Electronic Supplementary Material (ESI) for Molecular Systems Design & Engineering. This journal is © The Royal Society of Chemistry 2022

Engineering Plastic Phase Transitions via Solid Solutions: The Case of "Reordering Frustration" in Ionic Plastic Crystals of Hydroxyquinuclidinium Salts

Samet Ocak,^[a] Rebecca Birolo,^[b] Gianlucia Carì,^[a] Simone Bordignon,^[b] Michele R. Chierotti,^{*[b]} Dario Braga,^[a] Roberto Gobetto,^[b] Tommaso Salzillo,^{*[c,d]} Elisabetta Venuti,^[c] Omer Yaffe,^[d] and Simone d'Agostino^{*[a]}

^[a] Department of Chemistry "Giacomo Ciamician" The University of Bologna, Via F. Selmi, 2, 40126 Bologna, Italy.

^[b] Department of Chemistry and NIS Centre The University of TurinVia P. Giuria 7, 10125 Torino, Italy.

^[c] Department of Industrial Chemistry "Toso Montanari" The University of Bologna, Viale del Risorgimento 4, 40124, Bologna, Italy.

^[d] Department of Chemical and Biological Physics Weizmann Institute of Science, Rehovot 76100, Israel.

Table of contents	Page
Table S1 Amounts of reagents used in the synthesis of the salts.	SI-2
Fig. S1 Rietveld refinement plot of the salt $[QH]_2SO_4 \cdot H_2O$	SI-2
Table S2 Crystal data and refinement details for $[QH]_2SO_4 H_2O$, $[QH]BPh_4$, $[QH]PF_6$, and $[QH]BF_4$	SI-3
Fig. S2 Thermal Analyses of $[QH]_2SO_4 \cdot H_2O$	SI-4
Fig. S3 Variable-temperature powder XRD for $[QH]_2SO_4$ ·H ₂ O	SI-5
Fig. S4 Comparison between calculated and experimental diffraction patterns for $[QH]BPh_4$	SI-5
Fig. S5 Thermal Analyses of [QH]Bph ₄	SI-6
Fig. S6 Thermal Analyses of [QH]BF ₄	SI-7
Fig. S7 Comparison between calculated and experimental diffraction patterns for [QH]BF $_4$ at LT	SI-8
Fig. S8 Comparison between calculated and experimental diffraction patterns for $[QH]PF_6$ at RT	SI-8
Fig. S9 Thermal Analyses of $[QH]PF_6$	SI-9
Fig. S10 ϕ -Scan images taken on a single crystal of [QH]PF ₆	SI-10
Fig. S11 Comparison between calculated and experimental diffraction patterns for $[QH]PF_6$ at HT	SI-10
Fig. S12 Thermal Analyses of $[QH](PF_6)_{0.9}(BF_4)_{0.1}$	SI-11
Fig. S13 Variable-temperature powder XRD for $[QH](PF_6)_{0.9}(BF_4)_{0.1}$	SI-11
Table S3 13 C SSNMR chemical shift values for [QH]BF ₄ , [QH]PF ₆ , [QH](PF ₆) _{0.9} (BF ₄) _{0.1} and [QH]BPh ₄ .	SI-12
Fig. S14 ¹⁵ N CPMAS spectra of [QH]BF ₄ , [QH]PF ₆ , [QH](PF ₆) _{0.9} (BF ₄) _{0.1} and [QH]BPh ₄ at RT.	SI-12
Table S4. ¹⁵ N SSNMR chemical shift values for $[QH]BF_4$, $[QH]PF_6$, $[QH](PF_6)_{0.9}(BF_4)_{0.1}$ and $[QH]BPh_4$.	SI-13
Fig. S15 ¹⁹ F MAS spectra of [QH]BF ₄ , [QH]PF ₆ and [QH](PF ₆) _{0.9} (BF ₄) _{0.1} at RT.	SI-13
Fig. S16 ³¹ P CPMAS spectra of [QH]PF ₆ and [QH](PF ₆) _{0.9} (BF ₄) _{0.1} at RT.	SI-13
Fig. S17 ¹⁹ F static spectra of $[QH]PF_6$ and $[QH](PF_6)_{0.9}(BF_4)_{0.1}$ at 298 K and 323 K.	SI-14
Fig. S18 Raman Spectra in the low-frequency range of the air and [QH]PF ₆ at 80 K.	SI-14

Table S1. Amounts of reagents used in the synthesis of the salts $[QH]_2SO_4$ ·H₂O and [QH]X (X⁻ =BPh₄⁻, PF₆⁻, and BF₄⁻).

