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Insight-based vocalization of OLAP sessions

Matteo Francia[0000−0002−0805−1051], Enrico Gallinucci[0000−0002−0931−4255],
Matteo Golfarelli[0000−0002−0437−0725], and Stefano Rizzi[0000−0002−4617−217X]

DISI - University of Bologna, Bologna, Italy
{m.francia,enrico.gallinucci,matteo.golfarelli,stefano.rizzi}@unibo.it

Abstract. Carrying out OLAP analyses in hands-free scenarios requires
lean forms of communication between the users and the system, based for
instance on natural language. In this paper we introduce VOOL, a frame-
work specifically devised for vocalizing the insights resulting from OLAP
sessions. VOOL is self-configurable, extensible, and is aware of the user’s
intentions expressed by OLAP operators. To avoid overwhelming the
user with very long descriptions, we pursue the vocalization of selected
insights automatically extracted from query results. These insights are
detected by a set of modules, each returning a set of independent insights
that characterize data. After describing and formalizing our approach,
we evaluate it in terms of efficiency and effectiveness.

Keywords: Vocalization · OLAP · Data warehouse

1 Introduction

The democratization of data access pushes towards the adoption of OLAP (On-
Line Analytical Processing) tools, which make data fruition and analysis easier
by enabling “point-and-click” queries on the multidimensional cubes stored in a
data warehouse. The scenarios requiring hand-free interfaces (e.g., in the field of
augmented reality [9] or smart assistants [7]) make this push even more pressing
and ask for the introduction of leaner forms of communication between the users
and the system, based for instance on natural language. As argued in [28], this
setting is not only motivated by the needs of specific user groups, such as visually-
impaired ones. More in general, we are assisting to a shift of user-computer
communication towards voice interfaces, which are more convenient if users are
distracted or unable to access screen and keyboard. While the translation of
natural language into actionable OLAP queries has recently been addressed [7],
the way to the vocalization of query results has been paved only partially. The
goal of this paper is to contribute to bridging this gap.

The description of the many facets shown by the cube resulting from an
OLAP query can span from simple insights (e.g., min/max or Top-k) to complex
ones (e.g., clusters and outliers); these, in turn, can be representative of very
different amounts of facts in the cube. Additionally, according to the OLAP
paradigm, data analyses come in the form of sessions, where a query q′ can be
obtained by applying an OLAP operator to the previous one, q. Hence, differently
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Fig. 1. Functional view of VOOL

from a generic sequence of stand-alone queries, q and q′ are strongly related,
which enables the detection of insights based on the comparison of the results
of consecutive queries. These insights should also be related to the intention
expressed by the user when applying an OLAP operator; for instance, drill-
down refines the previous result while slice-and-dice shifts the focus to a specific
part of the result. Overall, in our vision, the desiderata for a framework for the
vocalization of OLAP sessions are the following:

#1 Intention-awareness: it must generate vocalizations that describe the com-
parison of the results of subsequent queries rather than those of a single
one; in generating such vocalizations, it must consider the user’s intention
as expressed by the OLAP operator and aggregation operator applied.

#2 Extensibility : it must rely on interfaces that make ad-hoc modules easily
pluggable since vocalization is inherently multi-faceted.

#3 Timeliness: it must produce vocalizations responsively, avoiding long delays
in returning results to the user.

#4 Conciseness: it must produce vocalizations that take a limited time not to
overwhelm the user.

Following these desiderata, in this paper we present VOOL, a framework
specifically devised for the VOcalization of OLap sessions. A functional view of
VOOL is sketched in Figure 1 (the querying component is grayed out since it is
out of the scope of this paper and has been extensively discussed in [7]). Given
the result of either a completely-specified query (e.g., “Sales by Customer and
Year”) or an OLAP operator that refined the previous query (e.g., “Drill down
to Month”), the insight generator executes concurrent modules, each returning
a set of independent insights that characterize this result. Out of all the insights
returned, the insight selector applies an optimization algorithm to return only
the most relevant insights given a limited budget (e.g., related to the duration
of vocalization); these insights are then sorted into a comprehensive description
that is vocalized to the user.
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The remainder of the paper is organized as follows. Section 2 discusses the
related work. Section 3 provides an overview of VOOL by sketching its functional
architecture and the vocalization steps. Section 4 formalizes the necessary back-
ground. Section 5 describes the vocalization process, while Section 6 details one
of the modules we implemented to support the VOOL framework. Finally, Sec-
tion 7 evaluates the approach by means of a set of tests, draws the conclusions,
and envisions the directions for evolving VOOL.

