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Abstract

Resource optimization in 5G Radio Access Networks (5G-RAN) has to face the dynamics over time in networks with increasing
numbers of nodes and virtual network functions. In this context, multiple objectives need to be jointly optimized, and key appli-
cation requirements such as latency must be enforced. In addition, virtual network functions realizing baseband processing are
subject to failures of the cloud infrastructure, requiring an additional level of reliability. Overall, this is a complex problem to
solve, requiring fast algorithms to cope with dynamic networks while avoiding resource overprovisioning. This paper considers the
problem of optimal virtual function placement in 5G-RAN with reliability against a single DU Hotel failure and proposes a solution
that takes service dynamics into account. Firstly, the joint optimization of the total number of DU Hotels, of the RU-DU latency and
of the backup DU sharing in a static traffic scenario is considered, and the DUOpt algorithm, based on Lexicographic Optimization,
is proposed for solving efficiently this multi-objective problem. DUOpt splits the multi-objective problem into smaller Integer Lin-
ear Programming (ILP) subproblems that are sequentially solved, adopting for each one the most effective methodology to reduce
the total execution time. The proposed DUOpt algorithm is extensively benchmarked to show its effectiveness in optimization of
medium to large size networks: in particular, it is shown to greatly outperform an aggregate multi-objective approach, being able
to compute optimal or close to optimal solutions for networks of several tens of nodes in computing times of a few seconds. Then,
the problem is extended to a dynamic traffic scenario in which optimization is performed over time. In this context, in addition
to the aforementioned objectives, the total number of network function migrations induced by multiple reoptimizations must be
kept to the minimum. For solving efficiently this problem the DUMig algorithm is proposed, which extends and improves DUOpt.
Reoptimization over a time horizon of one day in an illustrative dynamic traffic scenario is performed to evaluate the proposed
DUMig algorithm against DUOpt, the latter being oblivious of the traffic dynamics. DUMig shows remarkable savings in the total
number of migrations (above 86.1% for primary virtual functions and 83% for backup virtual functions) compared to DUOpt, while
preserving near-optimal resource assignment.

Keywords: Reliable 5G-RAN, Lexicographic optimization, Network Function Migrations.

1. Introduction

Access networks are nowadays evolving towards a set of
interconnected segments, possibly based on different commu-
nication technologies, spanning from the radio access to the
high capacity core, through passive or active optical transport
network solutions [1]. Virtual infrastructures are configured on
top of these high-capacity networks with the aim of offering
the flexibility required by the dynamic behaviour of the served
applications in an efficient way.

The reconfiguration capability of virtual network functions
placement in transport network nodes is provided by orchestra-
tion and management capabilities developed according to the
Software Defined Networking (SDN) paradigm. Many degrees
of freedom are offered by the possibility to configure the virtual
infrastructure on top of the optical transport network. In fact,
by exploiting the network connectivity and the availability of
distributed processing power, optimized design can be obtained
in relation to objectives such as total deployment cost or power

efficiency. At the same time, constraints that arise from appli-
cation performance requirements need to be met, such as the la-
tency and reliability requirements for 5G and beyond scenarios
[2, 3]. In addition, efficient strategies are needed to automat-
ically optimize network resources during network operation.
Therefore, a revolutionary change is expected in the manage-
ment and orchestration capability to cope with this extremely
complex and pervasive network and service scenario [4], to-
wards the so-called zero-touch network management [5].

In this paper, the 5G Radio Access Networks (5G-RAN)
segment is considered as the network segment that forwards
the traffic to/from the antennas from/to the transport network
nodes. 5G-RAN consists of three units, namely radio, dis-
tributed, and central units (RU, DU, CU, respectively) inter-
connected by RU-DU fronthaul and DU-CU midhaul network
segments. Bandwidth and latency requirements are particularly
critical for the fronthaul segment that needs to be properly de-
signed; suitable placement of DU and CU functionalities allows
to relax the main constraints on network capacity and maximum
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latency. DU functionalities are usually located in a larger num-
ber of simpler distributed nodes with respect to fewer data cen-
ters where CUs are preferably located. The fronthaul segment
between DU and RU is also the most constrained in terms of la-
tency and demanding in terms of transmission capacity. There-
fore, we focus here on DU functionalities.

Enhanced flexibility in 5G-RAN is represented by the in-
troduction of SDN-controlled Network Function Virtualization
(NFV), including DU RAN functions, which can be suitably
located in virtualized Hotels to optimize cost and energy con-
sumption in relation to reliability, latency, and bandwidth re-
quirements [6]. Standardization bodies are actively working on
different options for the functional split and in the definition
of the related requirements, depending on network and service
needs. For example, the O-RAN Alliance is currently working
on an open interface for the RU/DU split that takes advantage
of the NFV capabilities [7].

On the one hand, 5G-RAN virtualization offers several ad-
vantages in managing and operating mobile networks. On the
other hand, virtualization makes the network prone to failures
of the cloud infrastructure. Therefore, reliability represents a
crucial aspect that involves also virtualized network functions
and that is typically faced by adding extra resources for backup
against failures (e.g., of a DU Hotel) with consequent additional
costs and further constraints in the optimization model, making
it computationally harder to solve.

Finally, the network function placement must be adapted to
the dynamics of the traffic in the transport network. To this end,
the optimization methods must attain computational times short
enough to cope with the traffic change rate [8]. The obtained
solutions can include potential migrations of network functions,
that represents an additional cost that also needs to be accounted
for along with the other objectives.

Overall, the optimal design of a virtual infrastructure for
5G-RAN is in general a multi-objective optimization problem
which needs to be solved for medium to large size networks,
namely in the order of several tens of nodes. This often leads to
comprehensive but exceedingly complex problem formulations
in which several, possibly competing objectives are optimized
at the same time, typically by assigning them arbitrarily de-
fined priority weights. However, specific application scenarios
might implicitly require a well-defined priority ordering among
objectives. Leveraging these practical considerations opens up
the possibility of smarter optimization strategies.

In this paper, a time-efficient algorithm for the DU Ho-
tel placement problem with reliability against single DU Ho-
tel failure is proposed. Reliability is achieved by assigning
RUs to primary and backup DUs hosted in distinct DU Ho-
tels. We first consider, in a static traffic scenario, joint opti-
mization of the total number of DU Hotels, of the total RU-
DU distance and of the backup DU sharing, under maximum
RU-DU distance and link capacity constraints. The DUOpt
algorithm, which is based on Lexicographic Optimization, is
proposed for efficiently solving this multi-objective problem.
DUOpt splits the large multi-objective Integer Linear Program-
ming (ILP) problem into several smaller single-objective ILP
subproblems, which are solved sequentially according to their

application-defined priority ordering. The bottlenecks in the
optimization process are discussed, and a hybrid approach, par-
tially based on local search, is described, which extends and
improves previous contributions [9]. An extensive compari-
son with a classical aggregate multi-objective optimization ap-
proach is presented both in regular lattice networks and non-
regular ones, showing the effectiveness of the lexicographic al-
gorithm in solving the multi-objective problem in short com-
puting times. Secondly, the problem is cast to a dynamic traffic
scenario, for which the DUMig algorithm is proposed. DU-
Mig, together with the aforementioned objectives, accounts for
the cost of network functions migrations induced by multiple
reconfigurations over time. Numerical evaluations show that
DUMig is able to maintain near-optimal resource assignment
with respect to DUOpt, with significant gains in terms of both
network function migrations and computing times.

