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Abstract: The aim of this work was to investigate the possibility to industrially produce fermented
sausages without the addition of nitrate and nitrite. Indeed, despite their antimicrobial
effect and multiple technological roles, an increasing pressure for their removal has
recently raised. To achieve this goal while maintaining an acceptable final product
quality, we deeply modified the whole process, that was carried out at 10-15°C (i.e.,
temperatures lower than traditional Mediterranean products) and by using bioprotective
starter cultures at high concentrations (7 log CFU/g) to lead the fermentation. Different
glucose amounts (0.2 or 0.4 % w/w) were also tested to optimize the process. The
results showed no significant differences between the control (with nitrate/nitrite) and
the sausages without preservatives in terms of aw (value range 0.908-0.914), weight
loss (about 38% in all samples), lactic acid bacteria (value range 8.1-8.3 log CFU/g)
and coagulase negative cocci (value range 6.8-7.1 log CFU/g). The amount of sugar
affected the final characteristics of sausages. Indeed, in the absence of curing salts,
lower sugar concentration resulted in better textural features (reduced hardness and
gumminess) and lower oxidation (TBARS values 0.80 vs. 1.10 mg MDA/kg of meat
product in samples with 0.2% or 0.4% of glucose, respectively). Finally, challenge tests
evidenced the inability of selected strains of Listeria innocua, Salmonella enterica sub.
enterica and Clostridium botulinum to grow, under the adopted conditions, in fermented
sausages. This research highlighted that nitrate/nitrite removal from these meat
products requires accurate technological changes to guarantee the final quality.
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HIGHLIGHTS 

- Nitrate/nitrite elimination requires technological changes to produce high quality salamis

- Ripening temperature was lowered for guaranteeing microbiological safety

- Higher concentrations of bioprotective starter cultures were adopted

- Low sugar concentration allowed to obtain better textural features and lower oxidation level

- Salamis were challenged with Listeria innocua, Salmonella enterica and Clostridium botulinum
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ABSTRACT 25 

The aim of this work was to investigate the possibility to industrially produce fermented sausages without the 26 

addition of nitrate and nitrite. Indeed, despite their antimicrobial effect and multiple technological roles, an 27 

increasing pressure for their removal has recently raised. To achieve this goal while maintaining an acceptable 28 

final product quality, we deeply modified the whole process, that was carried out at 10-15°C (i.e., temperatures 29 

lower than traditional Mediterranean products) and by using bioprotective starter cultures at high 30 

concentrations (7 log CFU/g) to lead the fermentation. Different glucose amounts (0.2 or 0.4 % w/w) were also 31 

tested to optimize the process. The results showed no significant differences between the control (with 32 

nitrate/nitrite) and the sausages without preservatives in terms of aw (value range 0.908-0.914), weight loss 33 

(about 38% in all samples), lactic acid bacteria (value range 8.1-8.3 log CFU/g) and coagulase negative cocci 34 

(value range 6.8-7.1 log CFU/g). The amount of sugar affected the final characteristics of sausages. Indeed, in 35 

the absence of curing salts, lower sugar concentration resulted in better textural features (reduced hardness 36 

and gumminess) and lower oxidation (TBARS values 0.80 vs. 1.10 mg MDA/kg of meat product in samples with 37 

0.2% or 0.4% of glucose, respectively). Finally, challenge tests evidenced the inability of selected strains of 38 

Listeria innocua, Salmonella enterica sub. enterica and Clostridium botulinum to grow, under the adopted 39 

conditions, in fermented sausages. This research highlighted that nitrate/nitrite removal from these meat 40 

products requires accurate technological changes to guarantee the final quality.  41 

42 

43 

Key words: fermented sausages, nitrate, nitrite, microbial safety, starter cultures, clean label 44 

45 
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1. INTRODUCTION46 

Meat curing consists in the addition of sodium chloride (NaCl) and nitrite/nitrate to meat to assure safety and 47 

prolong the shelf-life of foods. It is one of the most ancient preservation strategies and it has been adopted by 48 

humanity for long time (Toldrá & Hui, 2014). In the past centuries, nitrates and nitrites were added as 49 

impurities of the salt, which was used in considerably higher amounts than today. It is only starting from end of 50 

XIX century that the role of these salts in preserving foods has been understood. While NaCl can reduce water 51 

availability (i.e. aw), nitrate and nitrite are responsible for several effects that today are well clarified and 52 

studied (Pegg & Honikel, 2014). In addition, the progressive purification of produced NaCl, makes the addition 53 

of nitrates and nitrites a specific step of cured meat manufactory process.  54 

The addition of nitrate and nitrite in meats is explained by at least four fundamental reasons: i) antimicrobial 55 

effect exerted through the inhibition of metabolic pathways, limitation of oxygen uptake or iron sequestering; 56 

traditionally the effects of these nitrogen compounds are mainly addressed to suppress the outgrowth of 57 

clostridia spores, but its effectiveness against enterobacteria, Staphylococcus aureus, Listeria monocytogenes 58 

and Bacillus cereus is well documented (Alahakoon, Jayasena, Ramachandra, & Jo, 2015); ii) colour formation, 59 

which depends on the formation of nitric oxide able to react with many substrates, including Fe++ of myoglobin 60 

and Fe+++ of metmyoglobin, leading to the development of the typical cured meat colour (Honikel, 2004); iii) 61 

antioxidant effect, able to retard oxidative reactions and the development of rancidity due to their rapid 62 

reaction with oxygen (Ford & Lorkovic, 2002); iv) formation of cured flavour, depending on the formation of 63 

nitrite-related flavours and aromas enhanced by the suppression of rancidity (Sindelar & Milkowski, 2011).  64 

Despite the functions exerted and their strictly controlled use in meat (Directive 2006/52/EC), nitrate and 65 

nitrite addition in food raised many concerns related to their potential of forming carcinogenic N-nitroso 66 

compounds (nitrosamine), which can be produced both in food matrices and human body (Hammes, 2012; 67 

Bernardo, Patarata, Lorenzo, & Fraqueza, 2021). This possibility was firstly suggested by Lijinsky and Epstein 68 

(1970) and confirmed by Tricker and Preusmann (1987). The reaction is potentiated by severe heat treatments 69 

and the effective health risks associated with the consumption of not thermally treated fermented sausages 70 
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has not been well elucidated (Hammes, 2012). The debate which followed these alarms showed that cured 71 

meats, and particularly fermented sausages, are nitrate sources of minor importance if compared with other 72 

potential sources, such as vegetables or water (Sindelar & Milkowski, 2011).  73 

Nevertheless, there are increasing amounts of consumers which require fermented meats with artisanal feel 74 

