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Distributed Personalized Gradient Tracking
with Convex Parametric Models

Ivano Notarnicola Member, IEEE, Andrea Simonetto Member, IEEE, Francesco Farina Member, IEEE,
Giuseppe Notarstefano Member, IEEE

Abstract—We present a distributed optimization algorithm for
solving online personalized optimization problems over a network
of computing and communicating nodes, each of which linked
to a specific user. The local objective functions are assumed
to have a composite structure and to consist of a known time-
varying (engineering) part and an unknown (user-specific) part.
Regarding the unknown part, it is assumed to have a known
parametric (e.g., quadratic) structure a priori, whose parameters
are to be learned along with the evolution of the algorithm.
The algorithm is composed of two intertwined components: (i)
a dynamic gradient tracking scheme for finding local solution
estimates and (ii) a recursive least squares scheme for estimating
the unknown parameters via user’s noisy feedback on the local
solution estimates. The algorithm is shown to exhibit a bounded
regret under suitable assumptions. Finally, a numerical example
corroborates the theoretical analysis.

Index Terms—Distributed Optimization, Distributed Learning,
Online Optimization.

I. INTRODUCTION

Cyber-physical and social systems (CPSS) are becoming
increasingly important in today’s society, whenever human
actions, preferences, and behaviors are added to the cyber and
physical space [1]. Important examples of this class of systems
are the energy grid [2], [3], transportation infrastructures [4],
personalized healthcare [5], and robotics [6].

A key feature of CPSS is the trade-off between given engi-
neered performance metrics and user’s (dis)comfort, perceived
safety, and preferences. While, on one side, engineered goals
may come from well-defined metrics based on physical models
and can be time-varying to model data streams [7], on the other
side, user’s (dis)satisfaction is more complex to model. The
“utility” function to be optimized for the users is often based
on averaged models constructed on generic one-fits-all models.
However, good averaged models of users’ utilities are difficult
to obtain for the associated cost and time of human studies,
the data is therefore scarce and biased. For these reasons, more
tailored and personalized strategies are to be preferred when
dealing with humans [8].

This paper studies time-varying optimization problems
distributed across a network of N agents. Each agent represents
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both a physical node (e.g., a home or a car) and its associated
user. The optimization has a cost function that comprises of
both a known time-varying engineering cost, and an unknown
user specific (dis)satisfaction function. Formally, we define the
distributed personalized problem as

minimize
x∈Rn

N∑

i=1

Vi(x; t) + Ui(x)︸ ︷︷ ︸
fi(x;t)

, t ∈ N (1)

where x ∈ Rn represents the common decision variable, and
t ∈ N represents the time index; each agent i is equipped with
the known time-varying engineering cost Vi(x; t) : Rn×N→ R
and with the unknown user’s dissatisfaction function Ui(x) :
Rn → R. The aggregated cost fi(x, t) : Rn × N → R is
associated to agent i only. Then, by solving problem (1), we
mean to generate a sequence of tentative solutions, say {x̄t}Tt=1,
which make the corresponding cost

∑N
i=1 fi,t(x̄t; t) as close

as possible to its (current) optimal value, say f?(t), for all t.
In particular, as customary in online optimization, we measure
the quality of the given sequence {x̄t}Tt=1 using the cumulative
dynamic regret up to time T defined by

RT ({x̄t}Tt=1) ,
T∑

t=1

(
N∑

i=1

fi(x̄t; t)− f?(t)

)
(2)

and the average dynamic regret up to time T defined by
RT ({x̄t}Tt=1)/T . As it is customary in the distributed setting,
we also complement these measures with the consensus metric
CT ({xi,T }Ni=1, x̄T ) ,

∑N
i=1 ‖xi,T − x̄T ‖2, quantifying how

far from consensus the local decisions xi,T are at time T .
The challenges in solving problem (1) are multiple. First,

a distributed strategy must be developed. Then, not only the
optimization problem changes over time, but its cost function
is not completely known by the agents and it has to be learned
concurrently to the solution of the problem, by employing
noisy user’s feedback.

This paper addresses all the above mentioned challenges
and provides the following main contributions.

We propose a personalized gradient tracking distributed
scheme combining an online optimization algorithm with a
learning mechanism, and derive a bound on its dynamic regret.
As a building block for the proposed scheme, we develop
a dynamic gradient tracking algorithm that, given a smooth
strongly convex time-varying cost function, is capable of
tracking its solution sequence {x?(t)}t∈N in a distributed way
up to a bounded error, in line with time-varying optimization
results [7], [9]. Notice that, this block is a contribution per se
to the distributed online optimization literature.
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In the proposed personalized gradient tracking strategy,
the dynamic gradient tracking update is interlaced with a
learning mechanism to let each node learn the user’s cost
function Ui(x), by employing noisy user’s feedback in the
form of a scalar quantity given by yi,t = Ui(xi,t) + εi,t,
where xi,t is the local, tentative solution at time t and εi,t
is a noise term. It is worth pointing out that in this paper, we
consider convex parametric models, instead of more generic
non-parametric models, such as Gaussian Processes [3], [8],
[10], [11], or convex regression [12], [13]. The reasons for
this choice stem from the fact that (i) user’s functions are
or can be often approximated as convex (see, e.g., [14], [15]
and references therein), which makes the overall optimization
problem much easier to be solved; (ii) convex parametric
models have better asymptotical rate bounds1 than convex non-
parametric models [12], which is fundamental when attempting
at learning with scarce data; and (iii) a solid online theory
already exists in the form of recursive least squares (RLS) [16]–
[18]. Therefore, our learning mechanism is based on a RLS
algorithm, whose asymptotical rate is characterized.