This paper is organized as follows: in Section 2 previous
works on 5G-RAN optimization are presented and discussed in
relation to the contribution of this paper. In Section 3 the 5G-
RAN optimization problem to be solved is defined both in the
static and in the dynamic traffic scenarios. In Section 4 the lex-
icographic algorithm to solve the optimal DU Hotel placement
problem and the models of the corresponding subproblems are
described. In Section 5 the extension of the algorithm to a dy-
namic traffic scenario, in order to deal with DU migrations, is
introduced. In Section 6 results are reported and discussed in
different scenarios to outline the effectiveness of the proposed
algorithm, and to show its performance in a dynamic scenario
over a time horizon of one day. Section 7 reports the conclu-
sions of the work and addresses some open aspects. In Ap-
pendix Appendix A the aggregate model for the optimal DU
Hotel placement problem proposed as a reference is reported.

2. Related works

The Cloudification of the RAN was firstly introduced in
[10] with the term C-RAN. In C-RAN, baseband processing
functions are centralized in selected locations (called hotels)
and virtualized on general-purpose hardware, to achieve bet-
ter performance and cost savings. However, this imposes ex-
treme requirements on the transport network interconnecting
radio and baseband units (called RRU and BBU, respectively).
To cope with this, 3GPP recently proposed an evolution of the
C-RAN concept where the different functions of the 5G new
radio (NR) stack are divided into three parts: the Radio Unit
(RU), the Distributed Unit (DU), and the Central Unit (CU)
[11]. In this view, the DU and CU can be located (in Hotels)
and virtualized to achieve better performance and cost savings.
Several split options of the 5G NR functions are possible, re-
sulting in different functions performed in the different units
and, consequently, different requirements on the transport net-
work [6]. The functional split between DU and CU relaxes the
bandwidth and latency requirements over the transport network,
allowing to use statistical multiplexing and to locate CUs in
deep network nodes (e.g., a core data center), traversing high-
capacity optical rings with inherent protection of the traffic.
Conversely, the split of physical layer resources between RU
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and DU imposes strict latency requirements (∼100µs), hence
lower centralization, and usually requires the assignment of ex-
pensive dedicated high capacity resources to transport the data
(e.g., dedicated wavelengths in a circuit transfer mode). Due to
these requirements, the DUs are usually located in the access
network, close to the RUs, with limited centralization gains.
Therefore, optimizing the assignment of network resources and
the placement of the DUs is crucial to contain the network cost.
The focus of the paper is thus on the RU-DU split.

5G-RAN resource optimization is a topic of great interest,
well-studied in the recent literature. In the following, several
works considering network and processing resource optimiza-
tion in static traffic conditions, i.e., with traffic not changing
over time, are outlined. In this context, optimization is regarded
as a planning problem in which several objectives (e.g., net-
work energy consumption, spectrum utilization, reliability in-
dicators) are typically optimized.

In [12] an Integer Linear Programming (ILP) model for
5G-RAN cost optimization is proposed and solved, aimed at
minimizing the total network cost. Authors develop a multi-
objective optimization problem taking into account the cost of
baseband as well as electronic switches placement, and the total
fiber utilization. The achieved centralization is evaluated on dif-
ferent transport options. Authors conclude that independently
placing electronic switches allows for more efficient wavelength
usage and higher centralization.

In [3] an ILP model for BBU Hotel placement with reli-
ability against single link failures is proposed. Authors pro-
pose three different approaches, respectively based on dedi-
cated backup links, on dedicated backup BBU Hotels and par-
tial link sharing between RUs. The objective is the minimiza-
tion of the total number BBU Hotels and of the wavelength uti-
lization. Authors evaluate the proposed approaches on a ref-
erence network, and discuss the trade-off between the cost of
resource redundancy and achieved reliability.

In [13] an architecture for C-RAN using Time-Wavelength
Division Multiplexing Passive Optical Networks (TWDM-PON)
as fronthaul is proposed. The objective is the minimization
of the total energy consumption in a dynamic traffic scenario,
given the possibility of deactivating virtual DU resources when
not anymore needed. Authors propose an ILP formulation and
develop a heuristic algorithm, motivated by poor ILP scalabil-
ity to large networks. Results show that the proposed heuristic
is able to achieve near-optimal solutions in a static traffic sce-
nario and suboptimal solutions in a dynamic traffic scenario,
with significant savings compared to peak-based dimensioning.

In [14] a robust optimization model for probabilistic pro-
tection in a cloud provider against multiple types of failures.
Namely, the authors consider three survivability parameters per-
taining to CPU, memory and the entire cloud provider consid-
ering both CPU and memory. The probabilistic protection for-
mulation is transformed into a MILP problem via Robust Op-
timization, and solved via a Lexicographic method. Numerical
results show that this approach can allocate backup resources in
a more efficient way with respect to traditional approaches.

Several works in the literature extended the 5G-RAN opti-
mization problem to a dynamic traffic scenario, i.e., with traf-

fic evolving over time. In this context, one needs to perform
periodic optimization over time, as old solutions might either
become unfeasible due to a traffic spike or resource-wasteful
in case of a traffic decrease. Moreover, network function mi-
grations might have to be performed, whose cost needs to be
accounted for in the optimization objectives. In the following,
we outline several works on network and resource optimization
in dynamic traffic scenarios.

In [15] a distributed heuristic for BBU Hotel placement
with support for single BBU Hotel failure reliability was de-
veloped, since the proposed ILP centralized approach would
not scale beyond networks of 30 nodes. The heuristic assumes
that transport nodes have information regarding their neigh-
bors only, therefore requiring exchange of information between
transport nodes. The optimality gap with respect to an ILP
model is thoroughly assessed showing some degree of subopti-
mality, especially for larger networks. However, the proposed
distributed heuristic outperforms ILP in terms of number of net-
work function migrations in dynamic scenarios.

In [16] a heuristic algorithm, based on Branch-and-Bound
and Simulated Annealing, to solve the BBU Hotel placement
problem, minimizing the overall link delays, given by the sum
of propagation and processing delays. The development of the
heuristic is motivated by poor ILP scalability to large networks.
Moreover, in a dynamic traffic scenario, authors fine-tune the
developed heuristic in order to find the optimal trade-off be-
tween migration delays and link delays.

In [8] an algorithm for dynamic slice provisioning based
on traffic predictions is proposed. The objective is to minimize
the migrated traffic and the slice degradation, the latter propor-
tional to the slice priorities. Authors develop an algorithm that
adjusts an overprovisioning resource margin based on a traf-
fic prediction model, therefore reducing the need for network
functions migrations when the traffic increases. Authors eval-
uate the trade-off between prediction-based resource overpro-
visioning and slice degradation, the latter induced by resource
competition between different slices.

In [17] a heuristic algorithm is developed for solving the
BBU Hotel migration and wavelength reassignment in Cloud-
Fog RAN. In particular, the possibility of migrating BBU Ho-
tels from Cloud to Fog nodes in case of increasing traffic, and
vice versa, is investigated. The developed heuristic is based
on the linear relaxation of the ILP, building a feasible solu-
tion based on the largest relaxed integer variables. The authors
discuss the trade-offs between the overall network energy con-
sumption and the service interruption probability.

In [18] an algorithm for dynamic placement of CU/DU Ho-
tels is developed. The proposed approach takes into account
the power consumption of CU/DU Hotels and the network con-
gestion, in order to decide whether to centralize CUs or dis-
tribute them in the network. Experimental results show that the
developed algorithm exhibits the best trade-off between power
consumption and blocking probability, with respect to the con-
sidered benchmarks.

Differently from previous literature, this paper addresses a
multi-objective DU Hotel placement problem with resiliency
against single DU Hotel failures. In particular, our approach
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Figure 1: Scheme of a 5G-RAN with primary and backup DUs in DU Hotels.

aims to jointly optimize the following objectives: total num-
ber of DU Hotels, total RU-DU distance and the total number
of backup DUs, under maximum RU-DU distance and link ca-
pacity constraints. Previous works either do not include the la-
tency among the optimization objectives, or do not consider re-
silience against DU Hotel failures. To cope with the additional
complexity introduced by jointly optimizing multiple compet-
ing objectives, a novel optimization approach based on Lexico-
graphic Optimization is developed. To the best of the authors’
knowledge, there are no other works in 5G-RAN optimization
leveraging Lexicographic Optimization. The problem and the
proposed methodology are extended to a dynamic traffic sce-
nario, in which the number of network functions migrations is
also optimized together with the aforementioned objectives.