(Leroy, Geyzen, Janssens, De Vuyst, & Scholliers, 2013), in which nitrate and nitrite, independently of their 75 

historical presence in sausages and their low concentration, are perceived as extraneous and, consequently, 76 

dangerous. Fermented sausage industry has the need to comply with these consumer demands requiring the 77 

elimination of nitrate and nitrite. Given the crucial role exerted by these molecules in fermented sausages, 78 

their elimination must be carefully evaluated to avoid quality decreases and maintain microbiological safety. A 79 

first strategy consists in the change of curing salts with other ingredients able to replace their activities. The 80 

use of plant extracts (such as celery, spinach, or Swiss chard) naturally rich in nitrate are a pseudo-solution 81 

(Leroy et al., 2013; Bernardo, Patarata, Lorenzo, & Fraqueza, 2021), adopted to obtain a clean label. However, 82 

European Commission recently specified that these extracts, when used with technological function, have to be 83 

considered and declared as food additives and not flavouring agents (European Commission, 2018). Other 84 

strategies are based on the use of other plant derivatives, such as essential oils or other fruit and vegetable 85 

derivatives (Ozaki et al., 2021) which, in many cases, can only partially replace nitrate and nitrite in their 86 

antimicrobial and antioxidant functions (Alahakoon et al., 2015). Also, the use of organic acids (lactate, citrate, 87 

sorbate, etc.) has been considered as an alternative to these compounds. Nevertheless, independently of their 88 

effectiveness, the use of acids, mainly due to their effect on pH, is often not compatible with the characteristics 89 

required for traditional fermented sausage, especially those produced in Mediterranean area (Van Reckem et 90 

al., 2019). 91 

The aim of this work was to exploit the possibility to produce fermented sausages without the addition of 92 

nitrate and nitrite. The main risks of their elimination consist in the possible growth of undesired 93 

microorganisms such as Clostridium botulinum, Salmonella and Listeria monocytogenes (Bernardo et al., 2021; 94 

Patarata, Novais, Fraqueza, & Silva, 2020) and in the formation of undesirable colour of the meat, together 95 
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with a diverse sensory profile (Fraqueza, Laranjo, Elias, & Patarata, 2021). To obtains this goal, efforts was 96 

posed on the modification of process parameters adopted for the production of typical Italian salamis. In 97 

particular, the factors considered were the amounts of starter cultures and glucose added and, especially, the 98 

condition of fermentation and ripening, i.e. temperature and relative humidity (RH). The characteristics of the 99 

product obtained were compared with fermented sausages produced with nitrate and nitrite by analysing 100 

microbial counts, physico-chemical values, oxidation level, aroma profile, colour and texture. Finally, a 101 

challenge test was carried out to test the safety of the productive process. 102 

 103 

2. MATERIALS AND METHODS 104 

2.1 Sausage manufacture 105 

The dry fermented sausages were produced in C.l.a.i. Soc. Coop. (Imola, Italy) with fresh pork meat used within 106 

48 h from slaughtering and refrigerated at 0°C. Lean meat and fat (shoulder and neck, respectively) were 107 

minced (3.5 mm) and mixed (ratio 3:1) at approx. 0°C, added with NaCl (2.5% w/w), spices (garlic powder 108 

0.01% and black pepper powder 0.15% w/w) and a commercial starter culture containing Latilactobacillus 109 

sakei, Pediococcus acidilactici, Staphylococcus carnosus and Staphylococcus xylosus (Chr. Hansen, Parma, Italy), 110 

at an initial concentration of approx. 7 log CFU/g for each species. Then the meat batter (300 kg) was divided in 111 

nine batches (approx. 30 kg each one): three (representing the control group, C) were added with KNO3 (150 112 

mg/kg) and NaNO2 (50 mg/kg) and glucose 0.2% (w/w), three batches were prepared without preservatives 113 

and adding 0.2% glucose (F02) whereas the last three batches were prepared without preservatives and adding 114 

0.4% glucose (F04). The meat mixtures were stuffed in a natural reconstituted hog casing (Varani, Castelplanio, 115 

Italy) with a diameter of 50 mm to obtain an initial weight of about 500 g. A spore suspension of Penicillium 116 

nalgiovense (Kerry Ingredient, Ireland) was sprayed on the casings. The fermentation and ripening process was 117 

carried out at temperature ranging from 15 to 10°C, at relative humidity (UR) from 65 to 90% for 50 days.  118 

 119 

2.2 pH, aw and weight loss 120 
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The analyses of pH and aw of the fermented sausages during fermentation and ripening (0, 2, 6, 13, 24, 31 and 121 

50 days from the production) were performed in triplicate by using a pH-meter Basic 20 (Crison Instruments, 122 

Barcelona, Spain) and an Aqualab CX3-TE (Labo-Scientifica, Parma, Italy), respectively. At each sampling time, 123 

sausages were also weighed to calculate the mean weight loss (%) with respect to the initial one. The analyses 124 

were performed in triplicate (three different sausages) and the results were expressed as mean value. 125 

 126 

2.3 Microbial counts 127 

The minced meat used to prepare sausages, the meat batter at time 0 and fermented sausages at the end of 128 

ripening (50 days) were analysed to determine microbial counts. After aseptic removal of the casing, a slice of 129 

approx. 10 g of sausage was transferred into a stomacher bag, mixed with 90 ml of 0.9% (w/v) NaCl sterile 130 

solution and homogenized in a Lab Blender Stomacher (Seward Medical, London, UK) for 2 min. Decimal 131 

dilutions were prepared in physiological solution and plated onto selective media to detect specific microbial 132 

groups. Lactic acid bacteria (LAB) were enumerated on de Man-Rogosa-Sharpe (MRS) agar incubated at 30°C 133 

for 48 h in anaerobic conditions. Coagulase negative cocci (CNC) were counted on Mannitol Salt Agar (MSA) 134 

incubated at 30°C for 72 h. Enterococci and Enterobacteriaceae were enumerated on Slanetz and Bartley 135 

medium and Violet Red Bile Glucose agar incubated for 24 h at 42°C and 37°C, respectively. Pseudomonads 136 

were counted on Pseudomonas Agar Base, supplemented with CFC Supplement and incubated for 48 h at 30°C. 137 

Sabouraud Dextrose Agar added with 0.2 g/l of chloramphenicol was used to determine yeasts by incubating 138 

plates at 28°C for 72 h. All media were provided by Oxoid (Basingstoke, UK). The analyses were performed in 139 

triplicate (three different sausages) and the results were expressed as mean value.  140 

