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Abstract: The recent improvement of infrared image quality has increased the use of thermography
as a non-destructive diagnostic technique. Amongst other applications, thermography can be used to
monitor historic buildings. The present work was carried out within the framework of the Horizon
2020 European project SHELTER, which aims to create a management plan for cultural heritage
subject to environmental and anthropogenic risk. Among the chosen case studies is the Santa Croce
Complex in Ravenna (Italy), which is exposed to different hazards, including flooding. The church
has a peculiar architecture that develops below the street level, so the internal walls are affected
by the deterioration caused by rising humidity. In such a case of advanced degradation, passive
thermography cannot be used to its full potential. For this reason, an innovative methodology
involving active thermography was first developed and validated with laboratory tests. Secondly, we
conducted its first application to a real case study. With this purpose, an active thermography survey
with forced ventilation was carried out to enhance different stages of material degradation by means
of automatic classification of multitemporal data. These experiments have resulted in a method using
an active thermal survey in a high moisture content environment to detect masonry degradation.
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1. Introduction

Nowadays, the monitoring and conservation of cultural heritage sites are topics of
great interest addressed from different points of view. In this context, it is important to
find new integrated approaches to detect possible risks for historical buildings, to map
degradation phenomena and act to better conserve or restore assets [1]. Historical buildings
are complex systems subject to risks deriving from internal and external causes. It is
necessary to carefully monitor the internal microclimate of the buildings and atmospheric
pollution to preserve original materials [2—4].

The European SHELTER project (Sustainable Historic Environments hoListic recon-
struction through Technological Enhancement and community-based Resilience), financed
by the Horizon 2020 Research and Innovation Programme, aims to develop new resilience
practices for cultural heritage subject to risk factors due primarily to climate change [5].
The five open labs selected as part of the SHELTER project represent different heritage
typologies, from small to large scale. According to the objectives of the project, the Santa
Croce Complex in Ravenna was chosen as an urban open lab. The Santa Croce Complex,
located in the area of San Vitale (UNESCO site since 1996), is composed of the church
(5th century) and the archaeological area in the surroundings (Figure 1). As part of the
project, a multidisciplinary study was carried out to analyse all the risk factors of the

Sustainability 2022, 14, 10559. https:/ /doi.org/10.3390/su141710559

https:/ /www.mdpi.com/journal/sustainability


https://doi.org/10.3390/su141710559
https://doi.org/10.3390/su141710559
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-1105-1017
https://orcid.org/0000-0003-1140-1988
https://orcid.org/0000-0002-6118-6000
https://doi.org/10.3390/su141710559
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su141710559?type=check_update&version=1

Sustainability 2022, 14, 10559

20f13

complex [6]. A critical point was to establish a reliable geometric knowledge base, derived
from the application of a rigorous survey integrating many geomatic techniques.

(a)

Figure 1. External (a) and internal view (b) of the Santa Croce Complex.

To complete the survey activities held by the Geomatics Group of the Interdepart-
mental Centre for Industrial Research in Building and Construction and of the Depart-
ment of Civil, Chemical, Environmental and Materials Engineering (DICAM) of Uni-
versity of Bologna [7], an active thermal survey was carried out. A previous survey
campaign involved the integration of different techniques (laser scanner, terrestrial and
aerial photogrammetry, topographical surveys by total station and GNSS) to build a three-
dimensional model of the Church of Santa Croce. This 3D model was the base for develop-
ing an information model with a Scan-to-BIM approach. Moreover, the 3D model tied to
the global reference system (UTM WGS84) was used to georeference all other data acquired
for the study. The thermal survey described in this paper will allow completion of previous
activities, adding new information on the state of the masonry.

The architectural conformation of the church is, to some extent, related to a huge
problem of rising humidity. The floor of the church, now almost completely lost, is currently
about 2.70 m below the street level (about 1.40 m above mean sea level). From the geomatic
surveys carried out, the floor of the Church of Santa Croce stands at 1.30 metres above sea
level. Moreover, considering that the groundwater level is between 0 and —5 metres, the
area is affected by frequent flooding, which increases the degradation of the masonry. In
addition, the Ravenna area is notoriously affected by a phenomenon of subsidence, due to
natural and anthropogenic causes [8]. In the context of cultural heritage, comprehensive
investigations aimed at assessing and monitoring damage due to these risks is crucial for
the preservation and maintenance of the existing asset.