This work extends [9] in several aspects. A fast and effec-
tive heuristic addressing the computational bottlenecks in the
proposed methodology is developed. More extensive analyses
of the advantages of the lexicographic approach in non-regular
networks is presented. Above all, the problem is extended to a
dynamic traffic scenario, performing optimization over time.

3. Problem statement for reliable 5G-RAN

The reference 5G-RAN architecture is illustrated in Fig. 1.
A geographical area is covered by a set of RUs connected to a
set S of transport nodes in a transport network. Each transport
node is assumed to have computing capabilities (e.g., the one
provided by an edge data center) to host virtualized DU func-
tions according to service needs. In the following, a node that
hosts at least one virtualized DU function will be interchange-
ably referred to as an active node or DU Hotel. Active nodes are
modelled as binary variables A j, either 1 or 0 if node j ∈ S is
active or not, respectively. Transport nodes are interconnected
via lightpaths implemented as different wavelengths in Wave-
length Division Multiplexing (WDM) optical fibers, forming
the fronthaul network segment of the 5G-RAN. The set of op-
tical links is denoted as L and each link is assumed to have up
to MW wavelengths. Due to the strict fronthaul latency require-
ments, circuit transfer mode is applied, therefore no queuing

delay is present. In the following, it will be assumed that trans-
port nodes can be equipped with wavelength converters.

DU Hotels are configured in the transport nodes in order to
host virtual DU functions of different RUs. In case of failure
of a DU Hotel (e.g., as a consequence of a power outage), all
the DUs hosted in the failed DU Hotel cannot be reached by
the RUs, leaving many users without service access. To achieve
5G-RAN reliability against single DU Hotel failure, one pri-
mary and one backup DU are assigned to each RU of the 5G-
RAN and located in different DU Hotels at different transport
nodes. DUs at nodes j ∈ S for RUs hosted at nodes i ∈ S are
modelled as binary decision variables pi j and bi j for primary
and backup DUs, respectively. In case of failure of the DU Ho-
tel hosting a primary DU, the corresponding RU is assigned to
its backup DU, which would in principle require to double the
overall number of DUs. The number of backup DUs at node
j ∈ S is modelled as integer decision variables y j. To achieve
cost savings, the overall number of DUs can be reduced thanks
to DU sharing, where a single backup DU can be shared by two
(or more) RUs. In particular, a backup DU can be shared by two
RUs if they are assigned to primary DUs hosted by distinct DU
Hotel. In case of a DU Hotel failure, only one of the two RUs
is affected and switches to the backup DU until the damage to
the DU Hotel is repaired. In this case, only one backup DU is
required instead of two. The assignment of backup DUs also
needs to account for the backup wavelengths over optical links.
An example of DU sharing is shown in Fig. 1. Note that backup
DU sharing introduces a trade-off between total DU Hotels and
total backup DUs. If DU Hotels are few, more RUs will share
the same primary DU Hotel, therefore allowing for less backup
DU sharing configurations.

5G-RAN optimization aims at minimizing the number of
transport nodes that need to host DU functions by centralizing
them in DU Hotels. This allows to achieve sizeable gains in
terms of energy consumption and network management, since
not all transport nodes need to host DU Hotels at the same time
[6]. However, a higher centralization introduces higher delay,
since the distance between DU Hotels and their assigned RUs
increases. Therefore, 5G-RAN optimization must constrain the
distance between DU Hotels and RUs (hi j) to be lower than a
target value (MH), in order to limit the latency to the maximum
allowed by the specific functional split [11]. In a dynamic traffic
scenario, the number of RUs required varies over time depend-
ing on the traffic requirements, optimization needs to be over
time during the network operation. Re-optimization may result
in a new configuration of the DU Hotels, requiring virtual DU
functions to migrate.

In the following, optimal DU Hotel placement both with
and without migrations optimization will be considered. Opti-
mally solving this problem without taking migrations costs into
account will yield the optimal DU placement configuration for
a given traffic state. Conversely, by optimizing also migrations,
a trade-off needs to be made with respect to the optimal DU
placement.
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3.1. DU Hotels placement optimization

The problem statement for optimal DU Hotel placement can
be defined as follows: given the network topology and the num-
ber of RUs per transport node at the current time instant (ri,t),
find the optimal DU Hotel assignment minimizing the number
of active nodes, the total distance between DU Hotels and their
assigned RUs, and the number of backup DUs. The latter can
be shared by RUs assigned to distinct DU Hotels. Constraints
must impose that DU Hotels are properly deployed in a redun-
dant way ensuring primary and backup DU Hotels for each RU,
that a maximum distance between DU Hotels and RUs is not
exceeded, and that the capacity of the fronthaul WDM links is
not exceeded as well.

3.2. DU Hotels placement and Migrations optimization

A straightforward solution method to deal with a dynamic
traffic scenario is to repeatedly call the optimal DU Hotels place-
ment algorithm in order to reconfigure the network according to
the traffic changes. On the other hand, this approach would not
consider the network configuration previously determined, thus
potentially causing high reconfiguration costs. Due to that, a
cost proportional to the total number of network functions mi-
grations, induced by the virtual infrastructure reconfigurations,
needs to be accounted for. To do so, information on the resource
assignment at each time instant is needed, i.e., the set of inac-
tive and active nodes (S 0,t and S 1,t, respectively) and the set of
inactive primary and backup assignments (P0,t and B0,t).

Therefore, the problem statement for the optimal DU place-
ment with migrations optimization can be defined as follows:
given the network topology, the number of active RUs per trans-
port node at the current time instant, and the resource assign-
ment at the current time instant, determine a new feasible re-
source assignment that minimizes the displacement with re-
spect to the current resource assignment, while deactivating as
many nodes as possible if no longer needed. The rationale is to
keep under control the total number of migrations, while ensur-
ing near-optimal resource assignments. Numerical evaluations
will show the effectiveness of the developed algorithm in attain-
ing such goal.

4. Lexicographic Optimization for DU Hotel Placement

A generic multi-objective optimization problem can be ex-
pressed as follows:

min f(x) = min ( f1(x), . . . , fn(x))
subject to x ∈ X

where X denotes the feasible set. Without domain knowledge,
optimizing at the same time multiple objective functions can
be a challenging task. However, one can take advantage from
the fact that in realistic application scenarios objectives are not
of equal importance. On that note, Lexicographic optimization
has proven to be an effective tool for solving challenging opti-
mization problems in communication systems [19, 20, 14].

Subproblem 1: Active Nodes 
 

 

Subproblem 2: Hops 
 

 

Subproblem 3: Backup DUs 
 

 
 
 

Solution 

Figure 2: DUOpt flow diagram. Symbols xi and Xi indicate the variables and
the feasible set, respectively, for the i-th subproblem.

Assume that objectives are ranked in importance such that
minimization of fi(x) is infinitely more important than mini-
mization of fi+1(x), i = 1, . . . , n − 1. Objectives ranked in this
way are said to be in lexicographic ordering. The Lexicographic
method consists in solving a sequence of n single-objective sub-
problems in the following form:

min f j(x)
subject to x ∈ X

fi(x) ≤ f ∗i ∀i < j

where f ∗i is the optimal solution value for the i-th single-objective
problem. Objectives are sequentially optimized in a pre-defined
priority order, and each single-objective subproblem is con-
strained so that the solution values found in the higher priority
subproblems are not worsened. The final solution for the multi-
objective problem is achieved when the objective with lowest
priority is optimized.