 141 

2.4 Colour and Texture Profile Analysis 142 

Colour was analysed at the end of ripening (50 days). Colour [lightness (L*), redness (a*), and yellowness (b*)] 143 

was measured in five replicates on slices having a height of approximately 1 cm by a reflectance colorimeter 144 
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(Minolta Chroma Meter CR-400, Minolta Italia S.p.A., Milan, Italy), previously calibrated with a standard white 145 

ceramic tile, using illuminant source C.  146 

Texture Profile Analysis (TPA) was assessed at 22°C using a TA-Hdi® texture analyser (StableMicro Systems, UK) 147 

equipped with a 25 kg loading cell. The test was performed on a 1 cm-high and 1.5 cm-wide cylindrical-shaped 148 

sample compressed up to 40% of its initial height by using a 5 cm-diameter aluminium probe. A time of 20 sec 149 

was set to elapse between two compression cycles. Force-time deformation curves were obtained and 150 

Hardness (kg), Springiness, Cohesiveness, Chewiness (kg), and Gumminess (kg) were calculated according to 151 

Bourne (1978). The analyses were performed in triplicate (three different sausages) and the results were 152 

expressed as mean value. 153 

 154 

2.5 Thiobarbituric Acid Reactive Substances (TBARS) 155 

TBARS were measured at the end of ripening according to the procedure described by Bao and Ertbjerg (2015) 156 

with slight modifications. Briefly, a 5 g sample was homogenized by Ultra-Turrax (IKA, Labortechnik, Staufen, 157 

Germany) in 15 ml trichloroacetic acid (5%, w/v) and 0.5 ml butylated hydroxytoluene (4.2% in ethanol, w/v) in 158 

ice. Then, the homogenate was filtered (Whatman 1, GE Healthcare), and the reaction prepared by boiling in 159 

water bath (100°C) for 40 min, 2 ml of filtrate mixed with 2 ml thiobarbituric acid (0.02 M). After cooling the 160 

samples, absorbance was read at 532 nm and TBARS content, expressed as mg malondialdehyde/kg of meat 161 

product, calculated from a standard curve prepared with 1,1,3,3-tetraethoxypropane. The analyses were 162 

performed in triplicate (three different sausages) and the results were expressed as mean value. 163 

 164 

2.6 Aroma profile analysis 165 

The volatile profile of sausages was analysed after 50 days (end of ripening). Gas-chromatography-mass 166 

spectrometry coupled with solid phase microextraction (GC-MS-SPME) technique was used to assess the aroma 167 

profile of the sausages at the end of ripening. 3 g of samples were added with known amount of 4 methyl-2-168 

pentanol (Sigma-Aldrich, Steinheim, Germany) as internal standard and analysed according to the protocol 169 
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reported by Montanari et al. (2016). Volatile peak identification was carried out using Agilent Hewlett–Packard 170 

NIST 2011 mass spectral library (Gaithersburg, MD, United States) (NIST, 2011). The mass spectrum 171 

identification was confirmed in the same conditions by injection of the pure standards (Sigma- Aldrich, St. 172 

Louis, MO). Data are expressed as ratio between each molecule peak area and the peak area of internal 173 

standard. The analyses were performed in triplicate (three different sausages) and the results were expressed 174 

as mean value. 175 

 176 

2.7 Challenge test 177 

To assess the safety of fermented sausages produced without preservatives, a challenge test was performed in 178 

the sausages added with 0.2% of glucose (F02) and the control with nitrate/nitrite (C). The sausages containing 179 

0.4% glucose were not considered in the challenge test due to the results of the previous trials, in particular 180 

higher oxidation level and hardness of the sausages. The target microorganisms were Listeria innocua as 181 

surrogate of L. monocytogenes (da Silva, de Oliveira Pena, Pflanzer, & da Silva do Nascimento, 2019), 182 

Salmonella enterica subspecies enterica and Clostridium botulinum. The three microbial groups considered 183 

were separately inoculated in the different batches. 184 

For L. innocua, a cocktail of five strains of different origin was used (four isolated from sausage production 185 

environment and a collection strain – ATCC33090). Strains were precultured twice in Brain Heart Infusion (BHI, 186 

Oxoid, Basingstoke, UK) at 30°C for 24 h (first step) and at 12°C for 72 h (second step), then mixed and this 187 

suspension was used to inoculate the meat batter (10 kg, 20 sausages) at a concentration of approx. 7 log 188 

CFU/g. As far as Salmonella, a mixture of 3 strains (Salmonella enterica subspecies enterica serovar 189 

Typhimurium ATCC14028, Salmonella enterica subspecies enterica serovar Typhimurium monophasic variant 190 

isolated from pork sausage and S. enterica subspecies enterica serovar Derby isolated from pork meat) was 191 

used, after two 24 h precultures in BHI at 30°C for 24 h. The precultures were added to reach a final 192 

concentration in the meat batter (10 kg, 20 sausages) of approx. 7 log CFU/g. Finally, for Cl. botulinum a 193 

cocktail of four strains was used and namely two non-proteolytic (type B and type E) and two proteolytic (type 194 
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A and type B), including a collection strain – ATCC 19397. In this case, strains were cultivated in TPGYT medium 195 

(Trypticase, Peptone, Glucose, Yeast-extract, Trypsin) at 30°C for 15 days under anaerobiosis to allow 196 

sporification. Then cell suspensions were thermally treated (80°C for 20 min), and spores were enumerated to 197 

be inoculated in the meat batter (10 kg, 20 sausages) at a concentration of approx. 3 log CFU/g. 198 

The different meat batters were then stuffed and processed in the same conditions reported in section 1.1 and 199 

analysed during fermentation and ripening (0, 2, 6, 13, 31 and 50 days) to monitor the behaviour of these 200 

microbial species in the products. The enumeration or the detection of Listeria were performed according to 201 

the methods EN ISO 11290-2 and EN ISO 11290-1 (ISO, 2017a, b). S. enterica subsp. enterica was counted on 202 

Hektoen Enteric Agar (Oxoid, Basingstoke, UK) incubated at 37°C for 24 h, while the detection was performed 203 

according to ISO 6579-1 (ISO, 2017c). Finally, Cl. botulinum was counted following the procedure described in 204 

