
1. Introduction
The comprehension of the hydraulic, mechanical, and chemical behaviors of fluids in geological formations 
is fundamental to the success of subsurface techniques aimed at a variety of applications: resources recovery 
(Ciriello et al., 2021; Suleimanov et al., 2011), geothermal exploitation (Sanner et al., 2003), carbon sequestration 
(Leung et al., 2014), and soil reclamation (Mulligan et al., 2001). The decreasing prospects of new oil reservoir 
discoveries are stimulating companies to invest in unconventional reservoir exploitation (Sheng et al., 2019) and 
enhanced oil recovery (EOR) to maximize the recovery factor of mature oilfields (Muggeridge et  al.,  2014). 
Reservoir stimulation via hydraulic fracturing is a well-established approach to increase formation permeability, 
which allows extending existing reserves. In unconventional reservoirs, where the pore space is poorly connected, 
induced stimulation permits the production of oil and gas from formations of low permeability (e.g., shale) 
(Curtis, 2002), reactivating natural fractures (Gale et al., 2014), and generating new ones (Cipolla et al., 2010). 
Induced stimulation is also utilized in enhanced geothermal systems (EGS), which constitutes an innovative 
power system (Lu,  2018): they involve the injection of fluids in artificially fractured hot rocks to exploit an 
abundant renewable heat source. CO2-based EGS (Aminu et al., 2017) or CO2-EOR (Dowell et al., 2017) in frac-
tured geological formations has also been proposed to offset the costs of the subsurface storage of CO2, which is 
currently considered a viable approach to reduce anthropogenic CO2 emissions, responsible for two thirds of the 
increased greenhouse effects (Leung et al., 2014).

These applications have led in the last 10 years to renewed scientific interest for flow in subsurface porous media, 
in particular, fractured porous media. In igneous rocks in particular, and more generally in low-permeability 
formations, fractures provide preferential pathways of high conductance with respect to the almost impervious 
rock matrix. The fractures are organized in connected networks (Bonnet et al., 2001), and the overall hydrau-
lic behavior of the medium subjected to Newtonian flow is mainly governed by their connectivity (Bour & 
Davy, 1998) and by the distribution of fracture permeabilities throughout the network (de Dreuzy et al., 2002). 
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In discrete fracture networks (DFN), the parallel plate conceptualization has traditionally been used to model 
Newtonian flow in a single fracture using the simplified geometry of two planar and parallel fracture walls, 
leading to a fracture permeability proportional to the square of its aperture. However, fracture wall topographies 
are in fact rough as a result of the fracturing process and exhibit self-affine and long-range-correlated topogra-
phies (Brown, 1987; Brown & Scholz, 1985; Schmittbuhl, Schmitt, & Scholz, 1995; Schmittbuhl, Vilotte, & 
Roux, 1995). This geometric property is transferred to the aperture field at scales smaller than the correlation 
length between the two fracture walls (Brown, 1995). The resulting spatial variability of the aperture field controls 
the heterogeneity of Newtonian flow, all the more as the fracture is more closed (i.e., as aperture fluctuations 
relative to the mean aperture are larger) (Brown, 1987; Glover et al., 1998; Méheust & Schmittbuhl, 2000, 2001), 
while the ratio of the correlation length to the fracture size controls the impact of the flow heterogeneity on the 
fracture's hydraulic behavior (Méheust & Schmittbuhl, 2003). Moreover, flow heterogeneity below the fracture 
scale can in some cases modify the (Newtonian) flow connectivity at the network scale, thus strongly impacting 
the permeability of the fractured formation (de Dreuzy et al., 2012).

Consequently, Newtonian flow in a single rough fracture has been the topic of many past studies, some 
of which are cited above. And though simple deterministic wall geometries (Di Federico, 1997; Elsworth & 
Goodman, 1986; Zimmerman & Bodvarsson, 1996) or an aperture probability density function without spatial 
correlations (Felisa et al., 2018; Lenci & Di Federico, 2020) allow for analytical or semi-analytical investiga-
tion of the flow, the study of the aforementioned realistic geometries must rely on numerical modeling. A vast 
number of studies, including the seminal work of Brown (1987), have relied on solving the Reynolds equation. 
The latter work states that the local flux, defined as the integral of the fluid velocity over the local fracture 
aperture, is conservative and can be expressed in terms of the local in-plane pressure gradient according to a 
local cubic law, that is, a Darcy law where the local fracture transmissivity is proportional to the cube of the 
local aperture (Brown, 1987; Zimmerman & Bodvarsson, 1996). Other studies, following the recent increases 
in computational power, have simulated Newtonian flow in the 3D space between the fracture walls (among the 
first such studies, see Mourzenko et al. (1995); Brush and Thomson (2003)), by means of commercial or open 
source software, either able to numerically solve the Navier-Stokes equation in 3D flow domains or adopting the 
Lattice Boltzmann method (LBM) (Wang et al., 2016) to obtain the velocity field. They have rightfully pointed to 
the moderate underestimation, by the Reynolds equation, of the fracture transmissivity's deviation from that of a 
smooth fracture of identical mean aperture; this underestimation results from the inability to model out-of-plane 
flow tortuosity. However, such 3D simulations are computationally expensive, limiting applications to the study 
of a few fracture realizations, and making a full stochastic analysis impossible. The lubrication theory, which can 
be assumed to be valid as long as the variation of the aperture field w is sufficiently smooth (∇w ≪ 1) and the 
fluid can be considered in creeping motion (Re ≪ 1), reduces the flow problem to two dimensions and leads, for 
Newtonian flow, to the Reynolds equation. This approximation thus allows for very efficient numerical solvers. 
Since the variability in the hydraulic behaviors of rough fractures described by the same statistical geometrical 
parameters (ratio of mean aperture to length, ratio of apertures' standard deviation to mean aperture, and ratio 
of correlation length to length) can be very large (in particular when the correlation length is not much smaller 
than the fracture size; Méheust & Schmittbuhl, 2001, 2003), determining a generic hydraulic behavior for a given 
set of such geometric parameters requires a stochastic Monte-Carlo analysis, in which the use of an efficient 
lubrication-based solver comes very handy.

In this paper, the fluids of interest are those used in the aforementioned applications; they are water-based but 
contain surfactants or macropolymers (e.g., xanthan gum) that boost fluid viscosity and lower surface tension. 
Various additives can be introduced depending on the application and the geological formation: (a) crosslinkers to 
increase molecular weight and proppant-carrying capacity; (b) friction reducers to increase pump efficiency and 
keep proppant particles evenly distributed in the suspension; (c) breakers to provide rheoreversibility, favoring 
flowback or fluid-disposal process; (d) biocides to kill bacteria; and (e) gellants to adjust the viscosity and form 
a gel (Barati & Liang, 2014). A vast range of fluids have been adopted in the various steps of the hydraulic frac-
turing process: natural polysaccharides, synthetic polymer solutions, organic or chemical gels, emulsions, muds, 
micellar surfactant solutions, and aqueous physical (Barbati et al., 2016). The complex microstructure of these 
fluids inevitably induces a non-Newtonian mechanical behavior. Solid particles such as proppants will typically 
lead to jamming effects and thus to shear thickening of the flow, while most additives will provide the fluid with a 
soft matter-type microstructure (colloids, polymers, droplets, bubbles, and micelles), resulting in a shear-thinning 
behavior (hereinafter ST). This behavior is by far prevalent in fluids engineered for subsurface applications 
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(Barbati et al., 2016; Economides, 2000). Recently, nontoxic inexpensive CO2-based alternatives to conventional 
fluids have been considered because of their high viscosity and rheoreversibility; these fluids show the desirable 
ST behavior without incorporating toxic chemical agents (Chen et al., 2016; Jung et al., 2015; Li et al., 2017).

Hence, better understanding the flow of ST fluids in rough fractures is crucial to predicting the outcome of vari-
ous subsurface operations. The coupling of ST rheology and domain heterogeneity is known to produce higher 
flow localization and channeling in porous media (Sullivan et al., 2006; Zami-Pierre et al., 2016) as compared 
to Newtonian flow in the same geometry. However, the topic of ST fluid flow in rough fracture geometries has 
been little addressed in the literature. Morris et al. (2015) proposed a lubrication-based model for the flow of 
Herschel-Bulkley fluids in simple deterministic geometries, while Lavrov (2013a, 2013b) used a similar model 
to study the flow of power law (PL) fluids in relatively small (33 × 33) size realizations of self-affine rough 
fractures (without a correlation length) and provided considerations on the impact of the PL exponent on the flow 
geometry. Zhang et al. (2019) performed 3D CFD simulations of ST laminar flow, focusing on the impact of the 
fluid rheology on inertial effects and the transition to a Forchheimer-like regime. To the best of our knowledge, 
the flow of ST fluids featuring a rheological transition from a Newtonian plateau at low-shear rates to a PL ST 
behavior at high-shear rates in large-scale and realistic fracture geometries (featuring a correlation length) has 
never been addressed in the literature, and no code implementation that allows easily performing Monte Carlo 
simulations over a large number of aperture fields has been proposed.