The rationale is that, instead of having to solve one ”diffi-
cult” problem, one can solve a sequence of potentially ”easier”
subproblems, with overall smaller computing times. Moreover,
intermediate solutions can be used to provide a ”warm start”
(i.e., an initial integer feasible solution) for solving a subse-
quent subproblem, in order to further speed up the optimization
process. In addition, more degrees of freedom are available on
how to tackle each individual subproblem (e.g., by employing
an efficient heuristic). Finally, this approach bypasses the use
of large weights in the cost function, which may be cause of
numerical issues [21].

The DU Hotel placement problem introduced in Section 3 is
a multi-objective optimization problem, consisting in the min-
imization of the total active nodes, total RU-DU distance and
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Table 1: Model parameters and variables.

Parameters

S Set of transport nodes.
L Set of links.
T Time horizon.
S 0,t Set of inactive nodes at time t, t ∈ [0,T ].
S 1,t Set of active nodes at time t, t ∈ [0,T ].
P0,t Set of inactive primary assignments at time t, t ∈ [0,T ].
B0,t Set of inactive backup assignments at time t, t ∈ [0,T ].
hi j Distance in hops between nodes i and j computed with the shortest

path, i, j ∈ S
α Weight for the active nodes in the cost function.
µP Weight for primary DU function migrations in the cost function.
µB Weight for backup DU function migrations in the cost function.
β Weight for the distance in the cost function.
γ Weight for the backup DU Hotels in the cost function.
ri,t Number of active RUs at site i at time t, i ∈ S , t ∈ [0,T ].
δli j 1 if the shortest path between i and j uses link l, 0 otherwise, i,

j ∈ S , l ∈ L
MW Maximum number of wavelengths available in each link.
MH Maximum allowed distance in hops between RUs and DUs.

Variables

A j 1 if node j is active (i.e., hosts a DU Hotel), j ∈ S , 0 otherwise
pi j 1 if the DU Hotel at node j is assigned as primary for RUs at node

i, i, j ∈ S , 0 otherwise.
bi j 1 if the DU Hotel at node j is assigned as backup for RUs at node i,

i, j ∈ S , 0 otherwise.
y j Total backup DUs hosted at node j, j ∈ S
ci j j′ 1 if RRUs at node i are using the DU Hotel at node j as primary the

DU Hotel at node j′ as backup, i, j, j′ ∈ S , 0 otherwise.

total backup DUs. In this model, the RU-DU distance is ex-
pressed in hops. This is because links in access networks span
geographical distances similar enough not to have significant
differences in propagation delays. Still, other distance metrics
can be handled in the model.

To solve this problem, a priority ordering was identified
in previous literature, related to the application scenario [15].
Firstly, energy consumption accounts for up to 40% of network
operational costs (OPEX) and is projected to increase [22, 23],
therefore minimizing the total number of active nodes is of pri-
mary importance. If hops minimization had higher priority than
the active nodes, all transport nodes would host DU Hotels and
the overall number of hops would be trivially minimized. Simi-
larly, this would happen if backup DU sharing had higher prior-
ity than the minimization of the number of active nodes, since
the number of shareable backup DUs increases with the num-
ber of active nodes. Therefore, minimization of the number
of active nodes needs to have the highest priority. Minimiza-
tion of the total hops is given higher priority than the backup
DU sharing, since it allows to reduce the average delay and
the wavelength utilization on the WDM fronthaul links. There-
fore, the overall optimization algorithm, referred in the follow-
ing as DUOpt, consists of three sub-problems to be solved in
sequence, with results of each subproblem conditioning the op-
timization of the following ones. A flow diagram illustrating
the lexicographic algorithm is illustrated in Fig. 2.

The parameters and decision variables illustrated in the fol-
lowing ILP formulations are reported in Table 1.

4.1. DUOpt-1: Minimization of total active nodes
This subproblem is used to determine the optimal number of

active nodes in the transport network at time instant t ∈ [0,T ].
The ILP model solved in this subproblem reads as follows:

min CA =
∑
j∈S

A j (1)∑
j∈S

pi j = 1 ∀i ∈ S (2)∑
j∈S

bi j = 1 ∀i ∈ S (3)

pi j + bi j ≤ A j ∀i, j ∈ S (4)
(pi j + bi j) · hi j ≤ MH ∀i, j ∈ S (5)∑

i∈S

∑
j∈S

(pi j + bi j) · δli j · ri,t ≤ MW ∀l ∈ L (6)

A j ∈ {0, 1} ∀ j ∈ S (7)
pi j ∈ {0, 1} ∀i ∈ S , j ∈ S (8)
bi j ∈ {0, 1} ∀i ∈ S , j ∈ S (9)

Objective function (1) minimizes the total number of active
nodes, which is the objective of highest priority. Constraints (2)
and (3) impose that each RU has a primary and a backup DU
Hotel assigned. Constraints (4) are used both to count the ac-
tive DU Hotels and to impose that RUs are assigned to distinct
primary and backup DU Hotels, since the left-hand side of the
inequality is restricted to be at most equal to 1. Constraints (5)
impose that the distance between RUs and their assigned pri-
mary and backup DU Hotels does not exceed MH . Constraints
(6) impose that the maximum number of wavelengths MW in
each WDM fronthaul link is not exceeded. Finally, constraints
(7)-(9) define the domain of decision variables A j, pi j and bi j.

Notably, in this subproblem variables y j and ci j j′ , related
to backup DU sharing, are not present neither in the objective
function or in any constraint, since they are not currently being
optimized: this allows to reduce the size and the computational
burden of the subproblem.

4.2. DUOpt-2: Minimization of total hops
This subproblem is used to determine the optimal number of

hops between DU Hotels and their assigned RUs at time instant
t ∈ [0,T ]. The ILP model solved in this subproblem reads as
follows:

min CH =
∑
i∈S

∑
j∈S

(pi j + bi j) · hi j (10)

(2) − (9)∑
j∈S

A j ≤ C∗A (11)

The objective function (10) minimizes the total number of hops
between RUs and their assigned DU Hotels, which is the objec-
tive of second-highest priority. All the constraints defined for
DUOpt-1 are imposed (i.e., constraints (2)-(9)), since a feasi-
ble assignment minimizing the total number of hops needs to
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be found. Constraint (11) enforces the priority ordering among
the objectives, imposing that the solution value C∗A achieved at
DUOpt-1, of higher priority, must not be worsened in solving
DUOpt-2.

4.3. DUOpt-3: Minimization of backup DUs

This subproblem is used to determine the optimal number
of backup DU at time instant t ∈ [0,T ]. The ILP model solved
in this subproblem reads as follows:

min CB =
∑
j∈S

y j (12)

(2) − (9), (11)
ci j j′ ≥ pi j + bi j′ − 1 ∀i, j, j′ ∈ S , j , j′ (13)

y j′ ≥
∑
i∈S

ci j j′ · ri,t ∀ j, j′ ∈ S , j , j′ (14)

ci j j′ ∈ {0, 1} ∀i ∈ S , j ∈ S , j′ ∈ S , j , j′ (15)
y j ≥ 0, integer ∀ j ∈ S (16)∑

i∈S

∑
j∈S

(pi j + bi j) · hi j ≤ C∗H (17)

∑
j∈S

y j ≥

∑
i∈S ri,t

C∗A − 1
(18)

Objective function (12) minimizes the total number of backup
DUs, which is the objective of lowest priority. All the con-
straints defined for DUOpt-1 and DUOpt-2 are imposed, since
a feasible assignment minimizing the total number of backup
DUs needs to be found. Constraints (13) and (14) are used to
count the backup DUs according to the sharing policy, that is,
a backup DU can be shared between RUs that do not share the
same primary DU Hotel. Constraints (15) and (16) define the
variable domains ci j j′ and y j, i.e., binary and positive integer, re-
spectively. Constraints (11) and (17) enforce the priority order-
ing, imposing that the solution values of DUOpt-1 and DUOpt-
2 must not be worsened in solving DUOpt-3. Constraint (18)
imposes a lower bound on the total number of backup DU Ho-
tels, which is equal to the ratio between the total number of RUs
and the total number of active DU Hotels minus one. Recall
that RUs can share backup DU Hotels only if they have differ-
ent primary DU Hotels. Therefore, the lower bound on number
of backup DUs is obtained by considering the largest number
of different primary nodes, which in the best case is equal to
the number of active nodes. However, since a RU needs to have
distinct primary and backup DU Hotels, one is subtracted from
the denominator. Note that this constraint can be imposed in
the ILP only within a lexicographic method, since it uses the
solution from DUOpt-1. In fact, in an aggregate approach, this
constraint would become nonlinear.

