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Simple Summary: Among livestock species, cattle are crucially important for the meat and milk
production industry. Cows can be affected by different pathologies, such as mastitis, endometritis
and lameness, which can negatively affect either food production or reproductive efficiency. The
use of mesenchymal stromal cells (MSCs) is a valuable tool both in the treatment of various medical
conditions and in the application of reproductive biotechnologies. This review provides an update on
state-of-the-art applications of bovine MSCs to clinical treatments and reproductive biotechnologies.

Abstract: Attention on mesenchymal stromal cells (MSCs) research has increased in the last decade
mainly due to the promising results about their plasticity, self-renewal, differentiation potential, im-
mune modulatory and anti-inflammatory properties that have made stem cell therapy more clinically
attractive. Furthermore, MSCs can be easily isolated and expanded to be used for autologous or
allogenic therapy following the administration of either freshly isolated or previously cryopreserved
cells. The scientific literature on the use of stromal cells in the treatment of several animal health
conditions is currently available. Although MSCs are not as widely used for clinical treatments
in cows as for companion and sport animals, they have the potential to be employed to improve
productivity in the cattle industry. This review provides an update on state-of-the-art applications of
bovine MSCs to clinical treatments and reproductive biotechnologies.
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1. Introduction

Research into stem cells has been very active over the past decade. Due to the increas-
ing number of studies, several breakthroughs have been achieved in this field, and stem
cell therapy has gained ground as a modality of regenerative medicine. Mesenchymal
stromal cells (MSCs) are present in different body tissues and are characterised as able to
adhere to plastic, express specific surface antigens and possess multipotent differentiation
potential [1]. Furthermore, they are good candidates for the treatment of various diseases
due to characteristics such as low immunogenicity, anti-inflammatory potential and their
ability to produce various mediators and molecules that help the regenerative function [2].

Bovine MCSs have been isolated and characterised (Figure 1) from different adult
and foetal tissues, including bone marrow (BM) [3–38], endometrium (EN) [39–48], adi-
pose tissue (AT) [29–32,34,37,49–66] and foetal liquid and adnexa, such as umbilical cord
blood (UCB) [67–70], Wharton’s jelly (WJ) [58,71–73], umbilical cord matrix (UC) [74–82],
amnion (AM) [83,84], amniotic fluid (AF) [57,83,85–88] and placenta (PL) [37,89,90]. Less
common sources of bovine MSCs have been foetal liver [91], dermal tissue [92], foetal
lung tissue [93], embryo yolk sack [94], synovial fluid [95], milk [96], pericardium mem-
brane [97], pancreas [98], tongue epithelium [99], skeletal muscle [65,100] and peripheral
blood [48,101].
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Figure 1. Schematic diagram of the characteristics of bovine mesenchymal stromal cells (created in 
Biorender.com, accessed on 14 July 2022). 

The potential of MSCs for cell-based therapies has originally been based on their 
typical characteristics, which include the multipotentiality to differentiate in vitro into 
mesodermal-derived lineages, particularly osteogenic, chondrogenic and adipogenic 
cells [1]. Furthermore, it has been demonstrated that the paracrine activity of MSCs exerts 
therapeutical effects involving regeneration, immunomodulation, angiogenesis and 
antiapoptosis [102–104]. 