ISO 15213 (ISO, 2013).  205 

 206 

2.8 Statistical analysis 207 

Data were analysed through One-way ANOVA considering the absence of preservatives together with the 208 

eventual addition of a higher glucose content in the formulation as the main effect. Means were subsequently 209 

analysed through the parametric Tukey-HSD test.  210 

To further investigate the effect of the absence of nitrite and nitrate on the oxidation, colour and texture 211 

profile, planned orthogonal contrasts were performed to compare the findings obtained within the control 212 

group (C) with those found in F02 and F04 samples. All statistical differences were considered significant at a 213 

level of p ≤ 0.05. Analyses were carried out by using Statistica software (StatSoft Italy srl, Vigonza, Italy). 214 

 215 

3. RESULTS AND DISCUSSION 216 

3.1 Process and ripening conditions and microbial counts 217 

Safety and quality of fermented sausages is the result of the application of several hurdles addressed to the 218 

inhibition of undesirable microorganisms. The removal of one of these hurdles (such as nitrate/nitrite) must be 219 
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counterbalanced by more drastic conditions for the other ones or the addition of new factors. In this trial, we 220 

firstly decided to lower fermentation and ripening temperatures 10°C vs. 15-20°C of the traditional program 221 

(Montanari et al., 2018; Tabanelli, Montanari, Grazia, Lanciotti, & Gardini, 2013) with the aim to reduce, in the 222 

absence of nitrate and nitrite, the growth potential of Enterobacteriaceae during the first days, when aw is still 223 

high (Hospital et al., 2015). The second modification concerned the use of commercial starter cultures 224 

(containing selected strains of Lat. sakei, P. acidilactici, Staph. carnosus and Staph. xylosus) added at higher 225 

concentration (approx. 7 log CFU/g) with respect to the standard procedures adopted for Mediterranean 226 

sausages, in which the cultures are added at about 6 log CFU/g (Montanari et al., 2018; Tabanelli et al., 2013). 227 

Besides, the LAB strains used were characterized by antagonistic and bioprotective activity against L. 228 

monocytogenes (Raimondi, Popovic, Amaretti, Di Gioia, & Rossi, 2014; Stahnke, 2008), which could take 229 

advantage by the low temperature adopted during fermentation and ripening, especially in low contaminated 230 

meats (Patarata, Novais, Fraqueza, & Silva, 2020). In fact, in order to limit the growth potential of wild 231 

undesirable microbial population the sausages were manufactured using with fresh (not frozen) pork meat, 232 

maintained under strictly controlled refrigeration temperature (0°C) and used within 48 h after slaughtering. 233 

Three different typologies were considered in the trials: sausages without nitrate/nitrite produced with glucose 234 

at 0.2% (F02), sausages without nitrate/nitrite produced with glucose at 0.4% (F04) and the control, i.e. 235 

sausages with nitrate/nitrite produced with glucose at 0.2% (C). 236 

The results of the microbial counts (Table 1) showed that LAB and CNC amounts in the meat batter 237 

immediately after casing were highly dependent on the addition of the starter cultures, as expected. Indeed, 238 

the counts of both these microbial groups in the minced meat before the addition of the cultures were lower 239 

than 4 log CFU/g. At the end of ripening, the counts of LAB were higher than 8 log CFU/g in all the samples, 240 

while CNC were approx. 7 log CFU/g and no significant difference (p > 0.05) in relation to the type of sausage 241 

was observed. These levels of LAB and CNC are comparable with those found in similar Italian and Portuguese 242 

fermented sausages at the end of ripening (Belleggia et al., 2022a, b; Tabanelli et al., 2015; Van Reckem et al., 243 

2019). In other studies, CNC were more susceptible to the presence of variable amounts of nitrate/nitrite. 244 
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Hospital et al. (2015) reported a double contrasting effect of nitrate/nitrite on these bacteria. On one side, 245 

their presence can favour CNC growth, especially in the central part of sausages in which O2 is scarce and 246 

nitrate can act as final electron acceptor, accelerating their multiplication. On the other side, excessive 247 

accumulation of nitrite can result in growth inhibition. 248 

Enterococci were present at low concentration (2.5 log CFU/g) after casing and their final number never 249 

exceeded 2.7 log CFU/g. Interestingly, enterococci counts in the sausages added with nitrate/nitrite were 250 

significantly lower than in the sausages obtained without these preservatives. 251 

A similar behaviour was observed for Enterobacteriaceae. Their initial count (2.6 log CFU/g) decreased in all the 252 

sausages, but at a higher significant extent in the control, confirming the important role exerted by 253 

nitrate/nitrite in the inhibition of these bacteria. This fact emphasizes the importance of enterobacteria control 254 

in the first steps of fermentation when aw and pH can still allow their multiplication (Christieans, Picgirard, 255 

Parafita, Lebert, & Gregori, 2018; Hospital, Hierro, & Fernández, 2014; Hospital et al., 2015). Pseudomonads 256 

were always below the detection limit. 257 

Yeasts, initially present at 1.9 log CFU/g, grew up to more than 4 log CFU/g in all the samples without 258 

significant differences. These counts are in accordance with data previously reported by other studies 259 

(Belleggia et al., 2022b; Greppi et al., 2015; Montanari et al., 2018; Selgas & García, 2014). 260 

 261 

3.2 Chemico-physical features 262 

The results concerning pH, aw and weight loss of the sausages during ripening are reported in Figure 1. The 263 

evolution of pH in the different samples (Figure 1A) was clearly influenced by the amounts of glucose added. In 264 

fact, in the sausages containing 0.4% glucose the pH decrease observed during fermentation is more relevant 265 

(about 0.25 pH units) if compared with the control (C) and the sausages containing 0.2% glucose and without 266 

nitrate/nitrite (F02). This difference remained constant during the ripening, and the pH increased up to 5.50 in 267 

the sausages F02 and to 5.25 in the samples F04. 268 



12 
 

No significant differences were observed for aw and weight loss during ripening (Figures 1B and 1C). The final aw 269 

ranged between 0.908 and 0.914 and the weight losses between 37.7 and 38.7%. 270 

 271 

3.3 Colour and oxidative stability of the lipid fraction 272 

Overall, the addition of different glucose levels in the formulation exerted some effects on both the colour 273 

parameters and the textural traits of the dried fermented sausages (Table 2). In detail, although no significant 274 

differences were found in lightness (L*) and yellowness (b*), redness (a*) was remarkably affected by 275 

preservatives as well as by the glucose content added in the formulation. Indeed, if compared to C, a 276 

significantly lower a* value was found in F02 (13.51 vs. 11.58; p < 0.01), whereas F04 exhibited an intermediate 277 

value (12.57). This finding may be primarily ascribed to the absence of nitrate and nitrite in the formulation 278 

regardless of the glucose content added. Indeed, by means of planned orthogonal contrasts performed to 279 

assess the possible effect of the absence of preservatives (regardless of the glucose content added), a 280 

significant difference (p < 0.05) in a* was found between C and those experimental groups in which no 281 

preservatives were added (i.e., F02 and F04) (LSM: 13.51 vs. 11.58 and 12.57). Within this context, it is worth 282 

mentioning that curing colour development is strongly affected by the acidification process taking place during 283 

product’s fermentation (Campbell-Platt & Cook, 1995). Also, the colour parameter Chroma (C*) exhibited a 284 

similar trend: if compared to C, a significantly lower value was found in F02 (14.60 vs. 12.42; p < 0.01), whereas 285 

