and 2: this will be
accomplished in Lemmas 5.5, 5.6 and 5.7 respectively. But we first state a technical lemma.
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Lemma 5.4. Let I, J,K ∈ I6= with I ∩ J = ∅, K ⊆ I. We have:

ξI(ηJK ⊗ v) =
∑

L⊆K

(−1)|I|(|J |+|K|)+|L|(|L|−1)/2−|L|(|K|−|L|)ηJ∂LηK ⊗ ∂LξI .v

+χ|I|=3χJ=Ic εI ηK ⊗ Cv.

Proof. From repeated applications of (10) we have

ξI(ηJηK)⊗ v = (−1)|I||J |ηJξIηK ⊗ v +χ|I|=3χJ=Ic εIηK ⊗ Cv. (11)

Indeed, from (10), if |I| = 1, 2, or |I| = 3 with J 6= Ic , then [ξI , ξr] = 0 for all r ∈ J and
formula (11) is straightforward. In the case |I| = 3 and J = Ic, using (10), we have:

ξI(ηIcηK)⊗ v = −ηIcξIηK ⊗ v +χ|I|=3χJ=IcεIηK ⊗ Cv.

The rest of the proof is the same as the proof of Lemma A.2 in [1] and it is done by
induction on |K| using formula (11) and is therefore omitted. �

Lemma 5.5. Let I, L ∈ I6=. We have:

ξI(ηL ⊗ v) =(−1)|I|(|I| − 2)Θ∂IηL ⊗ v +
4∑

i=1

∂(∂iξI)(ξi ⋆ ηL)⊗ v + (−1)|I|
∑

i<j

∂(∂ijξI)ηL ⊗ ξj,i.v

+χ|I|=3 εI ∂IcηL ⊗ Cv.

Proof. The proof is analogous to the proof in [1] of Lemma A.3, and it is based on Lemma
5.4. The extra term in C is due to the additional term of Lemma 5.4, which is not present in
Lemma A.2 of [1]. �

Now we study the term of degree 1 in λ of the λ−action.

Lemma 5.6. Let I, L ∈ I6=. We have:

tξI(ηL ⊗ v) =(−1)|I|∂IηL ⊗ t.v + (−1)|I|+|L|
4∑

i=1

(∂IiηL ⋆ ξi)⊗ v

−
∑

i 6=j

∂∂iξI (∂jηL)⊗ ξi,j.v +χ|I|=2 εI ∂IcηL ⊗ Cv.

Proof. Without loss of generality we can suppose that ηL = ηJηK with I ∩J = ∅, K ⊆ I. Let
us prove that:

tξI(ηJηK ⊗ v) =(−1)|I||J |ηJ(tξI)ηK ⊗ v +
4∑

j=1

(−1)|I||J |−|I|+|J |(∂jηJ)ξIjηK ⊗ v (12)

+χ|I|=2 εI∂IcηJK ⊗ Cv.

The formula is the same as the relation proved for K(1, N)+ in the proof of Lemma A.4 of
[1], except for an additional term in C. We point out that a term with C is involved only if
|I| = 2 and |J | = 2. Let us prove (12) by induction on |J |. If |J | = 0, (12) is straightforward.
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18 LUCIA BAGNOLI AND FABRIZIO CASELLI

Let J̃ be such that |J̃ | > 0 and J̃ ∩ I = ∅. Let J, s be such that ηJ̃ = ηJηs. We have, using
(12) for ηJ , that:

tξI(ηJηsηK ⊗ v) =(−1)|I||J |ηJ(tξI)ηsηK ⊗ v +

4∑

j=1

(−1)|I||J |−|I|+|J |(∂jηJ)ξIjηsηK ⊗ v

+χ|I|=2 εI(∂IcηJ)ηsηK ⊗ Cv.

Notice that, since we are supposing ηJ̃ = ηJηs with J̃ ∩ I = ∅ and s /∈ J , the term
χ|I|=2 εI(∂IcηJ)ηsηK ⊗ Cv is 0 because if |I| = 2, then |J | < 2. We have, using (10), that:

tξI(ηJηsηK ⊗ v) =(−1)|I|(|J |+1)ηJηs(tξI)ηK ⊗ v − (−1)|I||J |ηJξIsηK ⊗ v

+

4∑

j=1

(−1)|I||J |−|I|+|J |+|I|+1(∂jηJ)ηs ξIj ηK ⊗ v

− (−1)|J |χ|I|=2χ|J |=1εI∂IcηJsK ⊗ Cv.

We observe that:

−(−1)|I||J |ηJξIsηK ⊗ v = (−1)|I||J |+1+|J |(∂sηJ̃)ξIsηK ⊗ v

= (−1)|I||J̃|−|I|+|J̃|(∂sηJ̃)ξIsηK ⊗ v.

Therefore:

tξI(ηJηsηK ⊗ v) =(−1)|I|(|J̃|)ηJ̃(tξI)ηK ⊗ v +
4∑

j=1

(−1)|I||J̃|−|I|+|J̃|(∂jηJ̃) ξIj ηK ⊗ v

+χ|I|=2εI∂IcηJ̃K ⊗ Cv.

Hence, formula (12) is proved. The rest of the proof is analogous to the proof of Lemma A.4
in [1] and it is based on (12). �

Now we study the term of degree 2 in λ of the λ−action.

Lemma 5.7. Let I, L ∈ I6= and v ∈ F . We have

1

2
t2ξI(ηL ⊗ v) =(−1)|I|

∑

i<j

∂IijηL ⊗ ξj,i.v −χ|I|=1 εI ∂IcηL ⊗ Cv.

Proof. As before, without loss of generality, we can suppose that ηL = ηJηK with I ∩ J = ∅,
K ⊆ I. Let us prove that:

1

2
t2ξI(ηJηK ⊗ v) (13)

= −χI=K

∑

i<j

(−1)|I||J |+|I|(|I|+1)/2∂ijηJ ∂IηK ⊗ ξij.v −χ|I|=1 εI ∂IcηJK ⊗ Cv.

In order to establish (13), we need to prove the following:

(1
2
t2ξI

)
ηJ =

∑

S∈I<: |S|≤2

±
1

(2− |S|)!
∂SηJ (t

2−|S|ξIS)−χ|I|=1 εI ∂IcηJC. (14)

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I:1
0.1

06
3/5

.00
98

44
1



19

We prove (14) by induction on |J |. If |J | = 0, the result is straightforward.

Let us consider ηJ̃ = ηJηr with J̃ ∩ I = ∅ and r /∈ J . We have, using (14) for ηJ , that:

(1
2
t2ξI

)
ηJηr =

∑

S∈I<: |S|≤2

1

(2− |S|)!
∂SηJ (t

2−|S|ξIS)ηr −χ|I|=1 εI (∂IcηJ)ηrC.

Notice that, since we are supposing ηJ̃ = ηJηr with J̃ ∩ I = ∅ and r /∈ J , the term
−χ|I|=1 εI (∂IcηJ )ηrC is 0 because if |I| = 1, then |J | < 3. Now, by (10), we have

(1
2
t2ξI

)
ηJ ηr =

∑

S: |S|≤2

±
1

(2− |S|)!
(∂SηJ)ηr(t

2−|S|ξIS) +
∑

|S|≤2

±
2− |S|

(2− |S|)!
∂SηJ (t

1−|S|ξISr)

±χ|I|=1χ|J |=2εJ̃C

=
∑

S: |S|≤2, r /∈S

±
1

(2− |S|)!
∂SηJr (t

2−|S|ξIS)±
∑

S: |S|≤1

∂SrηJ̃(t
1−|S|ξISr)

±χ|I|=1χ|J |=2εJ̃C

=
∑

S: |S|≤2

±
1

(2− |S|)!
∂SηJ̃(t

2−|S|ξIS)ηK ⊗ v ±χ|I|=1χ|J |=2εJ̃C

Now we compute explicitly the sign of the last summand above. Hence we consider I with

|I| = 1 and |J̃ | = 3. For I = (i) and J̃ = (j, k, l) = Ic, by repeated applications of (10), we
have:
(1
2
t2ξi

)
ηjηkηl = −(tξij)ηkηl + ηj(tξik)ηl − ηjηk(tξil)− ηjηkηl

(1
2
t2ξi

)

= ξijkηl + ηk(ξijl)− ηkηl(tξij)− ηjξikl + ηjηl(tξik)− ηjηk(tξil)− ηjηkηl
(1
2
t2ξi

)

= −ηlξijk + εIC + ηkξijl − ηkl(tξij)− ηjξikl) + ηjl(tξik)− ηjk(tξil)− ηjkl
(1
2
t2ξi

)

=
∑

S:|S|≤2

±
1

(2 − |S|)!
∂SηJ̃(t

2−|S|ξIS)− εI ∂IcηJ̃C,

The result follows with the simple verification that the coefficient of C above agrees with the
coefficient of C in (14).

Now we observe that if |S| = 0, 1 then deg(t2ξIξS) > deg(ηK) and deg(tξIξS) > deg(ηK)
and therefore, by (14), we have

1

2
t2ξI(ηJηK ⊗ v) =

∑

S :|S|=2

±(∂SηJ)ξISηK ⊗ v −χ|I|=1 εI ∂IcηJ ⊗ Cv.

Proceeding as in the proof of Lemma A.5 in [1], one can show that the signs in this sum do
not depend on S and are all equal to −(−1)|I||J |. It follows that this relation reduces to:

1

2
t2ξI(ηJηK ⊗ v) = −(−1)|I||J |

∑

i<j

∂ijηJ(ξIij
)
ηK ⊗ v −χ|I|=1εI∂IcηJηK ⊗ Cv. (15)

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I:1
0.1

06
3/5

.00
98

44
1



20 LUCIA BAGNOLI AND FABRIZIO CASELLI

Formula (13) can be proved using (15), (10) and induction on |K|. The proof is similar to
the proof of (15). Finally, the rest of the proof is analogous to the proof of Lemma A.5 in [1]
and it is based on (13). �

It is convenient to summarize the previous lemmas in the following result.

Proposition 5.8. Let I, L ∈ I6=. The λ−action has the following expression:

ξIλ(ηL ⊗ v) =(−1)|I|(|I| − 2)Θ∂IηL ⊗ v +
4∑

i=1

∂(∂iξI )(ξi ⋆ ηL)⊗ v

+ (−1)|I|
∑

i<j

∂(∂ijξI)ηL ⊗ ξj,i.v +χ|I|=3 εI ∂IcηL ⊗ Cv

+ λ

(
(−1)|I|∂IηL ⊗ t.v + (−1)|I|+|L|

4∑

i=1

(∂IiηL ⋆ ξi)⊗ v

+
∑

i 6=j

∂∂iξI (∂jηL)⊗ ξj,i.v +χ|I|=2 εI ∂IcηL ⊗ Cv

)

+ λ2
(
(−1)|I|

∑

i<j

∂IijηL ⊗ ξj,iv −χ|I|=1 εI ∂IcηL ⊗ Cv
)

+ λ3
(
−χ|I|=0 ∂IcηL ⊗ Cv

)
.

For ηI ∈
∧
(4) we indicate with ηI its Hodge dual in U(g<0), i.e. the unique monomial such

that ηI ⋆ ξI = η1234. Then we extend by linearity the definition of Hodge dual to elements∑
I αIηI ∈ U(g<0) and we set ΘkηI = ΘkηI .

We recall Lemma 4.2 from [1].

Lemma 5.9. For f ∈
∧
(4), L ∈ I6=, i ∈ {1, 2, 3, 4}, we have:

∂iηL = ηL ⋆ ξi = (−1)|L|ξi ⋆ ηL, (16)

∂fηL = (−1)(|f |(|f |−1)/2)+|f ||L|f ⋆ ηL, (17)

ξi ⋆ ηL = −(−1)|L|∂iηL, (18)

ηL ⋆ ξi = −∂iηL. (19)

Next result is a consequence of Proposition 5.8.

Proposition 5.10. Let I, L ∈ I6=. Let T be the vector space isomorphism T : Ind(F ) →
Ind(F ) defined by T (g ⊗ v) = g ⊗ v, for all g ∈ U(g<0), v ∈ F . Then:

(T ◦ ξIλ ◦ T
−1)(ηL ⊗ v)

= (−1)(|I|(|I|+1)/2)+|I||L|

{
(|I| − 2)Θ(ξI ⋆ ηL)⊗ v − (−1)|I|

4∑

i=1

(∂iξI ⋆ ∂iηL)⊗ v

−
∑

r<s

(∂rsξI ⋆ ηL)⊗ ξs,r.v +χ|I|=3 εI (ξIc ⋆ ηL)⊗ Cv
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+ λ

[
(ξI ⋆ ηL)⊗ t.v − (−1)|I|

4∑

i=1

∂i(ξIi ⋆ ηL)⊗ v + (−1)|I|
∑

i 6=j

(∂iξIj ⋆ ηL)⊗ ξj,i.v

+χ|I|=2 εI (ξIc ⋆ ηL)⊗ Cv

]

+ λ2
[
−

∑

i<j

(ξIij ⋆ ηL)⊗ ξj,i.v −χ|I|=1 εI (ξIc ⋆ ηL)⊗ Cv

]
+ λ3

[
−χ|I|=0(ξ∗ ⋆ ηL)⊗ Cv

]}
.