The immunomodulatory activity of MSCs depends on direct cell-to-cell contact and 
on contact-independent paracrine signalling, with the production of soluble factors 
regulating proliferation, differentiation, migration and apoptosis of several immune cells 
[105]. The reduced immunogenicity of MSCs is another aspect that strengthens their 
potential for cell therapy related in part to the low expression of major histocompatibility 
complexes I and II (MHC-I and II) and to the absence of expression of T-cell 
costimulatory molecules (CD40, CD80 and CD86) [106]. Taking together the immune 
regulatory abilities and reduced immunogenicity, allogeneic MSCs transplanted into 
recipients are able to escape direct recognition by natural killer cells and prevent 
activation of T lymphocytes, possibly also reducing the potential activation of the indirect 
pathway by the presentation of donor-derived MHC-I/II peptides by antigen-presenting 
cells to B cells and subsequent alloantibodies production [107]. Therefore, low 
immunogenicity may result in higher efficacy and lower risk of local inflammation 
following MSCs administration, reducing potential adverse effects [107]. In cattle, it has 
been demonstrated that foetal AT-MSCs and BM-MSCs respond to inflammatory 
stimulation with interferon γ (IFNγ) by increasing immune-related gene expression and 
activity in a dose-dependent manner and upregulating gene expression of IL-6 [30]. 
However, conditioned medium from IFNγ-stimulated and unstimulated BM-MSCs and 
AT-MSCs exerts similar suppression of proliferation of alloantigen-activated bovine 
peripheral blood lymphocytes [30]. Whereas immunomodulatory properties appear to be 

Figure 1. Schematic diagram of the characteristics of bovine mesenchymal stromal cells (created in
Biorender.com, accessed on 14 July 2022).

The potential of MSCs for cell-based therapies has originally been based on their typical
characteristics, which include the multipotentiality to differentiate in vitro into mesodermal-
derived lineages, particularly osteogenic, chondrogenic and adipogenic cells [1]. Furthermore,
it has been demonstrated that the paracrine activity of MSCs exerts therapeutical effects
involving regeneration, immunomodulation, angiogenesis and antiapoptosis [102–104].

The immunomodulatory activity of MSCs depends on direct cell-to-cell contact and on
contact-independent paracrine signalling, with the production of soluble factors regulating
proliferation, differentiation, migration and apoptosis of several immune cells [105]. The
reduced immunogenicity of MSCs is another aspect that strengthens their potential for cell
therapy related in part to the low expression of major histocompatibility complexes I and II
(MHC-I and II) and to the absence of expression of T-cell costimulatory molecules (CD40,
CD80 and CD86) [106]. Taking together the immune regulatory abilities and reduced
immunogenicity, allogeneic MSCs transplanted into recipients are able to escape direct
recognition by natural killer cells and prevent activation of T lymphocytes, possibly also re-
ducing the potential activation of the indirect pathway by the presentation of donor-derived
MHC-I/II peptides by antigen-presenting cells to B cells and subsequent alloantibodies
production [107]. Therefore, low immunogenicity may result in higher efficacy and lower
risk of local inflammation following MSCs administration, reducing potential adverse ef-
fects [107]. In cattle, it has been demonstrated that foetal AT-MSCs and BM-MSCs respond
to inflammatory stimulation with interferon γ (IFNγ) by increasing immune-related gene
expression and activity in a dose-dependent manner and upregulating gene expression
of IL-6 [30]. However, conditioned medium from IFNγ-stimulated and unstimulated BM-
MSCs and AT-MSCs exerts similar suppression of proliferation of alloantigen-activated
bovine peripheral blood lymphocytes [30]. Whereas immunomodulatory properties appear
to be similar between BM-MSCs and AT-MSCs, higher expression of MHC-I and MHC-II
in BM-MSCs suggested that the immunogenic potential of bovine foetal MSCs might be
tissue-dependent and that AT-MSCs might be more suitable candidates for allogeneic
therapy [30].

Autologous MSCs therapy implies cell isolation and expansion to achieve therapeutic
doses. Consequently, there is a lag time between their collection and use, threatening the
effectiveness of the treatment. In addition, critical parameters for MSCs isolation include
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donor variability, tissue of origin, amount of tissue and culture conditions [108]. On the
other hand, foetal- and placental-derived MSCs have been found superior to adult MSCs
as candidates for allogeneic therapeutic applications due to their lower immunogenic-
ity [109,110]. Cryopreservation represents an efficient method for the preservation and
pooling of MSCs to obtain the cell counts required for clinical applications. Samples can
be harvested, and then cells can be isolated, expanded and stored for later use, optimising
logistics from collection to transplantation. Accordingly, the ability of MSCs to survive
long periods of storage and, at the same time, maintain their qualities is critical for the
development of allogeneic cell therapies. Upon cryopreservation, it is important to preserve
MSCs’ functional properties, including immunomodulatory properties and multilineage
differentiation ability. Further, a biosafety evaluation of cryopreserved MSCs is essen-
tial prior to their clinical applications [111]. Considering cattle, Oyarzo et al. compared
PL-MSCs and foetal MSCs originated from AT and BM in order to assess their ability to
survive different cryoprotectant solutions exposure [37]. While the apoptotic potential
was similar, foetal AT-MSCs and PL-MSCs presented consistently higher percentages of
viability than did foetal BM-MSCs [37]. On the other hand, AT-MSCs were more resistant
than PL-MSCs, but the latter have the advantage of coming from a readily available tissue
usually considered waste, without ethical concerns [37].

