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Abstract: Flow and mass cytometry are used to quantify the expression of multiple extracellular or
intracellular molecules on single cells, allowing the phenotypic and functional characterization of
complex cell populations. Multiparametric flow cytometry is particularly suitable for deep analysis
of immune responses after vaccination, as it allows to measure the frequency, the phenotype, and the
functional features of antigen-specific cells. When many parameters are investigated simultaneously,
it is not feasible to analyze all the possible bi-dimensional combinations of marker expression with
classical manual analysis and the adoption of advanced automated tools to process and analyze
high-dimensional data sets becomes necessary. In recent years, the development of many tools for the
automated analysis of multiparametric cytometry data has been reported, with an increasing record
of publications starting from 2014. However, the use of these tools has been preferentially restricted
to bioinformaticians, while few of them are routinely employed by the biomedical community. Filling
the gap between algorithms developers and final users is fundamental for exploiting the advantages of
computational tools in the analysis of cytometry data. The potentialities of automated analyses range
from the improvement of the data quality in the pre-processing steps up to the unbiased, data-driven
examination of complex datasets using a variety of algorithms based on different approaches. In this
review, an overview of the automated analysis pipeline is provided, spanning from the pre-processing
phase to the automated population analysis. Analysis based on computational tools might overcame
both the subjectivity of manual gating and the operator-biased exploration of expected populations.
Examples of applications of automated tools that have successfully improved the characterization of
different cell populations in vaccination studies are also presented.

Keywords: vaccination; multiparametric flow cytometry; mass cytometry; computational data
analysis; automated analysis; machine learning

1. Introduction

Flow cytometry allows to simultaneously quantify expression of extracellular and intracellular
molecules targeted by dyes or monoclonal antibodies, as well as to measure multiple characteristics of a
single cell such as size and granularity. This technology emerged as a powerful tool for detailed analysis
of complex populations and several other factors have contributed to the success and widespread use of
flow cytometry. These include the speed at which cells are analyzed, the high accuracy and resolution of
the technology, and the low operating costs per sample. The more recent mass cytometry, or cytometry
by time-of-flight mass spectrometry (CyTOF), is another technique for measuring the expression of
more than 40 parameters on large number of cells. In mass cytometry, antibodies specific to markers of

Vaccines 2020, 8, 138; doi:10.3390/vaccines8010138 www.mdpi.com/journal/vaccines

http://www.mdpi.com/journal/vaccines
http://www.mdpi.com
http://www.mdpi.com/2076-393X/8/1/138?type=check_update&version=1
http://dx.doi.org/10.3390/vaccines8010138
http://www.mdpi.com/journal/vaccines


Vaccines 2020, 8, 138 2 of 20

interest are conjugated to heavy-metal isotopes and used to stain a population of cells. Compared
to mass cytometry, conventional flow cytometry is a non-destructive techniques which can be used
to sort cells for further analyses and offers the highest throughput with tens of thousands of cells
measured per second [1]. Considering the similarity of their outputs (files in Flow Cytometry Standard
format), flow cytometry and mass cytometry share many analysis tools. While both techniques allow
to interrogate the immune system at a previously unprecedented level, scientific progress depends on
our ability to interpret these results. Classical analysis is performed by the operator, which manually
explores the cells, and identifies cellular subsets by specific gates, that can be further analyzed for the
expression of different markers combinations, thus providing a hierarchical analysis strategy. Manual
analysis of cytometry data is a simple and intuitive one. However, it constitutes a big source of
variability and it is time consuming when a large number of samples and markers are analyzed [2–4].
Moreover, experts are typically looking for specific and expected cell types, excluding other cells from
the analysis [5]. Operator subjectivity occurs at the level of choosing the hierarchy in which parameter
combinations have to be considered, as well as in the shape and boundary of each gate specified in
the analysis. To overcome these limitations, novel computational techniques have been developed in
recent years, and computational flow cytometry has become a novel discipline useful for providing a
set of tools to analyze, visualize, and interpret large amounts of cell data in a more automated and
unbiased way.

Comparative studies between traditional manual gating versus automated analysis have
demonstrated that many of the available tools can efficiently achieve the same results produced
by manual analysis [6,7] with the advantage of being operator-independent and able to identify also
unexpected cell populations, that would be hardly identified with traditional methods. Supported by
these positive results, in the last years automated analyses have been applied to the identification of
different cell populations in pre-clinical and clinical studies in different fields such as immunology,
vaccinology, cell biology, oncology, and hematology, contributing to a deeper understanding of
biological processes. Since flow cytometry is a powerful technology for studying multiple immune
function in response to vaccination, ranging from the phenotypic and functional characterization of
cellular immune responses to antibody detection and functional assessment, the use of computational
tools represents a powerful strategy for the interpretation of large datasets that can be instrumental
to profile the vaccine immune response. For these reasons, immunologists should be aware of the
potentiality of automated tools, which should not remain exclusive to computer-science experts

In this review, a pipeline for the automated analysis of multiparametric cytometry data is described,
focusing on both the pre-processing and analysis phases. The advantages/disadvantages, potentialities,
and possible applications of the most commonly used algorithms currently available are described in
order to make immunologists/vaccinologists aware of the added value of the computational analysis
approach. Moreover, an overview of the impact of automated analysis in the knowledge of biological
processes, especially in the vaccine field, is presented.

