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Van Hove tuning of AV3Sb5 kagome metals under pressure and strain
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From first-principles calculations, we investigate the structural and electronic properties of the kagome metals
AV3Sb5 (A = Cs, K, Rb) under isotropic and anisotropic pressure. Charge-ordering patterns are found to be
unanimously suppressed, while there is a significant rearrangement of p-type and m-type Van Hove point energies
with respect to the Fermi level. Already for moderate tensile strain along the V plane and compressive strain
normal to the V layer, we find that a Van Hove point can be shifted to the Fermi energy. Such a mechanism
provides an invaluable tuning knob to alter the correlation profile in the kagome metal, and suggests itself
for further experimental investigation. It might allow us to reconcile possible multidome superconductivity in
kagome metals not only from phonons but also from the viewpoint of unconventional pairing.
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The recently discovered family of nonmagnetic quasi-2D
AV3Sb5 (A = Cs, K, Rb) kagome metals [1,2] represents an
excellent example of compounds that allow us to study charge
ordering [3–13], superconductivity [14–20], and electronic
correlations [21], together with Dirac band crossing, Z2 non-
trivial topological bands [22], chiral symmetry breaking [23],
and flat-band physics [16,24].

Crystallized in the P6/mmm space group, the compounds
are based on a layer of vanadium atoms arranged in a
kagome lattice and coordinated by antimony atoms which
are organized in two sublattices. One Sb sublattice exhibits a
graphitelike structure sandwiching the V kagome layer, while
the other sublattice is formed by a single Sb atom centered
inside the kagome hexagon.

In a kagome lattice, there are three sublattice sites per unit
cell, giving rise to three electronic bands of which two are
dispersive featuring a saddle point, i.e., Van Hove singularity
(vHs) at M, while the remaining one is exactly flat, assuming
only nearest-neighbor hybridization. Interestingly, at the M
points, the nesting momenta are commensurate and half the
length of a reciprocal lattice vector. This leads to a 2 × 2 en-
larged unit cell in real space for translation symmetry breaking
order. Recently, the different sublattice structures of the vHs
for the kagome lattice have been investigated [25]. The vHs
of the upper dispersive kagome band is formed by eigenstates
that feature only the contribution from one single sublattice
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site (p type), contrary to the lower vHs where the eigenstates
distribute over two sublattices (m type) [26,27]. The p-type
versus m-type property of the vHs gives rise to different types
of instabilities and highlights the relevance of the substructure
of a given vHs along with its proximity to the Fermi level EF .

In this paper, we intend to investigate the Van Hove fermi-
ology profile of kagome metals as a function of pressure
and strain. In AV3Sb5, the correlated phases that are exper-
imentally observed depend not only on the thickness and
temperature of the material but also on the applied external
stress [6,28]. In particular, a departure from ambient pres-
sure not only unfolds a superconducting dome descending
from a charge density order parent state, but also yields
a second dome feature of superconductivity for increasing
pressure [29–33]. The possibility of tuning interactions and
competition of phases using a thermodynamic quantitylike
pressure, rather than the more invasive introduction of chem-
ical impurities, is indeed a powerful way to modify the
fermiology of a material. In the process of increasing pressure
values, the distance among atoms is also modified, resulting in
shorter chemical bonds and different electronic structures. We
demonstrate how pressure and, in particular, nonhydrostatic
stresses [34], lead to interesting effects in kagome AV3Sb5,
which may ultimately enhance the superconducting pairing
strength.

Previous studies concerning structural instabilities in the
AV3Sb5 compounds revealed the appearance of a 2 × 2 su-
perlattice modulation [3,35]. It has also been pointed out
that the inverse Star of David (ISD) deformation is favored
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by a 2 × 2 charge density wave (CDW) in all three cases
(A = Cs, K, Rb) [36], being locally stable and reducing the
total energy with respect to the pristine phase. The same
considerations also apply for the Star of David (SD) config-
uration, which is, however, less energetically favorable than
the ISD one (see Supplemental Material [37]). Experiments
have already started to explore the modification of the CDW
order as a function of pressure [38,39] or the nature of the
CDW itself [40]. First experiments also revealed the compe-
tition between CDW and superconductivity through uniaxial
strain [18].

Starting from the ISD phase [Fig. 1(a)], we gradually in-
creased the applied external pressure monitoring the evolution
of the orbital resolved Vanadium d-states close to EF (Fig. 2),
as well as the bond lengths inside the vanadium network
[Figs. 1(c)–1(e)]. The CDW phase indeed tends to noticeably
reduce or suppress vHs and the density of states (DOS) in
general at EF , because CDW instabilities are related with
softening of phonon modes and Fermi surface nesting [41].
Regarding the softening of phonon modes, in the Supplemen-
tal Material [37] (Appendix D) we show that the amplitude
of the structural instability, signaled by imaginary phonon
frequencies, reduces upon increasing pressure. We indeed find
a rapid suppression of the ISD phase, reaching the pristine
1 × 1 phase after a certain threshold, depending on the choice
of the cation A. The lowest threshold value has been obtained
for the KV3Sb5 kagome metal [Fig. 1(e)], possibly due to the
shortest interlayer distance among all considered compounds
(see also Table I in Ref. [37]).