Proof. The proof follows by Proposition 5.8 with a straightforward application of Lemma
5.9. �

In the following lemma we give a recursive formula in order to compute ξIλ(Θ
kg ⊗ v) for

I ∈ I6= and g ∈ U(g<0).

Lemma 5.11. Let I ∈ I6=, g ∈ U(g<0) and k ∈ Z>0. We have:

ξIλ(Θ
kg ⊗ v) = (Θ + λ)(ξIλΘ

k−1g ⊗ v)−χ|I|=4εIΘ
k−1g ⊗ Cv.

Proof. We have by (6) and Proposition 4.7:

ξIλ(Θ
kg ⊗ v) =

∑

j≥0

λj

j!
(tjξI)(Θ

kg ⊗ v)

=
∑

j≥0

λj

j!
Θ(tjξI)(Θ

k−1g ⊗ v) +
∑

j≥0

λj

j!
(jtj−1ξI)(Θ

k−1g ⊗ v)−χ|I|=4εIΘ
k−1g ⊗ Cv

= (Θ + λ)(fλΘ
k−1g ⊗ v)−χ|I|=4εIΘ

k−1g ⊗ Cv.

�

6. Singular vectors

In this section we deduce some necessary conditions that singular vectors must satisfy.
These conditions are obtained generalizing some ideas developed in [1].

We first give a more explicit description of g0: we have g0 = 〈{C, t, ξij : 1 ≤ i < j ≤ 4}〉 ∼=
so(4)⊕Ct⊕CC, where so(4) is the Lie algebra of 4×4 skew−symmetric matrices. In the above
homomorphism the element ξij corresponds to the skew-symmetric matrix−Ei,j+Ej,i ∈ so(4).
We consider the following basis of a Cartan subalgebra h:

hx := −iξ12 + iξ34, hy := −iξ12 − iξ34. (20)

Let αx, αy ∈ h∗ be such that αx(hx) = αy(hy) = 2 and αx(hy) = αy(hx) = 0. The set of roots
is ∆ = {αx,−αx, αy,−αy} and we have the following root decomposition:

so(4) = h⊕ (⊕α∈∆gα) with gαx
= Cex, g−αx

= Cfx, gαy
= Cey, g−αy

= Cfy

where

ex =
1

2
(−ξ1,3 − ξ2,4 − iξ1,4 + iξ2,3),

ey =
1

2
(−ξ1,3 + ξ2,4 + iξ1,4 + iξ2,3),
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22 LUCIA BAGNOLI AND FABRIZIO CASELLI

fx =
1

2
(ξ1,3 + ξ2,4 − iξ1,4 + iξ2,3),

fy =
1

2
(ξ1,3 − ξ2,4 + iξ1,4 + iξ2,3).

It will be convenient to use the following notation:

e1 = ex + ey = −ξ13 + iξ23, (21)

e2 = ex − ey = −ξ24 − iξ14. (22)

The set {e1, e2} is a basis of the nilpotent subalgebra gαx
⊕ gαy

.
We will write the weights µ = (m,n, µt, µC) of weight vectors of g0−modules with respect to
action of the vectors hx, hy, t and C.

Remark 6.1. Since C is central, by Schur’s lemma, C acts as a scalar on F .

Remark 6.2. The sets {ex, fx, hx} and {ey, fy, hy} span two copies of sl2 and we think of gss0
in the standard way as a Lie algebra of derivations We have that:

gss0 = 〈ex, fx, hx〉 ⊕ 〈ey, fy, hy〉 ∼= 〈x1∂x2
, x2∂x1

, x1∂x1
− x2∂x2

〉 ⊕ 〈y1∂y2 , y2∂y1 , y1∂y1 − y2∂y2〉.

Thanks to Remark 6.2 we will identify the irreducible gss0 −module of highest weight (m,n)
with respect to hx, hy with the space of bihomogeneous polynomials in the four variables
x1, x2, y1, y2 of degree m in the variables x1, x2, and of degree n in the variables y1, y2.
By direct computations, we obtain the following results.

Lemma 6.3. The subalgebra g>0 is generated by g1, i.e. gi = gi1 for all i ≥ 2 and as
g0−modules:

g1 ∼= 〈tξi : 1 ≤ i ≤ 4〉 ⊕ 〈ξI : I ∈ I<, |I| = 3〉.

The g0−modules 〈tξi : 1 ≤ i ≤ 4〉 and 〈ξI : I ∈ I<, |I| = 3〉 are irreducible and the
corresponding lowest weight vectors are t(ξ1 + iξ2) and (ξ1 + iξ2)ξ3ξ4.

Lemma 6.4. As gss0 −modules:

g−1
∼= 〈x1y1, x1y2, x2y1, x2y2〉.

The isomorphism is given by:

ξ2 + iξ1 ↔ x1y1, ξ2 − iξ1 ↔ x2y2, −ξ4 + iξ3 ↔ x1y2, ξ4 + iξ3 ↔ x2y1.

Motivated by the previous lemma, we will use the notation

w11 = η2 + iη1, w22 = η2 − iη1, w12 = −η4 + iη3, w21 = η4 + iη3. (23)

We point out that [w11, w22] = 4Θ, [w12, w21] = −4Θ and all other brackets between the w′s
are 0.

By Lemma 6.3 to check whether a vector ~m in a g-module is a highest weight singular vector
it is enough to show that it is annihilated by e1, e2, t(ξ1+ iξ2) and (ξ1+ iξ2)ξ3ξ4. Nevertheless
in the determination of all possible highest weight singular vectors it is convenient to consider
the action of all elements in g>0 and for this it is extremely convenient to use the λ-action.

Remark 6.5. From the definition of the λ−action we deduce that ~m ∈ Ind(F ) is a highest
weight singular vector if and only if the following hold:
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S0: e1.~m = e2.~m = 0;
S1: d2

dλ2 (ξIλ ~m) = 0 for all I ∈ I6=;

S2: d
dλ
(ξI λ ~m)|λ=0 = 0 for all I ∈ I6= such that |I| ≥ 1;

S3: (ξIλ ~m)|λ=0 = 0 for all I ∈ I6= such that |I| ≥ 3.

Indeed condition S0 implies that ~m is a highest weight vector. Condition S1 is equivalent to

∑

j≥2

j(j − 1)
λj−2

j!
(tjξI)~m = 0,

which implies (tjξI)~m = 0 for all I ∈ I6= and j ≥ 2.
Condition S2 is equivalent to (tξI)~m = 0 for all for all I ∈ I6= such that |I| ≥ 1.
Condition S3 is equivalent to ξI ~m = 0 for all I ∈ I6= such that |I| ≥ 3.

The aim of this section is to solve equations S0–S3 in order to obtain the following clas-
sification of singular vectors. We recall that the highest weight of F is always written with
respect to the elements hx, hy, t and C. Let us call M(m,n, µt, µC) the Verma module
Ind(F (m,n, µt, µC)), where F (m,n, µt, µC) is the irreducible g0−module with highest weight
(m,n, µt, µC).

Theorem 6.6. Let F be an irreducible finite−dimensional g0−module, with highest weight
µ. A vector in Ind(F ) is a non trivial highest weight singular vector of degree 1 if and only
if ~m is (up to a scalar) one of the following vectors:

a: µ = (m,n,−m+n
2
, m−n

2
) with m,n ∈ Z≥0,

~m1a = w11 ⊗ xm1 y
n
1 ;

b: µ = (m,n, 1 + m−n
2
,−1− m+n

2
), with m ∈ Z>0, n ∈ Z≥0,

~m1b = w21 ⊗ xm1 y
n
1 − w11 ⊗ xm−1

1 x2y
n
1 ;

c: µ = (m,n, 2 + m+n
2
, n−m

2
), with m,n ∈ Z>0,

~m1c = w22 ⊗ xm1 y
n
1 − w12 ⊗ xm−1

1 x2y
n
1 − w21 ⊗ xm1 y

n−1
1 y2 + w11 ⊗ xm−1

1 x2y
n−1
1 y2;

d: µ = (m,n, 1 + n−m
2
, 1 + m+n

2
), with m ∈ Z≥0, n ∈ Z>0,

~m1d = w12 ⊗ xm1 y
n
1 − w11 ⊗ xm1 y

n−1
1 y2.

Theorem 6.7. Let F be an irreducible finite−dimensional g0−module, with highest weight
µ. A vector ~m ∈ Ind(F ) is a non trivial highest weight singular vector of degree 2 if and only
if ~m is (up to a scalar) one of the following vectors:

a: µ = (0, n, 1− n
2
,−1− n

2
) with n ∈ Z≥0,

~m2a = w11w21 ⊗ yn1 ;

b: µ = (m, 0, 1− m
2
, 1 + m

2
) with m ∈ Z≥0,

~m2b = w11w12 ⊗ xm1 ;

c: µ = (m, 0, 2 + m
2
,−m

2
) with m ∈ Z>1,

~m2c = w22w21 ⊗ xm1 + (w11w22 + w21w12)⊗ xm−1
1 x2 − w11w12 ⊗ xm−2

1 x22;
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24 LUCIA BAGNOLI AND FABRIZIO CASELLI

d: µ = (0, n, 2 + n
2
, n
2
) with n ∈ Z>1,

~m2d = w22w12 ⊗ yn1 − (w22w11 + w21w12)⊗ yn−1
1 y2 − w11w21 ⊗ yn−2

1 y22.

Theorem 6.8. Let F be an irreducible finite−dimensional g0−module, with highest weight
µ. A vector ~m ∈ Ind(F ) is a non trivial highest weight singular vector of degree 3 if and only
if ~m is (up to a scalar) one of the following vectors:

a: µ = (1, 0, 5
2
,−1

2
),

~m3a = w11w22w21 ⊗ x1 + w21w12w11 ⊗ x2;

b: µ = (0, 1, 5
2
, 1
2
),

~m3b = w11w22w12 ⊗ y1 + w12w21w11 ⊗ y2.

Theorem 6.9. There are no singular vectors of degree greater than 3.

Remark 6.10. We call a Verma module degenerate if it is not irreducible. We point out
that, given M(m,n, µt, µC) and M(m̃, ñ, µ̃t, µ̃C) Verma modules, we can construct a non
trivial morphism of g−modules from the former to the latter if and only if there exists a
highest weight singular vector ~m in M(m̃, ñ, µ̃t, µ̃C) of highest weight (m,n, µt, µC). The
map is uniquely determined by:

∇ : M(m,n, µt, µC) −→M(m̃, ñ, µ̃t, µ̃C)

vµ 7−→ ~m,

where vµ is a highest weight vector of F (m,n, µt, µC). If ~m is a singular vector of degree d,
we say that ∇ is a morphism of degree d.

We use Remark 6.10 to construct the maps in Figure 1 of all possible morphisms in the case
of K ′

4. We also observe that the symmetry of this picture is coherent with conformal duality.
Indeed, by the main result in [5] the conformal dual of a Verma module M(m,n, µt, µC) is
M(m,n,−µt + a,−µC + b), with

a = str(ad(t)|g<0
) = 2

and

b = str(ad(C)|g<0
) = 0,

where g = A(K ′
4), ”str” denotes supertrace, and ”ad” denotes the adjoint representation. In

particular the duality is obtained with the rotation by 180 degrees of the whole picture. Note
also that all compositions of two morphisms in Figure 1 must vanish by the classification of
singular vectors, and hence we obtain an infinite number of bilateral complexes of morphisms.

From Theorems 6.6, 6.7 and 6.8 it follows that the moduleM(0, 0, 2, 0) does not contain non
trivial singular vectors, hence it is irreducible due to Theorem 2.15. This is also confirmed by
the following result which can be skipped by the reader who is interested in the classification
of singular vectors only.

Proposition 6.11. The module M(0, 0, 2, 0) is irreducible and it is isomorphic to the coad-
joint representation of K(1, 4)+ on the restricted dual, i.e. K(1, 4)∗+ =

⊕
j∈Z(K(1, 4)+j)

∗.
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Proof. Observe that we consider M(0, 0, 2, 0) as a K(1, 4)+-module since the action of C is
trivial.

We first show that K(1, 4)∗+ is an irreducible K(1, 4)+−module.
We recall that the action on the restricted dual is given, for every x, y ∈ K(1, 4)+ and
f ∈ K(1, 4)∗+, by:

(x.f)(y) = −(−1)p(x)p(f)f([x, y]), (24)

where p(x) (resp. p(f)) denotes the parity of x (resp. f) and the bracket is given by (5).
Since we are considering the restricted dual, a basis of K(1, 4)∗+ is given by the dual basis
elements (tnξI)

∗ with n ≥ 0 and I ∈ I<. We will also denote Θ∗ = −2ξ∗∅ , so that Θ∗(Θ) = 1.