4.4. Simple Local Search Heuristic for DUOpt-3

From preliminary results, it was observed that solving the
ILP model of DUOpt-3 in an exact way was the major bottle-
neck in the optimization procedure. Therefore, exploiting the
separation into subproblems introduced by the lexicographic

optimization, a simple heuristic was developed for solving DUOpt-
3.

This heuristic algorithm consists of a local search proce-
dure, in which a neighbourhood of the solution of DUOpt-2 is
searched by solving a reduced ILP model for DUOpt-3.

Let A∗j be the values of A j, i.e., the DU Hotel placement,
computed at the end of DUOpt-2. In the ILP model of DUOpt-
3, variables A j are fixed to A∗j , i.e., A j = A∗j ∀ j ∈ S is imposed.
Therefore, the model is solved optimizing only variables pi j,
bi j, y j and ci j j′ . In practice, the local search heuristic finds the
DU assignment that allows the maximum backup DU sharing
given a fixed DU Hotel placement. The core assumption behind
this local search heuristic is that the DU Hotel placement found
after DUOpt-2 is already optimal or near-optimal.

This simple local search heuristic performed remarkably
well on the considered problem instances, both in terms of so-
lution quality and computing times.

5. Lexicographic optimization of DU Hotel placement with
minimal virtual network function migrations

In situations where traffic demand is dynamically changing
over time, as expected in practice for 5G networks, an opti-
mized solution at a given time instant might not be such later,
with the possible need to reconfigure the placement of a few vir-
tual network functions over time. The DUOpt lexicographic al-
gorithm described so far (although appropriate for a static opti-
mization) does not take into account the cost of virtual function
migrations. An extension of the previous model is proposed to
minimize the number of virtual function migrations within the
DU Hotel optimization problem.

In each time interval of the considered time horizon (e.g.,
each minute of a day) the new DUMig algorithm applies a lex-
icographic approach in three steps, as in DUOpt, but account-
ing for the cost of virtual function migration: objectives are
ranked according to their priority given by the application sce-
nario (minimization of new node activations, and of migrations
and hops), and optimized by solving sequentially three sub-
problems, in order to separate the decision variables in the ob-
jective function. The ILP models parameters and decision vari-
ables are reported in Table 1.

5.1. DUMig-1: Optimal node de-activation

This subproblem is used to determine the optimal number
of active nodes in the transport network, while minimizing the
displacement with the current resource assignment and allow-
ing deactivation of nodes that are no longer needed, at time
t ∈ [0,T ]. The ILP model of this subproblem reads as follows:

min CD =
∑
j∈S 0,t

A j −
1
2

∑
j∈S 1,t

(1 − A j) (19)

(2) − (9)

The objective function (19) penalizes the activation of new
nodes with respect to the current solution available at time t,

7



and favors the deactivation of redundant nodes, i.e., nodes that
are no longer needed due to low traffic load. Note that the acti-
vation penalty is larger than the deactivation reward, so that the
deactivation of a node followed by the activation of a different
node results in a penalty. Indeed, deactivating a DU Hotel and
activating a new one translates in having to migrate all hosted
DUs causing migration costs. To limit migration costs, the ac-
tivation of new nodes should be used only when the currently
active nodes cannot satisfy the traffic demand, hence it is penal-
ized. On the contrary, the deactivation of nodes that are not used
gets a reward in order to avoid keeping active redundant nodes.
Overall, the goal is, thus, to minimize the displacement in terms
of active nodes with respect to the current solution available at
time t while deactivating as many redundant nodes as possible.

5.2. DUMig-2: Minimization of hops and migrations

This subproblem is used to minimize the number of migra-
tions and the total hops between RUs and DU Hotels, at time
instant t ∈ [0,T ]. The ILP model solved in this subproblem
reads as follows:

min CM +CH = µP

∑
(i, j)∈P0,t

pi j + µB

∑
(i, j)∈B0,t

bi j +

+ β
∑
i∈S

∑
j∈S

(pi j + bi j) · hi j (20)

(2) − (9)∑
j∈S 0,t

A j −
1
2

∑
j∈S 1,t

(1 − A j) ≤ C∗D (21)

The weighted multi-objective function (20) minimizes the
total primary and backup DU migrations, and the total num-
ber of hops. All the constraints defined in the ILP model of
DUMig-1 are imposed, since the choice of active DU Hotels is
not fixed from the previous subproblem. Constraint (21) im-
poses that the solution value C∗D of the previous higher priority
subproblem is not worsened in the final solution.

In the following, it will be assumed that µP ≫ µB ≫ β,
in order to penalize more primary DU migrations with respect
to backup DU migrations, and to give the hops less priority
with respect to the migrations. Note that, the objective func-
tion could be indeed further decomposed via the Lexicographic
method, optimizing in sequence primary migrations, backup
migrations and total hops. From experimental results, it was
observed that jointly optimizing migrations and hops was more
time-efficient. This is because the Lexicographic method intro-
duces a computational overhead due to instantiating and solving
several models in sequence. Since the time for jointly optimiz-
ing the above objectives is already small, further decomposing
the problem grants no benefit.

5.3. DUMig-3: Minimization of backup DUs

This subproblem is used to minimize the total number of
backup DUs, at instant t ∈ [0,T ]. The ILP model solved in this

subproblem reads as follows:

min CB =
∑
j∈S

y j (22)

(2) − (9), (13) − (16), (18), (21)
CM +CH ≤ C∗M +C∗H (23)

Objective function (22) minimizes the number of backup DUs,
and constraint (23) imposes that the solution value achieved at
DUMig-2 must not be worsened.

In order to mitigate the computing times of this last sub-
problem, a local search heuristic similar to the one developed
for DUOpt-3 was employed. In particular, the values of A j

are fixed to the values A∗j found at the end of DUMig-2. The
major difference with respect to DUOpt lies in constraint (23)
that constraints the migrations in addition to the hops, there-
fore leading to a smaller neighbourhood exploitable by the local
search heuristic.

6. Numerical Results

In this section, the performance of the proposed lexicographic
algorithm and its extension to dynamic traffic scenarios are ex-
tensively benchmarked in different case studies. First, we vali-
date the proposed lexicographic approach for optimal DU place-
ment DUOpt, by comparing solution quality and computing
times against the aggregate approach, on several test networks.
In addition, the results of the local search procedure for DUOpt-
3 are reported to show its effectiveness in reducing computing
times. Secondly, a dynamic traffic scenario in a practical 5G-
RAN topology is considered to evaluate the proposed DUMig
algorithm against DUOpt. The numerical results were obtained
via the commercial solver CPLEX 12.10, running on an Intel
Core i9-9900k@4.8GHz with 32GB RAM.