Although the high-level algorithmic idea of combining
a distributed (online) optimization update with a recursive
regression scheme appears intuitively reasonable, the concurrent
application of the two updates at the same time scale introduces
several challenges in the analysis that have been addressed
by properly applying and adapting tools from online and
distributed optimization and from parameter estimation.

To summarize, the main goal of the paper is to provide a
first-of-its-kind algorithm to simultaneously learn and solve
optimization problems with unknown convex parametric models
online and in a distributed fashion, while at the same time
incorporating human preferences in the loop.

Literature survey: A centralized bandit framework with a
similar structure to the one considered in this paper has been
introduced in [8], even though in the context of non-parametric
learning (see also references therein for a comprehensive
literature survey).

In the distributed setup addressed by this paper, we assume
that the function Ui can be modeled as a linearly parametrized
convex quadratic function, whose parameters are unknown and
have to be learned. This represents a first step towards generic
parametric models2. Non-parametric approaches in the litera-
ture to learn unknown functions are e.g., (shape-constrained)
Gaussian processes [3], [10] and convex regression [12], [13].
As said, we prefer here parametric models for their faster

1By asymptotical rate, we mean how the approximation gets closer to the true
function as the number of data points (feedback) increases. Shape-constrained
Gaussian processes can be used to impose convexity constraints in a practical
sense, but their computational complexity scales as O(t3), where t is the
number of data points, they are not trivially extended for decision spaces with
dimensions n > 1, and asymptotical rate bounds are not yet available. Convex
regression has asymptotical rate bounds of the form of O(t−1/n), which
is very slow compared to the parametric models, and their computational
complexity scales at least as O(t2n3).

2The approach in this paper can be extended to linearly parametrized convex
functions, but we assume a quadratic structure for the sake of clarity. If the
user’s parametric model is more complex, we can always focus on local results,
where the model is approximately convex and linear in the parameters, see
also [19] for examples of linearly parametrized models applied to inverse
control and optimization, which are close in spirit to our problem.

asymptotical rates, cheap online computational load, and ease
of introducing convexity constraints.

Another line of research, not followed in this paper, is zero-
order (stochastic) online convex optimization, where the cost
function is assumed convex, but not known, and its gradient is
estimated by function evaluations [20], [21]. Even though this
line of research is extremely relevant for human-in-the-loop
settings (see, e.g., [6]), we distinguish ourselves from it since
we do not assume that the user’s feedback is available at each
time t. This is key in human systems where feedback may
come intermittently, and still one needs to be able to solve the
optimization problem. Imagine for example that a particular
user is content with whichever decision and she/he does not
feel the need for giving feedback, after a few initial ones. Then
our algorithm would work seamlessly, since it builds a model
for Ui, while zero-order methods would still need function
evaluations (i.e., feedback) to proceed.

Regarding optimization problems with (known) time-varying
cost function, they have been addressed in the distributed
optimization literature, both in the stochastic (see, e.g., [22],
[23] and references therein) and online/time-varying settings,
e.g., [7], [24]–[29], and references therein. Our algorithm relies
on the so-called gradient tracking algorithm firstly proposed
in [30]–[33]). The gradient tracking scheme has been originally
designed for static optimization problems while it has been
applied later to online problems in, e.g., [29], [34]. The most
important difference here is that not knowing either the cost
function, the minimum dynamics, or both, poses important
additional challenges in ensuring convergence concurrently
with learning.

Notation: The j-th component of a vector v is [v]j while
the j-th row of a matrix A is [A]j . For m vectors v1, . . . , vm,
we define col(v1, . . . , vm) , [v>1 , . . . , v

>
m]>. Given c ∈ R,

b ∈ Rn and A ∈ Rn×n, let v , col(c, b, [A]>1 , . . . , [A]>n ) ∈
R1+n+n2

, then we define the operator UNPACK(v) so that
(A, b, c) = UNPACK(v). The all-one vectors of appropriate
dimension is 1. Gradients w.r.t. the variable x of the function
f(x; t) are indicated with ∇f(x; t).

II. PROBLEM ASSUMPTIONS

Problem (1) is to be solved in a distributed way by a network
of N agents. We have depicted the problem setting in Figure 1:
each agent is composed by a physical node (e.g., a home, a car,
a mobile phone) linked to an end-user. The nodes are equipped
with a time-varying cost Vi and can evaluate a noisy version
of Ui by asking the user for feedback on a particular decision
xi,t. Each node can compute and communicate with its direct
neighbors over a fixed network. In this context, each agent i
has only a partial knowledge of the target problem.

We consider the following assumption on the problem
structure.