2 Related work

The first research area that intersects with our contribution is exploratory data
analysis, a knowledge discovery process in which users explore datasets through
sessions that concatenate a sequence of operations. In this context, two interest-
ing research directions are recommendation and insight extraction. As to recom-
mendation, many studies focus on learning users’ preferences and profiling data
to give recommendations on the exploration path [27,25]. This is orthogonal to
our approach since our goal is not to suggest to the user how to build a session,
but rather to return concise insights on the data resulting from a user-defined ses-
sion. As to insight extraction, OLAP comes with well-known operators to explore
multidimensional cubes [22]. Additional operators have been recently classified
as [13] coverage (returning insights that cover tuples with certain values [12,4]),
information (returning insights providing information about the distribution of
measure values [10]), and contrast (returning insights occurring with some values
but not the others [24,8]). These operators are complementary to VOOL, since
they are potential modules to be plugged into VOOL (as we have already done
for [4,10,29,8]). Cinecubes [11], the contribution closest to VOOL, compares the
results of a query to results obtained over sibling values or drill-downs to produce
insight. With respect to Cinecubes, VOOL allows the description and vocaliza-
tion of a user-defined OLAP session and also leverages the user’s intentions to
drive insight extraction.

Another research area closely related to our work is that of conversational
systems. Natural language interfaces to operational databases enable users to
specify complex queries without previous training on formal programming lan-
guages (such as SQL) and software [1]. Some examples of approaches that trans-
late natural language into formal SQL/OLAP queries are [17,23,7]. In hand-free
scenarios, some emphasis has been given on the one hand to providing effective
summarizations of query results, which enables the creation of concise analytic
reports [9,6]; on the other hand, some vocalization approaches have been pro-
posed. In [26], the authors translate a database subset into a narrative that
synthesizes the contents of the subset following a set of rules and templates. In
[5], the authors leverage the provenance of tuples in the query result, detailing
not only the results but also their explanations. Finally, a couple of works are
placed in the context of multidimensional data and OLAP. In [28], the authors
sample the database to evaluate alternative speech fragments; OLAP queries are
not fully evaluated and sampling focuses on result aspects that are relevant for
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voice output. In [21] an end-to-end dialog system is introduced, but the vocal-
ization approach is limited (when too many rows should be returned, only the
count of rows is returned).

Overall, in the light of the above-mentioned contributions, it appears that the
road to full-fledged conversation-driven OLAP is not paved yet, since end-to-end
conversational frameworks are not provided in the domain of analytic sessions
over multidimensional data. The closest contribution to VOOL is [28]; however,
differently from VOOL, that approach only copes with stand-alone queries, so
the vocalization does not take into account the comparison of the sequential
query results emerging from OLAP sessions; besides, it is not extensible and
does not provide a dynamic interest-based vocalization of the insights.

3 Overview

The interaction with VOOL takes place as follows. (i) A user issues an initial
query (typically, the first one in a session), whose result is computed; (ii) a set
of vocalization insights (i.e., descriptions of insights) are extracted out of the
query result; (iii) the most interesting insights are vocalized. Every time the
user issues a new query by applying an OLAP operator (obtaining a refined
query), this process is repeated; the difference is that the insights extracted may
describe not only the result of the last query, but also its comparison with the
results of the previous query.

Vocalization of initial queries. The result returned by the Querying component
is sent to the insight generation step, in which a set of modules analyzes the query
result to produce different types of insights. Each insight is characterized by a
natural language description, an interestingness, a coverage (i.e., the number of
tuples covered by the description), and the cost necessary for its vocalization
(e.g., the number of words of its natural language description). An example of
natural language description for an insight produced by a Top-k module is “The
facts with highest Quantity are Beer with 80, Wine with 70, and Cola with 30”.
Since the number of insights can be arbitrarily high (a module can return any
number of insights and there is no limit to the number of modules), the insight
selection step determines the insights eligible for vocalization in such a way that
the total time necessary for vocalization does not overcome a given time budget
and the total interestingness is as high as possible. Finally, the selected insights
are vocalized from the most general (i.e., those with high coverage) to the most
specific (those with low coverage).

Vocalization of refined queries. The results of the current query and of the pre-
vious one are sent to the insight generation step. In this case, both cubes are
used to extract the insights entailing the comparison and description of consec-
utive results. For instance, in the sales domain, after drilling down sales from
product category to product, a user might be interested in outstanding products
that were previously hidden within average-performing categories. After insight
generation, vocalization proceeds as for an initial query.
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Fig. 2. (Simplified) DFM representation of the Sales cube schema

4 Formal background

A cube is the multidimensional representation of a business phenomenon relevant
for decision making, and is defined through the following steps.