F04 exhibited an intermediate value (13.69). As previously observed for a*, planned orthogonal contrasts 286 

suggest that this outcome may be due to the absence of nitrate and nitrite in dry fermented sausages 287 

formulation. If compared to C, a significantly lower (p < 0.05) saturation index was observed, regardless of the 288 

glucose content added, in those experimental groups in which no preservatives were added (LSM:14.60 vs. 289 

12.42 and 13.69). This finding may be explained by considering that the rate at which total heme pigments are 290 

converted in their nitric oxide form sharply increases as the pH decreases, especially within the pH range from 291 

5.5 to 4.5 (Fox & Thompson, 1963).  292 
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As for the textural parameters, if compared to C, significantly higher Hardness, Gumminess and Chewness 293 

values were found in F02 and F04 by means of both analysis of variance and planned orthogonal contrasts. 294 

Regarding hardness, the values increased with the glucose content in the formulation in which no preservatives 295 

were added, with F04 exhibiting the highest value (3.74 kg). This outcome may be explained by considering 296 

that during fermentation, pH values close to the isoelectric point of the proteins are reached (Figure 1A), thus 297 

leading to a consequent increased protein aggregation that determines the development of firmer sausages 298 

(Fretheim, Egelandsdal, Harbiz, & Samejima, 1985; Gonzalez-Fernandez, Santos, Rovira, & Jaime, 2006). Indeed, 299 

a strong acidification is essential to reduce the water holding capacity of the meat proteins and thus promote 300 

water loss and evaporation (Lorenzo, Gómez, & Fonseca, 2014). In addition, under a fast acidification process, 301 

acid solubilization of collagen is also likely induced (Aktas & Kaya, 2001) and may account for the trend 302 

observed for Cohesiveness, which exhibited remarkably higher values in C samples rather than in F02 and F04 303 

(1.83 vs. 1.72 and 1.73; p < 0.001).   304 

Lipid oxidation level was assessed by measuring TBARS developed at the end of the ripening process. Overall, 305 

the amount of secondary products of lipid oxidation significantly differ among the experimental groups (as 306 

shown in Table 2), due to the antioxidant effect of nitrate/nitrite. In detail, as expected, the lower TBARS were 307 

observed in the sausages added with nitrate/nitrite. These findings are in agreement with the widely known 308 

antioxidant properties of nitrate/nitrite in sausages (Honikel, 2008). Indeed, nitrite can limit the development 309 

of oxidative reactions affecting the lipid fraction in several ways: i) sequestering oxygen molecules (Honikel, 310 

2008), ii) stabilizing heme iron and sequestering free iron (Bergamaschi and Pizza, 2011), and iii) reacting with 311 

lipid radicals thus breaking the oxidative chain reaction upon solubilization of nitric oxide in fats (Skibsted, 312 

2011). On the other hand, fermented sausages formulated with the addition of 0.2% glucose exhibited a lower 313 

oxidation level of the lipid fraction if compared to those containing the higher glucose concentration (i.e., 314 

0.4%). This outcome may be explained by considering the differences in pH directly associated to the amount 315 

of sugar added into products’ formulation. Indeed, in light of the increased solubility of iron under acidic 316 

conditions (Chaijan & Panpipat, 2017; Domínguez et al., 2019) the lower pH resulting from the addition of a 317 
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higher glucose content may have promoted the development of oxidative reactions affecting the lipid fraction. 318 

In addition, it has been recently reported that reducing sugars may be involved in the oxidative deamination of 319 

the amino group residues in protein (Akagawa, Sasaki, & Suyama, 2002; Luna & Estèvez, 2018). Thus, the 320 

significantly higher lipid oxidation observed in F04 may be explained by considering the pro-oxidant potential 321 

of these compounds along with the strong interdependence existing between the oxidative modifications 322 

affecting the protein and the lipid fractions.  323 

 324 

3.4 Aroma profile  325 

In Table 3, the main volatile molecules detected in the sausages at the end of ripening through SPME-GC-MS 326 

analysis are reported. The molecules deriving from spices, added in the same amounts in the meat batter, are 327 

not included in the table. Nevertheless, the compounds detected were limonene, β-phellandrene, 328 

caryophyllene, α-phellandrene, o-cymene, copaene, terpinene-4-ol, linalool (in decreasing order, deriving from 329 

black pepper) and allyl-methyl-sulfide (from garlic). The remaining molecules were grouped according to their 330 

chemical characteristics in ketones, aldehydes, alcohols, acids, and esters.  331 

Relevant differences related to the amount of sugar added and the presence of nitrate/nitrite were observed 332 

among ketones. These differences mainly concerned acetone, 2,3-butanedione (diacetyl) and 3-hydroxy-2-333 

butanone (acetoin). According to Flores (2018), the origin of these compounds can be related to fermentation 334 

processes. In particular, the metabolism of pyruvate is the starting point for the production these molecules. 335 

LAB, including Lat. sakei, are particularly active in using pyruvate through alternative metabolic routes, 336 

especially when fermentable sugars are scarce or depleted (von Wright & Axelsson, 2011). Besides, they can 337 

also obtain pyruvate from amino acids (Barbieri, Laghi, Gardini, Montanari, & Tabanelli, 2020; Barbieri et al., 338 

2022). This may explain their lower accumulation in the sausages produced without nitrate/nitrite containing 339 