Assumption II.1. For all i = 1 . . . , N it holds that:
(i) The function Vi(x; t) is mV -strongly convex and its

gradients are LV -Lipschitz continuous for all t ∈ N.
(ii) The function Ui(x) has a quadratic structure, i.e.,

Ui(x) = 1
2 x
>Pix + q>i x + ri, with Pi ∈ Rn×n symmetric
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user i : Ui(x)

node i : Vi(x; t)

feedback:
yi,t = Ui(xi,t) + εi,t

implement: xi,t

agent i : Vi(x; t) + Ui(x)

Fig. 1. The problem setup: a network of connected and communicating nodes,
each node with associated an end-user from which feedback may be asked on
their own dissatisfaction on a particular decision.

and with eigenvalues in the range [mi, Li], with Li ≥ mi > 0,
qi ∈ Rn, ri ∈ R.

(iii) The parameters Pi, qi and ri of Ui are unknown,
however one knows a (loose) bound on Li, and noisy mea-
surements of Ui(x) can be taken for any point x ∈ Rn as
yi = Ui(x) + εi,where εi denotes a generic scalar zero-mean
noise with finite variance.

(iv) The optimizer of problem (1), x?(t), is finite for each
t ∈ N, and ‖x?(t)‖ <∞. �

Assumption II.1 on the engineering function Vi(x; t) is quite
standard in the time-varying literature [7], [9].

As for the the mi-strongly convex, Li-smooth quadratic
model of Ui(x), we point out that, though partially restrictive,
this structure is reasonable as discussed in the introduction (see
also Footnote 2) and it can be relaxed. Loose bounds on Li can
be obtained from experiments and average user data. Finally,
the finiteness assumption on the optimizer (which exists and it
is unique for (i)-(ii)) just ensures that the problem is well-posed
even in a time-varying setting.

Since each Ui(x) is quadratic but unknown, its parameters
need to be estimated over time. Therefore, we let each agent i
consider an approximation of Ui(x) at each time t given by

Ûi,t(x) , 1
2 x
>P̂i,tx+ q̂>i,tx+ r̂i,t, (3)

where P̂i,t, q̂i,t and r̂i,t represent the current estimates of the
true (unknown) parameters Pi, qi and ri. We then define the
local estimated cost of agent i as

f̂i(x; t) , Vi(x; t) + Ûi,t(x).

Defining f̂(x; t) ,
∑N
i=1 f̂i(x; t), we denote by f̂?(t) its

minimum value and by x̂?(t) the minimizer. Consistently, we
define f(x; t) ,

∑N
i=1 fi(x; t) and its minimum value f?(t)

attained at some x?(t).
At this point, we make no specific choice on the type of

estimation/learning algorithm to determine Ûi,t(x), provided
that it satisfies the following.

Assumption II.2. For the chosen estimation algorithm, the
estimated Ûi,t(x) is bounded for any finite x, for all i and t.
Moreover:

(i) With high probability, the estimated P̂i,t is symmetric
and it has eigenvalues in the set [0, µLi], µ > 1. I.e., for any
δ ∈ (0, 1] and µ > 1, there exists a finite t̄, for which:

Pr(µLiIn ≥ P̂i,t ≥ 0 | ∀t ≥ t̄) ≥ 1− δ,

(ii) When the first fact holds true, there exist constants
cx, c∇ <∞ such that:

‖x̂?(t)− x̂?(t− 1)‖ ≤ cx,
max
i
‖∇f̂i(x̂?(t); t)−∇f̂i(x̂?(t); t− 1)‖ ≤ c∇. �

Assumption II.2(i) is a mild assumption, and it will hold for
our RLS scheme [Cf. Appendix C]. It imposes that eventually
(and with high probability), the estimated values of P̂i,t get
close to obtain the properties of the true Pi.

Once µLiIn ≥ P̂i,t ≥ 0, then the approximate problems
are convex and for Assumption II.1, the optimizer of f̂(x; t)
is finite. Then, Assumption II.2(ii) is mild and standard in
time-varying optimization: it ensures that the problem changes
are bounded. This in turn guarantees that one is able to track
its solution up to a meaningful error bound.

Remark II.3. A key aspect in time-varying optimization is the
O(T ) path length, defined as PT =

∑T
t=1 ‖x̂?(t)− x̂?(t−1)‖.

This is different from (bandit) online convex optimization which
often assumes PT = o(T ) or finite PT . For a O(T ) path length,
one cannot expect less than finite asymptotic error bounds and
O(T ) cumulative dynamic regret bounds [7], [25], [35]. The
reader can verify that when PT = o(T ), then cx, c∇ must be
functions of time, and they need to vanish as time increases.
In such a setting one can show o(T ) dynamic regret. �

With Assumption II.2 in place, after t̄ and for all t ≥ t̄,
the approximate cost function f̂(x; t) is m-strongly convex
and L-smooth with m = NmV , L = NLV + µ

∑N
i=1 Li,

with probability 1− δ, and the local cost function f̂i(x; t) is
(LV + µLi)-smooth. In addition, and with Assumption II.1(ii),
for the gradient ∇f̂i(x; t) one has that

‖∇f̂i(x; t)−∇f̂i(x; t− 1)‖ = ‖∇f̂i(x; t)−∇f̂i(x; t− 1)

± (∇f̂i(x̂?(t); t)−∇f̂i(x̂?(t); t− 1))‖
≤ 2(LV + µLi)‖x− x̂?(t)‖+ c∇, (4)

with probability 1 − δ. In addition, the estimation error
|Ûi,t(x) − Ui(x)| is bounded for any finite x since Ûi,t(x)
is proper, and one can define the estimation error length as,

cU :=

T∑

t=1

|Ûi,t(x)− Ui(x)|. (5)

Under the reasonable assumption that the estimator delivers
a bounded error estimation, i.e., |Ûi,t(x)− Ui(x)| < cu <∞
for all i, x, t ≥ t̄, then cU = O(T ). More sensible estimation
algorithms will yield cU = o(T ), as we will show.