Although in veterinary medicine, cell therapies are mainly focused on pets, regener-
ative medicine applications also involve farm animals, not only for their importance as
a food source [112] but also as models [113]. Among livestock species, cows have a high
economic impact, and reproductive biotechnologies are routinely applied [114,115]. The
dairy and beef industries are essential for food production. Dairy products and ruminant
meat provide essential elements for the human diet. According to the Food and Agriculture
Organization (FAO), there are almost 1.5 billion cattle in the world. Cows produce 81 per
cent of global milk production, and the world demand for beef is projected to increase to
75 million tonnes by 2030 [116]. Animal health is an important issue related not only to
animal welfare itself but also to the One Health perspective, in which human, animal, plant
and environmental health are interdependent. This review summarises the applications of
MSCs in cattle to treat clinical conditions and improve reproductive biotechnologies.

2. Bovine MSCs for Clinical Treatments

So far, MSCs have been used in many experimental instances to treat various diseases
in different animal species. Orthopaedic diseases were the primary field of regenerative
veterinary medicine, and then the focus rapidly expanded to other areas. Dogs and horses
were the species in which stem cell-based therapies were commonly used to treat different
diseases of various organ systems, while for cats, they were used for renal, respiratory and
inflammatory pathologies [117]. Bovine MSCs can be potentially used in various clinical
conditions. Nevertheless, the application of novel MSCs therapies in large ruminants is
still limited.

The major obstacles in livestock species are related to a minor interest in treating
clinical conditions in these animals compared to pets and the higher maintenance costs
in comparison with other animal models [118]. Laboratory animals or small animals
are usually preferred as models to start any research for human pathologies due to the
reasonable buying and care costs together with easier manageability and housing. However,
for a better understanding and a thorough evaluation of cell-based therapies, various animal
models are necessary to successfully move from the laboratory bench to human health
applications. The development of products for animal use has the advantage that they can
be immediately tested in the target species. This aspect not only allows to understand the
potential of MSC-based products for clinical application in animals but may also provide
models for similar human applications [119].

Although many studies have been published for animal MSCs, it is still not easy to
evaluate the efficacy of MSC-based therapies because of the different sources of MSCs
and variations in manufacturing processes, inconsistent characterisation and measure of
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potency, inappropriate controls and a lack of experimental power [119]. MSCs have been
isolated from different sources and, depending on the tissue of origin, they may possess
different properties, which should be taken into account when choosing the optimal stem
cell therapy for a specific pathology in order to achieve successful results. On the other
hand, there is no evidence for a favoured tissue as an MSCs source due to the presence of a
wide variability between donors [108,120].

2.1. Chronic Wound Healing

In the last years, the application of regenerative medicine to skin lesions has been
a focus for both human and veterinary medicine. The physiological healing process of
cutaneous wounds is a well-orchestrated complex of molecular and biological activities.
Even so, a chronic lesion can develop when the normal process fails. The regenerative
potential of stromal cells has also been widely recognised for skin lesion repair [121].
Recent studies support the concept that MSCs can be appropriated for treating chronic
wounds [122–124].

Even if the exact functions of stromal cells in wound healing have not yet been
completely elucidated, they are involved in the removal of dead cells and necrotic tissue,
angiogenesis, reduction in scar tissue formation, contraction of the wound and induction of
re-epithelisation [121]. Consequently, wound healing is promoted, and local inflammation
is reduced. Table 1 summarises the studies regarding MSC applications for wound healing
in cattle.