6.1. Comparing DUOpt with aggregate multi-objective opti-
mization in static conditions

The performance of the proposed optimal DU placement
lexicographic algorithm (DUOpt) is shown, compared against
a traditional aggregate approach. Four regular Lattice networks
of 36, 49, 64 and 100 nodes are considered, with ri,t = 10 RUs
per node and a maximum of MW = 80 wavelengths per link.
Sample non-regular topologies are also considered obtained by
removing 10 random links from the 49 and 64 Lattice networks,
and 30 random links from the 100 nodes Lattice network. In
the numerical evaluations, α = 106, β = 103, and, γ = 1 are
used as weights in the multi-objective function of the aggregate
model as in [15], thus imposing the same objective ordering
as in the lexicographic algorithm. Note that the lexicographic
approach bypasses the use of such large weights, avoiding po-
tential numerical issues during execution. Finally, time limit
for execution is set to 1 hour. In the lexicographic approach,
the time limit is set to 200 seconds for DUMig-1, 200 seconds
for DUMig-2, and 3200 seconds for DUMig-3.

Since the lexicographic and aggregate approaches have dif-
ferent objective functions, the following formulas are defined

8



Table 2: Results of DUOpt and aggregate approaches for lattice networks.

Approach |S | |L| MH CA CH CB Gap%

DUOpt 36 60 5 4 156 180 0
Aggregate 36 60 5 4 156 180 19.16
DUOpt 36 60 6 3 194 180 0
Aggregate 36 60 6 3 194 180 0

DUOpt 49 84 5 4 259 250 0.0022
Aggregate 49 84 5 4 259 250 0
DUOpt 49 84 6 4 259 250 0.0022
Aggregate 49 84 6 4 259 250 11.21

DUOpt 64 112 5 5 348 300 0.0026
Aggregate 64 112 5 5 348 290 0.0002
DUOpt 64 112 6 5 344 270 0.002
Aggregate 64 112 6 5 356 220 18.16

DUOpt 100 180 5 8 506 500 0.0042
Aggregate 100 180 5 8 535 470 15.37
DUOpt 100 180 6 8 506 540 23.5
Aggregate 100 180 6 18 607 280 68.9

in order to compute an equivalent optimality gap (Geq) for the
two approaches:

Ceq = α ·C∗A + β ·C
∗
H + γ ·C

∗
B (24)

LBeq = α · LB(CA) + β · LB(CH) + γ · LB(CB) (25)

Geq =
Ceq − LBeq

Ceq
(26)

where LB(·) is the best lower bound achieved in the execution
time limit for each subproblem, and C∗ is the objective value
of the best solution found in that subproblem. In this way, it
is possible to compare the quality of the solutions produced by
the two approaches.

In Table 2 the objective values and relative percentage gaps
obtained by DUOpt and aggregate approaches are reported. Per-
formance of DUOpt approach is shown either similar or sig-
nificantly better than the aggregate approach (which obtains
suboptimal solutions within the given time limit). In particu-
lar, DUOpt is able to find either optimal or near-optimal solu-
tions for all the considered instances but the largest one. On
the other hand, the aggregate model shows large relative gaps
for the largest considered problem instances (namely, 64 nodes
and MH = 6, and 100 nodes), therefore providing less informa-
tion on the actual solution quality. For the largest considered
problem instance (i.e., 100 nodes and MH = 6) DUOpt shows a
non-negligible optimality gap, however the computed solution
is significantly better with respect to the aggregate, with 8 active
nodes and 506 hops against 18 active nodes and 607 hops.

In Fig. 3 the computing times required by DUOpt-1 and
DUOpt-2, varying the number of nodes in a regular Lattice net-
work, are reported. For all instances but the largest (i.e., 100
nodes and MH = 6), DUOpt is able to both compute the op-
timal solutions and prove their optimality for both DUOpt-1
and DUOpt-2 within the time limit. For the largest instance,
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Figure 3: Execution times of the first two subproblems of DUOpt varying the
number of nodes in a regular Lattice network and the maximum distance MH .

Table 3: Results of DUOpt and aggregate approaches for non-regular networks.

Approach |S | |L| MH CA CH CB Gap%

DUOpt 49 74 5 5 226 230 0
Aggregate 49 74 5 5 229 210 17.98
DUOpt 49 74 6 4 269 220 0.0013
Aggregate 49 74 6 4 269 250 9.21

DUOpt 64 102 5 6 305 320 0.0030
Aggregate 64 102 5 6 306 380 14.86
DUOpt 64 102 6 5 363 340 0.0034
Aggregate 64 102 6 6 331 230 30.43

DUOpt 100 150 5 9 493 530 10.5
Aggregate 100 150 5 9 530 480 18.8
DUOpt 100 150 6 9 492 440 31.6
Aggregate 100 150 6 21 604 330 69.2

DUOpt-1 only reaches the time limit, and the computed solu-
tion is of much better quality with respect to the aggregate.

Conversely, the aggregate approach, as shown in Table 2,
reaches the time limit of 3600 seconds for most of the consid-
ered problem instances, being able to prove optimality of the
computed solutions in only two cases (namely, 36 nodes with
MH = 6 and 49 nodes with MH = 5).

In Table 3 the results for the reference 49, 64 and 100 nodes
non-regular topologies are reported. Similarly to what was ob-
served in Table 2, DUOpt consistently attains smaller optimal-
ity gaps with respect to the aggregate method in all of the con-
sidered problem instances, and also finds better solutions for
the largest network.

Since in solving the ILP model of DUOpt-3 the 3200s time-
out is often reached without having found the optimal solution,
a specific local search for this heuristic was developed. In Ta-
ble 4 the results of the local search heuristic for DUOpt-3 are
reported. Columns CHeur

B and T Heur indicate the solution values
found by the local search algorithm and the respective com-
puting times, while columns CDUOpt-3

B and T DUOpt-3 indicate the
best solution values found by solving DUOpt-3 in an exact way
and the respective computing times. The local search heuris-
tic is able to find solutions similar to those obtained by solving
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Table 4: Results of the heuristic algorithm for DUOpt-3.

|S | |L| MH CHeur
B T Heur(s) CDUOpt-3

B T DUOpt-3(s)

36 60 5 180 0.17 180 183.3
36 60 6 180 0.20 180 47.11

49 84 5 250 0.38 250 3200
49 84 6 250 0.42 250 3200
49 74 5 240 0.53 230 1416
49 74 6 210 0.47 210 3200

64 112 5 290 0.86 300 3200
64 112 6 260 0.87 270 3200
64 102 5 320 0.83 320 3200
64 102 6 300 1.31 340 3200

100 180 5 510 2.94 500 3200
100 180 6 540 2.88 540 3200
100 150 5 490 2.92 530 3200
100 150 6 400 2.91 440 3200

model (12)-(18), in computing times at most equal to 2.94s for
the largest problem instances. In particular, it can be seen that
for some instances the heuristic is able to find better solutions
with respect to the exact method, the latter remaining stuck in
suboptimal solutions when reaching the time limit. In the worst
case, the heuristics finds solutions that are only slightly worse
with respect to solving DUOpt-3 in an exact way. Therefore,
the heuristic proves to be a remarkably good solution method
for mitigating the exceedingly long computing times required
by solving the ILP model of DUOpt-3. Thus, in the follow-
ing, minimization of the total backup ports for both DUOpt and
DUMig will be solved via the developed local search heuristic.

6.2. Optimization over time with DUOpt and DUMig

To evaluate the algorithm performance in a dynamic sce-
nario, a realistic reference network with 38 nodes is considered
[24], as shown in Fig. 4. A sample traffic variation over a time
horizon of one day, expressed in average number of active RUs
per node [25, 26], is assumed, as shown in Fig. 5. Such traffic
behaviour is representative of both low and high traffic periods,
and of both positive, negative and null gradients with respect
to time. In the numerical evaluation a random contribution of
active RUs uniformly distributed between [−2, 2] is added for
each time sample instant to the mean values of Fig. 5 to take
into account small deviations that can happen in practice with
respect to the mean.