Regarding the structure of the communication network, it is
modeled through a weighted graph G = (V, E ,W) in which
V = {1, . . . , N} denotes the set of nodes, E ⊆ V × V the set
of edges and W = [wij ] ∈ RN×N the weighted adjacency
matrix. We let G satisfy the following.

Assumption II.4. The graph G is directed and strongly con-
nected. The weighted adjacency matrix W is doubly-stochastic,
i.e.,

∑N
j=1 wij = 1 for all i = 1, . . . , N and

∑N
i=1 wij = 1

for all j = 1, . . . , N . Moreover, for all i = 1, . . . , N , wij > 0
if and only if j ∈ Ni, where Ni , {j | (j, i) ∈ E} ∪ {i} is the
set of in-neighbors of node i. �
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The condition above does not include all possible commu-
nication topologies, however it includes the broad class of
balanced digraphs. See [36] for further details.

III. PERSONALIZED GRADIENT TRACKING
DISTRIBUTED ALGORITHM

We describe now our novel distributed online algorithm for
solving Problem (1), along with its theoretical properties.

A. Distributed Algorithm Description

Each agent i stores and updates several states. First, it has
a local estimate xi,t ∈ Rn of the solution of problem (1) at
iteration t. Second, it maintains local estimates P̂i,t ∈ Rn×n,
q̂i,t ∈ Rn and r̂i,t ∈ R of the unknown parameters of the
local function Ui(x) (cf. (3)). Third, it uses an auxiliary state
di,t ∈ Rn to reconstruct an the current value of the gradient
of
∑N
i=1 f̂i(xi,t; t).

For computational convenience, the local variable xi,t will
be often arranged in the following vectorized form

χi,t = col(1, xi,t, [xi,t]1xi,t/2, . . . , [xi,t]nxi,t/2) ∈ R1+n+n2

.

Each iteration t ∈ N of the distributed algorithm consists in
three consecutive actions performed by each agent i.

1) A feedback on the current local solution estimate xi,t is
obtained from the user. In particular, a noisy measurement
of the output of Ui(·) evaluated at xi,t is computed and
stored as yi,t given in (6).

2) The estimates P̂i,t, q̂i,t and r̂i,t of the unknown parameters
Pi, qi and ri of Ui are updated by means of an ad-hoc
learning procedure (7). This procedure relies on a RLS
scheme which makes use only of the most updated data
(yi,t, xi,t), thus not requiring to store and use all the past
points generated by the distributed algorithm.

3) The local solution estimate xi,t of problem (1) at time
t is updated via a dynamic gradient tracking distributed
algorithm (9), whose aim is to track the sequence of
solutions {x?(t)}t∈N of problem (1).

Algorithm 1 reports the pseudocode of the proposed scheme,
with step-size α > 0 and tuning parameter η � 0.

Remark III.1. We assume that the users give feedback at
each time t that they are asked for it, with no delay. This is
not a limitation: we could consider cases in which users give
intermittent feedback at different time-scales and with delays.
This would mean that the learning phrase described by (6)-(7)-
(8) would be slower than the optimization process (9). From the
optimization perspective, since the knowledge of Ui changes
every time a new feedback is received, the worst case scenario
is when feedback is given at each time t (see also [8]). �

B. Parameters Estimation via Recursive Least Squares (RLS)

The aim of the learning part of Algorithm 1 (cf. (7)) is to
provide a recursive scheme to let each agent i estimate the

Algorithm 1 Personalized Gradient Tracking

Initialization: xi,0 arbitrary, di,0 = ∇f̂i(xi,0; 0), Ri,0 =
ηI1+n+n2 , ξ̂i,0 = 0.

Evolution: t = 1, 2, . . .
MEASURING/FEEDBACK

yi,t = Ui(xi,t−1) + εi,t (6)

LEARNING

si,t =
Ri,t−1χi,t

1 + χ>i,tRi,t−1χi,t
(7a)

Ri,t = Ri,t−1 − (1 + χ>i,tRi,t−1χi,t)si,ts
>
i,t (7b)

ξ̂i,t = ξ̂i,t−1 + (yi,t − χ>i,tξ̂i,t−1)si,t (7c)

(P̂i,t, q̂i,t, r̂i,t) = UNPACK(ξ̂i,t), P̂i,t ← (P̂i,t + P̂>i,t)/2
(8)

DYNAMIC GRADIENT TRACKING

xi,t =
∑

j∈Ni

wijxj,t−1 − αdi,t−1 (9a)

gi,t = ∇Vi(xi,t; t) + P̂>i,txi,t + q̂i,t (9b)

di,t =
∑

j∈Ni

wijdj,t−1 + (gi,t − gi,t−1) (9c)

unknown parameters of Ui. Specifically, the considered scheme
aims at solving, for each t, the least squares (LS) problem

minimize
P∈Rn×n, q∈Rn, r∈R

t∑

s=1

(
1
2 x
>
i,sPxi,s + q>xi,s + r − yi,s

)2

,

(10)

for a given set of estimate-measurement pairs (xi,s, yi,s)
t
s=1.