In this study, we propose a model simulating the flow of an ST fluid in a variable aperture fracture based on the 
depth-averaged lubrication theory and considering a three-parameter Ellis constitutive model for the fluids' rheol-
ogy. The latter accounts for both low-shear rate quasi-Newtonian and high-shear rate ST behaviors. This approach 
yields a quasilinear partial differential equation (PDE) that is the sum of a linear heterogeneous diffusion term 
and a nonlinear generalized (heterogeneous) p-Laplace operator. The latter is a mathematically well-studied 
prototype of nonlinear PDE and is at the heart of many models of nonlinear diffusion (Philip, 1961), includ-
ing non-Newtonian flows, turbulent filtration and reactive-diffusion (Diaz & De Thelin, 1994), and nonlinear 
Darcy flows (Firdaouss et al., 1997). The reader is referred to Benedikt et al. (2018) for a historical perspective. 
Similar mathematical models have been adopted in groundwater hydraulics (e.g., (Cainelli et al., 2012) and pore 
network modeling (Perrin et al., 2006)). Recently, the interest on p-Laplacian operators has increased, result-
ing in significant developments of efficient numerical solvers (Facca et  al.,  2021; Loisel, 2020). Taking into 
consideration the aim of running Monte Carlo simulations, we propose an efficient Finite Volume (FV)-based 
discretization for the nonlinear PDEs written as a generalized graph p-Laplacians in a uniform square mesh. The 
proposed scheme turns out to be a slight variant of the lowest order method of the family of schemes analyzed in 
Andreianov et al. (2004). The developed approach has the advantage that it leads to a symmetric Jacobian, thus 
enabling the implementation of a very efficient Newton-Krylov iteration for the solution of the ensuing nonlinear 
system, employing the Preconditioned Conjugate Gradient (PCG) linear solver. A parameter continuation method 
is added to increase robustness for wider ranges of p. This allows addressing a vast range of geometrical and rheo-
logical parameters of practical interest, in particular, small rheological indices (i.e., ST exponents) of order 0.1, 
without resorting to more sophisticated and computationally expensive methods such as those proposed in Facca 
et al. (2021). The ensuing solver achieves a favorable compromise between accuracy and computational cost that 
enables us to address the study of the flow behavior in the fracture within a Monte-Carlo framework as discussed 
above. The impact of the ST rheology on the spatial distribution of the velocity field in the fracture plane and on 
the resulting fracture scale hydraulic behavior are then investigated. The solver is two to three orders of magni-
tude faster than the few alternative lubrication-based algorithms presented in the literature to solve the flow of 
ST fluids in fractures. In fact, the Newton algorithm shows a superlinear rate of convergence, while only a linear 
convergence can be achieved by the Picard-based alternatives adopted by Lavrov (2013a) and Morris et al. (2015) 
to simulate the flow of PL fluids. The numerical scheme permits overcoming the actual computational limits so 
as to allow for a stochastic analysis in a reasonable amount of time, considering the large meshes (1024 × 1024 
squares) required by the fracture statistical description, and accounting for the entire ranges of the parameters of 
practical interest.

Based on these premises, the organization of the paper follows naturally: Section  2 describes the geometric 
properties of fracture apertures and how realistic synthetic aperture fields can be generated. Section 3 provides 
the derivation of the generalized Reynolds equation for an Ellis fluid in a variable aperture fracture; Section 4 
presents the implementation of this theoretical model into a novel numerical solver, while Section 5 reports on 
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numerical results regarding the impact of the fluid rheology on fracture flow 
and the fracture's hydraulic aperture; Section 6 lists our conclusions and pros-
pects for future work.

2. Synthetic Aperture Fields
As depicted in Figure  1, the aperture field w(x) of a fracture is typically 
estimated as the distance between the two rough fracture walls, whose mean 
planes are parallel. Denoting the mean aperture of the fracture, and zu(x) and 
zl(x), respectively, the upper and lower topographies of the walls with respect 
to their mean planes (𝐴𝐴 𝐱𝐱 = (𝑥𝑥1, 𝑥𝑥2)

⊺ being the position vector in the fracture 
plane), 𝐴𝐴 𝐴𝐴(𝐱𝐱) is simply

𝑤𝑤(𝐱𝐱) = 𝑧𝑧u(𝐱𝐱) − 𝑧𝑧l(𝐱𝐱) + ⟨𝑤𝑤⟩ . (1)

Typically, the walls of a fracture surface can be described as isotropic 
self-affine topographies, exhibiting long-range correlations (Bouchaud, 1997; 
Schmittbuhl, Vilotte, & Roux,  1995) characterized by an exponent H (the 
so-called Hurst exponent), up to their linear size. For a fresh fracture, the 
two wall topographies are identical, so the fracture aperture depends on the 
shear slip history of the walls. Shear slip induces an anisotropic decorrelation 
of the two topographies along the shear direction and at scales smaller than 
the slip distance (Plouraboué et al., 1995). In geological fractures, however, 
the aperture field is usually measured to be isotropic, but also with a decor-
relation between the wall topographies at a scale smaller than a correlation 
length Lc (Brown, 1995). Above that scale, the walls can be considered to be 
matched, but below it, the aperture field, being a linear combination of two 
independent self-affine topographies, is also self-affine. In the Fourier space, 
this translates into a power spectral density in the form of a PL of exponent 
−2(H + 1) at scales smaller than Lc and flat above that length (see Figure 2a). 
Note that the Hurst exponent H has been measured to a quasi-universal value 

of around 0.8 over a wide range of scales and materials, including ceramics, metals, and rocks, such as granite 
and basalt (Bouchaud et al., 1990), with a few exceptions, such as sandstones (H ∼ 0.45, see Boffa et al. (2000)). 
This property of the fracturing process in sandstones has been attributed to its intergranular nature.

Recursive algorithms can be implemented to generate rough surfaces with spatial correlations (by successive 
random addition (Liu et al., 2004)), but the generation of large fractures with these algorithms is inefficient. 
Alternatively, we adopt a method proposed by Méheust and Schmittbuhl (2003) and relying on the Fourier spec-
trum's properties (see also Barnsley et al. (1988)). Generating a random Fourier transform of the aperture field 
with the spatial correlation properties described above allows us to obtain an appropriate synthetic aperture field 
without the need to generate the two wall topographies (Méheust & Schmittbuhl, 2003). The procedure is very 
fast as it relies on the fast Fourier transform. We start with a spatially uncorrelated white noise and multiply the 
modulus of its Fourier transform by the modulus of the wave number, 𝐴𝐴 |𝑘𝑘| =

√

𝑘𝑘2
𝑥𝑥1
+ 𝑘𝑘2

𝑥𝑥2
 , raised to the power  

−(H + 1) (Figure 2c). The resulting aperture field can then be scaled and translated so as to tune its mean value 
and standard deviation, with consequent negative values set to 0, corresponding to an assumption of perfect plas-
tic closure. Zero values are then further regularized to a minimum cutoff w0 = 10 −8 m to avoid ill-posedness of 
the flow model. The aperture field generation is implemented according to Algorithm 1 in Appendix A. Figure 2b 
shows two representations of the aperture field of the same fracture at two different degrees of closure, or coef-
ficients of variations, σw/〈w〉.

3. Generalized Reynolds Equation
Engineered fluids used in subsurface operations typically display an overall shear-thinning (ST) behavior, 
wherein the apparent viscosity μ of the fluid is a decreasing function of shear rate 𝐴𝐴 (�̇�𝛾) , that is, the fluid thins 
with increasing deformation. More specifically, the typical flow curve 𝐴𝐴 𝐴𝐴 = 𝐴𝐴 (�̇�𝛾) for an ST fluid exhibits two 

Figure 1. Representation of a fracture's geometry with the top wall positioned 
above the bottom wall. zu(x) and zl(x) described the topographies of the rough 
walls with respect to their mean planes. The separation between those planes is 
the mechanical aperture 〈w〉. Large-scale spatial fluctuations of the two walls' 
topographies are identical, while their small-scale roughnesses are different. 
(a) Three-dimensional view. (b) Two-dimensional view in the plane indicated 
by the red lines in panel (a).
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Newtonian plateaus, one of high viscosity at low-shear rates, the other one 
of low viscosity at high-shear rates. These plateaus are separated by a ST 
regime starting for shear rates higher than a critical threshold value 𝐴𝐴 𝐴𝐴𝐴𝑐𝑐 . The 
Carreau-Yasuda (CY) five-parameter model (Yasuda et  al.,  1981) and its 
original four-parameter version, the Carreau model (see Appendix  B for 
both), exhibit both plateaus and are the most common constitutive laws able 
to fully capture such a rheology. On the other hand, the PL two-parameter 
model represents the simplest non-Newtonian constitutive equation, but is 
able to reproduce only the ST behavior typical of the intermediate range of 
shear rates in a CY or Carreau fluid (Escudier et al., 2001). The CY model 
is commonly used in CFD applications, but is difficult to handle analytically. 
Conversely, the more tractable PL model oversimplifies the constitutive law 
because of its unrealistic apparent viscosity, which is unbounded as the shear 
rate approaches zero and tends to zero at high-shear rates. When dealing with 
creeping flow in rough fractures, the velocities are usually sufficiently low 
for high-shear rates, corresponding to the low viscosity plateau of the rheo-
logical curve, to be rare. In other words, the apparent viscosity attains the 
low viscosity plateau value in a limited number of spatial locations, so that 
a rheological model only accounting for the low-shear rate plateau and the 
PL decrease at higher shear rates is an acceptable simplification in practi-
cal cases. Such a model is perfectly described by the three-parameter Ellis 
constitutive law, first introduced by Bird et al. (1987), where, at variance with 
most generalized Newtonian fluids, the apparent viscosity depends on the 
local shear stress τ according to

𝜇𝜇 =
𝜇𝜇0

1 +

(
𝜏𝜏

𝜏𝜏1∕2

) 1

𝑛𝑛
−1

.
 (2)

As shown in Figure 3, μ0 is the plateau viscosity (having the same dimensions 
as the dynamic viscosity of a Newtonian fluid), n defines the PL exponent 
(n − 1) of the ST regime, and the characteristic τ1/2, defined by μ(τ1/2) = μ0/2, 

shapes the transition between the two tendencies. The Ellis rheologic parameters depicted in Figure 3 and listed in 
Table 1 are those of four real ST fluids taken from the literature that will be used in the following to demonstrate 
the code.