0.2% glucose with respect to the sausages with 0.4% of the same sugar. However, the presence of 340 

nitrate/nitrite determined the higher accumulation of diacetyl and acetoin in the control, even if at the lower 341 

sugar concentration. In effect, the reduction of nitrate/nitrite can favour the growth of coagulase positive cocci 342 
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(CNC) (Perea-Sanz, Montero, Belloch, & Flores, 2019) with a concomitant limitation of the metabolic potential 343 

of Lat. sakei. 344 

Hospital et al. (2015) described an opposite trend in chorizo, in which both diacetyl and acetoin increased with 345 

the diminution of nitrate/nitrite and attributed this outcome to the higher concentration of staphylococci in 346 

the sausages without nitrate/nitrite added, but in this case they used a strain of Pediococcus pentosaceus as 347 

starter LAB. In this trial at the end of ripening, no significant difference was observed in CNC in the different 348 

sausages produced (Table 1). Nevertheless, the presence of nitrate can be an alternative source for NADH 349 

regeneration making pyruvate available for other metabolic pathways which can bring to the accumulation of 350 

these molecules (Hammes, 2012; Sánchez-Mainar & Leroy, 2015). Perea-Sanz et al. (2019) found significantly 351 

lower concentrations of diacetyl (but not of acetoin) in sausages produced with lowered nitrate addition. These 352 

discrepancies may be explained also in relation to the process adopted and, in particular, to the final pH of the 353 

sausages which, in the case object of this study, was rather high if compared with pH reached in the cited 354 

studies. The presence of methyl ketones in sausages can be the result of microbial β-oxidation of lipids, 355 

deriving from β-ketoacids produced during β-oxidation carried out in first instance by moulds and staphylococci 356 

(Lorenzo, Gómez, Purriños, & Fonseca, 2016; Ordóñez, Hierro, Bruna, & de la Hoz, 1999). In particular, 2-357 

heptanone, 3-hexen-2-one and 2-pentanone concentration was higher in the samples without nitrate/nitrite, 358 

indicating a possible higher activity of staphylococci. 359 

Aldehydes reached their highest concentration in the sausages without nitrate/nitrite added with 0.4% glucose, 360 

whilst in the control they were detected at the minimum level. A positive correlation between TBARS and linear 361 

aldehydes C3-C7 detected using SPME-GC-MS has been described in literature (Olivares et al., 2011). The data 362 

reported here confirmed this observation (see Table 2). In general, in fact, the quantity of aliphatic aldehydes, 363 

accumulated through the action of hydroperoxydases (Ordóñez et al., 1999) was significantly lower in the 364 

control. The amount of 3-methylbutanal, deriving from leucine and with a positive and important effect on 365 

sausages aroma profile (Flores, 2018; Carballo, 2012) did not show differences in relation to the condition 366 

considered. 367 



16 

The sausages produced with glucose at 0.4% were characterized by the highest alcohol accumulation. Ethanol 368 

was the major molecule of this chemical group. Ethanol can be produced during mixed acid LAB fermentation 369 

starting from pyruvate when fermentable sugars are scarce or completely depleted through mixed acid 370 

fermentation (von Wright & Axelsson, 2011) The higher content of ethanol in the sausages produced with 0.4 371 

glucose confirm this hypothesis. Besides, other alcohols presented a similar trend, and in particular 1-octen-3-372 

ol, 2-octen-1-ol, heptanol and hexanol.  373 

Total acids were similar in the control (containing glucose at 0.2%) and in the samples added with 0.4% of 374 

glucose without nitrate/nitrite. These values were significantly higher if compared with the sausages produced 375 

in the absence of preservatives produced adding glucose at 0.2%. Among acids, acetic acid was the most 376 

representative. It can be produced by several pathways from LAB and staphylococci starting from pyruvate 377 

provided by sugar fermentation and other metabolisms, which can involve amino acids (Barbieri et al., 2020; 378 

Gänzle, 2015; Sánchez-Mainar & Leroy, 2015). As observed for ethanol, acetic acid is one of the final products 379 

of the metabolism of mixed acid fermentation in LAB. In particular, under defined conditions, the activity of the 380 

enzyme acetate kinase allows the accumulation of a supplementary ATP from acetyl phosphate obtained from 381 

pyruvate (von Wright & Axelsson, 2011; Zotta, Parente, & Ricciardi, 2017). This could confirm a LAB reduced 382 

activity observed determined by a higher metabolic competitiveness of staphylococci. In contrast with this 383 

data, other authors (Hospital et al., 2015; Perea-Sanz, Montero, Belloch, & Flores, 2018) found an increase of 384 

this acid in the sausages without or with lower nitrate/nitrite content. The other organic acids followed a 385 

similar behaviour, showing lower amounts in the sausages produced without nitrate/nitrite and added with 386 

glucose at 0.2%. This trend characterized also 3-methyl-butanoic (isovaleric) acid, derived from leucine 387 

metabolism. This molecule is often detected in sausages, but when its concentration is too high can be 388 

responsible for the formation of severe off-odours, due to its strong sensory impact (Montanari, Barbieri, 389 

Gardini, & Tabanelli, 2021). 390 

391 

3.5 Challenge test 392 
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Challenge tests were performed with the aim to evaluate the response of Salmonella enterica subsp. enterica, 393 

Listeria innocua (used as surrogate of Listeria monocytogenes) and Clostridium botulinum under the process 394 

conditions adopted. In this part of the work, only the sausages containing 0.2% of glucose, added or not with 395 

nitrate/nitrite, have been considered due to its textural and oxidative characteristics. In fact, the oxidation level 396 

increased in F02 and F04, as expects, but at a lesser extent. The lower pH of F04 caused also a relevant increase 397 

in harness, if compared with the control, which was not observed in F02. A cocktail of strains belonging to the 398 

three microbial groups were separately inoculated to obtain initial concentration of approx. 7 log CFU/g for S. 399 

enterica subsp. enterica and L. innocua and 3 log CFU/g for Cl. botulinum. 400 

Figure 2A represents the counts of L. innocua during fermentation and ripening. After 50 days of ripening, they 401 

were 2 log units below the initial inoculum of the strains of L. innocua, regardless the presence of 402 

nitrate/nitrite. However, the data of the sampling after 2 and 6 days showed significant higher counts in the 403 

sausages without nitrate/nitrite. It is noteworthy the increase of the counts observed after 2 days in F02. Even 404 

after 13 days, the counts are lower in the control. Only after this period L. innocua concentration is similar 405 

(without significant differences) in both sausage type. Similar trends for L. monocytogenes were observed by 406 