(m,n,−m+n
2
, m−n

2
) A

m

n

n

m

(m,n, m+n
2

+ 2, n−m
2

)C
n

m

(m,n, 1 + n−m
2
, 1 + n+m

2
) D

m

n(m,n, 1 + m−n
2
,−1− m+n

2
)B

Figure 1. Morphisms between finite Verma modules
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26 LUCIA BAGNOLI AND FABRIZIO CASELLI

We first show by induction on s+ p that

(Θ. · · · (Θ︸ ︷︷ ︸
s−times

.(ξi1 .(· · · (ξip.Θ
∗)))) · · · ) = γs,p(t

sξi1···ip)
∗, (25)

for some γs,p ∈ C \ {0}. If s+ p = 0 the result is trivial, so we assume s+ p > 0.
If s > 0, by induction hypothesis, for every n ≥ 0 and J ∈ I< we have

(Θ. · · · (Θ︸ ︷︷ ︸
s−times

.(ξi1.(· · · (ξip.Θ
∗))))(tnξJ) = −γs−1,p(t

s−1ξi1···ip)
∗([Θ, tnξJ ])

=

{
γs−1,ps if n = s and J = i1 · · · ip,

0 otherwise.

and the claim follows in this case.
If s = 0 (and p > 0) for every n ≥ 0 and J ∈ I< we have

(ξi1. · · · (ξip.(Θ
∗)))(tnξJ) = γ0,p−1(ξi1.(ξi2···ip)

∗)(tnξJ) = (−1)pγ0,p−1(ξi2···ip)
∗([ξi1 , t

nξJ ])

=

{
(−1)p+1γ0,p−1 if n = 0 and J = i1 · · · ip,

0 otherwise.

and the proof of (25) is complete.
Now we need the following observation: let m, s ≥ 0 and I,K ∈ I< be such that

deg(tmξI) ≥ deg(tsξK), i.e. 2m+ |I| − 2 ≥ 2s+ |K| − 2. Then

tm+1ξI .(t
sξK)

∗ =

{
βm,IΘ

∗ if K = I and s = m

0 otherwise.
, (26)

for suitable βm,I ∈ C\{0}. By (26) we deduce that if f ∈ K(1, 4)+ with f =
∑
αI,m(t

mξI)
∗ 6=

0 and we choose the pair I0, m0 among all pairs (I,m) with αI,m 6= 0 such that 2m+ |I| − 2
is maximum, then tm0+1ξI0.f is a nonzero scalar multiple of Θ∗. From this observation and
(25) we deduce that K(1, 4)∗+ is irreducible.

Now consider M(0, 0, 2, 0) = Ind(F ), where F = 〈v〉 is the 1-dimensional g0-module of
highest weight (0, 0, 2, 0). Since Θ∗ is a highest weight singular vector in K(1, 4)∗+ of weight
(0, 0, 2, 0) we deduce that there exists a (unique) morphism

ϕ :M(0, 0, 2, 0) → K(1, 4)∗+

such that ϕ(v) = Θ∗. The morphism ϕ is surjective by the irreducibility of K(1, 4)∗+. The
morphism ϕ is also injective since it preserves the degree, and homogeneous components of
the same degree of M(0, 0, 2, 0) and K(1, 4)∗+ have also the same dimension. �

In order to prove Theorems 6.6, 6.7 and 6.8, we need some lemmas.

Remark 6.12. We point out that, by Remark 6.5, a vector ~m ∈ Ind(F ) is a highest weight
singular vector if and only if it satisfies S0–S3. Since T , defined as in Proposition 5.10, is an
isomorphism and ~m = T−1T (~m), the fact that ~m ∈ Ind(F ) satisfies S0–S3 is equivalent to
impose conditions S0–S3 for (T ◦ fλ ◦ T

−1)T (~m), using the expression given by Proposition
5.10.
Therefore in the following lemmas we will consider a vector T (~m) ∈ Ind(F ) and we will
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impose that the expression for (T ◦ fλ ◦ T−1)T (~m) = T (fλ ~m), given by Proposition 5.10,
satisfies conditions S0–S3. We will have that ~m is a highest weight singular vector.

Motivated by Remark 6.12, we look for a singular vector ~m such that

T (~m) =

N∑

k=0

∑

L∈I<

ΘkηL ⊗ vL,k, (27)

with vL,k ∈ F for all k. For all k, we will denote v∗,k = v1234,k.
In order to make clearer how the λ−action of Proposition 5.10 works for a vector as in

(27), let us see the following example.

Example 6.13. Let T (~m) = Θ2η13 ⊗ v13,2 + η2 ⊗ v2,0. Using Proposition 5.10 and Lemma
5.11, we have:

T (ξ2λ ~m) =

= −(λ +Θ)2
{
−Θ(ξ2 ⋆ η13)⊗ v13,2 +

4∑

i=1

(∂iξ2 ⋆ ∂iη13)⊗ v13,2

+ λ
[
(ξ2 ⋆ η13)⊗ t.v13,2 +

4∑

i=1

∂i(ξ2 i ⋆ η13)⊗ v13,2 −
∑

i 6=j

(∂iξ2j ⋆ η13)⊗ ξj,i.v13,2
]

+ λ2
[
−
∑

i<j

(ξ2 ij ⋆ η13)⊗ ξj,i.v13,2 − ε2 (ξ(2)c ⋆ η13)⊗ Cv13,2
]}

−Θ(ξ2 ⋆ η2)⊗ v2,0 +

4∑

i=1

(∂iξ2 ⋆ ∂iη2)⊗ v2,0 + λ
[
(ξ2 ⋆ η2)⊗ t.v2,0 +

4∑

i=1

∂i(ξ2 i ⋆ η2)⊗ v2,0

−
∑

i 6=j

(∂iξ2j ⋆ η2)⊗ ξj,i.v2,0
]
+ λ2

[
−
∑

i<j

(ξ2ij ⋆ η2)⊗ ξj,i.v2,0 − ε(2) (ξ(2)c ⋆ η2)⊗ Cv2,0
]

=− (λ+Θ)2
{
Θη123 ⊗ v13,2 + λ

[
− η123 ⊗ t.v13,2 + ∂4(ξ24 ⋆ η13)⊗ v13,2

− (∂2ξ24 ⋆ η13)⊗ ξ4,2.v13,2
]}

+ 1⊗ v2,0 + λ
[
−
∑

j 6=2

(ξj ⋆ η2)⊗ ξj,2.v2,0
]
+ λ2η1234 ⊗ Cv2,0

=− (λ+Θ)2
{
Θη123 ⊗ v13,2 + λ

[
− η123 ⊗ t.v13,2 + η123 ⊗ v13,2 + η134 ⊗ ξ2,4.v13,2

]}

+ 1⊗ v2,0 + λ
[
− η12 ⊗ ξ1,2.v2,0 + η23 ⊗ ξ2,3.v2,0 + η24 ⊗ ξ24.v2,0

]
+ λ2η1234 ⊗ Cv2,0.

Lemma 6.14. Let ~m ∈ Ind(F ) be a singular vector, such that T (~m) is written as in (27).
The degree of T (~m) in Θ is at most 3.

Proof. Using Proposition 5.10, Lemma 5.11 and Remark 6.12, condition S1 for I = ∅ reduces
to:

0 =
d2

dλ2
(T (1λ~m)) =

N∑

k=2

∑

L

k(k − 1)(λ+Θ)k−2
[
− 2ΘηL ⊗ vL,k + λ (ηL ⊗ t.vL,k − (4− |L|)ηL ⊗ vL,k)

+ λ2
∑

i<j

(ξij ⋆ ηL)⊗ ξij.vL,k − λ3χ|L|=0η1234 ⊗ CvL,k

]
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28 LUCIA BAGNOLI AND FABRIZIO CASELLI

+ 2

N∑

k=1

∑

L

k(λ+Θ)k−1
[
ηL ⊗ t.vL,k − (4− |L|)ηL ⊗ vL,k

+ 2λ
∑

i<j

(ξij ⋆ ηL)⊗ ξij.vL,k − 3λ2χ|L|=0η1234 ⊗ CvL,k

]

+
N∑

k=0

∑

L

(λ+Θ)k
[
2
∑

i<j

(ξij ⋆ ηL)⊗ ξij.vI,k − 6λχ|L|=0η1234 ⊗ CvL,k

]
.

If we expand this expression with respect to the variables λ and λ + Θ, the coefficients of
(λ+Θ)sλ3, with s ≥ 0, are:

(s+ 2)(s+ 1)η1234 ⊗ Cv∅,s+2 = 0.

and therefore
v∅,k = 0 (28)

for all k ≥ 2. If we consider the coefficients of (λ+Θ)sλ2 with s ≥ 1 we obtain:
∑

L

∑

i<j

(s+ 2)(s+ 1)(ξij ⋆ ηL)⊗ ξij.vL,s+2 − 6(s+ 1)η1234 ⊗ Cv∅,s+1 = 0.

Therefore we obtain that for s ≥ 1:
∑

L

∑

i<j

(ξij ⋆ ηL)⊗ ξij.vL,s+2 = 0. (29)

Now we look at the coefficients of (λ+Θ)sλ with s ≥ 2 and obtain:
∑

L

(s+ 2)(s+ 1)(2ηL ⊗ vL,s+2 + ηL ⊗ t.vL,s+2 − (4− |L|)ηL ⊗ vL,s+2)

+ 4
∑

L

∑

i<j

(s+ 1)(ξij ⋆ ηL)⊗ ξij.vL,s+1 − 6η1234 ⊗ Cv∅,s = 0.

Therefore, using (28) and (29), we obtain that for s ≥ 2:
∑

L

((|L| − 2)ηL ⊗ vL,s+2 + ηL ⊗ t.vL,s+2) = 0. (30)

Finally we look at the coefficients of (λ+Θ)s with s ≥ 3 and obtain:
∑

L

(s+ 1)s(−2ηL ⊗ vL,s+1) + 2(s+ 1)(ηL ⊗ t.vL,s+1 − (4− |L|)ηL ⊗ vL,s+1)

+ 2
∑

L

∑

i<j

(ξij ⋆ ηL)⊗ ξij.vL,s = 0.

This equation together with (29) and (30) immediately implies vL,k = 0 for all k ≥ 4. �

By Lemma 6.14, for a singular vector ~m ∈ Ind(F ), T (~m) has the following form:

T (~m) = Θ3
∑

L

ηL ⊗ vL,3 +Θ2
∑

L

ηL ⊗ vL,2 +Θ
∑

L

ηL ⊗ vL,1 +
∑

L

ηL ⊗ vL,0. (31)

We write the λ−action in the following way, using Proposition 5.10 and Lemma 5.11

T (ξIλ ~m) (32)
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= b0(I) +G1(I) + λ
[
B0(I)− a0(I)−G2(I)

]
+ λ2

[
C0(I) +G3(I)

]
+ λ3D0(I)

+ (λ+Θ)
([
a0(I) + b1(I) + 2G2(I)

]
+ λ[B1(I)− a1(I)− 3G3(I)

]
+ λ2C1(I) + λ3D1(I)

)

+ (λ+Θ)2
([
a1(I) + b2(I) + 3G3(I)

]
+ λ

[
B2(I)− a2(I)

]
+ λ2C2(I) + λ3D2(C)

)

+ (λ+Θ)3
([
a2(I) + b3(I)

]
+ λ

[
B3(I)− a3(I)

]
+ λ2C3(I) + λ3D3(I)

)

+ (λ+Θ)4a3(I)

where the coefficients ap(I), bp(I), Bp(I), Cp(I), Dp(I), Gp(I) depend on I for every 0 ≤ p ≤
3. Here is their explicit expression:

ap(I) =
∑

L

(−1)(|I|(|I|+1)/2)+|I||L|(|I| − 2)(ξI ⋆ ηL)⊗ vL,p;

bp(I) =
∑

L

(−1)(|I|(|I|+1)/2)+|I||L|

[
− (−1)|I|

4∑

i=1

(∂iξI ⋆ ∂iηL)⊗ vL,p +
∑

r<s

(∂rsξI ⋆ ηL)⊗ ξr,s.vL,p)

+χ|I|=3 εI(ξIc ⋆ ηL)⊗ CvL,p

]
;

Bp(I) =
∑

L

(−1)(|I|(|I|+1)/2)+|I||L|

[
(ξI ⋆ ηL)⊗ t.vL,p − (−1)|I|

4∑

i=1

∂i(ξIi ⋆ ηL)⊗ vL,p

+ (−1)|I|
∑

i 6=j

(∂iξIj ⋆ ηL)⊗ ξji.vL,p +χ|I|=2εI(ξIc ⋆ ηL)⊗ CvL,p)

]
;

Cp(I) =
∑

L

(−1)(|I|(|I|+1)/2)+|I||L|

[∑

i<j

(ξIij ⋆ ηL)⊗ ξij.vL,p −χ|I|=1εI(ξIc ⋆ ηL)⊗ CvL,p)

]
;

Dp(I) =
∑

L

(−1)(|I|(|I|+1)/2)+|I||L|

[
−χ|I|=0 (ξ1234 ⋆ ηL)⊗ CvL,p

]
;

Gp(I) = −
∑

L

χ|I|=4εIηL ⊗ CvL,p.