The evolution of the DOS as a function of pressure is
shown in Fig. 2 for the case of CsV3Sb5. While the qualitative
overall distribution is only weakly dependent on pressure, a
closer inspection of the low-energy region around EF reveals
an orbital-dependent behavior (see Fig. 2); the coexistence of
CDW and superconductivity phases for small-enough pres-
sures can be attributed to this orbital dependence. For P =
0.5 GPa, the spectral weight with vanadium dz2 and dx2−y2

characters is vanishing while the dxz one remains finite.
However, this scenario changes starting from P = 3.0 GPa,
with the vanadium dz2 and dx2−y2 characters becoming non-
negligible at EF . The cases A = K, Rb follow the same trend
of the V–V bond lengths shown in Fig. 1, with the ISD-pristine
transition taking place for smaller pressure values (see also
Supplemental Material [37]).

One of the most evident features upon increasing pres-
sure is the strong compressive anisotropy, with the c-lattice
parameter that tends to shrink faster than the a-lattice one,
as a function of pressure (see Fig. 3 for the specific case
of CsV3Sb5). Also, while the c-lattice constant exhibits a
highly nonlinear behavior, the a-lattice constant is almost
linear. The physical reason for this behavior relies on to
the different strengths and responses to external strains of
the covalent bonds along the in-plane (within the kagome
networks) and out-of-plane (mostly involving V and Sb
atoms) axes, respectively. The compression-isotropic scenario
observed for relatively high pressure values is given by a re-
duced directional bonding. This is accompanied by a gradual
formation of V3Sb5’s three-dimensional structures through
bonding between the V3Sb5 slabs, intuitively leading to an
increased dispersion along the c axis. Pressure also leads to

FIG. 1. Examples of ISD phase [P = 0.5 GPa, (a)] and pristine
phase [P ≈ 4 GPa, (b)] for the AV3Sb5 (A = Cs, K, Rb) kagome met-
als. (c) CsV3Sb5. (d) RbV3Sb5. (e) KV3Sb5. d1 is the V-V distance
inside the triangles, d2 is the nearest V-V distance between the edge
of a triangle and the edge of an hexagon, and d3 is the nearest V-V
distance inside the hexagons.

the formation of Sb2-Sb2 bonds. Finally, in agreement with
experimental findings [31], we find that the c/a ratio exhibits
a change of slope for P ≈ 8 GPa. This is worth noting because
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FIG. 2. Orbital resolved DOS for vanadium d orbitals in the ISD configuration of CsV3Sb5 at pressures P = 0.5 (left), 1.5 (center), and
3.0 (right) GPa.

it allows us to distinguish the low- and high-pressure regimes,
but also because Lifshitz transitions can be associated to an
anomaly in the c/a ratio [42].

Focusing now on the electronic band structure of AV3Sb5,
the antimony pz orbitals contribute primarily around the �

point, while the Fermi surface close to M is mainly due
to the vanadium d orbitals (see Supplemental Material, Ap-
pendix F). For all compounds, the general trend as a function
of applied pressure, when this is high enough, is a decrease of
the DOS due to the reduced interatomic distances, an obvious
consequence of the increase of the bandwidth. From Fig. 4,
it can be noted how the saddle points at M in proximity
to EF tend to be pushed downward, away from EF , upon
increasing the pressure. A similar scenario (not shown) holds
for kz = π/c as both vHs’s tend to be moved away from EF ,
with the difference that now one vHs is above and the other
below EF . The pz projected bands experience the most visible
changes with pressure, as seen in Fig. 4, and cross the Fermi
level for P ≈ 7.5 GPa. On the contrary, the Sb px and py

bands exhibit a much weaker modification besides the afore-
mentioned bandwidth broadening. Finally, the energy position
of the two vHs’s for A = Cs is reversed with respect to A = K,
Rb. Since the two vHs’s have different d-orbital characters,
one can expect different Fermi surface properties, such as
nesting features, for the CsV3Sb5 compound compared with
the RbV3Sb5 and KV3Sb5 ones [26].

FIG. 3. Left panel: a and c lattice constants as a function of pres-
sure for CsV3Sb5. Right panel: c/a ratio as a function of pressure;
note the slight change of slope for P � 45 GPa. The experimental
data in both panels are taken from Ref. [31].