Due to the particular structure of the Church of Santa Croce and its historical and
cultural importance, it is necessary to use appropriate survey methods. In order to keep the
historical building intact, non-destructive and contact-free diagnostic techniques are mainly
used [9-11]. Among the different non-destructive techniques, thermography has been in-
creasingly used for the analysis of materials and building defects in the last decades [12,13].
In the interior of Santa Croce, due to high presence of humidity and significant presence of
moss on the surface of the masonry, it is difficult to obtain appreciable information with
passive thermography only. Active thermography is extremely useful in cases where the
temperature contrast is hard to recognize [14]. Active thermography allows much more in-
formation to be acquired as it studies the behaviour of the detected object during a defined
time period. Moreover, image processing and data mining techniques can be successfully
applied to this type of dataset to produce informative maps. Indeed, image classification
helps the transformation of the collected multitemporal images into meaningful and easy
to interpret information about the investigated surfaces.

This paper describes the methodology used for active thermal surveys in environments
with high humidity. This approach was first applied in the laboratory, where the humidity
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conditions of Santa Croce walls were reproduced, and then in situ. A fan was used to ignite
evaporative flow, which is weak in the environmental conditions inside Santa Croce due to
lack of apertures that favour air currents. Thanks to the ventilation, it was possible to study
the behaviour of three areas: very wet, wet and damp. Thermal images were acquired even
after the fan was shut down to analyse the trend of water evaporation from the wall. The
aim of this work was to detect anomalies in coating materials, which cannot be detected
by passive thermography. The main purpose of this survey was to map the degradation
present on the inner covering of Santa Croce Church.

2. Materials and Methods

Infrared thermography (IRT) is a non-destructive technique often used to map mois-
ture distribution in historic and modern buildings [15]. Detecting the presence of moisture
is particularly important, as it is one of the principal causes of building pathologies [16].
The two main approaches that can be used to perform a thermal survey are passive and ac-
tive. Passive (or static) thermography can detect the thermal radiation emitted by the body
without changing the natural conditions. The use of active (or dynamic) thermography,
on the contrary, involves the use of an instrument, which depends on the thermophysi-
cal properties of the test object, that may highlight some behaviours detectable with the
thermal camera [17]. Often, in active thermal surveys, external heating sources (halogen
lamps, flashes, infrared light) are used to activate heat dissipation [18] or air jets to activate
the evaporative flow in materials where moisture is present. Moreover, depending on
the material, other methods such as electromagnetic induction or ultrasonics can activate
mechanisms that can be detected with the thermal camera [19].

The walls of the Santa Croce Church are affected by visible damage caused by humidity.
The interior of the church has a relative humidity (%RH) in the order of 80%, and the lower
parts of the walls are covered by a layer of moss that rises from the floor level. In this case,
passive thermography cannot provide information better than that observed by the naked
eye. Through a passive thermal survey, it was only possible to identify qualitatively the
coldest bands, while it is not possible to see small variations within them (Figure 2).

|20.5
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Figure 2. Thermal image acquired with a passive approach (June 2020) overlapped on the RGB image
of the northern wall of the interior of Santa Croce Church.

To create a more accurate degradation map, an active multitemporal thermal survey
was planned with multiple acquisitions at specific time intervals and the use of a fan to
force the ventilation of the investigated area. A preliminary test was carried out in another
site on a plastered wall with signs of degradation due to humidity in order to develop
the methodology for data acquisition and processing. A thermal camera FLIR P620 was
used, both for the preliminary test and in situ. The FLIR P620 has a spectral range between
7.5 um and 13 um and a 640 x 800 image resolution; the camera was equipped with the
standard 24° lens.

For image processing and data analysis, commercial software ENVI 5.6 [20] and open-
source QGIS 3.16 [21] were used for different purposes. Specific visualization methods
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were employed to investigate changes more effectively, using RGB composite imagery to
jointly analyze the different states. Spatial co-registration operations were needed to align
multiple images acquired over time in a single multi-band stack, and Principal Component
Analysis was finally performed on these datasets.

In order to frame the survey within an absolute reference system, a geometric survey
of the area of interest was also carried out with a volumetric scanner. The instrument used
was the F6 smart scanner, distributed by Stonex, which projects structured light patterns
in the near infrared (wavelength 850 nm) to produce an accurate 3D model of the area
through reconstruction from the image series acquired. In the situation described, the
instrument precision is at the mm level. An RGB sensor provides the ability to associate
natural colours with the three-dimensional point-clouds generated. From the survey, a
point-cloud of about 20 million points was produced. The survey performed with the F6
scanner was aligned with the survey previously conducted by the Geomatics group with a
laser scanner, photogrammetry, Total Station and GNSS [7].