By defining ξi , col(r, q, [P ]>1 , . . . , [P ]>n ) ∈ R1+n+n2

,
problem (10) can be equivalently recast into

ξ̂i,t = arg min
ξi

t∑

s=1

(ξ>i χi,s − yi,s)2, (11)

and P̂i,t, q̂i,t and r̂i,t can be then retrieved from ξ̂i,t via (8)
(cf. the Notation) and then made symmetric. Now, instead of
keeping track of all the data, problem (11) is solved as data
become available by means of a RLS approach [16, Chap. 11],
yielding (7) in Algorithm 1.

The estimate computed by using RLS differs from the
standard, non recursive, least squares (LS) counterpart only
in the initial iterations, due to the initialization, which is
quickly negligible [16, Chap. 11]; the asymptotic convergence
properties coincide with those of the non recursive LS approach.
Upon defining ξi,? = col(ri, qi, [Pi]

>
1 , . . . , [Pi]

>
n ) for all i, then

for each agent the following classical result holds.

Lemma III.2 (Large sample aymptotic properties of LS). Let
the data sequence {(χi,s, yi,s)}s≥0 be such that:
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• the {(χi,s, yi,s)}s≥0 is a realization of a jointly stationary
and ergodic stochastic process;

• the matrix Σxx = E[χi,sχ
>
i,s] is nonsingular;

• for ωi,s , χi,sεi,s, then {ωi,s} is a martingale difference
sequence with finite second moments (cfr. [17, Assump-
tion 2.5]), and denote S = E[ωi,sω

>
i,s].

Then,
√
t(ξ̂i,t − ξi,?)

D−→ N (0,Σ−1
xxSΣ−1

xx ), as t→∞, (12)

where the notation D−→ stands for convergence in distribution.

Proof. See, e.g., [17, Prop. 2.1] and [16, Chap. 8, 9, 11].

Result (12) implies that the random variable
√
t(ξ̂i,t − ξi,?)

is asymptotically normal distributed, and that ‖ξ̂i,t− ξi,?‖ → 0
with rate O(1/

√
t). That is, the rate O(1/

√
t) is the asymptot-

ical rate bound for (R)LS, and this will help us show that the
estimation length cU = O(

√
T ).

The assumptions in Lemma III.2 require some words
when applied to our setting. Since the regressors χi,s are
determined by the gradient tracking process, and ultimately
(upon convergence) they are close to the optimizer trajectory,
we are requiring that the optimizers {x?(t)}: (i) eventually
behave as a stationary and ergodic process, and (ii) are never
exactly the same (so that Σxx remains non-singular). In practice
in our model the optimizers change in time due to external,
time-varying data-streams (which could be assumed stationary
and ergodic) and, thus, satisfy this assumption.

C. Dynamic Gradient Tracking

The step in (9) is meant to implement a gradient tracking dis-
tributed algorithm tailored for an online optimization problem,
whose convergence is provided next.

Theorem III.3. Consider the sequence {xi,t}t≥1 generated
by (9) and let x̄t , 1

N

∑N
i=1 xi,t. Let Assumptions II.1, II.2,

and II.4 hold. Choose a µ > 1. Then, there exist a ρ < 1 and a
small enough step-size α in (0, N/L], for which the following
holds with high probability

lim sup
t→∞

N∑

i=1

f̂i(x̄t; t)− f̂?(t) =
L(Nc2∇ + c2x)

2(1− ρ)2
=:

L

2
c̄2

with linear rate ρ. The consensus metric CT satisfies
lim supT→∞ CT ({xi,T }Ni=1, x̄T ) = c̄2, and the average x̄T
is bounded. �

The proof of Theorem III.3 is given in Appendix B.
The result is in line with current works in time-varying
optimization [7], [9], as well as regret results with dynamic
comparators when the path length grows as O(T ) and we
employ a constant step-size [25].

D. Regret Analysis of Algorithm 1

The next theorem, whose proof is reported in Appendix D,
represents the second main result of this paper. It shows that a
bound on the cumulative regret can be provided under suitable
assumptions, and that the asymptotic average regret is bounded.

Theorem III.4. Let the sequences {(χi,t, yi,t)}t be generated
by Algorithm 1. Let Assumptions II.1, II.2(ii) and II.4 hold.
Choose a µ > 1. Then, there exist a ρ < 1 and a small enough
step-size α in (0, N/L], for which w.h.p.

RT ({x̄t}Tt=1) ≤ O(1)+O(cU )+O

(
T
L(Nc2∇ + c2x)

2(1− ρ)2

)
.

Moreover, w.h.p., the average dynamic regret reaches an
asymptotical value as

lim sup
T→∞

RT ({x̄t}Tt=1)

T
= O

(cU
T

)
+
L

2
c̄2 = O(1).