We will write ap instead of ap(I) if there is no risk of confusion, and similarly for the others.

Proposition 6.15. Let ~m ∈ Ind(F ) be such that T (~m) is written as in formula (31). Using
notation (32), we have that:

(1) condition S1 implies that for all I ∈ I< we have

D3 = D2 = C3 = D1 + a3 = C2 − 3a3 = B3 + 2a3

= C1 + 2B2 + a2 + 3b3 = D0 + C1 +B2 + b3 = C0 +B1 + b2 +G3 = 0;

(2) condition S2 implies that for all I ∈ I< such that |I| ≥ 1 we have

B0 + b1 +G2 = B1 + a1 + 2b2 + 3G3 = 2a2 +B2 + 3b3 = 3a3 +B3 = 0;

(3) condition S3 implies that for all I ∈ I< such that |I| ≥ 3 we have

b0 +G1 = a0 + b1 + 2G2 = a1 + b2 + 3G3 = a2 + b3 = a3 = 0.
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30 LUCIA BAGNOLI AND FABRIZIO CASELLI

Proof. We compute d2

dλ2 (T (ξIλ ~m)) and d
dλ
(T (ξIλ ~m)) using (32). We have

d

dλ
(T (ξIλ ~m)) = B0 + b1 +G2 + λ

[
2C0 +B1 − a1 −G3

]
+ λ2

[
3D0 + C1

]
+ λ3D1

+ (λ+Θ)
([
B1 + a1 + 2b2 + 3G3

]
+ λ

[
2C1 + 2B2 − 2a2

]
+ λ2

[
3D1 + 2C2

]
+ 2λ3D2

)

+ (λ+Θ)2
([
2a2 +B2 + 3b3

]
+ λ

[
3B3 − 3a3 + 2C2

]
+ λ2

[
3D2 + 3C3

]
+ 3λ3D3

)

+ (λ+Θ)3
([
3a3 +B3

]
+ 2λC3 + 3λ2D3

)
,

and

d2

dλ2
(T (ξIλ~m))

= 2C0 + 2B1 + 2b2 + 2G3 + λ
[
6D0 + 4C1 + 2B2 − 2a2

]
+ λ2

[
6D1 + 2C2

]
+ 2λ3D2

+ (λ+Θ)
([
2C1 + 4B2 + 2a2 + 6b3

]
+ λ

[
6D1 + 8C2 + 6B3 − 6a3

]
+ λ2

[
12D2 + 6C3

]
+ 6λ3D3

)

+ (λ+Θ)2
([
2C2 + 6a3 + 6B3

]
+ λ

[
12C3 + 6D2

]
+ 18λ2D3

)

+ (λ+Θ)3
(
2C3 + 6λD3

)
.

The result follows. �

Let us show some other reductions on singular vectors.

Lemma 6.16. Let ~m ∈ Ind(F ) be a singular vector, such that T (~m) is written as in formula
(31). For all I we have that vI,3 = 0.

Proof. By Proposition 6.15, we have 2a3(i) + B3(i) = 0 and 3a3(i) + B3(i) = 0 for all i ∈
{1, 2, 3, 4}. Therefore a3(i) = 0 which immediately implies vL,3 = 0 for every L such that
|L| < 4.

Proposition 6.15 also provides D0(1)+C1(1)+B2(1)+ b3(1) = 0, C1(1)+ 2B2(1)+ a2(1)+
3b3(1) = 0 and 2a2(1) +B2(1) + 3b3(1) = 0. A linear combination of these equations gives us
D0(1) + a2(1) + b3(1) = 0. Since D0(1) = 0, we have

0 = a2(1) + b3(1) = −
∑

L

(−1)1+|L|(ξ1 ⋆ ηL)⊗ vL,2 − η234 ⊗ v1234,3 = 0,

which implies v1234,3 = 0. �

Lemma 6.16 implies a3 = b3 = B3 = C3 = D3 = G3 = 0 and so all equations in Proposition
6.15 can be significantly simplified. Next result provides a further semplification.

Lemma 6.17. Let ~m ∈ Ind(F ) be a singular vector such that T (~m) is written as in formula
(31). For all I we have that vI,2 = 0.

Proof. By Proposition 6.15 and Lemma 6.16 we know that D0(i)+C1(i)+B2(i) = 0, C1(i)+
2B2(i) + a2(i) = 0 and 2a2(i) + B2(i) = 0 for all i ∈ {1, 2, 3, 4}. Moreover D0(i) = 0 by
definition and from these equations we can deduce a2(i) = 0 for all i ∈ {1, 2, 3, 4} and, as in
the proof of Lemma 6.16 we can immediately conclude that vL,2 = 0 for every L such that
|L| < 4.

We now show that v1234,2 = 0. By Proposition 6.15 we know that b0(123) + G1(123) = 0
and since G1(123) = 0 by definition we have

0 = b0(123)
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=
∑

L

(−1)|L|
( 4∑

i=1

(∂iξ123 ⋆ ∂iηL)⊗ vL,0 +
∑

r<s

(∂rsξ123 ⋆ ηL)⊗ ξrs.vL,0 + (ξ4 ⋆ ηL)⊗ CvL,0

)
.

In this equation the unique term in η4 is

η4 ⊗ Cv∅,0

and so Cv∅,0 = 0.
By Proposition 6.15 we have that C0(1) + B1(1) + b2(1) = 0, B1(1) + a1(1) + 2b2(1) = 0

and so C0(1)− a1(1)− b2(1) = 0. We have:

0 = C0(1)− a1(1)− b2(1)

=
∑

L

∑

i<j

(−1)1+|L|(ξ1ij ⋆ ηL)⊗ ξij.vL,0 −
∑

L

(−1)1+|L|(ξ234 ⋆ ηL)⊗ CvL,0

+
∑

L

(−1)1+|L|(ξ1 ⋆ ηL)⊗ vL,1 + η234 ⊗ v1234,2.

The terms in η234 in this expression are

η234 ⊗ Cv∅,0 + η234 ⊗ v1234,2 = 0.

Since Cv∅,0 = 0, we conclude that v1234,2 = 0. �

By Lemma 6.17 we can deduce that a2 = b2 = B2 = C2 = D2 = G2 = 0 for all I.

Lemma 6.18. Let ~m ∈ Ind(F ) be a singular vector such that T (~m) is written as in formula
(31). For all L such that |L| ≤ 2, we have that vL,1 = 0.

Proof. By Proposition 6.15 and Lemmas 6.16 and 6.17, we have a1(I) = 0 for all |I| ≥ 3
which immediately implies vL,1 = 0 for all L such that |L| ≤ 1.

Let’s show the result for |L| = 2. By Proposition 6.15 and Lemmas 6.16 and 6.17, we know
that B0(a) + b1(a) = 0 for all a ∈ {1, 2, 3, 4}. Letting (a)c = (b, c, d) we have

0 =
∑

L

(−1)1+|L|
(
(ξa ⋆ ηL)⊗ t.vL,0 +

∑

i 6=a

∂i(ξai ⋆ ηL)⊗ vL,0 −
∑

j 6=a

(ξj ⋆ ηL)⊗ ξj,a.vL,0

)

+
∑

|L|≥2

(−1)1+|L|∂aηL ⊗ vL,1.

The terms in ηd of B0(a) are:

ηd ⊗ ξa,d.v∅,0.

We have shown in Lemma 6.17 that Cv∅,0 = 0 and so v∅,0 = 0 if C 6= 0. Nevertheless, if
C = 0 the λ−action in Proposition 5.10 reduces to the λ−action found in Theorem 4.3 of [1]
and one can obtain even in this case v∅,0 = 0 proceeding as in Lemma B.4 of [1].

Therefore, the unique term in ηd in the equation above is

∂aηL0
⊗ vL0,1 = 0,

where L0 = ad if a < d and L0 = da if a > d, and this implies vL0,1 = 0. �
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32 LUCIA BAGNOLI AND FABRIZIO CASELLI

By Lemmas 6.16, 6.17 and 6.18 and the fact v∅,0 = 0, for a singular vector ~m the expression
in (27) can be simplified as

T (~m) = Θ
∑

|L|≥3

ηL ⊗ vL,1 +
∑

|L|≥1

ηL ⊗ vL,0. (33)

Therefore, from (33), we have that there can only be singular vectors of degree 3, 2 and 1.
Hence we have showed Theorem 6.9. Following the notation used in [1], we rewrite (33) in
the following way: for |L| = 3, ηL will be written as η(i)c , where (i)

c = L, vL,1 will be renamed
as vi,1 and vL,0 will be renamed as vi, so that they depend on one index; for |L| = 2, ηL will
be written as η(i,j)c , where (i, j)

c = L, and vL,0 will be renamed as vi,j. In particular, by (33),
the singular vectors of degree 3, 2 and 1 are such that

degree 3: T (~m) = Θ
∑

i η(i)c ⊗ vi,1 +
∑

i ηi ⊗ vi,0,
degree 2: T (~m) = Θη∗ ⊗ v∗ +

∑
i<j η(i,j)c ⊗ vi,j,

degree 1: T (~m) =
∑

i η(i)c ⊗ vi.

By Proposition 6.15 and Lemmas 6.16, 6.17, 6.18 we obtain the following result.

Proposition 6.19. Let ~m ∈ Ind(F ) be such that T (~m) is as in formula (33). Using notation
(32), we have that:

(1) condition S1 implies that for all I ∈ I6=

C1 = D1 = D0 = C0 +B1 = 0;

(2) condition S2 implies that for all I ∈ I6= with |I| ≥ 1

B0 + b1 = B1 + a1 = 0;

(3) condition S3 implies that for all I ∈ I6= with |I| ≥ 3

b0 +G1 = a0 + b1 = a1 = 0.

7. Singular vectors of degree 2

The aim of this section is to classify all singular vectors of degree 2. We have that a singular
vector of degree 2 is such that:

T (~m) = Θη∗ ⊗ v∗ +
∑

i<j

η(i,j)c ⊗ vi,j . (34)

We will assume for our convenience that vi,i = 0 and vi,j = −vj,i for all i, j. We write the
vector ~m also in the following way:

~m =(η2 + iη1)(η4 + iη3)⊗ w1 + (η2 + iη1)(η4 − iη3)⊗ w2 + (η2 − iη1)(η4 + iη3)⊗ w3 (35)

+ (η2 − iη1)(η4 − iη3)⊗ w4 + (η2 + iη1)(η2 − iη1)⊗ w5 + (η4 + iη3)(η4 − iη3)⊗ w6 +Θ⊗ w7

=(−η13 + iη14 + iη23 + η24)⊗ w1 + (η13 + iη14 − iη23 + η24)⊗ w2 + (η13 − iη14 + iη23 + η24)⊗ w3

+ (−η13 − iη14 − iη23 + η24)⊗ w4 + (2Θ + 2iη12)⊗ w5 + (2Θ + 2iη34)⊗ w6 +Θ⊗ w7.

From these two expressions it follows that

v1,2 = 2iw5, (36)

v1,3 = w1 − w2 − w3 + w4,

v1,4 = iw1 + iw2 − iw3 − iw4,
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v2,3 = iw1 − iw2 + iw3 − iw4,

v2,4 = −w1 − w2 − w3 − w4,

v3,4 = 2iw6,

v∗ = 2w5 + 2w6 + w7.

Indeed, let us show for example one of the previous equations. In (34), let us consider
η(1,3)c ⊗ v1,3 = η24 ⊗ v1,3 . We have that T (η13) = −η24 . In (35), the terms in η13 are:

−η13 ⊗ w1 + η13 ⊗ w2 + η13 ⊗ w3 − η13 ⊗ w4,

therefore v1,3 = w1 − w2 − w3 + w4.
In the following lemma we write explicitly the relations of Proposition 6.19 for a vector as in
formula (34).

Lemma 7.1. Let ~m ∈ Ind(F ) be such that T (~m) is as in formula (34). We have that:
1) condition S1 implies (for I = ∅)

∑

i<j

(ξij ⋆ η(i,j)c)⊗ ξij.vi,j + η∗ ⊗ t.v∗ = 0; (37)

2) condition S2 implies that for all I such that |I| = 1, 2

∑

i<j

[
(ξI ⋆ η(i,j)c)⊗ t.vi,j − (−1)|I|

4∑

l=1

∂l(ξIl ⋆ η(i,j)c)⊗ vi,j + (−1)|I|
∑

k 6=l

(∂kξIl ⋆ η(i,j)c)⊗ ξlk.vi,j

(38)

+χ|I|=2 εI(ξIc ⋆ η(i,j)c)⊗ Cvi,j

]
− (−1)|I|

4∑

i=1

(∂iξI ⋆ ∂iη∗)⊗ v∗ +
∑

r<s

(∂rsf ⋆ η∗)⊗ ξrs.v∗ = 0;

3) condition S3 implies that for all I such that |I| ≥ 3

∑

i<j

(−1)(|I|(|I|+1)/2)

[
− (−1)|I|

4∑

l=1

(∂lξI ⋆ ∂lη(i,j)c)⊗ vi,j +
∑

r<s

(∂rsξI ⋆ η(i,j)c)⊗ ξrs.vi,j (39)

+χ|I|=3 εI(ξIc ⋆ η(i,j)c)⊗ Cvi,j

]
−χ|I|=4εIη∗ ⊗ Cv∗ = 0.