Besides hydrostatic pressure, the electronic properties of
materials can be tuned via an applied nonhydrostatic strain
(compressive or tensile) [43,44]. An efficient method for ap-
plying a strain, for example, consists of growing the material
on substrates with properly chosen in-plane lattice parameters.
The difference (and advantage in some cases) of doing so
compared with hydrostatic pressure is that, depending on the
specific bulk modulus, it is possible to shrink some chemi-
cal bonds while increasing others. For the AV3Sb5 family, a
tensile (compressive) strain along a and b tends to increase
(decrease) the in-plane spacing among vanadium atoms, and
at the same time reduce (increase) the distance between the
out-of-plane antimony atoms in the unit cell.

Figure 5 shows the impact of uniaxial strain on the
electronic properties of AV3Sb5. The main outcome of this
analysis is represented by the vHs evolution: uniaxial tensile
strain along a is extremely effective in pushing the vHs closer
to EF . This is different from the effect of hydrostatic pressure
described before. The relevance of our theoretical finding
derives from recent experimental works which have reported
the possibility of applying uniaxial pressures of up to ∼1 GPa,
making use of a piezoelectric apparatus [45]. This, in our case,
would correspond to a uniaxial distortion along a of ∼ 1%. In
the Supplemental Material [37], we show that in-plane biaxial
tensile strain, as well as uniaxial compressive strain along c,
are likewise efficient means to tune a certain vHs closer to EF .

To better disentangle the different contributions to the fi-
nal result upon distorting the in-plane lattice parameters, we
have kept the c axis fixed. In a real experiment, the in-plane
elongation of the lattice parameters leads to a concomitant

FIG. 4. Evolution of electronic band structures as a function of
pressure in the proximity of the Fermi level. The fading of colors,
from darker to lighter tones, corresponds to a pressure increasing.
Plotted bands are for P = 3 GPa, 10 GPa, 15 GPa, and 20 GPa.
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FIG. 5. Evolution of electronic band structures as a function of
the uni-axial tensile strain along a-axis. Given the unstrained in-plane
lattice vectors a = a(1, 0) and b = a(−0.5,

√
3/2), the M points

from left to right are (0.5, 0.0), (0.0, 0.5) and (−0.5, 0.5). The
percentage numbers in the legend refer to the increase of a-axis. Note
that these results have been obtained while keeping fixed the c-axis
for all tensile and compressive strain values. Also note that at the
M points, for A = Cs, the order in energy of the K1 and K2 vHs is
reversed compared to the cases A = K, Rb. The notation used is the
same as in [26].

negative relaxation of the out-of-plane lattice constant. In a
first approximation justified under small external stress, this is
naively understood from the conservation of the unit-cell vol-
ume. It means that, concerning the evolution of the electronic
properties, one must take into account the combined effect of
in-plane tensile strain and the connected compressive strain
along c. As a result, the vHs will likely move closer to EF at
experimentally accessible strain values.

Conclusions. Motivated by recent studies and results on
the AV3Sb5 kagome metal compounds, we employed ab ini-

tio methods to monitor the evolution of the electronic and
structural properties of this class of materials under a wide
range of pressure values, both hydrostatic and nonisotropic.
Starting from the ISD and SD charge-ordered phases, in line
with previous theoretical studies [40,46], we observe for all
three compounds (A = Cs, K, Rb) a suppression of the
CDW already beyond a comparatively low pressure threshold
(P ≈ 0.5 − 2.5 GPa), also due to the anisotropic compression
of the crystal structures. Upon higher hydrostatic pressure
values (P > 5 GPa), we observe a change around EF of
the Sb pz electronic bands, leading to the disappearance of
the pocket at the � point. With regard to the vanadium d
bands, which mainly contribute at the M points (see Ap-
pendix F, Supplemental Material), we find an increase of
the overall bandwidth accompanied by a gradual shift of
the saddle points away from EF . In contrast, by applying
uni- and biaxial deformations, it is possible to efficiently
move a vHs level in the opposite direction, i.e., closer to
EF . This is particularly evident upon considering compressive
strain along the c axis and/or tensile strain in the a-b plane
of vanadium atoms. The distance between antimony atoms
and the kagome net along c hence assumes a primary role.
As a consequence of a pressure-induced vHs shift closer to
EF , even from a viewpoint of unconventional pairing, the
propensity for superconductivity could increase as a func-
tion of pressure. We therefore propose strain engineering as
a preeminently suited tool to optimize the superconducting
transition temperature in kagome metals. In Ref. [18], an
increase of Tc upon uniaxial compression along the c axis
has been experimentally reported and attributed to the sup-
pression of the CDW. In our analysis, we complement this
line of reasoning by emphasizing the pressure-induced rel-
ative energy shift of the vHs (see Fig. 5 and Supplemental
Material [37]), which is strongly affected by both in-plane and
out-of-plane uniaxial strain. Pressure-induced effects on Tc in
kagome metals can, in principle, result both from phonons
and concomitant structural transitions, as well as from uncon-
ventional pairing due to Van Hove tuning. Which one turns
out to be the dominant effect has to be individually analyzed
experimentally.
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