2. Automated Cytometry Data Analysis Workflow

The workflow for the analysis of cytometric data includes pre-processing, automated analysis
with data-visualization, and result interpretation (Figure 1). Computational tools exist for each of these
steps both as standalone software, FlowJo plugins, web services, and libraries for some of the most
common programming languages. A high number of tools are available as packages for R, a highly
popular language for statistical analyses, and stored on the Bioconductor repository, an open-source
free software project for the analysis of high-throughput biomedical data [8] (Table 1).

The term computational cytometry is commonly referred to this vast arsenal of tools proposed
for supporting the analysis of cytometry data. Different tools are characterized by a different degree
of automation. At one side of the spectrum, there are tools that provide a complete unsupervised
clustering of cell populations based on Machine Learning models, while at the other side, there are
supervised tools that are specifically designed to assist in the manual analysis. In this review, the terms
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automated or computational analysis and automated tools will be used for indicating the computational
analysis workflow and the different algorithms, respectively. The entire workflow of the computational
analysis will be described step by step, starting from the pre-processing tools, through the different
analysis phases, up to the result interpretation (Figure 1).
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Figure 1. Automated cytometry data analysis workflow. Pipeline of the automated analysis steps
of cytometric data. Starting from Flow Cytometry Standard (FCS) files, data are pre-processed to
ensure reproducible and reliable results. Pre-processing phases include compensation (spectral overlap
correction), data transformation (improvement of cell population visualization and automated cell
types identification), data cleaning (removal of dead cells, debris, doublets, etc.), and normalizations
(removal of batch effect between samples or balancing the contribution of each marker to the
analysis). Pre-processed samples are analyzed with automated tools here classified as “Automated
sequential gates”, “Boolean combinations gates”, and “Multivariate analysis” which include
“Clustering algorithms”, “Dimensionality reduction methods”, and “Trajectory inference” techniques.
Finally, statistical tests, correlation analysis and supervised machine learning techniques, such as
regression and classification, can be applied to detect differences between experimental groups or to
discover biomarkers.
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Table 1. Automated tools for the analysis of cytometric data. For each tool is reported the function,
the statistical platform in which they are available, and a brief description of the main function.

Function Software Availability Description Reference

Pre-processing

FlowCore R, Bioconductor Import, compensate and transform FCS files
in R environment [9]

FlowStats R, Bioconductor
Collection of algorithms to analyze flow

cytometry data, including correction of batch
effect

[10]

FlowClean R, Bioconductor
FlowJo plugin

Quality control of data set based on
compositional analysis [11]

FlowAI R, Bioconductor
FlowJo plugin

Quality control of data set based on flow rate,
signal acquisition and dynamic range [12]

CATALYST R, Bioconductor

Collection of algorithms to pre-process
cytometric data and to perform data analysis

(with FlowSOM clustering and
dimensionality reduction)

[13]

CytoNorm R Normalized batch effect using control sample
and clustering algorithm [14]

Automated
sequential gating

FlowDensity R, Bioconductor Provides tools for automated 1-D and 2-D
sequential gating [15]

OpenCyto R, Bioconductor
Facilitates automated 1-D and 2-D gating
methods in sequential way to mimic the

manual gating
[16]

AutoGate Standalone
software

Performs 2-D sequential gating to obviate the
need to draw arbitrary gates to define the

subsets in a gating
[17]

cytometree R
The algorithm relies on the construction of a

binary tree, the nodes of which represents
cellular populations

[18]

EPP Standalone
software

AutoGate extension. Algorithm that detects
the best 2-D gating strategy to identify

cellular populations
[19]

Boolean
combination gates

flowType R, Bioconductor
Phenotyping cytometric using

multi-dimensional expansion of 1-D
partitions

[20]

FloReMi R
Starting from flowType results identifies the

populations that best correlates with an
external outcome

[21]

RchyOptimyx R, Bioconductor

Starting from flowType results, constructs a
hierarchy of cells selecting the most

informative phenotypes for biomarker
detection

[22]

Clustering

FlowMeans R, Bioconductor
FlowJo plugin

Automated gating tool based on K-means
algorithm [23]

SPADE
R, Matlab,

Cytobank, FlowJo
plugin

Clustering method based combining
density-based sampling with hierarchical

clustering
[24]

HDPGMM Python
Clustering based on hierarchical modeling

extensions to the Dirichlet Process Gaussian
Mixture Model

[25]

Citrus Cytobank, R
Identifies cell populations with hierarchical

clustering and make prediction with
regression model

[26]

FlowSOM
R, Bioconductor
FlowJo plugin,

Cytobank

Clustering method combining SOM and
hierarchical clustering [27]
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Table 1. Cont.