Table 1. Bovine MSC applications for wound healing.

Source Application References

Bone marrow Autologous treatment of a
chronic ulcer in a heifer [10]

Bone marrow
Autologous treatment of an

interdigital chronic ulcerative
wound in a cow

[13]

Bone marrow Autologous treatment of a
wound in a hind limb of a bull [14]

The first report of a case study in which autologous BM-derived MSCs were used to
treat a chronic ulcer in a heifer dates back to 2012 [10]. A 2-year-old Jersey heifer had been
suffering from a chronic nonhealing ulcerative wound involving full-thickness skin and
underlying muscle in the lumbar region for 4 months. Standard therapies were ineffective,
so a clinical trial was made with autologous BM-MSCs. Bone marrow was aspirated
from the tibia, and MSCs were isolated, expanded and then diluted in saline solution for
intradermal and topical implantation in the wound. Various parameters and measures
were monitored during the trial. At histopathology, the progression of the healing process
was observed since neovascularisation appeared, as well as fibroblasts, sebaceous glands
and epithelialisation. The content of collagen was increased after stem cell therapy, and
the healed tissue was progressing towards physiological stretchability and tensile strength.
The 4-month-old chronic wound healed within 18 days, indicating that MSCs application
could be an effective therapeutic approach for nonhealing chronic wounds [10].

Another clinical study of the same research group concerns the successful treatment
of an interdigital chronic ulcerative wound in a 6-year-old cross-bred Jersey cow [13]. The
animal presented with a 4-month interdigital hoof lesion nonresponding to conventional
treatments. Autologous BM-MSCs therapy was also used for this patient. Granulated tissue
rapidly grew, and the healing process was completed in 18 days. The parameters analysed
to assess the progression of the healing process confirmed the clinical process, and the
pain-free walking distance evaluation was gradually increased over the study period [13].

In the last clinical trial [14], a bull was presenting a wound in a hind limb above
the hock joint as a consequence of a car accident, which had happened 8 months before.
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Different local treatments and antibiotic courses turned out as unsuccessful as chemical
and cryocauterisation. Autologous BM-MSCs application was performed. Similar proto-
cols were used for the collection, isolation and expansion of BM-MSCs, but in this case,
some cells were intravenously administered in addition to local treatment. Healing was
completed within 4 weeks, and the evaluated parameters confirmed the outcome [14].

Despite the lack of controls and large-scale randomised studies and clinical trials, the
promising results obtained from the applications of autologous BM-MSCs confirmed the
potential of MSC-based therapy for treating chronic nonhealing wounds in bovines.

A weak immunogenicity and a vasculogenic effect are favourable properties for wound
healing capacity. Bovine BM-MSCs are the most well-characterised cells, and recently
their immunomodulatory properties [30] and proangiogenic potential [31] have been
investigated. Comparing bovine foetal MSCs derived from bone marrow and adipose tissue,
both upregulated the expression of immunomodulatory genes and showed similar in vitro
immunomodulatory ability, while the lower expression of MHC-I and MHC-II suggested
that AT-MSCs might be less immunogenic compared with BM-MSCs [30]. Furthermore,
BM-MSCs displayed similar migratory ability, higher proliferative capacity and lower
proangiogenic potential compared with AT-MSCs [31]. These results might suggest that
bovine AT-MSCs could be even more promising than BM-MSCs in enhancing the treatment
of chronic wound healing.

2.2. Mastitis

In the dairy industry, mastitis is a common problem, which implicates costs to treat
the disease, and since antimicrobials are the standard therapy, this increases the possibility
of developing antimicrobial resistance. Hence, alternative therapies are required.