The following result collects the crucial equations that we will use in the classification of
singular vectors of degree 2.

Lemma 7.2. Let ~m ∈ Ind(F ) be as in (34). Then for any permutation (a, b, c, d) of {1, 2, 3, 4}
we have

∑

j 6=a

(−1)a+jξja.vj,a = v∗; (40)

t.va,b − va,b +
∑

j 6=a,b

(−1)a+jξaj .vj,b = 0; (41)

ξab.v∗ + (−1)a+bt.va,b +
∑

j 6=a,b

(−1)b+jξaj.vj,b −
∑

j 6=a,b

(−1)a+jξbj.vj,a − ε(a,b)ε(c,d)Cvc,d = 0; (42)
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34 LUCIA BAGNOLI AND FABRIZIO CASELLI

∑

i<j

(−1)i+jξij.vi,j = t.v∗; (43)

(−1)b+cvb,c − (−1)a+cξab.va,c + (−1)a+bξac.va,b + ε(a,b,c)(−1)a+dCva,d = 0; (44)
∑

i<j

ξ(ij)c .vi,j + Cv∗ = 0. (45)

Finally:

e1.v∗ = 0 e2.v∗ = 0 (46)

e1.v1,2 = −iv1,3 + v2,3, e2.v1,2 = −v1,4 − iv2,4,

e1.v1,3 = iv1,2, e2.v1,3 = −iv3,4,

e1.v1,4 = −v3,4, e2.v1,4 = v1,2,

e1.v2,3 = −v1,2, e2.v2,3 = v3,4,

e1.v2,4 = −iv3,4, e2.v2,4 = iv1,2,

e1.v3,4 = v1,4 + iv2,4, e2.v3,4 = iv1,3 − v2,3,

where e1 and e2 are defined by (21) and (22).

Proof. We will repeatedly use Lemma 7.1.
• Equation (40). We consider Equation (38) with I = a:

∑

i<j

[
(ξa ⋆ η(i,j)c)⊗ t.vi,j +

4∑

l=1

∂l(ξal ⋆ η(i,j)c)⊗ vi,j +
∑

l 6=a

(ξl ⋆ η(i,j)c)⊗ ξal.vi,j
]
+ ∂aη∗ ⊗ v∗ = 0,

(47)

and, considering the terms in η(a)c , we obtain:

0 =
∑

l<a

(ξl ⋆ η(l,a)c)⊗ ξal.vl,a +
∑

l>a

(ξl ⋆ η(a,l)c)⊗ ξal.va,l + ∂aη∗ ⊗ v∗

=
∑

l 6=a

(−1)lη(a)c ⊗ ξl,a.vl,a + (−1)a−1η(a)c ⊗ v∗.

and Equation (40) follows.
• Equation (41). Consider the terms in η(b)c in Equation (47):

0 = ηaη(a,b)c ⊗ t.va,b − ηaη(a,b)c ⊗ va,b −
∑

a6=l, l<b

(ξl ⋆ η(l,b)c)⊗ ξla.vl,b −
∑

a6=l, l>b

(ξl ⋆ η(b,l)c)⊗ ξla.vb,l

= (−1)a−1η(b)c ⊗ t.va,b − (−1)a−1η(b)c ⊗ va,b −
∑

a6=l, l<b

(−1)l−1η(b)c ⊗ ξla.vl,b

−
∑

a6=l, l>b

(−1)lη(b)c ⊗ ξla.vb,l

= (−1)a−1η(b)c ⊗ t.va,b − (−1)a−1η(b)c ⊗ va,b +
∑

l 6=a,b

(−1)lη(b)c ⊗ ξla.vl,b,

and Equation (41) follows.
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• Equation (42). We consider Equation (38) with I = ab and we assume c < d with no loss
of generality. We have

0 =− η∗ ⊗ ξab.v∗ − (−1)a+bη∗ ⊗ t.va,b

+
∑

i<j

∑

l 6=k

(∂lξabk ⋆ η(i,j)c)⊗ ξkl.vi,j + ε(a,b)(ξcd ⋆ η(c,d)c)⊗ Cvc,d.

The coefficient of −η∗ in this expression is:

0 = ξab.v∗ + (−1)a+bt.va,b −
∑

j 6=a,b

(−1)b+jξja.vj,b +
∑

j 6=a,b

(−1)a+jξjb.vj,a − ε(a,b)ε(c,d)Cvc,d.

• Equation (43). This follows immediately by Equation (37).
• Equation (44). Equation (39) for I = abc provides

0 =
∑

i<j

( 4∑

l=1

(∂lξabc ⋆ ∂lη(i,j)c)⊗ vi,j +
∑

r<s

(∂rsξabc ⋆ η(i,j)c)⊗ ξrs.vi,j + ε(a,b,c)(ξd ⋆ η(i,j)c)⊗ Cvi,j
)
.

Considering the coefficients of (−1)aη(a)c we have:

(−1)b+cvb,c − (−1)a+cξab.va,c + (−1)a+bξac.va,b + ε(a,b,c)(−1)a+dCva,d = 0.

• Equation (45). Equation (39) for I = 1234 is:

0 =−
∑

i<j

4∑

l=1

(∂lξ1234 ⋆ ∂lη(i,j)c)⊗ vi,j +
∑

i<j

∑

r<s

(∂rsξ1234 ⋆ η(i,j)c)⊗ ξrs.vi,j − η∗ ⊗ Cv∗

=− η∗ ⊗
∑

i<j

ξ(i,j)c ⊗ vi,j − η∗ ⊗ Cv∗.

• Equations (46). These equations are a consequence of S0, i.e. e1.~m = e2.~m = 0. Recall
that T (e1.~m) = T ((−ξ13 + iξ23).~m) = −(T (ξ13λ ~m))|λ=0 + i(T (ξ23λ ~m))|λ=0 and so it can be
easily computed by means of Proposition 5.10. We obtain

0 = T (e1.~m)

= −η∗ ⊗ e1.v∗ − (η1 − iη2)η4 ⊗ v1,2 − η3η4 ⊗ e1.v1,2 − iη3η4 ⊗ v1,3 − η2η4 ⊗ e1.v1,3

+ η1η2 ⊗ v1,4 − η2η3 ⊗ e1.v1,4 + η3η4 ⊗ v2,3 − η1η4 ⊗ e1.v2,3

+ iη1η2 ⊗ v2,4 − η1η3 ⊗ e1.v2,4 + (−η2η3 − iη1η3)⊗ v3,4 − η1η2 ⊗ e1.v3,4

= −η∗ ⊗ e1.v∗ + η1η2 ⊗ (v1,4 + iv2,4 − e1.v3,4) + η1η3 ⊗ (−e1.v2,4 − iv3,4)

+ η1η4 ⊗ (−v1,2 − e1.v2,3) + η2η3 ⊗ (−e1.v1,4 − v3,4)

+ η2η4 ⊗ (−e1.v1,3 + iv1,2) + η3η4 ⊗ (−e1.v1,2 − iv1,3 + v2,3).

From the previous equation we obtain relations (46) for e1.
Equations (46) for e2 are obtained similarly.

�

Lemma 7.3. If ~m is a singular vector of degree 2 such that T (~m) is as in (34) then with
v∗ = 0.
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36 LUCIA BAGNOLI AND FABRIZIO CASELLI

Proof. Let T (~m) ∈ Ind(F ) be as in formula (34). We show that relations of Lemma 7.2 lead
to v∗ = 0. Let a, b ∈ {1, 2, 3, 4} with a < b and (a, b)c = (c, d).
Considering Equation (41) and the same equation for reversed role of a and b we can deduce

0 =− (−1)a+b2t.va,b + 2(−1)a+bva,b −
∑

j 6=a,b

(−1)b+jξaj .vj,b +
∑

j 6=a,b

(−1)a+jξbj.vj,a.

We compare this with Equation (42) and obtain

ξab.v∗ = (−1)a+bt.va,b + 2(−1)a+b+1va,b + Cvc,d, (48)

since for a < b we have that ε(a,b)ε(c,d) = 1.
Now consider Equation (42):

0 = ξab.v∗ + (−1)a+bt.va,b +
∑

j 6=a,b

[(−1)b+jξaj .vjb − (−1)a+jξbj .vj,a]− Cvc,d. (49)

We also consider (44) with a = j, b = a, c = b and d = h and we substitute it into (49); we
obtain

ξab.v∗ =(−1)a+b+1t.va,b + 2(−1)a+bva,b +
∑

j 6=a,b

ε(j,a,b)(−1)h+jCvj,h + Cvc,d (50)

=(−1)a+b+1t.va,b + 2(−1)a+bva,b +
∑

j<a or j>b

(−1)jCvj,h +
∑

a<j<b

(−1)j+1Cvj,h + Cvc,d.

Combining (50) and (48), we get:

(−1)a+b2t.va,b =4(−1)a+bva,b +
∑

j<a or j>b

(−1)jCvj,h +
∑

a<j<b

(−1)j+1Cvj,h.

Comparing this equation with (50) we obtain

2ξab.v∗ =
∑

j<a or j>b

(−1)jCvj,h +
∑

a<j<b

(−1)j+1Cvj,h + 2Cvc,d,

which simplifies to

ξa,b.v∗ = 0 (51)

for every a < b. This implies that, if v∗ 6= 0, then F = 〈v∗〉 has dimension 1 and so(4) acts
trivially on it. Moreover all the va,b’s are scalar multiple of v∗ since F = 〈v∗〉.
By (40) we also have v∗ =

∑
j 6=a(−1)a+jξja.vj,a for every 1 ≤ a ≤ 4; then, since all the va,b’s

are multiple of v∗, we have a contradiction. �

By Lemma 7.3 we know that if ~(m) is a singular vector of degree 2 T (~m) has the following
form

T (~m) =
∑

i<j

η(i,j)c ⊗ vi,j . (52)

Remark 7.4. Relations (46), by Lemma 7.3 and notation (36) are equivalent to the following:

e1.w1 = −w5 − w6, e2.w1 = w5 + w6, (53)

e1.w2 = w5 − w6, e2.w2 = w5 − w6,

e1.w3 = 0, e2.w3 = 0,
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37

e1.w4 = 0, e2.w4 = 0,

e1.w5 = w3 − w4, e2.w5 = w3 + w4,

e1.w6 = −w3 − w4, e2.w6 = −w3 + w4.

We represent these relations in the following diagrams

〈w1〉 〈w5 + w6〉 〈w4〉,

e1

e2

e1

e2

〈w2〉 〈w5 − w6〉 〈w3〉.

e1

e2

e1

e2

Proof of Theorem 6.7. Throughout this proof we let µ = (m,n, µ0, µ1) where m,n, µ0, µ1

denote the highest weights of F with respect to hx, hy, t, C respectively. We split the proof
in four cases that we number by 1), 2), 3), 4).

1) Let w5 = w6 = 0.
We immediately have also w3 = w4 = 0 by (53).

1a) Let w1 6= 0 and w2 = 0.
By (53), we have that w1 is a highest weight vector and, by (36),

v1,2 = v3,4 = 0, v1,3 = w1, v1,4 = iw1, v2,3 = iw1, v2,4 = −w1.

Equation (41) for a = 1, b = 3 gives (t − iξ12 − 1).w1 = 0, Equation (44) for
a = 1, b = 2, c = 3 gives (C − iξ12 + 1).w1 = 0, and Equation (44) for a = 3, b =
1, c = 4 gives (C − iξ34 + 1).w1 = 0.
Recalling that hx = −iξ12 + iξ34 and hy = −iξ12 − iξ34 we deduce that µ =
(0, n, 1− n

2
,−1− n

2
) for some n ∈ Z≥0.

A simple verification shows that these conditions lead to the vector

~m2a = w11w21 ⊗ yn1 ,

in M(0, n, 1− n
2
,−1− n

2
) for n ∈ Z≥0 which is indeed a singular vector.

1b) Let w1 = 0 and w2 6= 0.
By (53) we have that w2 is a highest weight vector and, by (36),

v1,2 = v3,4 = 0, v1,3 = −w2, v1,4 = iw2, v2,3 = −iw2, v2,4 = −w2, v3,4 = 0.

Equation (41) for a = 1, b = 3 gives (t − iξ12 − 1).w2 = 0, Equation (44) for
a = 1, b = 2, c = 3 gives (C + iξ12 − 1).w2 = 0, and Equation (44) for a = 3, b =
1, c = 4 gives (−C + iξ34 + 1).w2 = 0.
From these conditions, recalling that hx = −iξ12 + iξ34 and hy = −iξ12 − iξ34, we
deduce that µ = (m, 0, 1 − m

2
, 1 + m

2
) with m ∈ Z≥0 and we obtain the singular

vector

~m2b = w11w12 ⊗ xm1 ,

in M(m, 0, 1− m
2
, 1 + m

2
) with m ∈ Z≥0.