To derive the flow rate of an Ellis fluid between parallel plates, one of the main building blocks of the code, we 
recall the equations governing isothermal flow of an incompressible fluid of density ρ, that is, the momentum 
and continuity equations, reading:

�
(��
��

+ (� ⋅ �)�
)

= �� + � ⋅ T, (3a)

� ⋅ � = 0, (3b)

where u is the velocity, g is the body force vector, and T is the stress tensor. For a generalized Newtonian fluid, 
the latter can be written as T = −p′I + 2μD, where p′ is the pressure, I is the identity tensor, D = 1

2
�� + 1

2
(��)⊺ 

is the strain rate tensor, and μ is the apparent viscosity, which depends on the scalar shear rate 𝐴𝐴 𝐴𝐴𝐴 , defined from the 
tensor D according to 𝐴𝐴 𝐴𝐴𝐴 =

√
2D ∶ D , where : stands for the tensor double-dot product.

In the following, we consider Stokes flow, that is, we assume that the Reynolds number is much smaller than 1 
and thus that the nonlinear term in the right-hand side of Equation 3a can be neglected in comparison to viscous 
forces. For permanent Stokes flow, Equation 3a becomes

[� ⋅ (��)] � = �� , (4)

where the reduced pressure is defined as P = p′ + ρgz, z being the coordinate along the direction perpendicular to 
the fracture plane (i.e., the vectorial plane parallel to the mean planes of the fracture's walls).

Figure 2. (a) Mean radial profile (obtained by angular integration) of the 2D 
Fourier transform of a fracture's aperture field, displaying a low-frequency 
cutoff for wave numbers smaller than kc = 2π/Lc, and a power law (PL) trend 
of negative exponent −2(1 + H) for higher frequencies. (b) Aperture field 
representations for different values of the closure: 0.5 (upper panel) and 1 
(bottom panel). (c) Representation of the wave number to the power −(1 + H). 
The set of parameter adopted for the generations is L = 80 cm, Lc = 10 cm, 
〈w〉 = 1 mm, H = 0.8.
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We now assume the lubrication approximation, that is, that the gradient of the 
aperture field is very small (∇w ≪ 1). This means that the typical horizontal 
scale of variation of the velocity field is much larger than its typical vertical 
scale of variation. It follows that due to flow incompressibility (Equation 3b), 
the vertical velocity is negligible with respect to the horizontal velocity and 
that the projection of Equation 4 on the z direction reduces to ∂P/∂z = 0, 
so  that P can be considered to not depend on z. The projection of Equation 4 
on the fracture plane is then

[� ⋅ (��)] � = �
‖

� , (5)

where u is considered parallel to the fracture plane and ∇‖ is the projection 
of the gradient operator on that plane. From the aforementioned considera-
tions on the horizontal and vertical typical scales of variations of the velocity 
field, it follows that the term involving the derivative with respect to z in the 
left-hand term of Equation 5 dominates the others, so that this equation can 
be approximated as

�
��

(

� ��
��

)

= �
‖

� , (6)

which holds at any position x along the fracture plane. Integrating this equa-
tion once over z between the vertical mid-position 𝐴𝐴 𝐴𝐴𝐴(𝐱𝐱) (where the ∂u/∂z must 
be 0 by symmetry) and z yields a relation between the shear stress τ and the 
horizontal pressure gradient:

� = � ��
��

= (� − �̄)�
‖

� . (7)

Replacing τ by (� − �̄) ‖�
‖

�‖ in Equation  2 and inserting the resulting 
expression for the viscosity into Equation 7, we then obtain

��
��

= 1
�0

[

1 +
(

(� − �̄) ‖�
‖

�‖
�1∕2

)
1
� −1

]

(� − �̄) �
‖

� . (8)

The dependence between the vertical velocity profile at position x in the plane and the local pressure gradient 
∇‖P can be obtained by integrating Equation 8 between the value of z at the lower wall and z. Introducing a new 
centered vertical variable 𝐴𝐴 𝐴𝐴𝐴 = 𝐴𝐴 − �̄�𝐴 , we obtain

� (�̃) = ∫

�̃

−�∕2

[

1 +
(

� ‖��‖
�1∕2

)
1
� −1

]

���
�0

��

= −
⎡

⎢

⎢

⎣

1
8�0

(

�2 − 4�̃2
)

+ �
� + 1

(

1
2�+1��

0�
1−�
1∕2

)
1
�
(

�
1
� +1 − |2�̃|

1
� +1

)

‖��‖
1
� −1

⎤

⎥

⎥

⎦

�� .

 (9)

We define the local flux 𝐴𝐴 𝐪𝐪 as the integral of the fluid velocity along the vertical coordinate and over the local 
fracture aperture:

� = −
⎡

⎢

⎢

⎣

�(�)3

12�0
+ �

2� + 1

(

1
2�+1��

0�
1−�
1∕2

)
1
�

�(�)
2�+1
�
‖��‖

1
� −1

⎤

⎥

⎥

⎦

�� . (10)

It turns out that q is conservative (Zimmerman & Bodvarsson, 1996): ∇ ⋅ q = 0, which leads to the following 
nonlinear lubrication equation:

Figure 3. Dependence of the dimensionless apparent viscosity μ/μ0 on the 
shear rate 𝐴𝐴 𝐴𝐴𝐴 , for the four Ellis fluids listed in Table 1: F1 (yellow solid line), 
F2 (orange solid line), F3 (red solid line), and F4 (purple solid line). The 
parameters of these fluids are deduced from data originally interpreted with 
the Carreau-Yasuda model (see Appendix B); the original Carreau model 
and its low-shear rate approximation are reported as dashed and dotted lines, 
respectively. The high-shear rate power law exponents for all solid curves are 
n − 1.
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−� ⋅
⎡

⎢

⎢

⎣

⎛

⎜

⎜

⎝

�(�)3

12�0
+ �

2� + 1

(

1
2�+1��

0�
1−�
1∕2

)
1
�

�(�)
2�+1
�
‖��‖

1
� −1

⎞

⎟

⎟

⎠

��
⎤

⎥

⎥

⎦

= 0 . (11)

This equation reduces to the classical, linear, Reynolds equation for a Newtonian fluid (n = 1), the solution 
depending only on the fracture aperture in that case. For n < 1, conversely, the non-Newtonian pressure field also 
depends on the fluid's rheology, which renders the problem nonlinear.

Note that q acts as the velocity of an incompressible 2D flow occurring in the fracture plane. The mean 3D veloc-
ity at position (x) can be computed as

� =
�
�

= 1
� ∫

�
2

− �
2

�(�) �� = −
⎡

⎢

⎢

⎣

�2

12�0
+ �

2� + 1

(

1
2�+1��

0�
1−�
1∕2

)
1
�

�
1+�
�
‖��‖

1
� −1

⎤

⎥

⎥

⎦

�� . (12)

The fraction of the fracture plane that is concerned by the nonlinear rheology, and to which extent it is, can be 
visualized from maps of the local depth-averaged apparent viscosity, which must be estimated a posteriori (i.e., 
once the flow velocity field has been computed):

�(�) = �0

� ∫

�∕2

−�∕2

[

1 +
(

‖��‖�
�1∕2

)
1
� −1

]−1

�� . (13)

This 2D viscosity field allows introducing the Reynolds number for a generalized Newtonian fluid (ReG), as

Fluid ID Solution

μ0 τ1/2 n

(Pa ⋅ s) (Pa) (−)

F1 CMC at 0.3 wt% 0.0510 4.07 0.72

F2 CMC at 0.5 wt% 0.2203 2.50 0.51

F3 CMC at 1.0 wt% 2.9899 5.14 0.40

F4 VES 49 1.07 0.10

Note. The fluids considered are: three different Carboxymethylcellulose (CMC) water-based solutions from Sousa et al. (2005) 
and a viscoelastic surfactant (VES) from Moukhtari and Lecampion (2018). Experimental data have been originally fitted 
with the CY model (parameters listed in Table B1) and interpreted with the Ellis model as described in Appendix B.

Table 1 
Rheologic Parameters μ0, n, and τ1/2 Related to the Four Shear-Thinning Fluids Interpreted With the Ellis Models

Figure 4. (a) Fracture plane representation with boundary conditions. (b) Finite volume method: five-point stencil. Pressures 
are defined at the center of each cell, while the fracture's local apertures are defined on the edges.
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𝑅𝑅𝑅𝑅𝐺𝐺 =
𝜌𝜌⟨𝑢𝑢⟩⟨𝑤𝑤⟩

2⟨𝜇𝜇⟩
. (14)

where ρ is the fluid density (in the following, it will be assumed equal to the water density 10 3 kg/m 3) and 𝐴𝐴 ⟨𝜇𝜇⟩ is 
the average over the fracture plane of the depth-averaged apparent viscosity; similarly, 𝐴𝐴 ⟨𝑢𝑢⟩ is the average over the 
fracture plane of the depth-averaged velocity (or, equivalently, the average of the 3D velocity over the entire frac-
ture volume). That definition of the Reynolds number allows us to verify a posteriori that the Stokes flow assump-
tion is still verified in the computed ST flow, a condition that is requested for the lubrication approach to be valid.

Note that an estimate of the critical macroscopic pressure gradient magnitude ∇� = ‖��‖ above which 
non-Newtonian effects begin to appear in the flow, which we denote 𝐴𝐴 ∇𝑃𝑃 c , can be obtained by considering the 
parallel plate configuration whose aperture is equal to the rough fracture's mean aperture. From the rheological 
law (2), it is seen that the viscosity begins to deviate from the Newtonian plateau viscosity μ0 when the largest 
shear stress locally occurring in the fracture, τmax, is on the same order as the crossover shear stress τc in the CY 
rheological law relating the apparent viscosity to the shear rate (see Equation B1). The crossover shear stress 
τc can be estimated numerically from the transition shear stress τ1/2 and plateau viscosity μ0 of the Ellis model 
(Equation 2) (see Appendix B).