Christieans et al. (2018) using reduced levels of nitrate/nitrite. Differently from the observation of these 407 

authors, the concentration of L. innocua at the end of ripening in the present work did not depend on the level 408 

of curing salts added, probably due to the antilisterial activity of starter cultures. Nevertheless, the initial 409 

increase of counts observed, although the strains of L. innocua were inoculated at a challenging concentration, 410 

underlined the need to strict control the fermentation step. 411 

Regarding the challenge test carried out with S. enterica subsp. enterica (serovars Typhimurium and Derby), the 412 

results reported in Figure 2B showed no significant difference in relation to the presence of nitrate/nitrite and 413 

to the sampling time. In both the trials, the ripening conditions applied allowed the decrease of the challenging 414 

concentration of S. enterica subsp. enterica of about 2.5 log units after 50 days. A previous study (Hospital et 415 

al., 2014) indicated that Salmonella Typhimurium can growth and improve its survival in the absence of 416 

nitrate/nitrite. This discrepancy can be explained by the low temperature (<10°C) applied in this industrial 417 
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production during fermentation and ripening. In fact, even if the minimum growth temperature for Salmonella 418 

is approx. 5°C (ANSES, 2011), the growth rate and survival of this pathogen are greatly reduced below 15°C 419 

(Bell & Kyriakides, 2002). On the other hand, the effects of nitrate/nitrite on Salmonella spp. are rather 420 

controversial, differently from other pathogens such as Listeria spp. and Clostridium botulinum, in which a 421 

significant inhibition of the growth is reported (Hospital et al., 2014). Christieans et al. (2018) found that nitrite 422 

is a relevant hurdle for Salmonella Thyphimurium in sausages. This bacterium has recently been associated 423 

with several outbreaks due to fermented sausages consumption (Omer et al., 2018) and its control is becoming 424 

crucial for the fermented meats. Independently on the addition of nitrate/nitrite, the results obtained in these 425 

trials at the end of ripening were more relevant than those of Mataragas et al. (2015), in which both L. 426 

monocytogenes and Salmonella enterica were reduced less than 2 log units at the end of ripening of Cacciatore 427 

and Felino type sausages. In these studies, traditional temperature profiles were adopted. 428 

Figure 2C represents the results of the challenge test with Cl. botulinum. In this case, the amount inoculated 429 

was lower (about 2.7 log CFU/g). No relevant count increase was observed until the end of ripening, and, at the 430 

different sampling times, no difference was observed in relation to the addition of nitrate/nitrite. Undoubtedly, 431 

this toxin producer microorganism has been historically viewed as the main target of nitrate and nitrite in 432 

fermented sausages. However, under industrial conditions, the number of spores present in raw materials is 433 

rather low and the processes adopted are sufficient to limit it growth potential. In this case, the adoption of 434 

low temperatures likely inhibits the growth of proteolytic Cl. botulinum while the non-proteolytic 435 

psychrotrophic members of this species cannot develop when the aw is lower than 0.97, which approximately 436 

corresponded to the initial mixture aw of the sausages. This can explain lack of registered outbreaks from 437 

fermented sausages or the low risk of food poisoning from these products (Holck, Axelsson, McLeod, Rode, & 438 

Heir, 2017). 439 

 440 

4. CONCLUSIONS 441 
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In this research a process for producing high quality fermented sausages without the use of nitrate and nitrite 442 

or any other substitute was studied. The removal of this important hurdle to the proliferation of undesirable 443 

microorganisms was balanced by the modification of the process, that was longer and at lower temperature 444 

(10-15°C) with respect to the conditions traditionally adopted for these Mediterranean products. Moreover, 445 

high concentrations of bioprotective starter cultures were used to control the first crucial fermentation 446 

process. The absence of nitrate/nitrite did not significantly affect some chemico-physical and microbiological 447 

parameters, such as aw, weight loss and LAB and CNC counts. On the other hand, the amount of sugar added 448 

had a relevant effect on some characteristics of the final products. Indeed, in the absence of curing salts, lower 449 

sugar concentration resulted in better textural features and lower oxidation level. These factors also affected 450 

the aroma profile, since the final product obtained without nitrate/nitrite and with 0.2% of glucose was 451 

characterized by lower amounts of ketones and acids. Among the latter, it is noteworthy the reduced 452 

accumulation of 3-methyl-butanoic acid, whose high presence in fermented sausages can be responsible for off 453 

odours. The challenge tests evidenced the inability of selected strains of Listeria innocua, Salmonella enterica 454 

sub. enterica and Clostridium botulinum to grow, under the adopted conditions, in fermented sausages. 455 
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Table 1. Microbiological analyses (log CFU/g) of meat, meat batter and ripened fermented sausages produced 658 

with preservatives (C) or without nitrate and nitrite using two different glucose concentrations, (0.2% (F02) or 659 

0.4% (F04)). Results are the mean of three independent repetitions (standard deviation is reported). For each 660 

microbial group, significant differences among samples at the end of ripening according to ANOVA are 661 

indicated by the presence of different letters. 662 

 663 

Microbial group Meat 
Meat 
batter 

 
End of ripening (50 days) 

    C F02 F04 

Lactic acid bacteria 3.2 ± 0.2 7.2 ± 0.2  8.2 ± 0.1 8.1 ± 0.2 8.3 ± 0.1 

Coagulase negative cocci 3.8 ± 0.2 6.5 ± 0.2  6.8 ± 0.2 7.1 ± 0.1 7.0 ± 0.1 

Enterococci 2.3 ± 0.1 2.5 ± 0.2  2.1a ± 0.2 2.7b ± 0.2 2.6b ± 0.1 

Enterobacteriaceae 2.5 ± 0.2 2.6 ± 0.2  1.5a ± 0.1 2.3b ± 0.1 2.3b ± 0.1 

Yeasts 1.8 ± 0.1 1.9 ± 0.1  4.6 ± 0.1 4.3 ± 0.1 4.4 ± 0.2 

  664 
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Table 2. Colour parameters, textural features and lipid oxidation level (TBARS) of ripened fermented sausages 665 

produced with (C) or without the addition of preservatives (i.e., nitrate and nitrite) using two different glucose 666 

concentrations, namely 0.2% (F02) or 0.4% (F04). Results belong to three independent repetitions and are 667 

expressed as mean values  standard deviation.  668 

 669 

Parameter End of ripening (50 days) p-value 

 
C F02 F04 

Analysis of 
variance 

Planned 
orthogonal 
contrasts1 

Color  

Lightness - L* 42.27  4.46 40.26  3.00 40.81  2.05 ns ns 

Redness - a* 13.51a  1.22 11.58b  1.68 12.57ab  1.13 ** * 

Yellowness - b* 5.50  1.01 4.44  0.50 5.38  0.93 ns ns 

Chroma - C* 14.6a  1.4 12.4b  1.6 13.7ab  1.2 ** * 

Hue angle - h 0.39  0.05 0.37  0.05 0.40  0.06 ns ns 

Texture Profile Analyses (TPA) 