	Ag ₂ SO ₄	NaBPh ₄	AgPF ₆	AgBF ₄
	(mg / mmol)	(mg / mmol)	(mg / mmol)	(mg / mmol)
[QH] ₂ SO ₄ ·H ₂ O	120 / 0.12	-	-	-
[QH]BPh₄	-	200 / 0.06	-	-
[QH]PF ₆	-	-	150 / 0.06	-
[QH]BF ₄	-	-	-	100 / 0.06
[QH](PF ₆) _{0.9} (BF ₄) _{0.1}	-	-	138 / 0.5	10.6 / 0.1
[QH](PF ₆) _{0.8} (BF ₄) _{0.2}	-	-	122 / 0.48	22 / 0.12
[QH](PF ₆) _{0.7} (BF ₄) _{0.3}	-	-	106 /0.42	34 / 0.18

Fig. S1 Experimental (blue), calculated (red) powder XRD pattern of $[QH]_2SO_4 \cdot H_2O$ by Rietveld refinement and difference profile (magenta).

Table S2. Crystal data and refinement details for crystalline $[QH]_2SO_4 \cdot H_2O$, $[QH]BPh_4$, $[QH]PF_6$, and $[QH]BF_4$. RT = room temperature phase, HT = high temperature phase, and LT = low temperature phase.

	[QH]₂SO₄·H₂O (powder data)	[QH]BPh₄ (RT)	[QH]BPh₄ (LT)	[QH]PF6 (RT)	[QH]PF ₆ (HT)*	[QH]BF₄ (LT)
Formula	C ₁₄ H ₃₀ N ₂ O ₇ S	C ₃₁ H ₃₄ BNO	C ₃₁ H ₃₄ BNO	C ₇ H ₁₄ F ₆ NOP	C ₇ H ₁₄ F ₆ NOP	C ₇ H ₁₄ F ₄ NOB
FW (g/mol)	370.464	447.40	447.40	273.16	273.16	215
Temperature/K	300	300	100	300	320	200
Crystal system	Monoclinic	Orthorhombic	Orthorhombic	Tetragonal	Cubic	Orthorhombic
Space group	P2 ₁	P212121	P212121	P41212	P432	P212121
a/Å	12.7496(3)	10.0708(5)	10.2152(4)	8.8859(4)	6.5126(7)	8.0330(8)
b/Å	10.7046(3)	13.3124(7)	12.9850(5)	8.8859(4)	6.5126(7)	9.7577(15)
c/Å	6.3468(2)	18.4685(9)	18.0958(10)	53.846(5)	6.5126(7)	12.6772(15)
α/°	90	90	90	90	90	90
β/°	96.550(1)	90	90	90	90	90
γ/°	90	90	90	90	90	90
Volume/Å ³	860.56(4)	2476.0(2)	2400.31(9)	4251.6(5)	276.23(9)	993.7(2)
Z	2	4	4	16	1	4
ρ _{calc} g/cm ³	1.430	1.200	1.238	1.707	1.642	1.437
µ/mm⁻¹	2.024	0.071	0.073	0.324	0.311	0.142
λ/Å	1.54056	0.71073	0.71073	0.71073	0.71073	0.71073
measd rflns	404	6434	7729	10456	873	2011
indep rflns	-	4083	5031	4917	90	1408
R ₁	-	0.541	0.0861	0.0775	0.2704	0.0662
wR ₂	-	0.1346	0.2161	0.1757	0.5555	0.1846

* = This crystal structure is not present in the CCDC; in case of need, ask the corresponding author SD.

Fig. S2 TGA thermogram and DSC trace, heating cycle (red-line) and cooling cycle (blue-line), of $[QH]_2SO_4 \cdot H_2O$.