From Equation (7), it is possible to see that at any position x in the fracture plane, the largest shear stress (in 
absolute value) occurs at the walls for any fluid. An estimate of it can be obtained from the parallel plate config-
uration of aperture equal to the mean fracture aperture 〈w〉 and is equal to 𝐴𝐴 𝐴𝐴max = ⟨𝑤𝑤⟩∇𝑃𝑃∕2 . Hence, the condition 
τmax ≃ τc provides the following crossover value for the applied macroscropic pressure gradient:

∇𝑃𝑃 c =
2𝜏𝜏c

⟨𝑤𝑤⟩
. (15)

If the imposed 𝐴𝐴 ∇𝑃𝑃  is much smaller than 𝐴𝐴 ∇𝑃𝑃 c , the flow is expected to be Newtonian, whereas if it is much larger 
than the crossover pressure gradient, the flow can be expected to be strongly ST.

4. Numerical Modeling
4.1. Finite Volume Scheme Formulation

We consider an ST fluid flowing through a fracture whose projection on its mean plane is square (Ω = (0, L) × (0, 
L)) as depicted in Figure 1. As depicted in Figure 4a, the flow in the fracture is driven from left to right by an 
externally applied pressure drop ΔP corresponding to an average pressure gradient magnitude 𝐴𝐴 ∇𝑃𝑃 = Δ𝑃𝑃∕𝐿𝐿 . 
Without loss of generality, we assume the following Dirichlet boundary conditions over 𝐴𝐴 𝐴𝐴ΩD (see Figure 4a): for 
0 < x2 < L, the pressure is taken to be zero at the downstream end (P(L, x2) = 0), while upstream 𝐴𝐴 𝐴𝐴 (0, 𝑥𝑥2) = 𝐿𝐿∇𝐴𝐴  
is assumed. The upper and lower sides of the domain (𝐴𝐴 𝐴𝐴ΩN ) are both assumed impervious, imposing Neumann 
boundary conditions such that ∂2P(x1, 0) = ∂2P(x1, L) = 0, for 0 < x1 < L.

The generalized Reynolds Equation 11 results in a quasilinear PDE problem of the second order written as

−� ⋅
[(

�(�) + �(�)‖��‖�−2
)

��
]

= 0 � ∈ Ω (16a)

𝑃𝑃 = 𝑃𝑃0 𝐱𝐱 ∈ 𝜕𝜕ΩD (16b)

�� ⋅ � = 0 � ∈ �ΩN (16c)

where x is the position vector, ν is the outward unit normal vector defined on the boundary, and the coefficients 
a(x) and b(x) are defined as

𝑎𝑎(𝐱𝐱) =
𝑤𝑤(𝐱𝐱)

3

12𝜇𝜇0

 (17)

and 𝑏𝑏(𝐱𝐱) =
𝑛𝑛

2𝑛𝑛 + 1

(
1

21+𝑛𝑛𝜇𝜇𝑛𝑛

0
𝜏𝜏1−𝑛𝑛
1∕2

) 1

𝑛𝑛

𝑤𝑤(𝐱𝐱)
2𝑛𝑛+1

𝑛𝑛 . (18)
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Equation 16a is the sum of two terms, the first one involving a linear heterogeneous Laplacian differential oper-
ator and the second one involving a nonlinear heterogeneous p-Laplacian operator with p = 1/n + 1. To ensure 
well-posedness of the problem (Equations 16a, 16b,  and 16c), the two coefficients a and b must be strictly posi-
tive, and the exponent p must fall within the range 1 < p < ∞. The latter condition implies that the ST index n 
remains in the range 0 < n < + ∞; this well-posedness region contains the physical range of n (0 < n ≤ 1). Hence, 
the only condition that needs to be imposed is that a and b be strictly positive and thus, that the aperture be strictly 
positive everywhere. This is the reason for the introduction of a nonzero aperture threshold w0 enforced in the 
contact zones between the two fracture walls in Algorithm 1 of Section 3.

Next, we describe the FV-based discretization of Equation 16a. The design of the scheme is grounded on the need 
to make the overall solver computationally efficient so that relatively large ensembles of flow data can be built 
with a relatively large spatial resolution of the stochastic aperture realizations. The development of the algorithm 
proceeds as follows. In the first step, the fracture domain Ω is partitioned into a set 𝐴𝐴  of 4 M nonoverlapping square 
control volumes 𝐴𝐴  (i.e., 𝐴𝐴 ∀𝑗𝑗𝑗𝑗 ⊂ Ω and 𝐴𝐴

⋃
𝑗𝑗
𝑗𝑗 = Ω ), where M indicates the mesh level. Let xj be the center of the 

𝐴𝐴 𝑗𝑗 control volume and let σ(j) = {E, W, N, S} be the set of neighboring control volumes. The edge between two 
cells can be identified by

�
⋂

� =

{

��� if � ∈ �(�)
∅ otherwise .

 (19)

Note that |eij| = h is the length of a side of the square control volume and is constant across the mesh. Equation 16a 
is integrated over each cell 𝐴𝐴 𝑗𝑗 to obtain up to an irrelevant plus or minus sign:

∀� ∫�

�⋅
[(

�(�) + �(�)‖��‖
1
� −1

)

��
]

�� = 0 (20)

Applying the divergence theorem in each finite volume 𝐴𝐴 𝑗𝑗 (Figure 4b), leads to

∫��

(

�(�) + �(�)‖��‖
1
� −1

)

�� ⋅ � �� =
4
∑

�=1
∫���

�(�)
� ⋅ �� �� = 0, � = 1,… , 4�, (21)

where νi is the outward unit normal vector on the cell edge eij. Numerical integration by means of the mid-point 
quadrature rule over eij leads to a second-order approximation of the flux through each finite volume edge:

4∑

𝑖𝑖=1
∫
𝑒𝑒𝑖𝑖𝑖𝑖

𝐪𝐪
(𝑖𝑖)

𝑖𝑖
⋅ 𝝂𝝂𝑖𝑖 𝑑𝑑𝑑𝑑 ≅ +ℎ

4∑

𝑖𝑖=1

𝐪𝐪
(𝑖𝑖)

𝑖𝑖
⋅ 𝝂𝝂𝑖𝑖 = 0 𝑖𝑖 = 1,… , 4𝑀𝑀 . (22)

where the edge fluxes are defined as �(�)
� =

(

�(�)� + �(�)� ‖�� (�)
� ‖

1
� −1

)

�� (�)
�  . We then consider a numerical approx-

imation of the pressure gradient's normal component on the edge, defined as

|

|

|

�� (�)
� ⋅ �(�)

�
|

|

|

=
|

|

|

|

�� − ��

ℎ
|

|

|

|

. (23)

To maximize computational efficiency, we use this first-order approximation as well to evaluate the Euclidean 
norm of the gradient evaluated at edge eij, that is, ‖�� (�)

� ‖ ≈ |�� − ��|∕ℎ . This scheme results in a consistent 
approximation of the p-Laplacian in Equations 16a as long as we maintain our discretization on a square mesh. 
Indeed, the approximation (23) is exact for affine functions on 𝐴𝐴  (Andreianov et  al.,  2004) and the gradient 
approximation based on graph-Laplacians converges to the continuous counterpart for both the heterogeneous 
linear Laplace equation (Singer, 2006) and the nonlinear p-Laplace equation (Calder, 2018). Note that this FV 
approximation, being typical of graph-p-Laplacians, has already been used in general graph-based applications, 
and, in the context of hydrological sciences, it has been used for pore-scale modeling in subsurface hydrology 
(see e.g., Balhoff and Thompson  (2006); Sochi and Blunt  (2008)). To the best of our knowledge, this is the 
first time that such a scheme is used to model a continuous problem based on a p-Laplacian operator. Since 
the approximation of the norm of the gradient causes the convergence rate to be in any case only first order, we 
chose to estimate the fracture aperture at the cell interface in the expressions for the coefficients 𝐴𝐴 𝐴𝐴

(𝑗𝑗)

𝑖𝑖
 and 𝐴𝐴 𝐴𝐴

(𝑗𝑗)

𝑖𝑖
 using 

the  arithmetic mean:
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𝑤𝑤
(𝑗𝑗)

𝑖𝑖
=

𝑤𝑤𝑖𝑖 +𝑤𝑤𝑗𝑗

2
. (24)

Note that the use of the harmonic mean would preserve the energy of the scheme. In spite of this, we opted for 
the arithmetic mean because it is less affected by the ill-conditioning induced by the aperture field's variability, 
which may span several orders of magnitude (Mazzia et al., 2011).

4.2. Model Implementation

In this section, we describe the implementation details of our FV formulation of the nonlinear lubrication Equa-
tion 16a. For each cell 𝐴𝐴 𝑗𝑗 , we have:

(

�(�)� + �(�)�

|

|

|

|

�� − ��

ℎ
|

|

|

|

1
� −1

)

(�� − ��) +

(

�(�)� + �(�)�

|

|

|

|

�� − ��

ℎ
|

|

|

|

1
� −1

)

(�� − ��) +

+

(

�(�)� + �(�)�

|

|

|

|

�� − ��

ℎ
|

|

|

|

1
� −1

)

(�� − ��) +

(

�(�)� + �(�)�

|

|

|

|

�� − ��

ℎ
|

|

|

|

1
� −1

)

(�� − ��) = 0,

 (25)

valid for j = 1, …, 4 M. After all the terms have been put together, the following system of nonlinear equations is 
obtained:

𝐅𝐅(𝐩𝐩) = A(𝐩𝐩)𝐩𝐩 − 𝐟𝐟 = 0, (26)

where p is the unknown pressure vector, and, for any given p, the matrix A(p) is symmetric positive definite and 
pentadiagonal with coefficients Aij given by

��� =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−
∑

�∈�(�)

(

�(�)� + �(�)�

|

|

|

|

�� − ��

ℎ
|

|

|

|

1
� −1

)

if � = �;

�(�)� + �(�)�
|

|

|

�� −��
ℎ

|

|

|

1
� −1 if � ∈ �(�);

0 otherwise,

. (27)

The components fj of the right-hand-side vector f implementing the nonzero Dirichlet boundary conditions are 
given by

�� =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−
⎛

⎜

⎜

⎝

�(�)� + �(�)�

|

|

|

|

|

�� − ∇��
ℎ

|

|

|

|

|

1
� −1

∇��
⎞

⎟

⎟

⎠

if � = �(� − 2) for � = 1,… , � − 2,

0 otherwise.