The mammary gland contains stromal cells and precursors with high regenerative
potential, which apparently are maintained during the productive life of dairy cows. The
presence of such cells opens new research perspectives regarding the physiological mecha-
nisms concerned with milk secretion and the possibility of enhancing or prolonging dairy
cow production [125]. The presence of a subpopulation of adult stromal cells in the mammary
gland was first demonstrated in human and mouse [126,127]. Then, in the cow, three different
colony morphologies were isolated, suggesting the existence of different progenitor popula-
tions and of an epithelial cell hierarchy in the bovine mammary gland similar to humans [128].
Such stromal/progenitor cells have been largely investigated [125,129].

On the other hand, less research is available for MSCs and bovine mammary glands.
As summarised in Table 2, different in vitro studies showed that UC-MSCs could promote
milk protein and fat synthesis and the expression of key genes in bovine mammary gland
epithelial cells via IGF-1 [75,76,78] and reduce their apoptosis rate [77]. Furthermore, it
has been demonstrated that bovine MSCs have antibacterial activity [29]. The conditioned
medium from bovine foetal MSCs obtained from bone marrow and adipose tissue showed
in vitro antibacterial potential against S. aureus, a mastitis-causing pathogen, by reducing
about 30% of relative bacterial growth [29]. The mechanisms that regulate the antibacterial
activity of bovine MSCs have not been totally elucidated, but the expression of β–defensin
4 A and NK-lysine 1, two antibacterial peptides, was associated with the in vitro effect of
such MSCs [29].

Dairy cows were experimentally infected to induce S. aureus clinical mastitis in order
to evaluate the safety and efficacy of an allogenic MSC-based therapy [62]. Bovine foetal
AT-MSCs were intramammary inoculated twice (days 1 and 10) during a 20-day experi-
mental period. No clinical or immunological response was induced in healthy cows, and
the bacterial count in milk was reduced in MSC-treated cows compared with controls [62].
A similar decrease in somatic cell count (SCC) in the milk of mastitic animals was observed
in cows treated intramammary with a single administration of allogenic AT-MSCs during a
15-day experiment [64]. On days 3 and 7, maximum expression of anti-inflammatory
cytokines (IL-6, IL-10), antimicrobial peptides (cathelicidin, lipocalin and cystatin) and
angiogenic genes (angiopoietin) was observed [64]. With the aim of preventing subclinical
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mastitis, UCB-MSCs and extracellular vesicles (EVs) were injected locally and IV on days
0 and 7 in healthy (safety trial) and subclinical mastitis cows [68,69]. Both MSCs and
EVs were safe, and all treated cows were cured permanently within 15 days [68]. Treated
animals showed a reduced SCC in mastitic milk compared with the control (antibiotic)
group, an enhancement in the expression of anti-inflammatory cytokines, antimicrobial
peptides and angiogenic genes and a decrease in the expression of proinflammatory cy-
tokines [68,69]. Finally, a conditioned medium from bovine AM-MSCs (2 h coincubation in
phosphate-buffered saline (PBS)) was used to treat mastitis in comparison with conven-
tional antibiotics [84]. Milk pH value and titratable acidity were similar between treatments,
while the level of ionic calcium concentration decreased 3 days later in MSCs-treated cows
compared with antibiotic-treated animals [84]. Moreover, the somatic cell number was
similar in both groups, demonstrating that conditioned medium from bovine AM-MSCs
has the therapeutic potential to treat bovine mastitis and might replace antibiotics in the
future [84].

Table 2. Bovine MSC applications for the mammary gland.

Source Application References

Umbilical cord In vitro effects on mammary gland
epithelial cells [75–78]

Bone marrow, adipose tissue In vitro effects on S. aureus [29]
Adipose tissue In vivo effects on S. aureus-induced mastitis [62]
Adipose tissue In vivo effects on mastitis [64]

Umbilical cord blood In vivo effects on subclinical mastitis [68,69]

Amniotic membrane In vivo effects of conditioned medium to
treat mastitis [84]

2.3. Reproductive System

In the last 50 years, the selection in the dairy industry has led to an improvement in
average milk production by a single cow. However, the selection for milk yield has caused
some unfavourable effects, such as a decrease in fertility. Despite an improvement in cow
fertility in the last two decades, as a consequence of selection for fertility traits in breeding
programmes and improvement in animal nutrition and comfort, reproductive performance
is not optimal yet [130]. Reproductive disorders are directly correlated with low fertility in
dairy cows.