1c) Let w1 6= 0 and w2 6= 0.
By (53), we have that both w1 and w2 are highest weight vectors of F , so that
w1 = αw2 for some α 6= 0. By Equation (44) for a = 3, b = 2, c = 4 and for
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38 LUCIA BAGNOLI AND FABRIZIO CASELLI

a = 4, b = 1, c = 3 we obtain respectively

(−α− 1− iξ34(−α + 1) + C(−α + 1)).w2 = 0

and
(α− 1− iξ34(α + 1) + C(α + 1)).w2 = 0.

The sum and the difference of these two equations show an evident contradiction.
2) Let w5 6= 0 and w5 + w6 = 0.

Since e1.w5 = w3 −w4 and e1.w6 = −w3 −w4 we deduce that w4 = 0; we also know
that w2 6= 0 since e1.w2 = 2w5.
2a) Let w1 = 0 and w3 6= 0. By Remark 7.4 w3 is a highest weight vector and

Equations (36) provide

v1,2 = 2iw5, v1,3 = −w2 − w3, v1,4 = iw2 − iw3,

v2,3 = −iw2 + iw3, v2,4 = −w2 − w3, v3,4 = −2iw5.

Let us compute the weight of w2 and w3.
Equation (41) for a = 1, b = 3 gives t.(−w2−w3)+w2+w3− ξ1,2.(−iw2+ iw3)+
ξ14.(−2iw5) = 0, and for a = 2, b = 3 gives t.(−iw2+iw3)+iw2−iw3+ξ12.(−w2−
w3)− ξ24.(−2iw5) = 0.
Recalling the definition of e2 in (22), we deduce from these equations that 2it.w3−
2iw3 − 2ξ12.w3 − 2ie2.w5 = 0 that is equivalent to

(t + iξ12 − 2).w3 = 0.

Equation (44) for a = 1, b = 2, c = 4 gives −w2−w3+ξ12.(iw2− iw3)−ξ14.2iw5−
C(−w2−w3) = 0, and for a = 2, b = 1, c = 4 gives −iw2+ iw3+ ξ12.(−w2−w3)+
ξ24.(2iw5)− C(−iw2 + iw3) = 0.
By these equations we obtain −2w3 − 2iξ12.w3 + 2e2.w5 + 2Cw3 = 0 that is
equivalent to

(−iξ1,2 + C).w3 = 0.

Equation (44) for a = 3, b = 1, c = 4 gives −i(w2 − w3) + 2iξ13.w5 + ξ34.(w2 +
w3)+ iC(w2−w3) = 0, and for a = 3, b = 2, c = 4 gives −w2−w3−ξ2,3.(−2iw5)+
ξ3,4.(−iw2 + iw3)− C(−w2 − w3) = 0.
By these equations we obtain

(iξ3,4 + C).w3 = 0.

Hence, we conclude that µ = (m, 0, m
2
+ 2,−m

2
) for some m ≥ 0 and since

dimF ≥ 3 (since, e.g., w2, w3 and w5 are linearly independent) we also have
m ≥ 2. All these conditions lead to

~m2c = w22w21 ⊗ xm1 + (w11w22 + w21w12)⊗ xm−1
1 x2 − w11w12 ⊗ xm−2

1 x22,

in M(m, 0, m
2
+ 2,−m

2
) with m ≥ 2, which is indeed a singular vector.

2b) Let w1 6= 0 or w3 = 0. We show that in this case necessarily C = 0 so the
λ−action of Proposition 5.10 reduces to the action found in Theorem 4.3 of [1];
in that case it was shown that there are no singular vectors of degree 2.
Equation (44) for a = 1, b = 3, c = 4 gives 2iw5+ ξ13.(iw1+ iw2− iw3)+ ξ14.(w1−
w2 − w3)− 2iCw5 = 0.
Equation (44) for a = 2, b = 3, c = 4 gives 2iw5 + ξ23.(w1 +w2 +w3)− ξ24.(iw1 −
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iw2 + iw3)− 2iCw5 = 0.
We take the sum of these equations and get:

0 = 4iw5 − ie1.w1 − ie1.w2 + ie2.w1 − ie2.w2 − 2ifx.w3 − 4iCw5

= −2ifx.w3 − 4iCw5.

If w3 = 0 we can conclude C = 0 so we can assume w3 6= 0 and w1 6= 0.
We observe that w3 and w1 are highest weight vectors so that they are scalar
multiples of each other. If we take the difference of the two equations above we
get fx.w1 = 0 and so we have C = 0 also in this case.

3) Let w5 = w6 6= 0.
This condition implies w1 6= 0 since e1.w1 = −w5−w6, and w3 = 0 since e1(w5−w6) =
2w3.
3a) Let w2 = 0 and w4 6= 0. By Remark 7.4 w4 is a highest weight vector and

Equations (36) reduce to:

v1,2 = 2iw5, v1,3 = w1 + w4, v1,4 = iw1 − iw4,

v2,3 = iw1 − iw4, v2,4 = −w1 − w4, v3,4 = 2iw5.

Let us compute the weight of w4.
Equation (41) for a = 1, b = 3 gives t.(w1 + w4) − w1 − w4 − iξ12.(w1 − w4) +
2iξ14.w5 = 0, and for a = 2, b = 3 gives it.(w1−w4)− i(w1−w4)+ ξ12.(w1+w4)−
2iξ24.w5 = 0.
These two equations provide

(t + iξ12 − 2).w4 = 0.

Equation(44) for a = 1, b = 2, c = 4 gives −w1 −w4 + iξ12.(w1 −w4)− 2iξ14.w5 −
C(w1 + w4) = 0, and for a = 2, b = 1, c = 4 gives i(−w1 + w4)− ξ12.(w1 + w4) +
2iξ24.w5 − iC(w1 − w4) = 0.
These two equations provide

(iξ12 + C).w4 = 0.

Equation (44) for a = 3, b = 1, c = 4 gives −i(w1 − w4) − 2iξ13.w5 − ξ34.(w1 +
w4)− iC(w1−w4) = 0 and for for a = 3, b = 2, c = 4 gives −w1−w4−2iξ23.w5+
iξ34.(w1 − w4)− C(w1 + w4) = 0.
These two equations provide

(iξ34 + C).w4 = 0.

We conclude that µ = (0, n, n
2
+2, n

2
) for some n ≥ 0. Moreover, since w1, w5 and

w4 are linearly independent we have dimF ≥ 3 and so n ≥ 2. All this conditions
lead to the vector

~m2d = w22w12 ⊗ yn1 − (w22w11 + w21w12)⊗ yn−1
1 y2 − w11w21 ⊗ yn−2

1 x22,

in M(0, n, n
2
+ 2, n

2
) with n ≥ 2 which is indeed a singular vector.

3b) Let w2 6= 0 or w4 = 0.
We show that in this case necessarily C = 0, so the λ−action of Proposition 5.10
reduces to the action found in Theorem 4.3 of [1] and we already know that there
are no singular vectors of degree 2.
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40 LUCIA BAGNOLI AND FABRIZIO CASELLI

Equation (44) for a = 1, b = 3, c = 4 gives −2iw5+ iξ13.(w1+w2−w4)+ξ14.(w1−
w2 + w4)− 2iCw5 = 0, and for a = 2, b = 3, c = 4 gives −2iw5 + ξ23.(w1 + w2 +
w4)− iξ24.(w1 − w2 − w4)− 2iCw5 = 0.
Taking the sum of these equations we obtain

0 = −4iw5 − ie1.w1 + ie2.w1 − ie1.w2

− ie2.w2 − i(ξ13 − ξ24 + iξ14 + iξ23).w4 − 4iCw5

= −2ify.w4 − 4iCw5.

Therefore if w4 = 0 we can conclude C = 0. If w4 6= 0 and so w2 6= 0 and both
w2 and w4 are highest weight vectors. We take the difference of the previous
equations and we obtain:

0 = i(ξ13 + iξ23 + ξ24 − iξ14).w1 + i(ξ13 + iξ23 − ξ24 + iξ14).w2

− i(ξ13 + ξ24 + iξ14 − iξ2,3).w4

= 2ifx.w1 + 2ify.w2 + i(e1 + e2).w4

= 2ifx.w1 + 2ify.w2.

Since w2 is a highest weight vector and w1 is not, these two terms are both 0.
In particular, since w4 is a scalar multiple of w2 we have that fy.w4 = 0 and we
conclude C = 0 by a previous equation.

4) Let w5 6= ±w6.
We show that in this case necessarily C = 0, so the λ−action of Proposition 5.10
reduces to the action found in Theorem 4.3 of [1] and we already know that there are
no singular vectors of degree 2.
Equation (44) for a = 1, b = 3, c = 4 gives

−2iw6 + iξ13.(w1 + w2 − w3 − w4) + ξ14.(w1 − w2 − w3 + w4)− 2iCw5 = 0,

and for a = 2, b = 3, c = 4 gives

−2iw6 + ξ23.(w1 + w2 + w3 + w4)− iξ24.(w1 − w2 + w3 − w4)− 2iCw5 = 0.

These equations provide

2Cw5 + fx.w3 + fy.w4 = 0. (54)

Equation (44) for a = 4, b = 1, c = 2 gives

−2iw5 + ξ14.(w1 + w2 + w3 + w4)− iξ24.(w1 + w2 − w3 − w4)− 2iCw6 = 0,

and for a = 3, b = 1, c = 2 gives

−2iw5 + iξ13.(w1 − w2 + w3 − w4) + ξ23.(w1 − w2 − w3 + w4)− 2iCw6 = 0.

These equations provide

2Cw6 + fx.w3 − fy.w4 = 0 (55)

If w3 = 0 or w4 = 0 we immediate deduce by (54) and (55) that C = 0, since
w5 6= ±w6. If w3 6= 0 and w4 6= 0 they are both highest weight vectors. Applying
e1 = ex + ey to (54) we obtain

2C(w3 − w4) + hx.w3 + hy.w4 = 0
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and applying e2 = ex − ey to (54) we obtain

2C(w3 + w4) + hx.w3 − hy.w4 = 0.

From these equations we deduce 2C +m = 0 and so C ≤ 0, and −2C + n = 0 and so
C ≥ 0.

�

8. Singular vectors of degree 3

The aim of this section is to classify all singular vectors of degree 3.
We have that a singular vector ~m of degree 3 is such that:

T (~m) = Θ
∑

i

η(i)c ⊗ vi,1 +
∑

i

ηi ⊗ vi,0. (56)

We write the vector ~m also in the following way

~m =(η2 + iη1)(η2 − iη1)(η4 + iη3)⊗ w1 + (η2 + iη1)(η2 − iη1)(η4 − iη3)⊗ w2+ (57)

(η4 + iη3)(η4 − iη3)(η2 + iη1)⊗ w3 + (η4 + iη3)(η4 − iη3)(η2 − iη1)⊗ w4+

Θ(η2 + iη1)⊗ w5 +Θ(η2 − iη1)⊗ w6 +Θ(η4 + iη3)⊗ w7 +Θ(η4 − iη3)⊗ w8

=(2Θiη3 + 2Θη4 − 2η1η2η3 + 2iη1η2η4)⊗ w1 + (−2iΘη3 + 2Θη4 + 2η1η2η3 + 2iη1η2η4)⊗ w2+

(2iΘη1 + 2Θη2 − 2η1η3η4 + 2iη2η3η4)⊗ w3 + (−2iΘη1 + 2Θη2 + 2η1η3η4 + 2iη2η3η4)⊗ w4+

Θ(η2 + iη1)⊗ w5 +Θ(η2 − iη1)⊗ w6 +Θ(η4 + iη3)⊗ w7 +Θ(η4 − iη3)⊗ w8.

From these two expressions it follows that

v1,0 = 2iw3 + 2iw4, (58)

v2,0 = 2w3 − 2w4,

v3,0 = 2iw1 + 2iw2,

v4,0 = 2w1 − 2w2,

v1,1 = −2iw3 + 2iw4 − iw5 + iw6,

v2,1 = 2w3 + 2w4 + w5 + w6,

v3,1 = −2iw1 + 2iw2 − iw7 + iw8,

v4,1 = 2w1 + 2w2 + w7 + w8.

Indeed, let us show for example one of the previous equations. In (56), let us consider η2⊗v2,0.
We have that η2 is the Hodge dual of −η134. In (57), the terms in η134 are:

−2η134 ⊗ w3 + 2η134 ⊗ w4,

hence v2,0 = 2w3 − 2w4. Analogously for v1,0, v3,0 and v4,0. Moreover in (56), let us consider,
for example, Θη(1)c ⊗ v1,1 = Θη234 ⊗ v1,1. We have that Θη234 is the Hodge dual of −Θη1. In
(57), the terms in Θη1 are:

2iΘη1 ⊗ w3 − 2iΘη1 ⊗ w4 + iΘη1 ⊗ w5 − iΘη1 ⊗ w6,

hence v1,1 = −2iw3 + 2iw4 − iw5 + iw6. Analogously for v2,1, v3,1 and v4,1.
In the following lemma we write explicitly some of the relations of Proposition 6.19 for a
vector as in formula (56).