 (28)

The system of nonlinear algebraic Equation 26 is solved by the Newton method, starting with an initial guess p0 
that is the pressure field corresponding to Newtonian flow (exponent n = 1). Denoting with k the Newton iteration 
number and with J(p) the Jacobian matrix, Newton's scheme takes on the form:

{

J(��) �� = −��(��) ;
��+1 = �� + ��.

 (29)

where for the kth Newton iteration the Jacobian matrix is formally defined as

J(𝐩𝐩) = 𝐅𝐅
′(𝐩𝐩) = A(𝐩𝐩) + A′(𝐩𝐩)𝐩𝐩, (30)

where the A′ symbol denotes the derivative of matrix A with respect to the pressures at each mesh node.

The calculation of the elements of the Jacobian matrix is provided in Appendix C with its generic ij-th element 
reported here:
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���(�) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑

�∈�(�)

(

�(�)� + 1
�
�(�)�

|

|

|

|

�� − ��

ℎ
|

|

|

|

1
� −1

)

if � = �;

−�(�)� − 1
�
�(�)�

|

|

|

|

�� − ��

ℎ
|

|

|

|

1
� −1

if � ∈ �(�);

0 otherwise .

 (31)

The resulting J(p), at any given p, is a symmetric, pentadiagonal, and positive 
definite matrix. We would like to remark here that the symmetry of J(p) is 
a consequence of our specific choice of discretization method. Indeed, the 

symmetry of J(p) arises from the symmetry of the particular operation of differentiation of the absolute value 
function. This symmetry allows the use of the Preconditioned Conjugate Gradient (PCG) method for the solution 
of the Newton linear system (29), with obvious improvements in computational performance. Row equilibration 
of the Jacobian matrix is achieved via diagonal scaling to improve the problem conditioning. This means that the 
left- and right-hand-side terms of Equation 29 are both left-multiplied by D −1/2(p), D = diag(J) being a matrix 
consisting solely of the Jacobian's main diagonal. Applying the scaling transformation results in a more accurate 
solution and reduces computational time. We obtain

[D(𝐩𝐩)]
−1∕2

J(𝐩𝐩)[D(𝐩𝐩)]
−1∕2

[D(𝐩𝐩)]
1∕2

𝐬𝐬 = −[D(𝐩𝐩)]
−1∕2

𝐅𝐅(𝐩𝐩), (32)

The preconditioner of choice is a variable-fill-in incomplete Cholesky factorization. This preconditioning consti-
tutes a problem transformation, which results in a smaller condition number, and consequently, improves the rate 
of convergence of the PCG. The entire procedure detailed above is encapsulated within an inexact Newton-Krylov 
(INK) framework (Kelley, 1987). To avoid oversolving, the PCG exit tolerance is decreased as iterations progress 
using the following rule:

𝜂𝜂
lin

𝑘𝑘
=

⎧
⎪
⎨
⎪
⎩

𝜂𝜂lin
max if 𝑘𝑘 = 0;

min

{

𝜂𝜂lin
max, 𝜂𝜂0 ×

(
||𝐅𝐅 (𝐩𝐩𝑘𝑘) ||2

||𝐅𝐅 (𝐩𝐩𝑘𝑘−1) ||2

)2
}

otherwise,
 (33)

where the choice of 𝐴𝐴 𝐴𝐴lin
max = 0.99 and η0 = 0.9 allows extracting most of the information from the inner iteration 

and guarantees an upper limit to the sequence 𝐴𝐴
{
𝜂𝜂lin

𝑘𝑘

}
 . Table 2 summarizes these choices with the related values 

of the parameters.

When the exponent of the Ellis rheological model (n) is small, and/or the applied macroscopic pressure gradi-

ent 𝐴𝐴

(
∇𝑃𝑃

)
 is large, the pressure field of the solution for the Newtonian rheology (n = 1) may not fall within 

the Newton basin of attraction, so that some sort of globalization techniques must be employed. A parameter 
continuation strategy has thus been implemented for such strongly nonlinear cases. A sequence {nd} converging 
to the desired fluid ST index/exponent nD can be constructed to approach the basin of attraction. The solution 
for the  case nd−1 is used as initial guess for solving the case nd. The sequence {nd} is obtained by subdividing the 
interval from 1 to nD, according to the following rule:

�� =

⎧

⎪

⎨

⎪

⎩

1 if � = 0;

�1
(

��
�1

)
�
�

for � = 1, . . . , �,
 (34)

where d indicates the parameter continuation iteration, while n1 and nD are the second and final ST indices of the 
sequence. In general, the index n1 = 1 (Newtonian case) represents a valid candidate, but for strongly nonlinear 
cases, indicatively when n < 0.5, the second ST index can be imposed to 0.5 to reduce the computational time 
needed to achieve overall convergence. The overall algorithm is summarized in Algorithm 2 in Appendix A.

Maximum number of PCG iterations (kmax) 10 3

Drop tolerance (ϵ) 10 −4

Diagonal shift compensation coefficient (δ) 10 −3

PCG tolerance upper limit 𝐴𝐴
(
𝜂𝜂lin

max

)
0.99

PCG tolerance scaling factor (η0) 0.90

Table 2 
Parameters for Numerical Integration
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The parameter continuation strategy estimates p (d) following the sequence of ST indices {nD} and uses η lin and 
η nl as tolerances for the linear and nonlinear iterations, respectively. The tolerance adopted for the continuation 
strategy is also reduced while approaching the final ST index nD, such that

𝜂𝜂
nl

𝑑𝑑
= 𝜂𝜂

nl
max

(
𝜂𝜂nl

𝐷𝐷

𝜂𝜂nl
max

) 𝑑𝑑

𝐷𝐷

for 𝑑𝑑 = 1,… , 𝐷𝐷, (35)

with 𝐴𝐴 𝐴𝐴nl
max = 10−3 and 𝐴𝐴 𝐴𝐴nl

𝐷𝐷
= 10−8 . This strategy allows achieving convergence in a limited number of steps even for 

strongly nonlinear cases (e.g., n ≃ 0.1), covering essentially all fluids of practical interest.

5. Results
5.1. Experimental Convergence of the Proposed Method

We first examine the experimental convergence of the proposed solver in practical applications. The test 
considers the domain described at the beginning of Section  4.1. A 2  ×  2 aperture field (mesh level 1) is 
generated and kept constant as the mesh is refined, resulting in an aperture field of only four different values. 
A sequence of 8 mesh refinements is then obtained by uniform subdivision while maintaining the origi-
nal four-value aperture field for all the refined meshes originating from the same level-1 mesh. Since, as 
mentioned before, the scheme is consistent, the solution at mesh level 9 is considered as a “proxy” analytical 
solution against which we can calculate the error at different mesh levels. At each level M, the L 2 error norm 
is evaluated as

‖𝑒𝑒𝑀𝑀‖ =

√

Δ𝑥𝑥2
∑

𝑗𝑗

(𝑃𝑃𝑀𝑀𝑀𝑗𝑗 − 𝑃𝑃9𝑀𝑗𝑗)
2
≈

√

∫
Ω

(𝑃𝑃𝑀𝑀 − 𝑃𝑃9)
2
. (36)

Convergence of this sequence of errors together with the scheme consistency implies convergence to the true 
solution of the overall solver. We repeat these simulations for all fluid types listed in Table 1. The results are 
shown in Figure 5, which show the log-log plot of the error versus the mesh level as identified by the value 
of M.

We now investigate the nonlinear convergence of the solver. Recall that to minimize nonlinear iterations, the 
general strategy is to reduce the pre-asymptotic phase of the Newton method as much as possible, thus engag-
ing efficient quadratic convergence as quickly as possible. For fluids characterized by n values in the range 
0.5 ≤ n ≤ 1, Newton quadratic convergence is always observed (see fluids F1–F3 in Table 3). Conversely, in the 
most difficult situations, that is, for strongly ST fluids characterized approximately by the n-range 0.1 ≤ n < 0.5, 
we resort to parameter continuation since Newton fails to converge when the initial guess (n0) is not in the Newton 
basin of attraction. As depicted in Figure 6 and reported in Table 3 for the fluid F4, the convergence speed of 
this latter strategy controls the computational efficiency for these difficult cases. The convergence is shown in 
Figure 6, where the L 2 norms of the difference between two consecutive iterations 𝐴𝐴

(
𝐬𝐬
(𝑑𝑑)
𝑝𝑝

)
 and of the nonlinear resid-

ual (F (d)) are plotted against the parameter continuation step. These norms are scaled by a factor 1/2 M to remove 
the dependency on the mesh size. The results show an initial linear convergence often followed by superlinear 
convergence. This behavior can be intuitively expected as a consequence of the adopted scaled tolerance proposed 
in Equation 33. In Table 3, the performance of the numerical scheme is reported in terms of the nonlinear resid-
ual and difference between the two last iterations versus normalized computational time. Different parameter 
continuation strategies are adopted for fluid F4, showing higher accuracy in the solution for a larger number of 
continuation iterations and the possibility of reducing computational time by considering a different value of n1 
in rule (34) for strongly ST fluids.