Function Software Availability Description Reference

X-shift
Standalone

software, FlowJo
plugin

Clustering based on kNN density estimation
and cluster merging according Mahalanobis

distances
[28]

flowClust R, Bioconductor Model-based clustering using a t-mixture
model [29]

immunoClust R, Bioconductor
Model-based clustering on individual

samples. Includes an additional step to map
cluster between samples

[30]

SWIFT Matlab Clustering method based on splitting and
merging of Gaussian mixture models [31]

FLOCK C, Immport
Automated method partitioning of each

dimension into bins, followed by merging of
dense regions, and density-based clustering

[32]

flowPeaks R, Bioconductor Clustering method combining density-based
clustering and K-means [33]

ClusterX R Fast clustering by automatic search and find
of density peaks [34]

PhenoGraph Matlab, Python

Cells are visualized in a graph structure and
connected with weighted edge based on
neighbor shared by cell. Graph is then

partitioned in group of cells sharing similar
phenotypes

[35]

Dimensionality
reduction

t-SNE FlowJo plugin

Performs t-SNE in FlowJo, allowing to
manually gate region in dimensionality
reduced space to compare cell frequency

across samples

[36]

ACCENSE Standalone
software

Performs dimensionality reduction with
t-SNE algorithm, followed by clustering of

dimensionality reduced events with K-means
or DBSCAN algorithms

[37]

Rtsne R Performs t-SNE dimensionality reduction in
R environment [36]

viSNE Cytobank, Matlab Visualization tool based on implementation
of t-SNE algorithm [38]

EmbedSOM R, Bioconductor
FlowJo plugin

Dimensionality reduction technique based on
SOM [39]

UMAP R, Python, FlowJo
plugin

Dimensionality reduction technique based on
Uniform Manifold Approximation and

Projection (UMAP)
[40]

Destiny R, Bioconductor Performs dimensionality reduction with
diffusion map [41]

Fit-SNE R, Matlab, Python,
FlowJo plugin

Tool to perform dimensionality reduction
using Fast Fourier Transform-accelerated

Interpolation-based t-SNE
[42]

Trajectory inference

Wanderlust Matlab
Trajectory inference method based on kNN

graph: Developed to identify linear
transitions

[43]

Wishbone Matlab, Python Evolution of Wanderlust, it can identify
bifurcation in the trajectories [44]

Monocle R, Bioconductor Identification of bifurcated trajectory based
on MST [45]

PHATE Matlab, Python Identification of trajectory preserving
continual progressions, branches and clusters [46]

R, package or code working on R; Bioconductor, R package available on Bioconductor repository [47]; Python, code
or library written in Python language; Matlab, code or software based on Matlab language; C, code based on C
programming language; FlowJo plugin, downloadable tools to expand FlowJo functionality [48]; Cytobank, online
platform for single-cell analysis [49]; ImmPort, immunology database and analysis portal [50].
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3. Data Pre-Processing

Cytometric data are usually provided in the form of FCS files. Before proceeding with further
analyses, the raw-data included in FCS files needs to be pre-processed. Data pre-processing can
be subdivided in four principal steps: (i) compensation; (ii) transformation; (iii) cleaning; and (iv)
normalization (Figure 1).

Compensation. This step is necessary for adjusting the overlap between adjacent emission spectra
of different fluorochromes. Compensation algorithms are included in most of the acquisition and
analysis software packages that automatically perform this calculation.

Data transformation. Data transformation is an important step in automated analysis, as well as
in manual analysis, that facilitates cell population visualization and identification. Automated tools
can be influenced by asymmetric cell populations, frequent outlier events, cell populations whose
variance depend on their mean fluorescence intensity, and multiplicative errors in the fluorescence
channels. Data transformation plays an important role in mitigating these effects [51]. Data from flow
cytometry experiments usually range over 3-5 orders of magnitude. Thus, mapping, at least part of
the data range, to a logarithmic scale is often required, both for efficient visualization and automatic
analysis with Machine Learning algorithms. However, standard logarithmic transformations are rarely
adopted in flow cytometry for two main reasons. Firstly, as a consequence of the compensation step,
described in the previous section, input data might assume negative values, which obviously cannot
be represented into a pure logarithmic scale. Moreover, a logarithmic scale would shrink the data
range close to zero, which could hamper the identification of cell populations with low marker values.
A common strategy to avoid these problems is to transform data using the inverse of the hyperbolic
sine, as this function guarantees an almost linear transformation for values close to zero, while it
approaches a logarithmic scale both for highly positive and highly negative values. A drawback of the
hyperbolic sine transformation is that it uses a single parameter to control both the width of the linear
regime and its slope. In order to remove this restraint between width and slope, which could prevent
the identification of an optimal transforming function, it was proposed to use biexponential functions
for data transformation (which can be considered as generalization of the hyperbolic sine), and in
particular a special class of biexponential functions known as the logicle transformation. An advantage
of using the logicle transformation is that the parameters of the transforming function can be more easily
defined, and that they are linked to easily interpretable characteristics of the original data (Figure 2).