Definition 1 (Hierarchy and Cube Schema). A hierarchy is a couple h =
(L,�) where (i) L is a set of categorical levels, each level l being coupled with
a domain of members, Dom(l); (ii) � is a roll-up partial order of L. A cube
schema is a couple C = (H,M) where (i) H is a set of hierarchies; (ii) M is a
set of numerical measures, each coupled with an aggregation operator op(m) ∈
{sum, avg, min, max}.

Example 1. As a working example we will use cube schema Sales = (H,M),
whose conceptual representation according to the DFM [14] is shown in Figure 2:

H = {hDate, hCustomer, hStore, hProduct}

M = {Quantity,Revenue,UnitPrice}

Date � Month � Year, Store � S.City � S.Country, . . .

We have op(Quantity) = op(Revenue) = sum and op(UnitPrice) = min. ✷

Aggregation is the basic mechanism to query cubes, and it is captured by
the following definition of group-by. As normally done when working with the
multidimensional model, if a hierarchy h does not appear in a group-by it is
implicitly assumed that a complete aggregation is done along h.

Definition 2 (Group-by and Coordinate). Given cube schema C = (H,M),
a group-by of C is a tuple G of levels. A coordinate of group-by G is a tuple of
members, one for each level of G.

Definition 3 (Base Cube). Let G0 be the finest group-by. A base cube over
C is a partial function C0 that maps the coordinates of G0 to a numerical value
for each measure m in M .

Each coordinate γ that participates in C0, with its associated tuple of measure
values, is called a fact of C0. The value taken by measure m in the fact cor-
responding to γ is denoted γ.m. With a slight abuse of notation, we will also
consider a cube as the set of the coordinates corresponding to its facts.
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Example 2. Three group-by’s of Sales are G0 = 〈Date,Customer, Store,Product〉,
G1 = 〈Month,C.City,Gender〉, and G2 = 〈Year〉, where G0 �H G1 �H

G2. Coordinates of the three group-by’s are, respectively, γ0 = 〈2021-04-15,
Rossi,BigMart,Beer〉, γ1 = 〈2021-04,Rome,Male〉, and γ2 = 〈2021〉. ✷

Definition 4 ((Cube) query). Given a base cube C0 over schema C, a query
over C0 is a quadruple q = (C0, Gq, Pq,Mq) where (i) Gq is a group-by of C; (ii)
Pq is a (possibly empty) set of selection predicates each expressed over one level
of H; (iii) Mq ⊆ M .

Example 3. A query over Sales is the one returning the total quantity sold by
product, which can be formalized as q = (C0, Gq, Pq,Mq) where Gq = {Product},
Pq = ∅ (i.e., no selection predicate is applied), and Mq = {Quantity}. ✷

An OLAP session is a sequence of queries; the first query in a session is
completely specified, while each of the others is obtained as a refinement by
applying an OLAP operator to the result of the previous one. A formal definition
of the OLAP operators we will consider in this work can be found in [7]; here
we just give an intuition:

– Roll-up aggregates data (e.g., from Product to Type).
– Drill-down disaggregates data (e.g., from Type to Product).
– Slice-and-dice filters data based on a predicate (e.g., Product = ‘Beer’).

5 The vocalization process

As already stated, the VOOL framework includes three main stages, namely,
Insight generation, Insight selection, and Vocalization; all of these are described
in the following subsections.

5.1 Insight generation

At this stage, a set of modules (e.g., the Top-k function or a clustering function)
are executed to extract insights (e.g., the top-3 facts or a pair of clusters) de-
scribing query results. An insight consists of a set of components, each describing
either a single fact (e.g., a fact belonging to the top-3 facts) or a group of facts
(e.g., a cluster).

Definition 5 (Module). Given two cubes C and C ′ resulting from two consec-
utive queries in an OLAP session (with C = ∅ when vocalizing an initial query),
a module is a function F (C,C ′) = SF , where SF is a set of insights.

The executability of a module is subject to the fulfillment of specific conditions,
which may concern the applied OLAP operators, the measures involved in the
query result, and the aggregation operator used in the query. Note that, consis-
tently with desideratum #2 (Extensibility), this definition allows the application
of any function capable to extract insights from one or two cubes.
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Product Quan�ty
Beer 80

Wine 70

Cola 30

Bagel 8

Pizza 6

Bread 5

C' = q(Sales,{Product}, ∅, {Quantity})

Fig. 3. The cube C
′ resulting from the (initial) query in Example 3, which represents

the Quantity sold by Product

Definition 6 (Insight). An insight s ∈ F (C,C ′) is a set of components; each
component v ∈ s describes a set of facts of C ′, denoted as Desc(v). Insight s is
characterized as follows:

(i) NL(s) is the natural language description of s.
(ii) int(s) is the interestingness of the insight, i.e., its estimated relevance to

the decision-making process, defined as

int(s) =
∑

v∈s

int(v)

where int(v) ∈ (0, 1] is the interestingness of component v.
(iii) cov(s) ∈ (0, 1] is the fraction of cube facts covered by the insight, called

coverage:

cov(s) =
|
⋃

v∈s v|

|C ′|

(iv) cost(s) ∈ N is the cost related to the vocalization of s, measured as the
number of words in NL(s).