Fig. S3 Variable-temperature XRD patterns for $[QH]_2SO_4 \cdot H_2O$ recorded at RT and for its corresponding anhydrous phase $[QH]_2SO_4$ recorded at HT (413 K).

Fig. S4 Comparison between calculated (black) and experimental (blue) diffraction patterns for compound [QH]BPh₄ at LT.

Fig. S5 DSC trace, heating cycle (red-line) and cooling cycle (blue-line), and TGA thermogram of [QH]BPh₄

Fig. S6 DSC trace, heating cycle (red-line) and cooling cycle (blue-line), and TGA thermogram of [QH]BF₄.

Fig. S7 Comparison between calculated (black) and experimental (blue) diffraction patterns for $[QH]BF_4$ at LT (200 K).

Fig. S8 Comparison between calculated (black) and experimental (blue) diffraction patterns for [QH]PF₆ at RT.

Fig. S9 DSC trace, heating cycle (red-line) and cooling cycle (blue-line), and TGA thermogram of [QH]PF₆.

Fig. S10 ϕ -Scan images taken on a single crystal of [QH]PF₆ before (left) and after (right) the tetragonal-to-cubic phase transition.

Fig. S11 Comparison between calculated (black) and experimental (red) diffraction patterns for [QH]PF₆ at HT (320 K).

Fig. S12 DSC trace, heating cycle (red-line) and cooling cycle (blue-line) of $[QH](PF_6)_{0.9}(BF_4)_{0.1}$

Fig. S13 Powder XRD patterns recorded at RT and at LT (123 K) for the solid solution $[QH](PF_6)_{0.7}(BF_4)_{0.3}$.

	[QH]BF ₄ (ppm)	[QH]PF ₆ (ppm)	[QH](PF ₆) _{0.9} (BF ₄) _{0.1} (ppm)	[QH]BPh₄ (ppm)
C(Ar)				165.5
				136.0, 128.3, 127.5,
CH(AI)				126.2, 123.5, 121.9
С Н-ОН	64.5	64.5	64.5	63.3
CH ₂ -N	56.6	56.7	56.7	56.7
CH ₂ -N	48.1	48.5	48.4	48.3
CH ₂ -N	47.1	47.5	47.4	46.0
СН	26.1	25.9	26.0	25.5
CH ₂	20.5	20.4	20.4	18.9
CH ₂	16.6	16.3	16.5	15.1

Table S3. ¹³C SSNMR chemical shift values for [QH]BF₄, [QH]PF₆, [QH](PF₆)_{0.9}(BF₄)_{0.1} and [QH]BPh₄.

Fig. S14 ¹⁵N (40.56 MHz) CPMAS spectra of $[QH]BF_4$, $[QH]PF_6$, $[QH](PF_6)_{0.9}(BF_4)_{0.1}$ and $[QH]BPh_4$, acquired at 12 kHz (room temperature).

Salt	Chemical shift (ppm)
[QH]BF ₄	35.2
[QH]PF ₆	35.4
[QH](PF ₆) _{0.9} (BF ₄) _{0.1}	35.5
[QH]BPh ₄	35.4

Table S4. ¹⁵N SSNMR chemical shift values for [QH]BF₄, [QH]PF₆, [QH](PF₆)_{0.9}(BF₄)_{0.1} and [QH]BPh₄.

Fig. S15 ¹⁹F (376.50 MHz) MAS spectra of $[QH]BF_4$, $[QH]PF_6$ and $[QH](PF_6)_{0.9}(BF_4)_{0.1}$, acquired at 12 kHz (room temperature).

Fig. S16 ³¹P (161.98 MHz) CPMAS spectra of $[QH]PF_6$ and $[QH](PF_6)_{0.9}(BF_4)_{0.1}$, acquired at 12 kHz (room temperature).

Fig. S17 ¹⁹F (564.69 MHz) static spectra of $[QH]PF_6$ (top) and $[QH](PF_6)_{0.9}(BF_4)_{0.1}$ (bottom) at 298 K (black line) and 323 K (red line).

Fig. S18 Comparison of the air and of the ordered phase of [QH]PF₆ spectra in the low-frequency range.