Hardness (kg) 2.07c  0.04 3.20b  0.12 3.74a  0.23 *** *** 

Cohesiveness 1.83a  0.02 1.72b  0.02 1.73b  0.01 *** *** 

Gumminess (kg) 3.79c  0.07 5.51b  0.18 6.46a  0.34 *** *** 

Springiness 1.39  0.65 1.80  0.03 1.75  0.05 ns ns 

Chewiness (kg) 5.27b  2.47 9.94a  0.21 11.32a  0.64 ** ** 

Oxidation of the lipid fraction 

TBARS  
(mg MDA/kg of 
meat product) 

0.45c  0.03 0.80b  0.02 1.10a  0.07 ** ** 

 670 

1Planned orthogonal contrasts performed to assess the eventual effect of the absence of nitrite and nitrate in 671 

dry fermented sausages formulation regardless of the glucose content added (C vs. F02 and F04).  672 

*=p <0.05, **= p < 0.01, ***= p < 0.001, ns = not significant; a,c = mean values followed by different letters, 673 

significantly different among the groups (p <0.05).  674 
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Table 3. Aroma profile detected by SPME-GC-MS in the ripened sausages produced with preservatives (C) or 675 

without nitrate and nitrite using two different glucose concentrations, namely 0.2% (F02) or 0.4% (F04). Data 676 

are expressed as ratio between peak area of each molecule and peak area of the internal standard (4-methyl-2-677 

pentanol). Results are the mean of three independent repetitions and standard deviations are reported. For 678 

each molecule significant differences between samples according to ANOVA are indicated by the presence of 679 

different letters. 680 

Volatile compound C F02  F04  

Acetone 32.2 ± 1.0 a 18.6 ± 1.3 b 33.4 ± 1.8 a 

2-butanone  1.06 ±0.18 ab 0.821 ± 0.358 a 1.62 ± 0.25 b 

2-pentanone 0.643 ± 0.211 a 0.878 ± 0.164 a 2.10 ± 0.45 b 

2,3-butanedione 4.92 ± 0.95 a 0.349 ± 0.098 b 0.714 ± 0.228 b 

Methyl isobutyl ketone 0.449 ± 0.182 0.179 ± 0.209 0.491 ± 0.089  

3-hexen-2-one 1.78 ± 0.45 a 5.10 ± 1.30 b 2.86 ± 0.57 a 

3-hydroxy-2-butanone 11.7 ± 1.2 a 0.601 ± 0.411 b 4.26 ± 0.99 c 

2-heptanone 1.90 ± 0.66 a 3.51 ± 0.91 b 4.07 ± 0.19 b  

2-nonanone 0.914 ± 0.342 1.07 ± 0.14  1.41 ± 0.33 

Ketones 55.6 ± 2.8 a 31.1 ± 2.2 b 50.9 ± 3.3 a 

3-methylbutanal 0.175 ± 0.093 0.264 ± 0.133 0.192 ± 0.098 

Hexanal 1.43 ± 0.30 1.10 ± 0.23 1.18 ± 0.15 

2-heptenal 0.541 ± 0.334 a 2.41 ± 0.33 b 3.01 ± 0.53 b 

Nonanal  1.05 ± 0.25 a 3.23 ± 0.51 b 4.94 ± 0.33 c  

2-nonenal 1.75 ± 0.53 1.11 ± 0.65  1.83 ± 0.54 

Benzaldehyde 0.591 ± 0.402 0.631 ± 0.258 1.29 ± 0.48 

Decanal 0.343 ± 0.201 0.539 ± 0.249 0.202 ± 0.212 

Aldehydes 5.89 ± 0.41 a 9.28 ± 0.23 b 12.6 ± 0.4 c 

Ethanol 4.79 ± 0.89 a 5.98 ± 1.01 a 9.86 ± 0.75 b  

Hexanol 0.551 ± 0.319 a 0.542 ± 0.291 a 1.15 ± 0.34 b 

1-octen-3-ol 0.404 ± 0.264 a 0.810 ± 0.410 ab 1.318 ± 0.121 b  

1-heptanol 0.414 ± 0.244 a 0.338 ± 0.173 a 1.04 ± 0.34 b 

1-octanol  0.713 ± 0.331 a 2.94 ± 0.79 b 0.968 ± 0.413 a 

2-octen-1-ol 4.15 ± 0.65 ab  3.35 ± 0.82 a 5.43 ± 0.54 b 

Alcohols 11.0 ±1.0 a 14.0 ±1.2 b 19.8 ± 1.0 c 

Acetic acid 24.0 ± 2.0 a 7.44 ± 1.11 b 19.8 ± 1.9 c 

3-methyl butanoic acid 1.86 ± 0.15 a 0.724 ± 0.363 b 1.33 ± 0.23 b 

Butanoic acid 1.84 ± 0.31 a 0.456 ± 0.329 b 2.09 ± 0.53 a 

Pentanoic acid 1.12 ± 0.22 a 1.04 ± 0.57 a 2.28 ± 0.33 b 

Hexanoic acid 1.80 ± 0.18 1.46 ± 0.31  2.05 ± 0.45 

Heptanoic acid 0.692 ± 0.331 0.714 ± 0.509 1.54 ± 0.43 
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681 Octanoic acid 2.03 ± 0.28 a 2.47 ± 0.65 ab 3.52 ± 0.45 b 

Nonanoic acid 2.35 ± 0.64 1.68 ± 0.83 2.66 ± 0.22 

Acids 35.7 ± 2.9 a 16.0 ± 1.4 b 35.3 ± 2.4 a 

Ethyl acetate 0.212 ± 0.153 ab 0.149 ±0.081 a 0.429 ± 0.222 b 

Esters 0.212 ± 0.153 ab 0.149 ± 0.081 a 0.429 ± 0.222 b 



32 
 

FIGURE CAPTIONS 682 

Figure 1 pH (1A), aw (1B) and weight loss (1C) during fermentation and ripening of fermented sausages 683 

produced with preservatives (C) or without nitrate and nitrite using two different glucose concentrations, 684 

namely 0.2% (F02) or 0.4% (F04). The data are the mean of three independent samples and standard error bars 685 

are reported.  686 

 687 

Figure 2: Microbial counts (expressed as log CFU/g) of Listeria innocua (2A), Salmonella enterica subsp. enterica 688 

(2B) and Clostridium botulinum (2C) during fermentation and ripening of fermented sausages produced with 689 

preservatives (C) or without nitrate and nitrite (F02). The glucose addition was 0.2 % for both samples. The 690 

data are the mean of three independent samples and standard error bars are reported.  691 
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