3. Results
3.1. Preliminary Test

The wall for the first test was divided into three zones with adhesive tape to assess the
behaviour of the material depending on the distance of a fan placed to the left. The test was
performed in an area of 1.20 x 1.20 m (Figure 3). Porcelain stoneware targets of 3 x 3 cm
with retro-reflective adhesive tape on the front were used. During the test, temperature
and relative humidity values were recorded by a data-logger.

Figure 3. Plastered wall for the preliminary test with active thermography.

Water was sprayed on the wall to reproduce, at least partly, the three different moisture
levels identified through passive thermography carried out previously on the Santa Croce
masonry. The test was conducted with three different situationss: dry wall, damp wall and
wet wall. For this purpose, 50 mL of water was sprayed to reproduce the damp wall. Then,
another 50 mL was added to produce wet wall. In this way it was possible to evaluate
how the active thermography results depend on the level of humidity of the surface. The
test was performed capturing one image every 20 s for three minutes with the fan on, then
capturing every 20 s for another five minutes with the fan off. After acquiring the main
sets (dry, damp and wet wall) the test was repeated after 1 h. Then, thermal images were
acquired every 20 min for 4 h to record information concerning evaporation under natural
conditions, without the use of a fan.

To better visualize and analyse the thermal image sets, and to show differences over
time, multitemporal composite images were produced as shown in Figure 4. For each set,
three images were chosen that were representative of the active thermal survey, and then
assigned to RGB channels. The start of the test is represented with the red channel, the
last acquisition (with fan on) with the green channel, and the end of the test (fan off) with
the blue channel. This configuration for the RGB composite was used for each acquisition
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set: (Figure 4b) dry wall, (Figure 4c) dump wall, (Figure 4d) wet wall., (Figure 4e) after 1 h
from wetting.

(a)

Figure 4. Thermal images acquired during the laboratory tests. (a) Single-band image captured before
starting the test; Multiple band images (red channel: start of the test, green channel: last acquisition
with fan on, blue channel: end of the test): (b) test carried out on a dry wall; (¢) dump wall, (d) wet
wall. (e) multiple band images acquired after 1 h from wetting; (f) RGB channel multiple images
acquired for 4 hours every 20 minutes with fan off.

The results of the test demonstrate how the use of active thermography can highlight
degraded areas otherwise not detectable with passive thermography. Regarding the last set
of images acquired (one every 20 min for a total of 12 images) with passive thermography,
the RGB composite is represented with: ty red channel, t; green channel, t;; blue channel
(Figure 4f). The acquisition of thermal images during the evaporation phase allows identi-
fication of those areas where the water evaporates faster, a factor that could detect other
defects, such as raised plaster.

3.2. In Situ Test

The thermal survey inside the Santa Croce Church was carried out with the FLIR
P620 thermal camera, fixed on a tripod, following the same scheme developed during
the preliminary test. Images were captured in two phases, the first phase involving the
use of the fan, while in the second phase the fan was switched off. However, due to the
characteristics of the masonry and the presence of moss on the surface, it was necessary to
use a different system for the positioning of the targets needed to share a common reference
system with other surveying data. Poles slightly separated from the wall were used to
fix retro-reflective porcelain stoneware targets. Before the start of the test three different
bands were identified: the lower band (zone 1), almost completely covered by moss, an
intermediate transition band (zone 2), and an upper band without moss (zone 3). As in the
preliminary test, images were acquired for each zone corresponding to different degrees of
humidity. The wall was ventilated by a fan positioned at three different heights. During
the entire survey, temperature and relative humidity were continuously acquired through
a data logger. The acquisition scheme was acquisition of 10 images (1 every 20 s) with fan
on, and acquisition of 20 images (1 every 20 s) with fan off. A total of 90 thermal images of
the northern wall were captured during the survey.

As already mentioned, a precise 3D geometric survey of the area of interest was
performed by a handheld structured light projection scanner, and a point-cloud of about
20 million points was inserted in an absolute spatial reference system thanks to a previous
multi-technique geomatic integrated survey. In this way it was possible to georeference
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the thermal datasets in the global reference system thanks to the references of the poles
surveyed with the volumetric scanner.