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I:1
0.1

06
3/5

.00
98

44
1



42 LUCIA BAGNOLI AND FABRIZIO CASELLI

Lemma 8.1. Let ~m ∈ IndF be a singular vector such that T (~m) is as in formula (56). Then
1) For all b ∈ {1, 2, 3, 4} we have

0 =
∑

i

[∑

l<k

(ξblk ⋆ ηi)⊗ ξlk.vi,0 − εb(ξ(b)c ⋆ ηi)⊗ Cvi,0 + (ξb ⋆ η(i)c)⊗ t.vi,1 (59)

+
∑

l 6=k

(∂lξbk ⋆ η(i)c)⊗ ξlk.vi,1

]
.

2) For all s ∈ {1, 2, 3, 4} we have

0 =
∑

i

[
(ξs ⋆ ηi)⊗ t.vi,0 +

4∑

l=1

∂l(ξsl ⋆ ηi)⊗ vi,0 +
∑

l 6=k

(∂lξsk ⋆ ηi)⊗ ξlk.vi,0 (60)

+

4∑

l=1

(∂lξs ⋆ ∂lη(i)c)⊗ vi,1

]
,

For all b ∈ {1, 2, 3, 4} we have

0 =
∑

i

[
(ξb ⋆ η(i)c)⊗ t.vi,1 +

∑

l 6=k

(∂lξbk ⋆ η(i)c)⊗ ξlk.vi,1 − (ξb ⋆ η(i)c)⊗ vi,1

]
. (61)

3) For all I such that |I| = 3 we have

0 =
∑

i

[
∂iηI ⊗ vi,0 +

∑

r<s

(∂rsξI ⋆ ηi)⊗ ξrs.vi,0 + εI(ξIc ⋆ ηi)⊗ Cvi,0

]
. (62)

For all I such that |I| = 4 we have

0 =
∑

i

[
− ∂iηI ⊗ vi,0 +

∑

r<s

(∂rsf ⋆ ηi)⊗ ξrs.vi,0 − εIη(i)c ⊗ Cvi,1

]
. (63)

Proof. These are particular cases of Proposition 6.19. In particular we have (59) is C0(b) +
B1(b) = 0, (60) is B0(s) + b1(s) = 0, (61) is B1(b) + a1(b) = 0, (62) is b0(I) + G1(I) = 0 for
|I| = 3 and (63) is b0(I) +G1(I) = 0 for |I| = 4. �

Lemma 8.2. Let ~m ∈ IndF be a highest weight singular vector such that T (~m) is as in
formula (56). Then for every (a, b, c, d) permutation of {1, 2, 3, 4} we have

va,1 = (−1)a+12Cva,0. (64)

t.va,0 − 2va,0 + ξab.vb,0 = 0 (65)

vc,0 + ξca.va,0 + ξcb.vb,0 = 0, (66)

ξbc.vd,0 + ε(a,b,c)Cva,0 = 0. (67)

Moreover C (resp. t) acts as multiplication by ±1
2
(resp. 5

2
) on F .

Finally:

e1.v1,0 = −v3,0, e2.v1,0 = −iv4,0, (68)
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e1.v2,0 = iv3,0, e2.v2,0 = −v4,0,

e1.v3,0 = v1,0 − iv2,0, e2.v3,0 = 0,

e1.v4,0 = 0 e2.v4,0 = iv1,0 + v2,0,

where e1 and e2 are defined by (21) and (22).

Proof. • Equation (64). We consider the difference between (59) and (61). We assume
(a, c, d) = (b)c. We have that:

− (ξb ⋆ η(b)c)⊗ vb,1 =

4∑

i=1

∑

l<k

(ξblk ⋆ ηi)⊗ ξlk.vi,0 − εb(ξacd ⋆ ηb)⊗ Cvb,0.

It is equivalent to:

(ξb ⋆ η(b)c)⊗ vb,1 = −
∑

l<k

(ξblk ⋆ η(b,l,k)c)⊗ ξlk.v(b,l,k)c,0 − εbηbacd ⊗ Cvb,0. (69)

Let us focus on Equation (60) for s 6= b. We have:

0 =

4∑

i=1

∂sη(i)c ⊗ vi,1 +

4∑

i=1

(ξs ⋆ ηi)⊗ t.vi,0 +

4∑

i=1

4∑

l=1

∂l(ξsl ⋆ ηi)⊗ vi,0 +

4∑

i=1

∑

l 6=s

(ξl ⋆ ηi)⊗ ξsl.vi,0.

(70)

The terms in η(s,b)c of this equation are:

∂sη(b)c ⊗ vb,1 +
∑

l 6=s,b

(ξl ⋆ η(s,b,l)c)⊗ ξsl.v(s,b,l)c,0 = 0.

We take the sum over s 6= b and, as in [1], using (69) we obtain:

0 =
∑

s 6=b

(ξs ⋆ ∂sη(b)c)⊗ vb,1 +
∑

s 6=b

∑

l 6=s,b

(ξsl ⋆ η(s,b,l)c)⊗ ξsl.v(s,b,l)c,0

=3η(b)c ⊗ vb,1 + 2
∑

s<l

(ξsl ⋆ η(s,b,l)c)⊗ ξsl.v(s,b,l)c,0

=η(b)c ⊗ (vb,1 − 2ε(b)Cvb,0).

Equation (64) follows.
• Equation (65). Given r 6= s ∈ {1, 2, 3, 4}, the terms in ηsr of (70) are:

ηsr ⊗ t.vr,0 +
∑

l 6=s,r

∂l(ξsl ⋆ ηr)⊗ vr,0 − ηsr ⊗ ξsr.vs,0 = 0.

This condition is equivalent to:

t.vr,0 − 2vr,0 − ξsr.vs,0 = 0

which is Equation (65).
• Equations (66) and (67).
Let us analyze Equation (62) for I = abc. We obtain:

4∑

i=1

4∑

l=1

(∂lξabc ⋆ ∂lηi)⊗ vi,0 +
∑

r<s

(∂rsξabc ⋆ ηi)⊗ ξrs.vi,0 +
∑

i

ε(a,b,c)(ξd ⋆ ηi)⊗ Cvi,0 = 0.
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44 LUCIA BAGNOLI AND FABRIZIO CASELLI

Looking at the coefficients of ηab and ηad we obtain Equations (66) and (67):

vc,0 + ξca.va,0 + ξcb.vb,0 = 0,

ξbc.vd,0 + ε(a,b,c)Cva,0 = 0.

• C = ±1/2 and t = 5/2.
Using (64), Equation (63) for I = 1234 is:

0 =−
4∑

i=1

4∑

l=1

(∂lξ1234 ⋆ ∂lηi)⊗ vi,0 +
∑

r<s

4∑

i=1

(∂rsξ1234 ⋆ ηi)⊗ ξrs.vi,0 − C
∑

i

η(i)c ⊗ vi,1

=η123 ⊗ ((1 + 2C2)v4,0 + ξ41.v1,0 + ξ42.v2,0 + ξ43.v3,0)

− η124 ⊗ ((1 + 2C2)v3,0 + ξ31.v1,0 + ξ32.v2,0 + ξ34.v4,0)

+ η134 ⊗ ((1 + 2C2)v2,0 + ξ21.v1,0 + ξ23.v3,0 + ξ24.v4,0)

− η234 ⊗ ((1 + 2C2)v1,0 + ξ12.v2,0 + ξ13.v3,0 + ξ14.v4,0).

Therefore for every a = 1, 2, 3, 4 we have (1 + 2C2)va,0 +
∑

b6=a ξab.vb,0 = 0 and by Equation

(65) we deduce (7 + 2C2 − 3t).va,0 = 0. This implies that t acts as 1
3
(7 + 2C2) on F .

Equation (66), for a = 2, b = 3, c = 1, is:

v1,0 + ξ13.v3,0 + ξ12.v2,0 = 0.

Using (65) and the fact that t acts as 1
3
(7 + 2C2), we get

0 =v1,0 + ξ13.v3,0 + ξ12.v2,0

=v1,0 − 2
1 + 2C2

3
v1,0 =

1− 4C2

3
v1,0.

From this we deduce that C = ±1
2
and so t acts as 5

2
.

• Equations (68). The fact that ~m is annihilated by e1 = −ξ13 + iξ23 provides:

0 =−
∑

i

4∑

l=1

(∂l(−ξ13 + iξ23) ⋆ ∂lηi)⊗ vi,0 +
∑

i

∑

r<s

(∂rs(−ξ13 + iξ23) ⋆ ηi)⊗ ξrs.vi,0

=η3 ⊗ v1,0 − η1 ⊗ e1.v1,0 − iη3 ⊗ v2,0 − η2 ⊗ e1.v2,0 + (−η1 + iη2)⊗ v3,0 − η3 ⊗ e1.v3,0

− η4 ⊗ e1.v4,0

=− η1 ⊗ (e1.v1,0 + v3,0) + η2 ⊗ (iv3,0 − e1.v2,0) + η3 ⊗ (v1,0 − iv2,0 − e1.v3,0)− η4 ⊗ e1.v4,0.

Equations (68) for e1 follow. Equations for e2 are obtained similarly. �

Remark 8.3. Let us point out that relations (64) are equivalent to the following, using
notation (58):

−2iw3 + 2iw4 − iw5 + iw6 = 2C(2iw3 + 2iw4),

2w3 + 2w4 + w5 + w6 = −2C(2w3 − 2w4),

−2iw1 + 2iw2 − iw7 + iw8 = 2C(2iw1 + 2iw2),

2w1 + 2w2 + w7 + w8 = −2C(2w1 − 2w2).

Thus, we obtain:

w5 = −(2 + 4C)w3, (71)
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w6 = −(2− 4C)w4,

w7 = −(2 + 4C)w1,

w8 = −(2− 4C)w2.

Equations (68) are therefore equivalent to the following, using notation (58):

e1.w1 = w4, e2.w1 = −w4, (72)

e1.w2 = w4, e2.w2 = w4,

e1.w3 = −w1 − w2, e2.w3 = −w1 + w2,

e1.w4 = 0, e2.w4 = 0.

We represent these relations in the following diagram

〈w3〉

〈−w1 − w2〉

〈w2 − w1〉

〈w4〉.

e1

e2

e1

e2

We are now ready to prove the stated classification of singular vectors of degree 3.

Proof of Theorem 6.8. Let µ = (m,n, 5/2, C), with C = ±1/2, be the highest weight of F
with respect with (hx, hy, t, C). We observe that w3 6= 0 otherwise ~m = 0.

1) Let w4 = 0.
1a) Let w2 = 0 and w1 6= 0. By Equations (72), we have that w1 is a highest weight

vector. By (58) we have:

v1,0 = 2iw3, v2,0 = 2w3, v3,0 = 2iw1, v4,0 = 2w1,

v1,1 = 4iCw3, v2,1 = −4Cw3, v3,1 = 4iCw1, v4,1 = −4Cw1.

Equation (65) for a = 3, b = 4 gives −ξ34.v3,0 = (2− t).v4,0 which is equivalent to

(iξ34 − 1/2).w1 = 0.

Equation (67) for a = 3, b = 1, c = 2 gives −ξ12.v4,0−Cv3,0 = 0 which is equivalent
to

(−iξ12 + C).w1 = 0.

These equations imply (hy + C + 1/2).w1 = 0 and so n + C + 1/2 = 0 which
implies C = −1/2 (since n ≥ 0) and n = 0. Similarly the same equations imply
m+ C − 1/2 = 0 and so m = 1 and hence µ = (1, 0, 5/2,−1/2).
By Equations (72) we know that 2ex.w3 = e1.w3 + e2.w3 = −2w1. Hence w3 =
−fx.w1. All these conditions lead to the vector

~m3a = w11w22w21 ⊗ x1 + w21w12w11 ⊗ x2 ∈M(1, 0, 5/2,−1/2),

which is indeed a singular vector.
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46 LUCIA BAGNOLI AND FABRIZIO CASELLI

1b) Let w1 = 0 and w2 6= 0. By Equations (72), we have that w2 is a highest weight
vector. From (58) we have:

v1,0 = 2iw3, v2,0 = 2w3, v3,0 = 2iw2, v4,0 = −2w2,

v1,1 = 4iCw3, v2,1 = −4Cw3, v3,1 = 4iCw2, v4,1 = 4Cw2.

Equation (65) for a = 3, b = 4 gives −ξ34.v3,0 = 2v4,0 − t.v4,0 which is equivalent
to

(iξ34 + 1/2).w2 = 0.

Equation (67) for a = 3, b = 1, c = 2 gives −ξ12.v4,0−Cv3,0 = 0 which is equivalent
to

(iξ12 + C).w2 = 0.