Data cleaning. Marginal events, debris, dead cells, and doublets should be removed, either
manually or automatically, as well as outliers, in order to use high quality data as input in the analysis.
Tools like FlowClean [11] and FlowAI [12] aim to automatically remove cells derived from anomalies
in the acquisition. Removing low quality cells reduces noise in data sets and avoids false positive
results or loss of rare populations [12].

Normalizations. The previous steps are required both for manual and automated analyses,
while data normalization is explicitly required only for multivariate analyses. The first step of data
normalization is to estimate batch effects, i.e. inter-sample variation. The flowStats package includes
two functions (warpSet and gaussNorm) to normalize the data on the base of high-density region
landmarks for individual flow channels [10], while in mass cytometry normalization of batch effect can
be performed with the packages CATALYST (Cytometry dATa anALYSis Tools) or CytoNorm [14,52,53].

In the second step of data normalization, the expression values of separate markers are modified
so that different makers have similar expression ranges. This is needed as many clustering and
dimensionality reduction algorithms compute the distance between cells or identify dense cell areas in
multidimensional space, and these analyses would be hampered by the presence of highly different
ranges among the various markers. To balance their contribution, each marker in the data set is
normalized (normalization between markers, also referred to as scaling), employing the z-score or
min-max normalization methods [32].
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Figure 2. Data transformations. (a) A random data set was generated using two gaussian distributions,
centered at 102 (10000 cells) and 2*103 (1000 cells), and with standard deviation equal to 102 and 103,
respectively. The probability histogram is shown on a linear scale. (b) Arcsinh transformation. The
parameter λ defines both the width of the linear region, and its slope. The transforming function is
approximately linear for λ close to zero, while it approaches logarithmic transformations when x >> λ

or when x << −λ. (c) Logicle transformation. The shape of the transforming function is defined by the
parameters M, A, and W, which can be intuitively interpreted respectively as the number of decades,
the number of negative decades, and the width of the linear region. (d) Probability histogram of the
data in a transformed with the arcsinh function. (e) Probability histogram of the data in a transformed
with the logicle function.

4. Automated Data Analysis

After pre-processing, the next phase in the automated analysis of cytometric data is the discovery
and quantification of different cell populations. The main advantages and limits of different strategies
are described below.

4.1. Automated Sequential Gating

Automated tools for sequential gating automatically compute gates around cell populations
in bi-dimensional plots, overcoming the operator subjectivity due to manual drawing. Instead,
the sequence of the markers analyzed is still defined by the operator. OpenCyto [16] and
FlowDensity [15] R packages, as well as the standalone executable software AutoGate [17], assist
the operator in the definition of mono- and bi-dimensional gates, by using methods for boundary
definition based on density estimation techniques. The main advantage of the automated sequential
gating approach is represented by the automated identification of the cell population in the
bi-dimensional scatter plots, overcoming the limitations linked to the manual drawing of gate
boundaries, thus improving reproducibility. An evolution of these algorithms is represented by
tools that automatically identify the gating strategy. Cytometree, implemented as R package, aims
to construct a binary tree in which the nodes represent gates and the binary tree represents the
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best mono-dimensional sequential gating strategy used to identify the cellular sub-populations [18].
The AutoGate software has been recently implemented with the Exhaustive Projection Pursuit (EPP)
clustering approach which automatically detects the best two-dimensional gating strategy to identify
the cellular sub-populations [19]. Automated detection of the gating strategy allows to analyze all
cells in the dataset, without discarding cells from the analysis, as occurs when the gating strategy is
user dependent.

4.2. Boolean Combination Gates

Boolean combination gates analyze all the possible combination of marker expressions, overcoming
the issue of selecting pairs of parameters and the hierarchy that characterize manual analysis.
This approach is fast, capable of considering all cells in a dataset, and it allows to compare different
phenotypes across samples. The main limitations of Boolean gates regard the visualization of the
results when the number of parameters increase and the difficulty of separating populations in the
mono-dimensional gating step (Supplementary Figure S1).

A tool for performing Boolean combination gating is flowType, which is an R package available
on Bioconductor repository, that automatically bisects cells in positive and negative for each analyzed
marker [20], and it provides as output all possible phenotype combinations, including parent
populations. Although the high number of possible phenotypes hampers the visualization of
the results, this approach is particularly suitable for biomarker identification, since it explores the
dataset considering all the possible marker combinations. To this aim, FloReMi and RchyOptimyx
packages might be used to better interpret flowType results [21,22]. In addition to R packages, Boolean
combination gates are also available as a FlowJo tool.

4.3. Multivariate Approach

Algorithms based on clustering, dimensionality reduction, and trajectory inference fully switch
from the univariate/bivariate analysis to a multivariate approach. These tools consider the distribution
of all markers simultaneously in the whole dataset, overcoming many of the manual gating limitations.