Given the irregularity of the wall, the 3D survey of the reference area carried out
with the F6 scanner was also used to evaluate possible correlations between humidity and
geometric characteristics. To present the results more clearly, a best-fit plan representative
of the wall surface was calculated [22]. The best fit plane was calculated excluding the poles,
used as reference and to position targets. To obtain a scale of values in meters representing
the positive or negative deviation from the best-fit plane, the point cloud was translated
in the z-axis of the best-fit plane value. In this way, the zero-value indicates that there is
no deviation from the average z given by the best-fit plan. Negative values (blue) indicate
indentations, while positive values (green) indicate protrusions. (Figure 5).

(@) (b)

Figure 5. Area detected with active thermography in the S. Croce Church (a). Point cloud acquired
with the F6 scanner (b). D from the best fit plane is represented using a false colours palette.

The obtained data show that the deviation of the bricks from the best fit plane was
significant. It is therefore necessary to integrate the results obtained from the thermal data
with this geometric data. The geometric characteristics can influence evaporative flow,
accentuating or attenuating the humidity problems present in the whole structure.

3.3. Data Preprocessing

The images captured through the thermal camera were edited with FLIR proprietary
software. After downloading the temperature and relative humidity data, they were cross-
referenced with image capture time to assign the correct values to each thermal image. The
IR images were then exported in tiff 32-bit format.

An IR image can be seen as a matrix of pixels providing information about temperature
T(x,y), where x is the number of pixel column and y is the number of the row.

The IR images were then spatially co-registered with each other (GIS software was
used for this purpose), in order to have a perfect match of the corresponding pixels in all the
images referred to each of the three zones (Zone 1: bottom, Zone 2: middle, Zone 3: top).

For each Zone, a multi-band file was created from the available IR images by a layer
stacking operation, with a shared spatial grid. The data were then stored in a 3D matrix in
which each pixel could be identified by T(x, y, t), where x is the column coordinate, y the
line, and t the temporal coordinate. For each pixel identified with the position (x, y), it is
possible to reconstruct the temperature time series. T(x, y, 1) refers to the first acquisition,
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T(x, y, 10) is the image collected at the end of the ventilation phase and T'(x, y, 30) is the last
acquisition (Figure 6).

t(1) e e t(10) . t(30)
‘ Fan on N Fan off

Figure 6. Data scheme for multitemporal analysis. 3D matrix made of 30 IRT images.

To allow a comparative temperature analysis and to highlight the temperature, for
each zone, a new multi-band stack was subsequently produced. All TIR images, pixel by
pixel, were divided by the first image acquired at £(1), at the test beginning, as follows:

T(x,y,t)
Tratio(X,Y,2) = ———% 1
ratzu( Yy ) T(X,]/,l) ( )
The temperature ratio (T},;,) allowed comparisons of increase or decrease of tem-
perature with respect to the first acquisition conditions. The time series of T}, was
reconstructed for pixels thanks to the ENVI LayerStack tool.

3.4. Data Processing

A clustering method was used to extract valuable information from these data. Cluster-
ing is a process allowing the identification of natural groups (clusters) in a multidimensional
dataset [23]. Among data mining algorithms, grouping techniques are supposed to find
the most homogeneous clusters that are as distinct as possible from other clusters: maxi-
mizing inter-cluster variance while minimizing intra-cluster variance [24]. In other words,
these algorithms should automatically recognize patterns intrinsically present within the
dataset [25].

In image processing, data clustering is often known as unsupervised classification.
Indeed, grouping pixels with the same behaviour in time was performed without selecting
a priori any labelled training for the algorithm. In this case, the objective was to identify
areas of the surface that responded to venting in the same way. One of the most widely used
clustering methods is the K-means algorithm. Its simplicity, efficiency, and empirical success
has made it suitable and popular for a large variety of applications and disciplines [26].
K-means is an iterative unsupervised classifier that minimizes the intra-class distance [27].
Once fixed, the parameter k, i.e., the number of classes in which the dataset must be
partitioned, k centroids are at first selected randomly in the feature space and initialized.
Centroids, also known as seeds, are representative of the centre of the cluster Pixels are
assigned to the nearest centroid and then the mean value for each class is computed to
detect and update new centroids. The iterative process ends when it arrives at convergence.