The endometrium is characterised by an elevated and constant regeneration, and
mesenchymal progenitor cells have also been identified in the cow endometrium [39]. Pro-
genitor cells were isolated and characterised in cyclic cows [40,42,44] and heifers [41] and
were able to respond after challenging with lipopolysaccharide (LPS) [43]. Furthermore, the
presence of endometrial MSCs was also confirmed in the postpartum period in both healthy
cows and those affected by endometritis [45]. In this period, uterine involution occurs,
involving endometrial regeneration [131], and the presence of pathogenic bacteria needs to
be controlled in the uterus for fertility restoration. However, pathogenic bacteria are not
always rapidly eliminated and often generate uterine disease (metritis and endometritis),
leading to reduced fertility [132]. Endometrial MSCs from bovine inflamed uteri showed
modified characteristics, especially in clinical than in subclinical endometritis, and the
in vitro exposure of endometrial MSCs to PGE2, a mediator of inflammation, modified
their transcriptomic profile [45]. Bovine endometrial MSCs have also been immortalised
from lines derived in different phases of the oestrous cycle [47]. Immortalised cells main-
tained mesenchymal and immunomodulatory characteristics, with an increased migratory
capacity towards an inflammatory niche but a decreased answer to embryonic cytokine
expression at implantation [47]. Interestingly, combined proinflammatory and implantation
signals ensured the retention of endometrial MSCs in case of pregnancy, while they showed
a mesenchymal to epithelial transition state in the absence of an embryo [47]. Despite
research into bovine endometrial MSCs, no report exists about their application in treating
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cow uterine inflammations. On the other hand, bovine MSCs derived from adipose tissue
showed an inhibitory effect on in vitro LPS challenge of endometrial epithelial cells [63].
When used in vivo to treat metritis, allogenic AT-MSCs did not induce any immunological
rejection response in treated animals (IV, local, IV + local), and all cows were completely
and permanently cured within 30 days after treatment [64]. Polymorphonuclear (PMN) cell
count was reduced in cervical vaginal fluid and the expression of IL-6, IL-10, cathelicidin,
lipocalin, cystatin and angiopoietin were observed at day 3 in the IV + local group [64].
More recently, UCB-MSCs and their EVs have also been successfully used for metritis
treatment by the same research group [70]. Moreover, in this case, a higher decrease in
PMN was observed for MSCs and EV-treated cows compared with antibiotic-treated ones,
as well as an increase in the expression of anti-inflammatory cytokines [70].

Other pathologies, which can lead to considerable economic loss, are those involving
the ovaries. Ovarian dysfunctions in dairy cattle have a high incidence and are responsible
for a reduction in reproductive performance. The two major ovarian causes of infertility in
dairy cows are inactive ovaries and ovarian cysts [133,134]. Chang et al. transplanted AF-
MSCs into cows affected by bilateral ovarian dystrophy in an attempt to restore or improve
ovarian function [87]. Each ovary was injected with 50 µL of PBS containing 0.58 million
cells, and then cows were monitored for oestrus and inseminated [87]. Half (4/8) of the
animals treated with AF-MSCs showed oestrus, and two of them delivered a calf, while no
oestrus was observed in control animals, demonstrating that MSCs therapy is a potentially
useful treatment to alleviate the impact of ovarian dystrophy in dairy cows [87]. Peng et al.
injected PL-MSCs into ovarian cysts with or without fluid drainage and compared them to
control animals and GnRH-treated animals [90]. The use of PL-MSCs allowed for recovery
and conception [90], indicating a new therapeutic potential of these cells and a possible
alternative to hormones in the treatment of cattle ovarian cysts. Finally, the intraovarian
injection of MSCs was used to reduce the negative effects of repeated ovum pick-up (OPU)
under acute and chronic scenarios in bovines [61]. In fact, this technique is generally
considered a safe way to collect oocytes from live donors but inevitably causes trauma to
the ovarian tissue, and repeated procedures over years are associated with a progressive
decrease in oocyte yield [61]. For the experiment, one ovary was injected with 2.5 million
AT-MSCs, and the other one was used as the control [61]. MSCs had beneficial effects on
the fertility of acute OPU injured cows, but not in cows with chronic ovarian lesions [61]. In
this case, it was speculated that MSCs could no longer restore the compromised follicular
population or ovarian physiology in cows with chronic inflammatory processes in the
ovaries due to repeated OPU over time [61]. The overall MSC clinical applications for the
reproductive system are presented in Table 3.