These equations imply (hx − C + 1/2).w2 = 0 and so (m− C + 1/2) = 0. Since
m ≥ 0 and C = ±1/2 we necessarily have C = 1/2 and m = 0. The same
equations also imply n− C − 1/2 = 0 and hence we have n = 1.
By Equations (72) we know that 2ey.w3 = e1.w3 − e2.w3 = −2w2. Hence w3 =
−fy.w2.
These conditions lead to the vector

~m3b = w11w22w12 ⊗ y1 + w12w21w11 ⊗ y2 ∈M(0, 1, 5/2, 1/2),

which is indeed a singular vector.
1c) Let w1 6= 0, w2 6= 0. By Equations (72), we know that w1 and w2 are highest

weight vectors.
Equations (67) for a = 3, b = 1, c = 2, using (58) gives

−iξ12.(w1 − w2) + C(w1 + w2) = 0

Equation (67) for a = 4, b = 1, c = 2, using (58), gives

−iξ12.(w1 + w2) + C(w1 − w2) = 0

These two equations lead to C = 0 which is a contradiction since C = ±1/2.
1d) We suppose w1 = w2 = 0. By Equations (72), we know that w3 is a highest

weight vector.
Equation (66) for a = 2, b = 3, c = 1, using (58), gives

0 = (−2iξ12 + 2).w3 = (hx + hy + 2).w3

which implies m+ n + 2 = 0, a contradiction.
2) Let w4 6= 0. By Equations (72), we have that w1 6= 0, w2 6= 0, w3 6= 0 and that w4 is

a highest weight vector.
Equation (66) for a = 1, b = 3, c = 2 gives

−w3 + w4 − iξ23.(w1 + w2) + iξ12.(w3 + w4) = 0,

and for a = 2, b = 3, c = 1 gives

−w3 − w4 + iξ12.(w3 − w4)− ξ13.(w1 + w2) = 0.

These equations imply

0 =2w4 − e1.w1 − e1.w2 + 2iξ12.w4 = 2iξ12.w4.
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Equation (67) for a = 1, b = 3, c = 4 gives

−iξ34.(w3 − w4) + C(w3 + w4) = 0,

and for a = 2, b = 3, c = 4 gives

−iξ3,4.(w3 + w4) + C(w3 − w4) = 0.

These equations imply

(iξ34 + C).w4 = 0

We deduce that m+ C = 0 and −n + C = 0, hence C = 0, a contradiction.

�

9. Singular vectors of degree 1

The aim of this section is to classify singular vectors of degree 1. Let us consider a vector
~m ∈ Ind(F ) of degree 1 such that T (~m) is of the form:

T (~m) =
∑

i

η(i)c ⊗ vi. (73)

We write ~m as:

~m = (η2 − iη1)⊗ w1 + (η4 − iη3)⊗ w2 + (η2 + iη1)⊗ w̃1 + (η4 + iη3)⊗ w̃2 (74)

Hence :

v1 = i(w1 − w̃1), v2 = w1 + w̃1, v3 = i(w2 − w̃2), v4 = w2 + w̃2. (75)

Indeed, let us show one of these relations. In (73), let us consider η(1)c ⊗ v1. We have that
η(1)c = η234 is the Hodge dual of −η1. In (74), the terms in η1 are −iη1⊗w1+ iη1⊗ w̃1. Hence
v1 = i(w1 − w̃1). The other relations in (75) are obtained analogously.
In the following lemma we write explicitly some of the relations of Proposition 6.19 for a
vector as in formula (73) that we need.

Lemma 9.1. Let ~m ∈ Ind(F ) be a highest weight singular vector such that T (~m) is as in
(73). Then for all a ∈ {1, 2, 3, 4} we have

0 =
∑

i

[
(ξa ⋆ η(i)c)⊗ t.vi +

4∑

l=1

(∂lξal ⋆ η(i)c)⊗ vi +
∑

l 6=k

(∂lξ1k ⋆ η(i)c)⊗ ξlk, vi

]
. (76)

and for every permutation (a, b, c, d) of {1, 2, 3, 4} we have

0 =
∑

i

[∑

r<s

(∂rsξabc ⋆ η(i)c)⊗ ξrs.vi + εabc (ξd ⋆ η(i)c)⊗ Cvi

]
. (77)

Proof. Equation (76) is obtained by B0(a) + b1(a) = 0 and Equation (77) is obtained by
b0(abc) +G1(abc) = 0 in Proposition 6.19. Note that b1(a) = 0 and G1(abc) = 0 since ~m has
degree 1 and so the previous equations reduce to B0(a) = 0 and b0(abc) = 0. �
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48 LUCIA BAGNOLI AND FABRIZIO CASELLI

Lemma 9.2. Let ~m ∈ Ind(F ) be a highest weight sungular vector such that T (~m) is as in
(73). Then for every permutation (a, b, c, d) of {1, 2, 3, 4} we have

(−1)at.va +
∑

k 6=a

(−1)kξak.vk = 0; (78)

(−1)cξab.vc + (−1)bξca.vb + (−1)aξbc.va − ε(a,b,c)(−1)dCvd = 0. (79)

Moreover

e1.v1 = −v3, e2.v1 = iv4, (80)

e1.v2 = −iv3, e2.v2 = −v4,

e1.v3 = v1 + iv2, e2.v3 = 0,

e1.v4 = 0, e2.v4 = −iv1 + v2,

where e1 and e2 are defined in (21) and (22).

Proof. Equation (78) follows by considering the terms in η1234 in (76).
For equation (79) we can assume a < b < c with no loss of generality. Equation (76) becomes

0 = ηcη(c)c ⊗ ξab.vc + ηbη(b)c ⊗ ξca.vb + ηaη(a)c ⊗ ξbc.va − ε(a,b,c)ηdη(d)c ⊗ Cvd,

which is equivalent to (79).
The fact that ~m is annihilated by e1 implies

0 =−
∑

i

4∑

l=1

(∂l(−ξ13 + iξ23) ⋆ ∂lη(i)c)⊗ vi +
∑

i

∑

r<s

(∂rs(−ξ13 + iξ23) ⋆ η(i)c)⊗ ξrs.vi

=η124 ⊗ (v1 + iv2 − e1.v3) + η234 ⊗ (−v3 − e1.v1) + η134 ⊗ (−iv3 − e1.v2) + η123 ⊗ (−e1.v4).

Therefore:

e1.v1 = −v3,

e1.v2 = −iv3,

e1.v3 = v1 + iv2,

e1.v4 = 0.

Equations (80) for e2 follow similarly. �

Remark 9.3. By (75), Equations (80) are equivalent to:

e1.w1 = 0 e2.w1 = 0, (81)

e1.w2 = w1 e2.w2 = w1

e1.w̃1 = w2 − w̃2 e2.w̃1 = −w2 − w̃2

e1.w̃2 = −w1 e2.w̃2 = w1

We represent these relations in the following diagram
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〈w̃1〉

〈w2 − w̃2〉

〈w2 + w̃2〉

〈w1〉.

e1

e2

e1

e2

By (75), Equations (78) can be rewritten in the following equivalent way

(t− iξ12).w̃1 = −fx.w̃2 + fy.w2, (82)

(t− iξ34).w̃2 = −fy.w1 − ex.w̃1,

(t + iξ12).w1 = ex.w2 − ey.w̃2, (83)

(t + iξ34).w2 = ey.w̃1 + fx.w1.

Proof of Theorem 6.6. As usual we denote by µ = (m,n, µ0, C) the highest weight of the
Verma module containing the singular vector ~m. Let us first observe that, by Equations (81),
we have that if w1 6= 0 then w2 6= 0.

1) Let w1 = w2 = 0.
By Equations (81), we obtain that if w̃2 6= 0, then w̃1 6= 0. Hence, there are two subcases.

1a) Let w̃1 6= 0 and w̃2 = 0.
By Equations (81) we know that w̃1 is a highest weight vector. Let us compute its
weight. By (75) we know that v1 = −iw̃1, v2 = w̃1, v3 = 0, v4 = 0.
Equation (79) for a = 1, b = 3, c = 4 gives

(−iξ3,4 + C).w̃1 = 0.

Equation (82) gives (t−iξ12).w̃1 = 0. These two conditions imply µ = (m,n,−m+n
2
, m−n

2
)

with m,n ∈ Z≥0.
These conditions lead to the vector

~m1a = w11 ⊗ xm1 y
n
1 ∈M(m,n,−

m+ n

2
,
m− n

2
).

which is indeed a singular vector.
1b) Let w̃1 6= 0 and w̃2 6= 0.

Equations (81) imply that w̃2 is a highest weight vector, let us compute its weight.
By (75), we know that v1 = −iw̃1, v2 = w̃1, v3 = −iw̃2, v4 = w̃2.
Equation (79) for a = 1, b = 2, c = 3 gives

−iξ12.w̃2 + ξ13.w̃1 − iξ23.w̃1 + Cw̃2 = 0,

and for a = 1, b = 2, c = 4 gives

−ξ12.w̃2 + ξ14.w̃1 − iξ24.w̃1 − iCw̃2 = 0.

These two equations imply

0 = −2iξ12.w̃2 + 2Cw̃2 − (e1 + e2).w̃1 = 2(−iξ12 + C + 1).w̃2.

that is equivalent to:

(−iξ12 + C + 1).w̃2 = 0.
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50 LUCIA BAGNOLI AND FABRIZIO CASELLI

Equation (82) provides

(t− iξ34).w̃2 = −ex.w̃1 = w̃2

and so these equations imply µ = (m,n, 1 + m−n
2
,−m+n

2
− 1), for m,n ≥ 0. We point

out that m ∈ Z>0 since ex.w̃1 = −w̃2 6= 0.
These conditions lead to the vector

~m1b = w21 ⊗ xm1 y
n
1 − w11 ⊗ xm−1

1 x2y
n
1 ∈M(m,n,−

m+ n

2
,
m− n

2
),

which is indeed a singular vector.

2) Let w1 6= 0 and w2 6= 0.
By (81) we have w̃2 6= 0 w̃1 6= 0 and that w1 is a highest weight vector.
By (75), Equation (79) for a = 1, b = 3, c = 4 gives

(−ξ13 − iξ14).w2 + (−ξ13 + iξ14).w̃2 + (iξ34 + C).w1 + (−iξ34 + C).w̃1 = 0,

and for a = 2, b = 3, c = 4 gives

(−ξ23 − iξ24).w2 + (−ξ23 + iξ24).w̃2 + (−ξ34 + iC).w1 + (−ξ34 − iC).w̃1 = 0.

By these equations we deduce

(e1 + e2).w2 + (e1 − e2).w̃2 + 2(iξ34 + C).w1 = 2(iξ34 + C).w1 = 0.

Moreover, Equation (83) provides

(t+ iξ12).w1 = 2w1.

These conditions imply that µ = (m,n, m+n
2

+ 2, n−m
2

). Note that m,n > 0 since ex.w2 =
w1 6= 0 and ey.w̃2 = −w1 6= 0.

All these conditions lead to the vector

~m1c = w22 ⊗ xm1 y
n
1 − w12 ⊗ xm−1

1 x2y
n
1 − w21 ⊗ xm1 y

n−1
1 y2 + w11 ⊗ xm−1

1 x2y
n−1
1 y2

∈M(m,n,
m+ n

2
+ 2,

n−m

2
),

which is indeed a singular vector.
3) Let w1 = 0 and w2 6= 0. Note that w̃1 6= 0, since (e1 − e2).w̃1 = 2w2 6= 0 by (81).

3a) Let w̃2 = 0.
Note that w2 is a highest weight vector by (81). Let us compute its weight.
Using (75), Equation (79) for a = 1, b = 2, c = 3 gives

iξ12.w2 + ξ13.w̃1 − iξ23.w̃1 + Cw2 = 0

and Equation (79) for a = 1, b = 2, c = 4 gives

−ξ12.w2 + ξ14.w̃1 − iξ24.w̃1 + iCw2 = 0.

These two equations imply

0 = 2iξ12.w2 − e1.w̃1 + e2.w̃1 + 2Cw2 = 2(iξ12 − 1 + C).w2

and Equation (83) provides

(t+ iξ34).w2 = w2.
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These equations imply µ = (m,n, n−m
2

+ 1, m+n
2

+ 1), with m,n ≥ 0. Moreover we
have n > 0 since, by (81) ey.w̃1 = w2 6= 0.

All these conditions lead to the vector

~m1d = w12 ⊗ xm1 y
n
1 − w11 ⊗ xm1 y

n−1
1 y2 ∈ M(m,n,

n−m

2
+ 1,

m+ n

2
+ 1),

which is indeed a singular vector.
3b) Let w̃2 6= 0.

By Equations (81), w2 and w̃2 are highest weight vectors. Let us compute their weight.
By (75), Equation (79) for a = 1, b = 2, c = 3 gives

iξ12.w2 − iξ12.w̃2 + ξ13.w̃1 − iξ23.w̃1 + Cw2 + Cw̃2 = 0,

and Equation (79) for a = 1, b = 2, c = 4 gives

−ξ12.w2 − ξ12.w̃2 + ξ14.w̃1 − iξ24.w̃1 + iCw2 − iCw̃2 = 0

These two equations imply

(iξ12 − 1 + C).w2 = 0

and
(−iξ12 + 1 + C).w̃2 = 0

and in particular C = 0. But, for C = 0, the λ−action of Proposition 5.10 reduces
to the action found in Theorem 4.3 of [1] where the vectors of degree 1 were classified
and this case was ruled out.
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