The described DUMig algorithm is applied to maintain the
virtual DU function assignment optimized in relation to the
sample traffic profile of Fig. 5. The time instants of execu-
tion can be set periodically with a given time granularity, either
constant or variable during the observation period, providing
that enough time is available for the execution of the optimiza-
tion algorithm and the network reconfiguration. For this reason,
in order to apply the procedure with fine time granularity, the
optimization algorithm must converge accordingly. The consid-
ered numerical evaluations refer to a constant time granularity,

Figure 4: Sample 38-node 5G-RAN topology used for numerical evaluations
for the optimization over time.
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Figure 5: Average active RUs per node for a time horizon T = 24 hours.

which was set to be either fine (60 seconds) or coarse (30 min-
utes), in order to assess the sensitivity of DUMig to this design
parameter. DUMig is compared with DUOpt (which neglects
migrations and is designed for a static scenario) in order to show
that the slight worsening in DUMig on resources optimization
(number of nodes, hops and backup DUs) allows for a signifi-
cant gain in the reduction of primary and backup migrations.

6.2.1. Fine time granularity evaluations
Firstly, DUMig was applied with a fine time granularity,

which is every 60 seconds in the 24 hour range. The choice
of this time granularity is to analyze the performance of the al-
gorithm in a challenging scenario, where the RU profile needs
to be followed closely and the time for the execution of the
optimization is very limited. The time limit was set to 53 sec-
onds, with at most 35 seconds for DUMig-1, 15 seconds for
DUMig-1 and the residual time for the heuristic for DUMig-
3. For DUOpt, at most 45 seconds were given to DUOpt-1, 15
seconds to DUOpt-1 and the residual time for the heuristic for
DUOpt-1.

Fig. 6 shows the execution times of the instances calculated
by DUMig and DUOpt, with time granularity equal to 1 minute.
The execution time of DUMig depends on the traffic variations,
but it is on average below 10s. In particular, DUMig obtains
optimized results in less than a few seconds, with peaks of a few
tens of seconds in the intervals e.g., 360-480 (corresponding to
6:00 and 8:00 AM, respectively) where the rate of traffic change
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Figure 6: Execution time of each instance for DUMig and DUOpt, with time
granularity equal to 1 minute over a time horizon T = 24 hours.

is high. This is due to the complexity of the reconfiguration
required to achieve optimization.

DUMig reaches the time limit in a few instances out of
1440, for which however the optimal solution was found, lack-
ing the proof of optimality only. On the other hand, DUOpt
reached the timeout of 45s for active node optimization in sev-
eral instances, for which in some cases it computed a worse
solution than DUMig.

Fig. 7 shows the number of active nodes computed by DU-
Mig in comparison with the number of active nodes obtained
by DUOpt, with the same time granularity. DUOpt reached
the time limit in several instances, nevertheless it computed so-
lutions with the same or a better number of active nodes than
DUMig in most cases. The reason is that DUOpt, myopic to
migrations, completely neglects the solution computed in the
previous time period: clearly, minimizing deviations with re-
spect to the previous solution is instead very important in a dy-
namic setting to limit the network reconfiguration costs. In ad-
dition, one can observe that the two sets of results almost over-
lap, meaning that DUMig is able to attain near-optimal resource
assignment with respect to DUOpt, which does not account for
migrations costs. In particular, the average worsening of DU-
Mig with respect to DUOpt throughout all instances is equal
to 0.0882 nodes. Focusing on the time intervals in which the
number of active nodes varied the most, between 6:00 and 9:00
the average worsening is equal to 0.0555 nodes, whereas be-
tween 20:00 and 24:00 is equal to 0.445 nodes. Therefore, the
resource assignments computed by DUMig are either optimal
or near optimal even if DUMig also accounts for migrations,
and one can conclude that the minimization of the displacement
from the previous time instant does not hinder the optimization
of the number of active nodes.

In Fig. 8 the total number of hops computed by DUMig
is compared with that obtained by DUOpt in the same time
limit. The average worsening of DUMig with respect to DUOpt
throughout all instances is equal to 7.16 hops, between 6:00
and 9:00 is equal to 22.1 hops, and between 20:00 and 24:00
is equal to 7.85 hops. Since the minimization of the total num-
ber of hops has lower priority with respect to the migrations,
it is reasonable to observe a larger worsening with respect to
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Figure 7: Number of active nodes A j of each instance for DUMig and DUOpt,
with time granularity equal to 1 minute over a time horizon T = 24 hours.
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Figure 8: Total number of hops of each instance for DUMig and DUOpt, with
time granularity equal to 1 minute over a time horizon T = 24 hours.

optimal or near-optimal static traffic solutions. Nevertheless,
the obtained solutions are of acceptable quality (6.00% relative
gap with respect to DUOpt) and most importantly compliant
with the maximum distance constraint, which is paramount for
latency requirements.

In Fig. 9 the total number of backup DUs is shown for
DUMig and DUOpt. As expected, the amount of primary DUs
is the same for both algorithms, as they require one primary
DU per RU. Conversely, DUOpt needs fewer backup DUs with
respect to DUMig. This is because the heuristic for DUMig-
3, constrained on the maximum number of migrations it can
perform, explores a much smaller neighbourhood with respect
to DUOpt. As a consequence, DUMig achieves less sharing
of backup DUs with respect to DUOpt, which results in more
backup DUs required. In any case, backup DU sharing allows
to save a significant amount of resources with respect to a 1:1
protection scheme, where the number of backup DUs would be
the same as the primary DUs.

In Fig. 10 and 11 the total number of primary migrations
and backup migrations are shown, respectively. DUOpt re-
quires significantly more DU migrations with respect to DU-
Mig. It can be observed that number of migrations induced by
DUOpt slightly drops for the instances in which the fronthaul
links capacity approaches saturation, as the solutions found tend
to be more similar. Overall, the number of migrations induced
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Figure 9: Total primary and backup DUs (pi j and bi j, respectively) of each
instance for DUMig and DUOpt, with time granularity equal to 1 minute over
a time horizon T = 24 hours.
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Figure 10: Primary DU migrations of each instance for DUMig and DUOpt,
with time granularity equal to 1 minute over a time horizon T = 24 hours.

by DUOpt is completely out of control, being it not included in
the optimization procedure.

In addition, the majority of migrations for DUMig happens
in those time instants when nodes are either activated or deacti-
vated, as can be expected. With reference to the traffic profile, it
could be reasonable to execute the algorithm during the time in-
tervals when the traffic is rising fast, so as to maximize respon-
siveness. However, when traffic is decreasing, it may be benefi-
cial executing the algorithm over longer time intervals and per-
forming nodes de-activations and consequent migrations only
few times over the decreasing slope. This would limit the num-
ber of times the optimization is executed with potential positive
impact on energy saving.

As numerical results, the total number of primary and backup
migrations for DUOpt are respectively equal to 22507 and 22163,
whereas for DUMig they are equal to 613 and 1070, i.e., there
are 97.3% less primary migrations and 95.2% less backup mi-
grations than in DUOpt. This confirms that DUMig is able to
preserve near-optimal resource assignment while keeping the
total number of migrations as minimal. Moreover, given that
minimizing primary migrations was given higher priority than
backup migrations, DUMig performs 42.7% less primary mi-
grations with respect to backup migrations.
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Figure 11: Backup DU migrations of each instance for DUMig and DUOpt,
with time granularity equal to 1 minute over a time horizon T = 24 hours.
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Figure 12: Execution time of each instance for DUMig and DUOpt, with time
granularity equal to 30 minutes over a time horizon T = 24 hours.