Finally, w.h.p., the consensus metric CT is such that
lim supT→∞ CT ({xi,T }Ni=1, x̄T ) = c̄2. �

Algorithm 1 delivers a bounded average dynamic regret with
high probability. In particular, the dynamic regret is composed
of three terms. The first O(1) term collects the initialization
errors (e.g., when Ûi,t is nonconvex). The second O(cU ) term,
more standard, represents the learning bound. (It is in general
O(T ), but O(

√
T ) if the assumptions of Lemma III.2 are

verified, see Appendix C (Lemma A.5), thereby vanishing as
O(1/

√
T ) in the average regret result). Finally, the third O(T )

term pertains the tracking of the distributed solution trajectory,
and it is linear in T since the path length is linear in T [25].
The asymptotical bound depends on how fast the problems
are changing in time, due to variations of the gradients and
the optimizers, as typical in time-varying optimization. Finally,
note that Assumption II.2(i) is not required here, since it is
verified for our RLS scheme [Cf. Appendix C].

Remark III.5 (Regret in a distributed setting). Under bound-
edness of the consensus metric CT given by Theorem III.4,
an agent j-specific regret bound

∑T
t=1

∑N
i=1 fi(xj,t; t)−f?(t)

can also be derived, with the same convergence rate, and
leading term of O(cU ) +O(2T c̄2) (Cf. [37, Appendix ??]).�

E. Computational and communication complexity

We finish our analysis of Algorithm 1 by reporting its
computational and communication complexity. First, only
local computations are carried out, and the most demanding
are matrix/vector multiplications on vector χi,t ∈ R1+n+n2

,
delivering a computational complexity of O(n4). This is
in comparison with Gaussian Processes O(t3) and convex
regression O(t2n3) [Cf. Footnote 1]. This makes our method
less computational intensive than other techniques, especially
for large t� n (i.e., as more and more data comes in). This
is due to the fact that our method is recursive.

As for the communication complexity, our gradient tracking
employs two communication rounds for each iteration for a
total of at worst 4(N − 1)n scalar sent.

IV. NUMERICAL EXAMPLE

We consider a scenario with both Vi and Ui quadratic, i.e.,

minimize
x∈R3

N∑

i=1

(
‖x− pi(t)‖2︸ ︷︷ ︸

Vi(x;t)

+ ‖x− vi‖2︸ ︷︷ ︸
Ui(x)

)
, t ≥ 0.
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with pi(t) ∈ R3 for all t and vi ∈ R3.
We implemented the Personalized Gradient Tracking Al-

gorithm 1 with DISROPT [38] and performed a simulation
with N = 30 agents, in which each target speed pi(t) evolves
according to the following law

pi(t) = zi + ψi sin(t/mi)

with zi ∈ R3, ψi ∈ R3 and mi > 1. We randomly generate
the coefficients by picking vi ∈ U [−1.5, 1.5]3, zi ∈ U [−5, 5]3,
mi ∈ U [100, 150] ∩ N, ψi ∈ U [0.5, 0.6] and εi,t ∈ N (0, 0.2)
for all i = 1, . . . , N . We ran 106 iterations with step-size
α = 0.01 and initial conditions xi,0 ∈ U [−1.5, 1.5]2. The
evolution of the average regret Rt/t obtained by Algorithm 1 is
shown in Figure 2. Specifically, we evaluate the dynamic regret
as expressed in (2) at x̄t , 1

N

∑N
i=1 xi,t for all t = 1, . . . , 106.

As expected from Theorem III.4, the average regret decays to
some constant value.

0 0.2 0.4 0.6 0.8 1

·106

10−1

100

101

102

Iteration t

R
t t

Fig. 2. Evolution of the average regret.

Figure 3 shows the consensus and tracking error. In particular,
it can be appreciated that they become stationary, though not
vanishing, after the initial transient highlighted in the insets,
consistently with the theoretical bound proved by (18).

0 0.2 0.4 0.6 0.8 1

·106

10−6

10−2

102

Iteration t

N ∑ i=
1

‖x
i,
t
−

x̄
t
‖

0 0.2 0.4 0.6 0.8 1

·106

100

102

104

Iteration t

N ∑ i=
1

‖d
i,
t
−

d̄
t
‖

Fig. 3. Evolution of the consensus error (top) and the tracking error (bottom).

V. CONCLUSIONS

In this paper, we addressed the problem of solving in a
distributed way an online optimization problems in which the
local cost functions are composed by a known and an unknown
part. We proposed an algorithm that concurrently tracks the
solution of the problem and estimates the parameters of the
unknown portion of the objective function. Finally, we showed
that a bounded (possibly vanishing) average regret is achieved
under suitable assumptions. A numerical example is provided
to corroborate the theoretical results.
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APPENDIX

Let x̄t , 1
N

∑N
i=1 xi,t, ḡt ,

1
N

∑N
i=1∇f̂i(x̄t; t) and d̄t ,

1
N

∑N
i=1 di,t be the averages of the local quantities in (9) for

all t ≥ 0. Through simple manipulations, we obtain

x̄t= x̄t−1−αd̄t−1, d̄t= d̄t−1+
1

N

N∑

i=1

(gi,t−gi,t−1) . (13)

By exploiting the (column) stochasticity of the weights (cf. As-
sumption II.4), and the initialization d0

i = ∇f̂i(x0
i ; 0) it can

be shown that, for all t ≥ 0,

d̄t =
1

N

N∑

i=1

gi,t =
1

N

N∑

i=1

∇f̂i(xi,t, t). (14)

Moreover, letting xt , col(x1,t, . . . , xN,t), dt ,
col(d1,t, . . . , dN,t) and gt , col(g1,t, . . . , gN,t), algorithm (9)
can be restated as

xt=Wxt−1−αdt−1, dt=Wdt−1 + (gt−gt−1). (15)

where W ,W ⊗ In with ⊗ denoting the Kronecker product.