Table 3. Bovine MSCs from different sources for treatment of reproductive system diseases.

Source Application References

Adipose tissue Metritis [64]
Umbilical cord blood Metritis [70]

Amniotic fluid Bilateral ovarian dystrophy [87]
Placenta Ovarian cysts [90]

Adipose tissue Intraovarian injection for repeated
OPU lesions

[61]

3. Bovine MSCs for Reproductive Biotechnologies

The first successful nuclear transfer (NT) dates back to 1952, when the nucleus from
an early tadpole embryo was transferred into an enucleated frog egg [135]. Then, in 1996,
Dolly was the first mammalian cloned using an adult somatic cell as a nucleus donor [136].
Somatic cell nuclear transfer (SCNT) (Figure 2) is an important research tool since it permits
a differentiated cell to be reprogrammed to a totipotent state [137]. The donor cell is a key
factor in the process, and interest in bovine SCNT led to consider MSCs as appropriate
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candidates due to their characteristics. Studies using bovine MSCs from different sources
for NT were carried out and are summarised in Table 4.
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Table 4. Bovine MSCs from different sources as nucleus donors for nuclear transfer.

Source References

Bone marrow [3,5]
Adipose tissue [52,53,56,57,66,138]
Amniotic fluid [53,57]

Amniotic membrane [138]
Wharton’s jelly [72]

Firstly, it was demonstrated that bovine BM-MSCs had developmental totipotency
after NT [3] and were better than adult fibroblasts in driving the preimplantation develop-
ment of cloned embryos efficiently [5]. In another study investigating the epigenetic status
of donor cells to improve SCNT [52], it was demonstrated that bovine AT-MSCs at passage
5 had the highest level of multipotency and the lowest level of chromatin compaction.
Bovine AF and AT-MSCSs were then successfully used to produce embryos and calves
after NT [53], and in vitro development of bovine embryos cloned using less methylated
AF and AT-MSCS was improved using trichostatin A [57]. Pregnancies were also obtained
after the transfer of blastocysts derived from WJ-MSCs NT [72]. A higher potential for
AM and AT-MSCs than adult fibroblasts was observed in terms of blastocysts obtained
after oocyte reconstruction [138]. More recently, epigenetic reprogramming events were
investigated, and it was observed that the SCNT embryos derived from bovine AT-MSCs
endured considerable nuclear reprogramming during early embryo development [56].
Finally, in an attempt to improve NT efficiency, the aggregation of two AT-MSC-derived
embryos seemed to positively affect embryo quality, which may improve postimplantation
development [66].

Another context of research into cells includes their ability to incorporate exogenous
DNA for the production of transgenic animals. Bovine MSCs were transfected with pBC1-
anti-CD3 vector, and while those derived from WJ were more sensitive to treatments,
AT-MSCs showed a better response to transfection [58].

Biorender.com
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Bovine MSCs have also been used for in vitro embryo production. The traditional
coculture system of bovine embryos with granulosa cells was less efficient than coculture
with AT-MSCs [54]. In addition to increasing blastocyst rates, MSCs coculture also improved
embryo quality, with an increase in total cell numbers and mRNA expression levels for
POU5F1 and G6PDH [54]. It was speculated that the paracrine capacity of MSCs could be
responsible for the positive effects observed [54].