4.3.1. Clustering

Clustering based approaches identify and separate cells with similar marker profiles into cell
clusters. This is the only multivariate approach which allows to quantify cell subsets in different
samples and to perform comparative analysis between different experimental groups (e.g. stimulated
samples versus control). The clustering tools can be classified on the basis of the kind of algorithm
used for diving the cells into separate populations. SPADE (spanning tree progression of density
normalized events) [54] and Citrus [26] are based on hierarchical clustering algorithms. The popular
K-means, in which events are iteratively assigned to k clusters, is the algorithm on which flowMeans is
based [23]. In PhenoGraph, cells are connected by weighted edges, where sets of highly interconnected
cells represent phenotypically similar cell (or “communities”) that can be partitioned in clusters using
similar community-detection algorithms used for the analysis of social networks [35]. Algorithms such
as flowClust [29], immunoClust [30], SWIFT [31], and HDPGMM [25] are model-based techniques
and assume each cell type can be modelled as a multivariate statistical distribution. Other tools are
built upon density-based algorithm, such as FLOCK (FLOw Clustering without K) [32], X-shift [28],
flowPeaks [33], and ClusterX [34], in which more dense regions are identified and used as cluster centers.

An evaluation of the performance of automated gating techniques can be found in Weber and
Robinson [55], where different algorithms are compared with manual gating. In the Weber and
Robinson benchmark, FlowSOM [27] has emerged as one of the algorithms with highest performance
for the automated identification of cell populations (measures as F-score with respect to manual gating
results), being at the same time one of the fastest ones. FlowSOM has been recently included in FlowJo
as a plugin.
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Visualization of clustering results is an important step to appropriately interpret the results and
many tools include visualization implementation. Histograms and dot plots are used to display marker
distribution in a cluster comparing with a parental population. Other approaches aim to visualize
inter-cluster relationship, showing clusters centroids, cluster median values or frequency of positive
cells with minimum spanning three (MST), heatmaps, scaffold map, and dimensionality reduction
techniques [27,54–57].

4.3.2. Dimensionality Reduction

Dimensionality reduction techniques aim to map high-dimensional data into a lower-dimensional
space by losing as little information as possible. In the field of cytometry, dimensionality
reduction is usually adopted to easily visualize the data, generally in two- or three-dimensional
plots. These low-dimensional plots provide a straightforward visualization of the structure of
multidimensional data, maintaining the information of data at a single-cell level, which instead is lost
in clustering analyses. Principal component analysis (PCA) is a widely used method for reducing the
dimensionality of multivariate data by linearly mapping the original variables into a low number of
principal components (PCs). The resulting PCs represent a new set of variables oriented along the
direction of maximum variance in the original dataset. Since PCA performs linear transformations to
reduce dimensionality, it might be not optimal for reducing the number of dimensions in biological
systems, where nonlinear relationships are common. This shortcoming might produce artefacts in
low-dimensional space, with two points close in the low-dimensional space but not in the original
multidimensional space. In cytometry, one of the most commonly used dimensionally reduction
technique, that overcomes the limitation of linear transformations inherent in PCA, is the t-distributed
stochastic neighbor embedding (t-SNE) algorithm [36], a tool available in R and in FlowJo. This method
aims to map points from the high-dimensional space to the low-dimensional map by minimizing
the difference in all pairwise similarities. Two of the most used tools for analyzing cytometric data,
based on the t-SNE algorithm, are viSNE [38] and Automatic Classification of Cellular Expression by
Nonlinear Stochastic Embedding (ACCENSE) [37].

The main drawback of t-SNE is the high computational cost of the algorithm, with the consequence
that usually the low-dimensional maps are built using a limited number of cells obtained with a
down-sampling of the original data. Moreover, it is important to remark that the algorithm includes a
series of stochastic steps and consequently different analyses will give slightly different results. Recently,
new dimensionality reduction tools such as EmbedSOM [39], diffusion maps [58,59], Fit-SNE [42],
and UMAP (Uniform Manifold Approximation and Projection) [40] have been developed and applied
to single-cell data to overcame t-SNE limitations. Dimensionality reduction is purely a visualization
tool and does not allow the exact quantification of the identified population that requires a subsequent
step. In flowJo, a manual gating analysis can be performed on dimensional-reduced t-SNE map, while
other tools such as ACCENSE [37] perform an automated gating on t-SNE map.

4.3.3. Trajectory Inference

The last and most recently developed approach for analyzing single-cell dynamic processes are
the trajectory inference methods. This approach aims to model the cell development and the transitions
between different cell states by following marker expression gradients in the multi-dimensional data set.

Trajectory inference makes a step forward compared to clustering and dimensionality reduction
algorithms, allowing at a single-cell level the unbiased study of cell processes such as the cell cycle,
cell differentiation and cell activation. Starting from a mixture of different cells, these algorithms
reconstruct the development stages that cells are following, ideally sorting the immature cells first,
followed by the transitional stages, and finally the mature cells. With multivariate algorithms, and in
particular trajectory inference methods, the multicolor panel design is crucial, to ensure that all relevant
transitional states can be detected [60]. While different trajectory inference approaches have been
developed for single-cell transcriptomic application [61–65], a limited number of methods have been
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applied to cytometry analysis. Wanderlust detects linear transition, starting from a user-defined
starting cell and subsequently ordering the rest of the cells [43], on the other hand, Wishbone, Monocle,
and PHATE are able also to detect a bifurcation in the trajectory, enabling to characterize different cell
lines that are difficult to identify within a linear model [44–46]. The interest in the trajectory inference
field is growing rapidly, with a rising number of tools developed each month [63]. Their application in
studying cell differentiation and development is currently limited to single-cell transcriptomics data,
but it is likely that in the near future many of these tools could also be used to analyze data from flow
and mass cytometry.