A. Intermediate Results

The analysis relies on the consensus error ‖xt−1x̄t‖, the
tracking error ‖dt−1d̄t‖ and the optimality error ‖x̄t−x?(t)‖,
as presented in the next lemmas (proofs are provided in [37]).

Lemma A.1. Let assumption II.4 hold. Then, for all t ≥ 0,

‖xt − 1x̄t‖ ≤ σW ‖xt−1 − 1x̄t−1‖+ α‖dt−1 − 1d̄t−1‖

where σW be the spectral radius of W − 1
N 11. �

Lemma A.2. Let Assumptions II.1, II.2, II.4 hold. Then, for
t ≥ t̄ and with probability 1− δ:

‖x̄t−x̂?(t)‖≤θ‖x̄t−1−x̂?(t− 1)‖+α L√
N
‖xt−1−1x̄t−1‖+cx

with θ = max{|1− Lα/N |, |1−mα/N |}. �

Lemma A.3. Let Assumptions II.1, II.2, II.4 hold. Then, for
t ≥ t̄ and with probability 1− δ:

‖dt − 1d̄t‖ ≤ (σW + αL)‖dt−1 − 1d̄t−1‖+
+ (L‖W − I‖+ 2L+ αL2

√
N)‖xt−1 − 1x̄t−1‖

+ (2L
√
N + αL2

√
N)‖x̄t−1 − x?(t− 1)‖+

√
Nc∇. �

B. Proof of Theorem III.3

Let us define

vt :=



‖x̄t − x̂?(t)‖
‖xt − 1x̄t‖
‖dt − 1d̄t‖


 , z :=

[
c∇
cx

]
.

By combining Lemma A.1, A.2 and A.3, we have that

vt ≤ A(α)vt−1 +Bz (16)

for t ≥ t̄ and with probability 1− δ, where

A(α) :=



θ α L√

N
0

0 σW α
a1 a2 σW + αL


 , B :=




0 1
0 0√
N 0


 ,

with a1 = αL2
√
N+2L

√
N and a2 = L‖W−I‖+2L+αL2

√
N .

Now, since by assumption α ≤ N/L and m ≤ L, we have
that θ = 1− αm/N and hence

A(α) =




1 0 0
0 σW 0

2L
√
N L‖W − I‖+ 2L σW




+ α



−mN

L√
N

0

0 0 1

L2
√
N L2

√
N L


 .

We use now [39, Theorem 6.3.12] for a small perturbation
α > 0. For α = 0, the eigenvalues of A(α) are 1 and σW < 1.
By continuity of the eigenvalues w.r.t. the matrix coefficients,
for small enough α, the eigenvalues < 1 will remain < 1. For
the single eigenvalue 1 with left eigenvector col(1, 0, 0) and
right eigenvector col(1, 0, 2L

√
N/(1−σW )), one can use [39,

Theorem 6.3.12(i)], to say that the corresponding eigenvalue
of A(α), say λ(α), will be |λ(α) − 1 + αm/N | ≤ αε for
any ε > 0 and sufficiently small α. If then one selects e.g.,
ε = m

2N , then λ(α) ∈ [1 − 3α m
2N , 1 − α

m
2N ], meaning that

there exists a small enough α, for which all the eigenvalues of
A(α) are all strictly less than one, and therefore the spectral
radius of A(α), say ρ, becomes strictly less than one. Also,
we notice that the input z is bounded. Since vt, A,B, z have
nonnegative entries, we can expand (16) from t̄ and get vt ≤
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A(α)t−t̄vt̄ +
∑t−1
τ=t̄A(α)t−1−τBz. Given Assumptions II.1-

II.2, for any finite t̄, ‖vt̄‖ is bounded. Therefore we can write

‖vt‖ ≤ ‖A(α)t−t̄vt̄‖+
∥∥∥
t−1∑

τ=t̄

A(α)t−1−τBz
∥∥∥

≤ ρt−t̄‖vt̄‖+

t−1∑

τ=t̄

ρt−1−τ
√
Nc2∇ + c2x. (17)

And, taking the limit superior:

lim sup
t→∞

‖vt‖ =
1

1− ρ

√
Nc2∇ + c2x =: c̄. (18)

Eq. (17) shows that the first term decreases linearly with rate ρ
equal to the spectral radius of A(α), while the second term is
bounded. Eq. (18) completes the argument yielding the upper
limit of the sequence. This finishes the first part of the proof.