Another application of MSCs is to produce germinal cells after differentiation. The
in vitro production of germ cell lineages is a new intriguing strategy for obtaining gametes
in order to treat infertility, disseminate the genetics of elite animals and preserve endangered
species [139]. The in vitro effect of bone morphogenetic protein 4, transforming growth factor
β1 and retinoic acid on the potential for germ cell differentiation of bovine foetal BM-MSCs was
investigated [27]. The stimulated cells expressed pluripotent markers OCT4, NANOG and male
germ cell gene DAZL, demonstrating their potential for early germ cell differentiation [27]. When
coculturing bovine foetal BM and AT-MSCS with Sertoli cells, cell morphology modifications
were induced, as well as variations in the expression profiles of mesenchymal, pluripotent and
germ cell genes, suggesting progression of AT-MSC into early stages of germ cell differentiation
and advancement of BM-MSCs into the multipotent state [34].

4. Conclusions

The development of stem cell technologies in species other than bovine can be seen
as a useful background for developing and deepening similar advancements in livestock.
MSC characteristics make them appealing for their potential in clinical applications, and the
lack of ethical concern is the other factor that makes them ideal for laboratory studies. As
for humans [140], for successful cell-based therapies, stem cells must be able to differentiate
into specific targeting cells or must act via paracrine mechanisms. Their extraction and
isolation must be feasible, and transplantation must be effective and safe. Furthermore, ex
vivo cell expansion is required since a considerable number of cells is essential to optimise
the therapeutic effects. However, the lifespan of MSCs is limited during in vitro culture,
and their senescence is a limit from the viewpoint of clinical applications. On the one
hand, the limited cell proliferation potency protects them from malignant transformation
after transplantation; on the other, senescence can alter various cell functions essential for
therapeutic efficacy, such as proliferation, differentiation and migration. Therefore, after
in vitro expansion and before therapeutic use, it should be considered whether these cells
still possess stemness properties.

The bovine model could be advantageous for the size and physiology when compared
with traditional laboratory animals. In cattle, MSCs have been isolated from different
tissues, and their pluripotency has been demonstrated, but there is still a lack of clinical
applications and studies comparing MSCs from different sources to suggest which one
is the best choice for cell therapy or for which specific pathology. The studies presented
are promising for the possible applications of MSCs both in veterinary medicine and
the livestock industry. However, more studies are required to develop bovine-specific
protocols, and further investigation is needed to evaluate clinical responses after cell therapy
applications. Attitudes in the livestock industry have shifted towards the preservation of
the commercial viability of individual animals with high genetic value, leading, in turn, to
an increase in medical expenditure to keep those animals healthy [141]. MSCs treatment
has the potential to reduce animal recovery time and reduce economic loss associated
with bone and joint injury, reducing the time for repair that can negatively influence milk
and meat production and interfere with natural breeding [141]. Nevertheless, orthopaedic
applications have not yet been applied clinically in cows. The antimicrobial activity of
MSCs and their derivatives has great potential for the treatment of conditions such as
mastitis. In addition to the direct impact on milk production in the dairy industry, it would
provide an alternative to the use of antimicrobials, reducing the possibility of antimicrobial
resistance and the presence of antibiotics in milk. MSCs treatment has the potential to
decrease recovery from various diseases affecting production, thus increasing profitability.
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Abbreviations

AF Amniotic fluid
AM Amnion
AT Adipose tissue
BM Bone marrow
EN Endometrium
EVs Extracellular vesicles
GnRH Gonadotropin-releasing hormone
IGF-1 Insulin-like growth factor 1
IL-6 Interleukin 6
IL-10 Interleukin 10
INFγ Interferon γ

IV Intravenous
LPS Lipopolysaccharide
MHC-I Major histocompatibility complex-I
MHC-II Major histocompatibility complex-II
MSCs Mesenchymal stromal cells
NT Nuclear transfer
OPU Ovum pick-up
PBS Phosphate-buffered saline
PGE2 Prostaglandin E2
PL Placenta
PMN Polymorphonuclear
SCC Somatic cell count
SCNT Somatic cell nuclear transfer
UC Umbilical cord
UCB Umbilical cord blood
WJ Wharton’s jelly
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