5.2. Impact of the Rheology on the Velocity Field, Apparent Viscosity, and Fracture Transmissivity

The simulated flow field is on average cocurrent along the direction of 𝐴𝐴 ∇𝑃𝑃  , as an obvious consequence of the 
imposed boundary conditions, which forces the flow from the left-hand side to the right-hand side of Ω. However, 
aperture field heterogeneity results in channeling of the flow in the fracture plane along paths of less resistance. 
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This phenomenon, and how it is impacted by fracture closure, has been studied for Newtonian flow for decades 
(Brown, 1987; Méheust & Schmittbuhl, 2001). The fracture closure σ  and the ratio Lc/L both control the aperture 
heterogeneity. The former quantifies aperture fluctuations with respect to the mean fracture aperture, as well as 
the amount of contact (if the closure is sufficiently large), while the correlation length defines the size of regions 
of correlated large apertures (or, equivalently, of correlated small apertures), which essentially controls the spatial 

Figure 5. Logarithmic plot of ‖eM‖, the L 2 norm of the solution error calculated with respect to the finest mesh solution P9 
(mesh level 9), plotted as a function of the mesh level M (i.e., the 2-logarithmic mesh size). The different mesh levels are 
uniform refinements of a 2 × 2 initial aperture field. Different curves are related to the different fluids listed in Table 1: F1 
(yellow line), F2 (orange line), F3 (red line), and F4 (purple line). The superimposed lines show the first-order accuracy of 
the proposed solver.

Simulation Fluid ||F (D)||/2 M ||s (D)||/2 M t/t0 Parameter continuation
ID ID (m 2/s) (Pa/m) (−) N. Iterations (initial ST index)

Sim 1 F4 1.80 × 10 −8 9.10 × 10 −9 1021 5 (n1 = 1)

Sim 2 F4 3.44 × 10 −9 2.58 × 10 −9 1662 10 (n1 = 1)

Sim 3 F4 7.75 × 10 −9 4.08 × 10 −9 1095 10 (n1 = 0.5)

Sim 4 F4 1.15 × 10 −10 9.56 × 10 −11 2041 20 (n1 = 0.5)

Sim 5 F4 2.00 × 10 −12 6.11 × 10 −9 5960 50 (n1 = 0.5)

Sim 6 F1 4.97 × 10 −16 2.82 × 10 −10 617 –

Sim 7 F2 1.03 × 10 −14 4.01 × 10 −11 678 –

Sim 8 F3 1.94 × 10 −14 1.45 × 10 −9 527 –

Note. The algorithm performance is measured in terms of residual and absolute error scaled norms at the final continuation 
step. The normalized computational time is obtained by dividing the computational time (t) by the one of the Newtonian 
solver (t0 = 0.13 s). The aperture field is generated with L = 0.4 m, 〈w〉 = 10 −3 m, H = 0.8, σw/〈w〉 = 1, and L/Lc = 8, 
considering a dimensionless pressure gradient of ∇�∕∇�� = 4.81 .

Table 3 
Performance of the Parameter Continuation Strategy for Different Numbers of Iterations and Initial Shear-Thinning Index 
n0
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patterns of flow channeling (Méheust & Schmittbuhl, 2003). In particular, 
correlated large aperture channels can form if L ∼ Lc; if such a channel is 
aligned with the imposed macroscopic pressure gradient, the resulting 
permeability is larger than that of the smooth fracture of identical mean aper-
ture (Méheust & Schmittbuhl, 2000). Note however that such configurations 
are not favored statistically (Méheust & Schmittbuhl, 2001), so, on average, 
heterogeneity induces higher energy losses across the fracture, which inevita-
bly results in a lower transmissivity as compared to the parallel plate model. 
If the closure is sufficiently high, contact areas tend to exacerbate the behav-
ior observed at closures that do not allow for fracture wall contact. Fractures 
where Lc ∼ L present few large contact zones, while for Lc ≪ L, contacts are 
sparser across Ω and the fracture resembles a quasi-2D porous medium.

When a non-Newtonian, ST rheology is involved, all these effects are rele-
vant, but additionally they are impacted by the fluid's rheology. Figure  7 
illustrates the compound effect on flow localization of the ST fluid nature 
and of fracture heterogeneity. For each fluid listed in Table 1, the left-hand 
column shows maps of the ratio of the velocity magnitude 𝐴𝐴 𝑢𝑢 = ‖𝐮𝐮(𝐱𝐱)‖ to 
the average velocity 𝐴𝐴 ⟨𝑢𝑢⟩ , while the right-hand column shows the ratio of the 
depth-averaged apparent viscosity 𝐴𝐴 𝜇𝜇(𝐱𝐱) to the crossover viscosity 𝐴𝐴 𝐴𝐴c = 𝐴𝐴 (𝜏𝜏c) 
(see definition of τc in Appendix B).

Figures 7a, 7c, 7e, and 7g show that the flow localization increases for decreasing values of n (i.e., increasing 
fluid ST property). High velocities concentrate in areas of higher conductance, and low velocities in the proximity 
of contact zones, which typically exhibit higher resistance to flow due to aperture heterogeneity. This is similar 
to what is observed with Newtonian flow, but in addition, Figures 7b, 7b, 7f, and 7h show that the high velocity 
regions coincide with low-apparent viscosity values as expected due to the ST nature of the fluid. Hence, the 
flow of the ST fluid tends to be even more localized than that of the corresponding Newtonian flow. Note that the 
numerical solution suffers from mesh-alignment issues at small scales. This behavior develops preferentially at 
larger n values when concentration effects dominate (Facca et al., 2021) and is expected because of the low-order 
reconstruction of the velocity field. However, while the local (i.e., small scale) behavior of the velocity magnitude 
seems to be impacted by this effect, the consistency and stability (i.e., convergence) of the FV global solution 
guarantees that the global behavior (i.e., at scales significantly larger than the mesh cell size) is indeed a solution 
of the proposed model.

Let us first discuss weakly ST cases. In these cases, it is seen that both velocity and apparent viscosity maps show 
a relatively slight dispersion around their ensemble average value. Small velocities are located in a limited portion 
of the fracture near the closed regions, where the apparent viscosity is close to μ0, implying a quasi-Newtonian 
behavior. On the other hand, low values of apparent viscosity are visible in small spots between contact zones, 
where the fluid is forced to flow under high-shear rate conditions. Strongly ST cases exhibit a different behav-
ior with a higher dispersion around ensemble averages for both velocity and apparent viscosity. The areas with 
lower apparent viscosity cover a larger percentage of the fracture plane and appear more elongated with a more 
channel-like shape as the exponent n is closer to its lowest investigated value, 0.1.

Next, we consider the fracture's global transmissivity defined as

𝑇𝑇 =
𝑄𝑄𝑄𝑄0

∇𝑃𝑃
. (37)

Figure  8 depicts the transition from a quasi-Darcian flow 𝐴𝐴

(
𝑇𝑇 ∝ ∇𝑃𝑃

)
 to a nonlinear regime 𝐴𝐴

(

𝑇𝑇 ∝ ∇𝑃𝑃
1

𝑛𝑛

)

 for 

increasing dimensionless pressure gradients 𝐴𝐴 ∇𝑃𝑃∕∇𝑃𝑃c . As expected, the crossover occurs at the characteristic 
pressure gradient defined in Equation 15. The Newtonian transmissivity T0 is obtained from solving the flow 
for an ST index n = 1 and dynamic viscosity μ0. The flow regime tends to the quasi-Newtonian behavior at 

Figure 6. Convergence of the parameter continuation strategy toward the 
solution, for the most strongly shear-thinning fluid, F4 (n = 0.1). Panels (a and 
b) show the Newton error and the residual scaled norm at each continuation 
parameter step, respectively (see Table 3). The aperture field (mesh size 
2 M = 2 10) adopted for this simulation has been generated with Lc = 0.1 m, 
〈w〉 = 10 −3 m, H = 0.8, σw/〈w〉 = 1, 𝐴𝐴 ∇𝑃𝑃∕∇𝑃𝑃𝑐𝑐 = 4.81 , and L/Lc = 8. Results 
refer to simulations reported in Table 3: blue (Sim 1), green (Sim 2), red (Sim 
3), yellow (Sim 4), and purple (Sim 5). The dotted line in panel (a) represents 
the tolerance 𝐴𝐴 𝐴𝐴nl

max .
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Figure 7. Maps of velocity magnitude 𝐴𝐴 𝑢𝑢∕⟨𝑢𝑢⟩ (left column) and depth-averaged apparent viscosity 𝐴𝐴 𝜇𝜇∕𝜇𝜇c (right column) for different fluids. Each row is associated with 
a fluid listed in Table 1 with the fluid rheological index n decreasing from top to bottom. Streamlines (white continuous lines) are shown superimposed to the velocity 
maps in the left column. In the viscosity maps (right column), the quasi-Newtonian areas 𝐴𝐴

(
𝜇𝜇 ≥ 𝜇𝜇c

)
 are colored in yellow. The aperture field is generated adopting the 

following parameters: M = 10, H = 0.8, L/Lc = 4, 〈w〉 = 1 mm, σw/〈w〉 = 1, L = 0.4 m, and 𝐴𝐴 ∇𝑃𝑃∕∇𝑃𝑃𝑐𝑐 = 10 (fluids F1–F3) or 𝐴𝐴 ∇𝑃𝑃∕∇𝑃𝑃𝑐𝑐 = 3 (fluid F4).

-1 -0.5 0 0.5 1
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low-imposed macroscopic pressure gradients 𝐴𝐴 ∇𝑃𝑃  and diverges from it as 
𝐴𝐴 𝐴𝐴 ∝ ∇𝑃𝑃

1

𝑛𝑛 when a pressure gradient higher than 𝐴𝐴 ∇𝑃𝑃c is imposed.