4.3.4. Multivariate Analysis Settings

Multivariate analysis bypasses the need to make choices that could influence the results, such
as the definition of gates or the sequence of analyzed markers. However, the selection of optimal
parameters by the operator still plays a key role, and sometimes the analysis has to be repeated multiple
times in order to identify the best settings [66]. A crucial point in multivariate analysis is the number of
target cell populations that is required as input parameter in many tools such as FlowMeans, FlowSOM,
or SPADE. In the definition of the number of clusters, two conflicting requirements need to be taken
into account. With a high number of clusters, the clusters are more homogenous, and it is more likely
to identify rare populations, but visualization and interpretation of the results is highly complicated by
over-fragmentation and noise. On the other hand, a low number of clusters makes visualization and
interpretation easier, but it increases the likelihood of missing interesting cell populations. A common
method for estimating the optimal number of clusters is the “elbow-method”, in which the sum of the
square distances of all the samples from the corresponding cluster centers (cost function) is plotted
as a function of the number of clusters. Nevertheless, it is not always easy to identify the optimal
number of clusters, therefore, it is advisable to set the number of clusters slightly higher than expected
populations in order to ensure that the relevant cell types can be found [60].

Algorithms that do not directly require the number of clusters could still include parameters that
affect the number of populations. For example, FLOCK, a density-based clustering algorithms, has two
main parameters (the number of bins and the density threshold) that influence the estimated density
and, indirectly, the number of resulting cell populations [32]. In t-SNE, perplexity is a parameter
that influences the similarity measure. Roughly, with a low perplexity, the algorithm considers as
similar only the nearest cell, resulting in an over-fragmentation of the populations; while, with a high
perplexity, all cells are considered to have the same similarity, resulting in random distributed points
on the map. Typical perplexity value are between 5 and 50 [36] and to get the most from t-SNE, it is
recommended to analyze multiple plots with different perplexities. Another important choice is the
selection of the parameters (markers) to include in the analysis. The so-called “curse of dimensionality”
affects multivariate analyses when a high number of variables are considered in once. It was suggested
that the curse of dimensionality could also affect multivariate analysis of cytometric data [67]. However,
comparative studies by the FlowCAP project have shown that many of multivariate tools have reached
a level of maturity that matches, or even surpasses, the results produced by human experts [6,55,68].
Nevertheless, it is recommendable to choose the more appropriate markers to include in the analysis
in order to reduce dimensionality, complexity, and noise of datasets (e.g.: removing from the analysis
markers that show only negative population).

5. Interpretation of the Results

The final phase in an automated analysis pipeline is the interpretation of the data-driven results.
Generally, the cell populations identified have to be compared among different experimental groups.
In manual analysis, statistical tests such as Mann–Whitney or Kruskal–Wallis are generally performed to
identify populations with statistically relevant differences between experimental groups. When used in
automated analysis, the use of multiple tests correction becomes necessary, such as Benjamini–Hochberg
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or Bonferroni, since many statistical comparisons are performed, increasing the probability that a type
I error (false positive error) occurs.

Correlation test or supervised Machine Learning methods, such as multivariate regression and
classification, can also be used to identify a signatures that correlates with an external variable [6].
Multivariate regression is used to model an association with a continuous outcome variable,
while classification methods can be used to identify links with a categorical clinical outcome of
interest, such as a pathology. Once trained, these machine learning methods can be used to make
predictions about new samples, where the output variables, being continuous or categorical, is
unknown. Some packages, such as Cytrus and FlowSOM, includes possible statistical tests to be
applied down-stream to the clustering analysis.

6. Impact of Automated Analysis in the Knowledge of Biological Processes

Increasing numbers of automated analyses of multidimensional cytometry data have been
published in the last years, as reported in Figure 3a. The analysis has been performed using Web of
Science, starting from the articles describing the automated tools reported in Table 1, then selecting
all the citing articles (7613), and refining the search for “cytometry” (1018 articles). The time course
analysis shows a rising trend of publication starting from 2008, the year of publication of t-SNE [36]
and flowClust [29], up to date, with a stronger increase in the 2014–2019 period. In these years,
three special issues of Cytometry Part A, the journal specialized in quantitative single-cell analysis by
cytometry techniques, have been entirely dedicated to the computational analysis of flow cytometry
data. Two of them were built around the “Flow Cytometry: Critical Assessment of Population
Identification Methods (FlowCAP)” project [69], aimed at advancing the development of computational
methods for the identification of cell populations of interest in flow cytometry data, under the direction
of an open consortium of immunologists, bioinformaticians, statisticians, and clinical scientists [70,71].
The third one, “Machine learning for single cell data”, is a special issue focused on the development and
comparative analysis of machine learning methods and their application to single cell data, planned to
be published in February 2020.