The second part of the proof is based on similar arguments
to those used in [33, Theorem 1]. In particular we have
that all the entries of vt converges to c̄ linearly with rate
O(ρk). Moreover, by exploiting the Lipschitz continuity of
the gradients of f̂(x; t) =

∑
i f̂i(x; t) one has f̂(x̄t; t) −

f̂(x̂?(t); t) ≤ ∇f̂(x̂?(t); t)
>(x̄t − x̂?(t)) + L

2 ‖x̄t − x̂?(t)‖2.
Now, since ∇f̂(x̂?(t); t) = 0 the above implies that f̂(x̄t; t)−
f̂?(t) ≤ L

2 ‖x̄t − x̂?(t)‖
2 ≤ L

2 ‖vt‖
2 and hence the lim sup of

f̂(x̄t; t)− f̂?(t) converges linearly to Lc̄2

2 . It yields

Pr

(
lim sup
t→∞

N∑

i=1

f̂i(x̄t; t)− f̂?(t) =
L(Nc2∇ + c2x)

2(1− ρ)2

)
≥ 1−δ.

This concludes the second part of the proof.
The third part concerns the convergence of the consensus

metric CT . By definition CT ≤ ‖vt‖2 so that the thesis follows.
The fourth part concerns the boundedness of ‖x̄t‖, which is

bounded by the discussion above as

‖x̄t‖ ≤ ‖x̄t − x̂?(t)‖+ ‖x̂?(t)‖ ≤ ‖vt‖+ ‖x̂?(t)‖,

and since ‖vt‖ is bounded for discussion above and ‖x̂?(t)‖
is finite by assumption, then ‖x̄t‖ is bounded.

Finally, since the above limit results are valid for any δ ∈
(0, 1], we have that they hold with high probability.

C. Asymptotical bounds for RLS
Next we present useful asymptotical bounds for RLS that

are necessary for Theorem III.4. Their proofs are in [37].

Lemma A.4. Assumption II.2(i) holds for our RLS scheme.�

Lemma A.5. For an estimator satisfying the assumptions of
Lemma III.2, for any bounded vector x ∈ Rn, the functional
learning is bounded as |Ûi,t(x)− Ui(x)| ≤ O(1/

√
t). �

D. Proof of Theorem III.4
Recalling the definition of the cumulative dynamic regret

in (2), we can write

RT ({x̄t}Tt=1)=

T∑

t=1

(
N∑

i=1

(
f̂i(x̄t; t)+Ui(x̄t)−Ûi,t(x̄t)

)
−f?(t)

)

≤
T∑

t=1

( N∑

i=1

f̂i(x̄t; t)− f?(t)
)

+

T∑

t=1

N∑

i=1

∣∣∣Ui(x̄t)− Ûi,t(x̄t)
∣∣∣

Now, fixing a δ ∈ (0, 1] one determines a t̄, and
the first term on the right-hand side can be split as∑T
t=1(

∑N
i=1 f̂i(x̄t; t) − f?(t)) =

∑t̄−1
t=1(

∑N
i=1 f̂i(x̄t; t) −

f?(t)) +
∑T
t=t̄(

∑N
i=1 f̂i(x̄t; t) − f?(t)), where in the first

t̄ iterations the functions f̂i, in general, could have been
nonconvex, while they are convex after t̄ with probability
1− δ. Notice now that by Assumptions II.1-II.2, both Vi(x; t)
and Ûi,t(x) are bounded for all bounded x and all i and t.
Moreover, by Theorem III.3, ‖x̄t‖ is uniformly bounded. Thus,
we can bound the quantity

∑t̄−1
t=1

(∑N
i=1 f̂i(x̄t; t)− f?(t)

)
by

O(t̄). Then,

RT ({x̄t}Tt=1) ≤ O(t̄) +

T∑

t=t̄

( N∑

i=1

f̂i(x̄t; t)− f?(t)
)

+

T∑

t=1

N∑

i=1

∣∣∣Ui(x̄t)− Ûi,t(x̄t)
∣∣∣. (19)

Now, we can use the fact that

f?(t) = f̂?(t) + (f̂(x?(t); t)− f̂?(t))︸ ︷︷ ︸
(I)

+ (f?(t)− f̂(x?(t); t))︸ ︷︷ ︸
(II)

.

In addition, by strong convexity of f̂ and optimality, it
holds (I) ≥ m

2 ‖x?(t) − x̂?(t)‖2 ≥ 0, while (II) ≥
−
∑N
i=1

∣∣∣Ui(x?(t))− Ûi,t(x?(t))
∣∣∣. Putting these facts together

in the expression of the dynamic regret (19), then,

RT ({x̄t}Tt=1) ≤ O(t̄) +O(cU ) +

T∑

t=t̄

( N∑

i=1

f̂i(x̄t; t)− f̂?(t)
)
.

(20)

Now, by using Theorem III.3, the second term can be upper
bounded as

T∑

t=t̄

( N∑

i=1

f̂i(x̄t; t)− f̂?(t)
)

≤
T∑

t=t̄

O(ρt−t̄) +O
(

(T − t̄)L(Nc2∇ + c2x)

2(1− ρ)2

)
. (21)

Hence, by combining (20) and (21) we have that, with
probability 1− δ,

RT ({x̄t}Tt=1) ≤ O(1) +O(cU ) +O
(
T
L(Nc2∇ + c2x)

2(1− ρ)2

)

where we used the fact that, since t̄ is finite, O(t̄) +∑T
t=t̄O(ρt−t̄) = O(1). Since the above is valid with probabil-

ity 1− δ, for any δ ∈ (0, 1], it is valid with high probability.
As for the consensus metric CT , everything goes as in the

proof of Theorem III.3, with the difference to be valid with
high probability, which concludes the proof.
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