Figure  9 illustrates how the fracture transmissivity T, normalized by the 
transmissivity Tpp of the equivalent parallel plate fracture (i.e., of aperture 
equal to the rough fracture's mechanical aperture), evolves as a function of 
the fracture closure, again for the fluids F1–F4 listed in Table 1. The behav-
ior of the Newtonian case corresponding to a constant μ0 viscosity, T0/T0,pp, 
is also shown for comparison. Note that, for a fracture subjected to ST fluid 
flow, whether the walls are rough or not, T is not an intrinsic property of the 
fracture; it also depends on the imposed macroscopic pressure gradient 𝐴𝐴 ∇𝑃𝑃  
due to the nonlinearity of the hydraulic response; on the contrary, T0 is inde-
pendent of 𝐴𝐴 ∇𝑃𝑃  . Here, the results for fluids F1–F3 refer to a dimensionless 
pressure gradient 𝐴𝐴 ∇𝑃𝑃∕∇𝑃𝑃 c = 10 , while for F4, it is 𝐴𝐴 ∇𝑃𝑃∕∇𝑃𝑃 c = 3 as setting 
it to 10 would have brought the Reynolds number ReG above the 1 upper 
limit for creeping flow. The results are shown for 200 fracture realizations 
generated with the same set of parameters (see caption of Figure  9). The 
curves go to 1 at small fractures closures as expected. The ST property of the 
ST fluids increases continuously from (a) to (d) and indeed, the deviation of 
the ST fluid's behavior from that of Newtonian flow increases all the more as 
the fracture closure is larger. Furthermore, this deviation is always positive 
and can be so large at sufficiently large closures and for a sufficiently strong 
ST property (see, e.g., Figures  9c and  9d), that the median behavior of a 
rough fracture becomes much more permeable than that of the equivalent 
parallel plate by a factor which reaches an order of magnitude. Indeed, as 
the flow becomes more localized in channels of low-apparent viscosity and 
high velocity, conveying most of the volumetric flow rates of the fracture, 
the viscous dissipation within the fluid becomes less than what it would be 
in the homogeneous flow of the equivalent parallel plate configuration. In 
other words, the ST rheology contrasts the median tendency of transmissivity 
to decrease due to increasing aperture heterogeneity and even reverts it in a 
spectacular manner.

In addition, the dispersion over the statistics of the ratio T/Tpp also increases much more dramatically with frac-
ture closure for ST flow than for Newtonian flow. This reflects the impact of the spatial arrangement of contact 
zones and of large permeability regions on the variability of the flow among the individual fracture realizations.

Note also that T0/T0,pp, the ratio of the parallel plate transmisivity for the ST fluid to that for Newtonian flow, is 
also stongly dependent on the exponent n of the ST rheological law. Its values for the four fluids F1–4 are shown 
in Table 4. They vary from less than 3 to nearly 1000 as the ST exponent n varies from 0.72 down to 0.1. Finally, 
note that for all the fracture flow configurations addressed here, the generalized Reynolds number ReG remains 
smaller than 1.

6. Discussion and Conclusions
This paper has presented a study of the combined effects of a nonlinear ST rheology and aperture variability on 
low Reynolds number flow in a single rough fracture. A Fourier transform based method has been used to gener-
ate realistic synthetic aperture fields of geological fractures. A novel flow solver has been derived to provide the 
first lubrication-based numerical model for the flow of an ST fluid whose rheology features a transition in the 
apparent viscosity between a low-shear rate Newtonian plateau and an ST behavior of index n at larger shear rates. 
This rheological behavior was modeled with an Ellis constitutive law.

A numerical model has been set up based on a novel nonlinear generalized Reynolds equation describing the flow 
of an Ellis fluid in a fracture geometry under lubrication assumptions. The computational cost often associated 
with the solution of the nonlinear system of equations has been optimized by the developed finite volume-based 
solver, which yields a symmetric Jacobian that allows for the implementation of a PCG-based INK algorithm, 

Figure 8. Transition from the quasi-Newtonian to the shear-thinning behavior: 
ratio of the actual transmissivity T to the transmissivity T0 for a Newtonian 
fluid of viscosity μ0 as a function of the dimensionless pressure gradient 

𝐴𝐴 ∇𝑃𝑃∕∇𝑃𝑃c , evaluated for fluids F1–F4 in Table 1. Simulations have been 
conducted considering an aperture field generated with parameters: M = 10, 
H = 0.8, 〈w〉 = σw = 10 −3 m, and L/Lc = 4. The color code for the fluids is the 
following: yellow line for F1, orange line for F2, red line for F3, and purple 
line for F4.
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to avoid oversolving. Furthermore, a continuation parameter strategy has been used to handle strongly nonlinear 
cases with low n values. The resulting code is robust for a wide range of ST index values (from 0.1 to 1), even in 
strongly heterogeneous cases implying a significant percentage of closed areas (e.g., σw/〈w〉 = 1), and for pressure 
gradients typical of forced flow in subsurface industrial applications (e.g., 𝐴𝐴 ∇𝑃𝑃 = 105 Pa∕m ), much higher than 
typical groundwater natural gradients. Computational efficiency is maximized by ensuring that convergence is 
always achieved. Linear convergence is typically displayed only during the initial Newton iterations and contin-
uation parameters steps, while quadratic asymptotic convergence is always observed. The solver is two to three 
orders of magnitude faster than the few alternative lubrication-based algorithms presented in the literature so far 

to solve the flow of ST fluids in fractures. In comparison to simulating the 
(Navier-)Stokes equation in the 3D space of the fracture, it is likely four to 
five orders of magnitude faster.

Concerning the physical effects jointly controlled by fluid rheology and 
heterogeneity, the ST behavior and aperture variability both contribute to 
flow localization. Elongated zones of high velocity and low apparent viscos-
ity tend to form in a continuous pattern from the inlet to the outlet of the 
fracture for low ST index n and high relative closure of the aperture field. 
Streamlines are affected by an increasing ST behavior of the fluid with the 
appearance of stronger localization patterns and zones where the flow is 
almost stagnant.

Figure 9. Dependence on the closure σw/〈w〉 of the ratio of the actual transmissivity T to the Ellis parallel-plate model 
transmissivity Tpp, plotted in colors for fluids F1–F3 with 𝐴𝐴 ∇𝑃𝑃∕∇𝑃𝑃 c = 10 and for fluid F4 with 𝐴𝐴 ∇𝑃𝑃∕∇𝑃𝑃 c = 3 . Confidence 
intervals are estimated over 200 simulations. Fracture realizations are generated with: M = 10, H = 0.8, 〈w〉 = 10 −3 m, L/
Lc = 4 and L = 0.4 m. Panels (a–d) correspond to the different fluids reported in Table 1: (a) F1 in yellow, (b) F2 in orange, 
(c) F3 in red, and (d) F4 in purple. The data plotted in gray shows the Newtonian behavior (which is identical for the four 
panels). The disks linked by a continuous line represent the median behavior, while the dashed lines show the confidence 
interval (25th and 75th percentiles).

Fluid ID F1 F2 F3 F4

𝐴𝐴 ∇𝑃𝑃∕∇𝑃𝑃 c 10 10 10 3

Tpp/T0,pp 2.72 5.34 12.15 972.81

Note. A constant separation 〈w〉 = 10 −3 m is considered between the plates.

Table 4 
Parallel-Plate Transmissivity Ratios Between the Ellis Fluids Listed in 
Table 1 (Tpp) and the Corresponding Newtonian Fluid (T0,pp), of Dynamic 
Viscosity μ0.
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At the fracture scale, a sufficiently high externally imposed macroscopic pressure gradient induces a non-Darcian 
flow regime leading to a non-Newtonian transmissivity that is higher than its Newtonian counterpart, possibly 
by several orders of magnitude. Such a strong nonlinear tendency is mainly due to the bulk of the flow being 
conveyed in marked preferential channels, typically along the path of lowest resistance, where the velocity is high 
and the apparent viscosity is low. The transition from a (quasi-)Darcian to a nonlinear regime occurs when the 
magnitude of the average shear stress is larger than a characteristic value, which is itself a function of fluid and 
fracture properties. Equivalently, this transition occurs close to a characteristic value of the applied macroscopic 
pressure gradient, which is related analytically to the aforementioned characteristic shear stress. Both quantities 
can be defined analytically from the Ellis constitutive law.

When multiple realizations are examined, an interesting observation becomes evident. The median fracture 
transmissivity decreases with increasing aperture heterogeneity (and thus closure) as expected (and well-known 
for Newtonian flow), but the fluid ST behavior tends to mitigate this effect as a result of the aforementioned 
enhanced flow channeling. Thus, an increase in non-Newtonian behavior contrasts the tendency of transmissivity 
to decrease due to increasing aperture heterogeneity. So much so that for sufficiently large fracture closures and 
ST properties, the transmissivity is seen to increase again with fracture closure, and to exceed the Newtonian 
transmissivity by up to one order of magnitude.

The performance achieved with this numerical scheme allows overcoming the limits of the current numerical 
alternatives. Future prospects include a systematic stochastic analysis of ST flow in geological fractures, consid-
ering numerous realizations for the same set of statistical geometric parameters, as well as the impact of the 
combined effect of fracture heterogeneity and complex rheology on anomalous transport.

Appendix A: Numerical Algorithms
In this Appendix, the algorithms for the aperture field generator and flow solver are summarized, respectively, in 
the following two pseudocodes: Algorithm 1 and Algorithm 2.

In Algorithm 1, the parameters are 〈w〉 and σw, which are, respectively, the desired distance between the walls' 
mean planes and the standard deviation of the aperture field prior to implementing the perfect plastic closure; H, 
which is the Hurst exponent controlling the self-affinity; and kc, which is the crossover wave number related to 
the correlation length through kc = 2π/Lc. The following functions are adopted: 

1.  Grid returns a 2 M × 2 M square grid of coordinates 𝐴𝐴 𝐴𝐴𝑥𝑥1
 and 𝐴𝐴 𝐴𝐴𝑥𝑥2

 ;
2.  Rand generates a 2 M × 2 M square matrix of random numbers extracted from a uniform distribution;
3.  FFT computes the 2D Fast Fourier Transform and rearranges by shifting the zero-frequency components to 

the center of the array;
4.  invFFT computes the inverse 2D Fast Fourier Transform.
5.  Mean computes the average value.
6.  Std computes the standard deviation.