Articles reported in Table 1 are technical reports on software/methods development, where test
datasets have been employed for evaluating their power or comparing the performance of available
tools. The analysis shows that vi-SNE and ACCENSE, implementations of t-SNE, are the tools most
cited for dimensionality reduction analysis, while Phenograph, SPADE, Citrus, FlowSOM, and X-shift
for clustering approaches (Figure 3b). For the pre-processing step, FlowCore has the highest number of
citations, since it offers essential function such as compensation and transformation of data, while new
tools, such as FlowClean and FlowAI, recently published (2016) are aimed at data refinement, such as
elimination of the outliers and anomalies during acquisition. Most of these tools are available in
the R platform, and their use has been partially limited to bioinformaticians and researcher with
programming expertise, even though they are available as open-access software. Indeed, analyzing the
category of the journals selected for publication (Figure 3c), the majority (about 70%) are specialized in
cytometry, methods and computer science, while only about 20% are in multidisciplinary and less than
10% immunology/life science journals.

An effort made to simplify the use of some automated tools has been the development of software
with user-friendly interfaces an plug-ins capable of extending the functionality of the FlowJo software.
This strategy has the advantages of combining the use of one of the most popular software for flow
cytometry with automated analysis, thus helping the researchers to approach to the computational
analysis of multiparametric data.
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Figure 3. Analysis of the impact of automated tools on the scientific literature. (a) Numbers of
publications per year, from 2008 to December 2019, on automated analyses of cytometry data. The query
was performed with Web of Science starting from the articles reported in Table 1, selecting all the citing
articles (7613), and refining the search for “cytometry” (1018 articles). (b) Numbers of citations each
year of the reference articles of each automated tool reported in Table 1 (x axis); bars were colored
according to the tool function. (c) Pie chart representation of the percentage of journals chosen for the
publication of the reference article of each automated tool reported in Table 1.

Since comparative studies between manual versus automated analysis have demonstrated that
many of the available tools can efficiently achieve the same results produced by manual gating [6,7],
automated analysis have been applied, in recent years, for the identification of different cell populations
in biomedical research and clinical diagnostic analysis [72]. One of the first computational approaches
applied to clinical data analysis was conducted for identifying immunological correlations of HIV
protection. Automated analysis was applied to a dataset derived from a large retrospective study of
individuals at the early stage of HIV infection, and allowed to identify three T-cell subsets whose
frequency during early infection had a statistically significant relationship with clinical progression
to AIDS [20]. In the field of hematologic malignancies, successful application of computational
methodologies have also been reported for acute lymphoblastic leukemia (AML) aimed at improving
the discrimination between leukemic and normal cells [73,74], identifying B cell precursor as
predictors of disease relapse [75], monitoring the minimal residual disease [76,77], evaluating the
disease progression [78], or characterizing the immune alterations in AML patients [79]. Moreover,
computational methods have been used on existing clinical flow cytometric data to improve diagnostic
accuracy to distinguish mantle cell lymphoma from small lymphocytic lymphoma [80], or discriminate
various subpopulations of blood cells in the context of B-chronic lymphocytic leukemia [81]. Complex
data sets generated by multi-parametric flow cytometry have been analyzed with automatic tools
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for characterizing myeloid and lymphoid cells in steady state [82–84], during the differentiation
process [85,86], and in pathological conditions [87–93].

The automated analysis approach is therefore a powerful tool for unambiguous and unbiased
characterization of cells, their subpopulations, functions, and roles in physiological and pathological
conditions, applicable both in biomedical research and clinical diagnostic analysis [72,94].

7. Flow Cytometry in Vaccine Studies and the Advantages of Computational Analysis

Flow cytometry is a powerful technology for the characterization of multiple immune functions in
response to vaccination, and both humoral and cellular components can be measured and characterized
by flow cytometry-based assays. Multiparametric flow cytometry can be particularly suitable for
the deep characterization of cellular immune responses, allowing to measure the phenotype and
the functional features of rare cells, such as antigen-specific cells. The study of the CD4+ T cell
activation and their effector function is fundamental in the characterization of immune responses
to vaccination [95]. T helper cells are indeed closely related with long-term humoral immunity and
modulate the functions of macrophages and CD8+ cytotoxic T cells through cytokines secretion,
thus playing a central role in mediating vaccine immune responses [96]. Through flow cytometry, it is
possible to directly and specifically identify antigen-specific T cells, using the major histocompatibility
complex (MHC) tetramer staining technology [97,98], a procedure that has been used for characterizing
antigen-specific T cell responses both in pre-clinical and clinical studies [99–101]. Furthermore, the
combination of tetramer-staining with intracellular cytokine detection allows to assess, at single-cell
level, the polyfunctional activity of antigen-specific T cells [102,103]. These procedures can be applied to
better understand the complex functional profile of CD8+ and CD4+ T cell responses upon vaccination
or infection.