One of the well-known issues with K-Means [28,29] is its initializing dependence.
According to Xu et al. [30], K-Means initialization can be improved by searching the
centroids in the Principal Components feature space. Principal Component Analysis (PCA)
consists of the transformation and the reduction of the initial feature space, representing
data as a linear combination of a new uncorrelated system of variables, the principal
components, maximizing variance in the dataset [31].

For each T4, stack, PCA was performed (Figure 7). Only the first 10 T, images
were considered to obtain the new feature space. The covariance matrix was calculated
and the first third component results having eigenvalues greater that zero. For each
Zone acquisition set, the first three component were selected as significant. A K-means



Sustainability 2022, 14, 10559

8of 13

unsupervised classification was applied to the stack of the PCs. The algorithm automatically
identified five classes, with 1000 max iterations and a change threshold of 5%.

(b) (©)

Figure 7. Principal Components. RGB composite of the first three principal components R: PCs,
G: PC,, B: PC;y. (a) Zone 1. (b) Zone 2. (c) Zone 3.

The investigations carried out showed that active thermography is able to reveal more
information about the masonry than passive thermography. As can be seen from Figure 8,
in the images taken at the end of the test, the detected area appears homogeneous, as the
effects of ventilation tend to dissipate. To highlight the contrast with active thermography,
a composition of multi-temporal images was created in which the key moments of the
active test can be visualised.

(©)

Figure 8. Effects of ventilation on masonry. (a—c) RGB multitemporal composition of IR images
acquired at the start of the test T(x, y, 1), after 5 min of ventilation T(x, y, 5) and at the end of the test
T(x, y, 10). (d—f) Grey level thermal images detected at the end of the test T(x, y, 10).

The K-Means unsupervised classification allowed identification of five classes of T
changes due to fan action. The temperature ratio allowed easy comparisons of increases
or decreases of temperature with respect to the first acquisition condition. The average T
ratio for each class was calculated. Moreover, some Points of Intertest (POI) were selected
for each class in order to analyse the T changes behaviour of the five different clusters
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(Figure 9). The effect of active thermography is clearly visible from the graphs. Indeed,
independently from the class, the decrease/increase rate was considerably higher in the
first 10 acquisitions when the fan was on. After the 10th acquisition, when the ventilation
phase ended, temperature started decreasing/increasing slowly.

POI TEMPERATURE RATIO TS - Zone 1
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1000% =«
= 99.0% \—\—/\ﬁw
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Figure 9. Classification results for the three zones. Left: classification with POIs selected for each
class. Right: temperature variation over time for each POI.

Looking at the classification results, it was possible to interpret and labelling classes.
Five clusters were identified, from “Class 1” to “Class 5”. Wetter surfaces are those that
reacted to ventilation with the highest decrease of superficial temperature. Those areas
are identified by “Class 1”. “Class 5” indicates the relative drier area, where the fan action
caused the lower decrease of temperature or, in some areas, it even caused an increase of
superficial temperature drying the wall. Considering all zones, moving from the bottom
(Zone 1) to the top (Zone 3) of the masonry, the effects of ventilation led to increased drying
of the surface. Zone 1 was the wettest zone in which the fan action caused a decrease of
temperature all over the surface. In Zone 2, pixels clustered in “Class 4 and 5” increased
their superficial temperature due to ventilation by the 10th acquisition. In Zone 3, only
“Class 1” could not reach an evaporative flux that allowed the surface to dry by the end of
the experiment.

To take into consideration spatial temperature variation over the wall during venti-
lation, horizontal and vertical transect were analysed to look for defects (Figure 10). For
each zone, the IR images T(x, y, 1), T(x, y, 5) and T(x, y, 10) were considered. From a
temporal point of view, this analysis confirmed the previously discussed results. Zone 1
was the wettest area, and the area investigated by both horizontal and vertical transects
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registered the highest decrease of temperature between the start and the end of ventilation.
From a spatial point of view, in Zone 1 the temperature decrease rate was more linear
and homogeneous than in the others. T decreased from the left to right hand side of the
masonry and from the top to bottom, as can be seen in the vertical transects. The analysis
revealed that in Zone 2 and 3 the surfaces investigated were more heterogeneous. Defects
and moisture were visible as negative picks over the transects, while drier surfaces had
positive picks.
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Figure 10. RGB composite of the IRT images acquired at #(1), #(5) and #(10) with horizontal and
vertical transects. (a) Zone 1; (b) Zone 2; (c) Zone 3.