Algorithm 1. Pseudo-code for the fracture aperture field generator
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In the pseudo-code, the parameter w0 is a nonzero lower cutoff imposed to the aperture field in fractures with 
closed regions. This regularization parameter is introduced to ensure well-posedness of the flow PDE and guar-
antee solvability in the numerical solver also in the presence of contact points (zero aperture). Typically, w0 is 
chosen to be sufficiently small so as not to affect the accuracy of the solution. In our experiments, we employed 
w0 = 10 −8 m.

In Algorithm 2, the INK algorithm and the continuation strategy can be summarized as follows.

The functions in Algorithm 2 have the following meaning:

1.  DiagonalScaling implements Equation 32;
2.  Reordering applies the reverse Cuthill-McKee ordering;
3.  Michol generates the PCG preconditioner C via incomplete Cholesky factorization;
4.  PCG solves the linear system of Equation 30 via PCG, adopting C as a preconditioner and 𝐴𝐴 𝐴𝐴lin

𝑑𝑑
 as a tolerance 

stopping criterion.

Appendix B: Estimation of the Parameters of the Ellis Model From the 
Carreau-Yasuda Model
This Appendix illustrates how the parameters of the fluids used in the main body of the paper were derived. In 
general, simple non-Newtonian rheological models, such as the Ellis constitutive law (Equation 2), are empirical 
nonlinear relationship between stress and strain rate that can be adopted to model ST rheology.

𝐴𝐴 𝐴𝐴′

0
 𝐴𝐴 𝐴𝐴′

∞ n′ 𝐴𝐴 𝐴𝐴𝐴𝑐𝑐 a′

Fluid ID Solution (Pa ⋅ s) (Pa ⋅ s) (−) (s −1) (−)

F1 CMC at 0.3 wt% 0.0510 0.001 0.72 17.67 0.71

F2 CMC at 0.5 wt% 0.2203 0.001 0.51 15.85 0.565

F3 CMC at 1.0 wt% 2.9899 0.001 0.40 2.74 0.668

F4 VES 49 0.0003 0.10 0.10 2.00

Note. Parameters for the Carboxymethylcellulose (CMC) solutions are provided in Sousa et al. (2005), while those for the 
viscoelastic surfactant (VES) are taken from Moukhtari and Lecampion (2018). Corresponding Ellis rheological parameters 
are listed in Table 1.

Table B1 
Rheologic Parameters Related to the Four Fluids: Experimental Data Are Fitted With the Carreau-Yasuda Models

Algorithm 2. Pseudo-code for the flow solver
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When two different models are fitted to experimental data, rheological parameters are estimated by best fitting 
and no given correspondence between the two sets of parameters exists. Here, due to the scarcity of Ellis model 
parameters fitted on rheological data in the literature, and in the interest of comparison and simplification, we 
inferred the Ellis parameters from existing data hitherto interpreted with the Carreau-Yasuda (CY) model. The 
latter is a five-parameter model, frequently adopted because it typically reproduces the rheology of ST fluids 
well; its apparent viscosity is expressed as a function of the shear rate 𝐴𝐴 𝐴𝐴𝐴 as

𝜇𝜇 = 𝜇𝜇
′
∞ +

𝜇𝜇′

0
− 𝜇𝜇′

∞

[
1 + (�̇�𝛾∕�̇�𝛾𝑐𝑐)

𝑎𝑎′
] 1−𝑛𝑛′

𝑎𝑎′

,
 (B1)

where 𝐴𝐴 𝐴𝐴′

0
 and 𝐴𝐴 𝐴𝐴′

∞ are, respectively, the low- and high-shear rate apparent viscosity plateaus, 𝐴𝐴 𝐴𝐴𝐴c is the characteristic 
shear rate separating the low-shear, pseudo-Newtonian regime from the intermediate PL regime, a′ is an index 
that influences the shape of the transition between the intermediate PL behavior and the high-shear rate plateau 
μ∞, and n′ is a ST index. Fixing the value of a′ to 2 results in a four-parameter model, termed the Carreau model.

In low Reynolds number applications, the high-shear rate plateau can be neglected 𝐴𝐴 (𝜇𝜇′
∞ ≈ 0) and the low-shear 

rate approximation of Equation B1 is obtained as

𝜇𝜇 =
𝜇𝜇0

[
1 + (�̇�𝛾∕�̇�𝛾𝑐𝑐)

𝑎𝑎′
] 1−𝑛𝑛′

𝑎𝑎′

.
 (B2)

We consider a given CY flow curve and proceed to analytically find the Ellis model (Equation 3) that best fits the 
corresponding flow curve 𝐴𝐴 𝐴𝐴 (�̇�𝛾) . This implies that the low-shear rate viscosity plateaus be identical, and the PL 
regimes as well. The former constraint immediately implies that 𝐴𝐴 𝐴𝐴0 = 𝐴𝐴′

0
 , while the latter implies that the CY PL 

trend, which for 𝐴𝐴 𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴c can be simplified to

𝜇𝜇 = 𝜇𝜇
′

0

(
𝛾𝛾c

�̇�𝛾

)1−𝑛𝑛′

, (B3)

be identical to that of the Ellis model, which for τ ≫ τ1/2 can be approximated to

𝜇𝜇 = 𝜇𝜇0

( 𝜏𝜏1∕2

𝜏𝜏

) 1−𝑛𝑛

𝑛𝑛

. (B4)

Substituting the constitutive equation 𝐴𝐴 𝐴𝐴 = 𝜇𝜇 𝜇𝜇𝜇 in Equation B4 and recalling that 𝐴𝐴 𝐴𝐴0 = 𝐴𝐴′

0
 yields

𝜇𝜇 = 𝜇𝜇
′

0

𝑛𝑛

(
𝜏𝜏1∕2

�̇�𝛾

)1−𝑛𝑛

, (B5)

which can now be identified to Equation B3. We thus immediately obtain n = n′ and

𝜏𝜏1∕2 = 𝜇𝜇
′

0
�̇�𝛾c . (B6)

Conversely, when determining the crossover pressure gradient 𝐴𝐴 ∇𝑃𝑃 c from Equation 15, the crossover shear stress 
τc to be considered is that corresponding to the crossover shear rate 𝐴𝐴 𝐴𝐴𝐴c of the CY model. It can thus be estimated 
from the Ellis model parameters by solving the following implicit equation numerically:

𝜏𝜏c

𝜏𝜏1∕2
=

[

1 +

(
𝜏𝜏c

𝜏𝜏1∕2

) 1

𝑛𝑛
−1
]−1

. (B7)
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Appendix C: Analytical Formulation of the Jacobian
The present Appendix provides details on the analytical evaluation of the Jacobian matrix. The relationship 
between the Jacobian matrix J(p) and the matrix A is given in Equation 30. In terms of components, we can write 
the Jacobian matrix as follows:

𝐽𝐽𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑖𝑖𝑖𝑖 +

4𝑀𝑀∑

𝑢𝑢=1

𝜕𝜕𝐴𝐴𝑖𝑖𝑢𝑢

𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝑢𝑢 =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝐴𝐴𝑖𝑖𝑖𝑖 +
𝜕𝜕𝐴𝐴𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝑖𝑖 +
𝜕𝜕𝐴𝐴𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝑖𝑖 if 𝑖𝑖 ∈ 𝜎𝜎(𝑖𝑖)

𝐴𝐴𝑖𝑖𝑖𝑖 +
𝜕𝜕𝐴𝐴𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝑖𝑖 +
∑

𝑘𝑘∈𝜎𝜎(𝑖𝑖)

𝜕𝜕𝐴𝐴𝑖𝑖𝑘𝑘

𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝑘𝑘 if 𝑖𝑖 = 𝑖𝑖

0 otherwise .

 (C1)

The Jacobian has the same sparsity pattern as A, resulting in a pentadiagonal matrix. The nonzero components in 
Equation C1 can be derived from those of A as follows:

����

���
=
(1
�
− 1

)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−
∑

�∈�(�) �
(�)
�

|

|

|

|

�� − ��

ℎ
|

|

|

|

1
� −1 1

�� − ��
if � = � = �;

+�(�)�

|

|

|

|

�� − ��

ℎ
|

|

|

|

1
� −1 1

�� − ��
if � = � and � ∈ �(�);

−�(�)�

|

|

|

|

�� − ��

ℎ
|

|

|

|

1
� −1 1

�� − ��
if � = � ≠ �;

+�(�)�
|

|

|

|

�� − ��

ℎ
|

|

|

|

1
� −1 1

�� − ��
if � = � ≠ �;

0 otherwise,

 (C2)

which defines the matrix A′ mentioned in Section 4.2. Substituting the expression of the components of Equa-
tion C2 in Equation C1 leads to the following formulation for the Jacobian

��� =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−�(�)� − 1
�
�(�)�

|

|

|

|

�� − ��

ℎ
|

|

|

|

1
� −1

if � ≠ �

∑

�∈�(�)

(

�(�)� + 1
�
�(�)�

|

|

|

|

�� − ��

ℎ
|

|

|

|

1
� −1

)

if � = �

0 otherwise,

 (C3)

where it can be noted that the Jacobian is symmetric (i.e., Jij = Jji) since 𝐴𝐴 𝐴𝐴
(𝑗𝑗)

𝑖𝑖
= 𝐴𝐴

(𝑖𝑖)

𝑗𝑗
 and 𝐴𝐴 𝐴𝐴

(𝑗𝑗)

𝑖𝑖
= 𝐴𝐴

(𝑖𝑖)

𝑗𝑗
 .

Data Availability Statement
There are no data sharing issues since all of the numerical information is provided in the figures produced by 
solving the equations in the paper.
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