Multiparametric flow cytometry can be particularly suitable also for characterizing polyclonal
antibody responses elicited by vaccines, through a set of antibody-detection or cell-based functionality
assays that can allow to identify humoral features that correlate with protection [104]. Antibody
Fc-mediated mechanisms, such as cellular cytotoxicity, phagocytosis, direct pathogen killing,
and modulation/stimulation of innate and adaptive immunity, can contribute, beyond neutralization,
to confer protection against many pathogens. These mechanisms can be measured trough a range
of different flow cytometry-based functional assays, that integrated with biophysical assays through
Machine Learning methods, can contribute to profile the polyclonal antibody response and to identify
immunological correlates and mechanism of humoral protection [104,105]. A complementary approach
to the antibody response characterization is the study of the B cell response to vaccination, in which
the production of plasma cells and memory B cells can be deeply analyzed by flow cytometry and its
development and dissemination can be tracked between lymphoid organs and blood.

Automated analysis of cytometry data represents a powerful tool for the interpretation of large
datasets in an unbiased way, that can be instrumental to profile the vaccine immune response.
This analysis might unmask the detection of specific phenotypes/effector cells, that could be hardly
detected with the manual analysis, and identify particular cell types (biomarkers) that can be specifically
induced by tested vaccine formulations. Automated analysis has become particularly necessary as the
size of marker panels has increased and consequently the number of cell populations identified by the
combination of different markers has exponentially raised. Thanks to the computational approach, it is
possible not only to identify cell populations according to the expression of two or three well-known
specific surface markers, but also to distinguish different subsets within a population, based on
combination of the other surface molecules expression. These subsets can be cells at intermediate stages
of differentiation, or novel unexpected phenotypes. By applying the FlowSOM clustering approach
different clusters of B cells elicited by immunization with a tuberculosis vaccine antigen combined
with the liposome-based adjuvant CAF01 have been characterized [57]. Employing a computational
approach, it was possible to identify many plasmablast subsets and different germinal center B cell
subtypes. The clustering approach, followed by a statistical analysis between groups immunized with
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or without the adjuvant component, has allowed us to identify a group of plasma cells as a specific
biomarker of immunization with the adjuvanted-vaccine formulation [57]. Another clustering tool,
FLOCK, was used for characterizing seventeen different B-cell subsets in human blood and to identify
and quantify novel plasmablast subsets responding transiently to tetanus and other vaccinations
(diphtheria toxoid, trivalent influenza vaccine 2009, H1N1 monovalent influenza vaccine, Hepatitis A,
and Hepatitis B) [32].

Automated analysis can be particularly efficient also for identifying polyfunctional antigen-specific
T cells elicited by vaccine administration or natural infection. Different computational tools,
ranging from the Boolean combination gates, FlowSOM, or integrated approach combining targeted
feature extraction (OpenCyto) with dimension reduction (t-SNE) have indeed been used to profile
the polyfunctional activity of tuberculosis antigen-specific T cells and visualize treatment-specific
differences between different vaccine formulations [106–108]. These studies demonstrate the importance
of automated approaches to identify and visualize changes in very rare, multifunctional, antigen-specific
T cells across different conditions, in flow cytometry datasets.

8. Conclusions

Automated analysis of cytometric data has widely been demonstrated to efficiently achieve
reproducible results compared to manual analysis, with the important advantages of eliminating
the bias toward expected populations, the subjectivity in manual drawing of gates and in marker
selection, and most importantly the possibility to identify unexpected cell populations. The potentiality
of the automated analysis of cytometry data ranges from the improvement of the data quality in
the pre-processing steps up to the unbiased, data-driven examination of complex dataset using a
variety of algorithms based on different approaches. Automated tools such as clustering algorithms
or dimensionality reduction techniques fully switch from the bi-variate to a multi-variate analysis,
overcoming most of the drawbacks that affect classical manual analysis, which are still partially present
in automated sequential gating and Boolean combination gates. Moreover, combined approaches
using more than one algorithm can further improve the automated analysis [109]. The development of
automated tools addresses many needs associated with high-dimensional datasets, and the awareness of
their potential is now expanding from computer scientists to immunologists/biologists, as demonstrated
by the rising numbers of scientific publication in fields such as oncology and immunology, reported
in recent years. Nevertheless, this process is still at the beginning, and efforts aimed at encouraging
interdisciplinary cooperation, simplifying the graphical user interface of the computational tools,
and training the next generation of flow cytometry experts are necessary to further increase the
application of automated analysis to complex cytometry data. The use of automated tools can
significantly contribute to the interpretation of cytometric data in a more reliable and efficient way,
and to improve the knowledge of cellular populations, their function and roles in physiological and
pathological conditions. Cellular profiles obtained with automated analysis of complex flow cytometry
datasets can be integrated through a systems biology approach with the molecular profile achieved
with the omic technologies, such as genomics, transcriptomics, proteomics, and metabolomics, together
with clinical readouts, for better understanding the behavior of the immune system in response to
antigenic challenges, such as vaccination or infection.
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Figure S1: Comparison between Boolean combination of 1D gates and 2D gates.
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