The different spatial behaviour of T change over surface can be related with the
geometrics feature extracted from the 3D survey. Indeed, thanks to that survey, it was
possible to recognize surfaces with positive of negative z coordinates with respect to the
calculated best fit plane. In general, prominent surfaces are those characterized by better
evaporative flux performance, and they can easily be dried by air jets. It is important
to consider that some bricks were fully covered by moss, which can show prominently.
Although these surfaces were prominent, they reacted to ventilation with a decrease of
temperature and produced more homogeneous behaviour on the surface. An example is
Zone 1, that is almost fully covered by moss.

4. Discussion and Conclusions

The presence of humidity is one of the major problems of degradation in buildings,
especially in historic sites. This is the case of the Complex of Santa Croce, a UNESCO site
since 1996. The site is located in a low-lying area affected by subsidence, and the floor
of the Church, which is about 1.30 m above the sea level, is often flooded [7]. Due to
its structural characteristics, the Church in the Complex is strongly affected by this form
of degradation. The use of new non-invasive survey methods for the study of material
conditions is needed for cultural heritage. In this context, infra-red thermography is a non-
destructive techniques that has been successfully used for defects detection in materials and
buildings [13]. Moreover, multitemporal passive thermography has been demonstrated
to better capture and interpret dynamic thermal behaviour of buildings, such as using a
time lapse approach [12]. Although this methodology can be very successful when climatic
conditions change over time, active thermography is necessary in those cases where a
temperature contrast is hard to recognize (Figure 2). The interior of Santa Croce Church,
for example, has a relative humidity of about 80%, which makes thermal gradients over the
walls very difficult to recognize with passive thermography.

In the current study an easy to reproduce methodology to acquire and process mul-
titemporal thermal images to detect defects on very moist masonry was developed and
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tested in cultural heritage context. The use of a fan in the active thermography survey
allowed study of the reaction of the masonry to air jets, identifying areas where humidity
was more persistent. The multitemporal analysis of the IR images combined with clustering
allowed meaningful information to be collected from the data. Indeed, K-means classifica-
tion applied to the PCs made it possible to automatically detect surfaces characterized by
different evaporative fluxes. Unsupervised classification did not require a priori knowledge
about masonry surface condition, but clustering revealed the wettest surfaces. By selecting
some points of interest from each class it was possible to plot the observed temperature over
time and compare different behaviours. For examples, the surfaces with the highest water
content were those where ventilation caused the highest decrease of superficial temperature.
Moreover, transect analysis allowed comparison of temperature changes through space
and time.
In conclusion, the main findings of the research can be summarized as follows.

1. It was demonstrated that active thermography is able to highlight the different be-
haviours and different moisture contents of a wall in cases of extreme microclimates,
i.e., almost constant temperature with very low gradient and very high humidity.

2. The multitemporal approach to active thermography imagery helped to identify areas
with different evaporative fronts, which were considered in the study as proxies
for different damage levels. Moreover, it was possible to evaluate the temperature
changes on the wall in both space and time.

3. Image processing and analysis were performed with an unsupervised clustering
technique that was able to automatically detect five classes of damage. As a result, a
degradation map was produced.

4. Such informative maps can be very useful as tools to assess the presence of moisture
in the masonry, especially in the context of cultural heritage, allowing fast and precise
remediation actions to preserve and recover wall integrity where it is needed most.

This study was part of a multidisciplinary work within the European H2020 SHELTER
project. The results obtained can be integrated and correlated with those achieved by other
research groups (Materials Engineering, Structural Engineering, Hydraulics, Geotechnics,
Restoration, etc.) for meaningful interpretation and deeper understanding. Indeed, the
variation of humidity in some areas could be correlated with the presence of voids in the
mortar, efflorescence or other substances detectable through chemical analysis. It will be
certainly useful in this sense to evaluate the collection and analysis of wall samples carried
out by the Materials Engineering group in order to validate the procedure and improve
the classification, Moreover, it should be determined if active thermography can detect
temperature differences or different reactions to the ventilator due to biochemical factors
detected by the lab analysis. The data obtained by thermal surveys could be included
within the Building Information Model of the Church, generated by the same Geomatics
group, to support the creation of a three-dimensional map of degradation.

The procedure was specifically developed for particularly humid conditions and tested
on the presented case study. Future development should consider applying the presented
methodology to other case studies including different cultural heritage sites with different
masonry characteristics and different micro-climate conditions.
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