6.2.2. Coarse time granularity evaluations
The algorithm was applied with a coarser time granularity,

which is every thirty minutes. The time limit for both DU-
Mig and DUOpt was set to 1700 seconds, with at most 1200
seconds for DUOpt-1 and DUMig-1, at most 500 seconds for
DUOpt-2 and DUMig-2, and the residual time to the heuristics
for DUOpt-3 and DUMig-3.

Fig. 12 shows the computing times of DUMig and DUOpt
for each instance. One can observe that even though the time
granularity is much coarser than in the previous case, and there-
fore traffic variations between two consecutive instances are
much larger, the average computing times remain in the same
order of magnitude as shown in Fig. 6. In particular, the average
computing times are 1.66s and 5.21s for DUMig and DUOpt,
respectively.

Fig. 13 shows the number of active nodes and total hops
from DUMig versus DUOpt. With respect to the nodes, the
average worsening of DUMig with respect to DUOpt over the
entire day is equal to 0.041 nodes, between 6:00 and 9:00 is
equal to 0.167 nodes and between 20:00 and 24:00 is equal
to 0.125 nodes. Again, one can observe that the DUMig and
DUOpt plots almost overlap, showing that DUMig is able to
maintain near-optimal resource assignment. Moreover, even
though a coarser time granularity was considered and therefore
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Figure 13: Active nodes and hops of each instance for DUMig and DUOpt,
with time granularity equal to 30 minutes over a time horizon T = 24 hours.

larger traffic variations, the minimization of the displacement
from the previous solution does not hinder the optimization of
the number of active nodes.

With respect to the hops, the average worsening of DUMig
with respect to DUOpt over the entire day is equal to 5.69 hops,
between 6:00 and 9:00 is equal to 16.2 hops and between 20:00
and 24:00 is equal to 6.25 hops. As in the scenario with finer
time granularity, solutions of acceptable quality are achieved
(5.19% relative gap with respect to DUOpt), even though min-
imization of the total number of hops is given lower priority
with respect to the migrations.

Fig. 14 shows the total number of migrations performed
by DUMig and DUOpt. Overall, DUMig performs 84.5% less
migrations than DUOpt, again showing its capability to pro-
duce near-optimal resource assignments while keeping under
control the total number of migrations. Fig. 15 shows the mi-
gration savings from DUMig with respect to DUOpt. In partic-
ular, DUMig obtains 86.1% and 83.0% less primary and backup
migrations, respectively, than DUOpt. This is because primary
migrations were given a higher cost with respect to backup mi-
grations, and are therefore discouraged.

The total number of DUMig migrations over the consid-
ered time period is much smaller with respect to the 60 seconds
time granularity: this can be of particular interest in case of de-
creasing traffic, where the timeliness of VNFs reconfiguration
is not crucial, leading to further savings in computing power.
Since with decreasing traffic the computed solution maintains
feasibility, the advantage of adopting a coarser time granularity
is twofold: firstly, the total number of migrations to be per-
formed is much smaller, avoiding redundant re-configurations;
secondly, the algorithm can be called fewer times, thus saving
computational power. On the other hand, when the traffic is in-
creasing, it is paramount to reconfigure the network as fast as
possible, therefore a finer time granularity should be adopted.

In Fig. 16 the active nodes at 8:00 are reported after a traf-
fic increase with respect to 7:30. In particular, previously ac-
tive nodes kept active are highlighted in red, previously active
nodes that have been turned off are circled in red, and new ac-
tive nodes are highlighted in green. As reported in Fig. 13, at
8:00 there are 5 new active nodes with respect to 7:30, for a

 0
 3
 6
 9

 12
 15
 18
 21
 24
 27
 30
 33
 36
 39
 42
 45
 48
 51
 54
 57
 60
 63
 66
 69

 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30  32  34  36  38  40  42  44  46  48

 N
um

be
r 

of
 M

ig
ra

tio
ns

 

 Instance 

 DUMig
 DUOpt

Figure 14: Total DU migrations of each instance for DUMig and DUOpt, with
time granularity equal to 30 minutes over a time horizon T = 24 hours.
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Figure 16: Active DU Hotels placement at 8:00 after a traffic increase w.r.t.
7:30, with time granularity of 30 minutes over a time horizon T = 24 hours.
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total of 10 active nodes. Five new nodes (3, 9, 25, 32, 38) have
been activated; with the previous solution fixed, that would have
led to 11 active nodes. In fact, since the objective function of
DUMig rewards the deactivation of nodes that are no longer
needed, node 2 has been turned off. This results in DUMig
reaching the optimal DUOpt solution (10 active nodes) both in
shorter computing time and minimizing the total number of DU
Hotel migrations.

7. Conclusions

In this paper, 5G-RAN multi-objective optimization is con-
sidered for jointly addressing the following points for the first
time, in a scalable, effective and generalizable way: 1) cost
of virtual network functions migrations in a dynamic traffic
scenario, 2) deployment of redundant resources for resiliency
against failures, 3) constraints on the maximum latency. The
multi-objective optimization problem is divided into three sub-
problems, one per objective, which are solved in sequence ac-
cording to the priority of the objectives using a lexicographic
method. A bottleneck in the optimization procedure is tackled
via a novel local search heuristic able to compute in negligi-
ble computing times solutions of similar quality with respect to
an exact method. Computing times short enough to allow dy-
namic network optimization over time, with time granularities
down to a few seconds, are achieved. In addition, the method
is extended to optimize virtual function migrations to achieve
optimization over time in a dynamic traffic context. To that
regard, remarkable savings in the total number of migrations
(86.1% for primary virtual functions and 83% for backup vir-
tual functions) are gained while maintaining near-optimal re-
source assignment, with a worst-case performance of less than
1 additional active DU hotel required, on average, over a time
horizon of a day. In future work, we are planning to extend
the model to account also for failures of the transport network
domain (e.g., in case of fiber cuts) considering different access
network topologies.
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Appendix A. Aggregate Multi-objective Optimization

The multi-objective problem introduced in 3.1 can be solved
by scalarization: each objective function is weighted by a pos-
itive scalar, which magnitude is proportional to the objective
priority. The weighted objective functions are summed, and
optimized at the same time in an aggregate way by solving a
single ILP model. Let α, β and γ be positive scalars, such that
α ≫ β ≫ γ. Then, the ILP model for reliable 5G-RAN opti-
mization solved in an aggregate way reads as follows:

min C = αCA + βCH + γCB (A.1)∑
j∈S

pi j = 1 ∀i ∈ S (A.2)∑
j∈S

bi j = 1 ∀i ∈ S (A.3)

pi j + bi j ≤ A j ∀i, j ∈ S (A.4)
(pi j + bi j) · hi j ≤ MH ∀i, j ∈ S (A.5)∑

i∈S

∑
j∈S

(pi j + bi j) · δli j · ri ≤ MW ∀l ∈ L (A.6)

ci j j′ ≥ pi j + bi j′ − 1 ∀i, j, j′ ∈ S , j , j′ (A.7)

y j′ ≥
∑
i∈S

ci j j′ · ri,t ∀ j, j′ ∈ S , j , j′ (A.8)

A j ∈ {0, 1} ∀ j ∈ S (A.9)
pi j ∈ {0, 1} ∀i ∈ S , j ∈ S (A.10)
bi j ∈ {0, 1} ∀i ∈ S , j ∈ S (A.11)

ci j j′ ∈ {0, 1} ∀i ∈ S , j ∈ S , j′ ∈ S , j , j′ (A.12)
y j ≥ 0, integer ∀ j ∈ S (A.13)

Since α ≫ β ≫ γ, solving this ILP model to optimality yields
the same objective functions values of the Lexicographic algo-
rithm presented in Section 4.

This problem is NP-Hard, since it generalizes the Uncapac-
itated Facility Location Problem [27]. In particular, the con-
sidered problem additionally includes the minimization of the
number of backup DUs, and requires the assignment of primary
and backup DU Hotels for each node where RUs are present.
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