The natural language descriptions of insights, NL(s), are generated from pre-
defined module-specific grammars. The interestingness of insight components,
int(v), is also specific of each module; an example of how int(v) is defined for
one module will be provided in Section 6. Intuitively, an insight with high cov-
erage is more general, one with small coverage is more specific.

Definition 7 (Insight space). Let F be the set of all modules. Given two
consecutive cubes C and C ′ in an OLAP session (possibly with C = ∅), their
insight space is the set of the sets of insights produced by all modules:

S = {F (C,C ′);F ∈ F} = {{sF1 , . . . , s
F
n };F ∈ F}

To enable concurrent and efficient insight generation and selection (as shown
later), we make two assumptions on insights and modules:

1. Each insight s is self-contained, i.e., NL(s) contains all the information nec-
essary for vocalization and is a self-standing sentence. As a consequence,
insights can be vocalized independently of each other.
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Table 1. Examples of insights describing the query result in Figure 3

Module Insight NL int cov cost

Statistics sP The average Quantity is 33.2 0.0 1.0 5

Top-k

sT
1

The fact with highest Quantity is Beer with 80 0.4 0.2 9

sT
3

The three facts with highest Quantity are Beer with 80, Wine with
70, and Cola with 30

1.0 0.5 17

Clustering

sC
1

Facts can be grouped into 2 clusters, the largest one has 4 facts
and 12 as average Quantity

0.8 0.7 18

sC
2

Facts can be grouped into 2 clusters, the largest one has 4 facts
and 12 as average Quantity, the second one has 2 facts and 75 as
average Quantity

1.6 1.0 29

Assess
sA
1

When compared to the previous query, the Quantity of Pizza is 6,
tantamount to the average Quantity of Food that is 6.3

1.0 0.2 22

2. The insights generated from the same module F are incremental, i.e., they
can be arranged into a sequence where the description of one insight ex-
tends the previous one by including one more component. In the follow-
ing we will assume that the resulting inclusion (total) ordering is reflected
in the ordering of indices: SF = {sF1 , . . . , s

F
n }, with cov(sFi+1) ≥ cov(sFi ),

int(sFi+1) ≥ int(sFi ), and cost(sFi+1) ≥ cost(sFi ) for 1 ≤ i ≤ n− 1.

Example 4. Given the query result from Figure 3, examples of insights produced
by different modules are shown in Table 1. Note that, from the informative point
of view, an insight may be an extension of another insight because it includes
additional components (e.g., sT3 extends sT1 with two additional components
corresponding to two facts, namely, Wine and Cola, while sC2 extends sC1 with
an additional component corresponding to a cluster including two facts). ✷

5.2 Insight selection

The insight space S can be very large, so a selection must be done on the insights
to be vocalized. The goal of this step is to find the set of insights S ⊆ S such
that (i) the total interestingness is maximum and (ii) the total cost does not
exceed a given time budget tvoc (see desideratum #4, Conciseness). Expressing
tvoc in seconds makes budget definition intuitive for users. However, the insight
cost has been defined as the number of words in its textual description, so as
to decouple it from its vocalization (the optimal speech rate may depend on
the target audience). Transforming tvoc into a maximum number of words is
straightforward; for instance, 180 is the average number of words per minute for
English speakers/readers [3].

The one formulated above is clearly an optimization problem, with two ad-
ditional issues to be considered: non-redundancy and right-time response.

Non-redundancy. While, by assumption, different modules produce insights with
different semantics, the insights from the same module have overlapping content
(since they are built incrementally). As a consequence, given a module F and
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its output SF , at most one insight sFz ∈ SF should be selected. Insight selec-
tion can then be formulated as a multiple-choice knapsack problem (MCKP), a
generalization of the ordinary knapsack problem. In the MCKP, the set of items
(S) is partitioned into classes (the SF ’s) and the binary choice of taking or not
an item is replaced by the selection of at most one item out of each class [16].

Right-time response. S is incrementally populated since the modules entail dif-
ferent complexities and execution times and are executed in a bag-of-task fashion
(see desideratum #3, Timeliness). On the other hand, to preserve the interac-
tivity of OLAP session, vocalization should begin shortly after query execution,
without waiting until all the modules have completed their execution. Thus, in-
sight selection is started after a fixed time tgen, and the insights added to S after
tgen are not included in the selection process.

5.3 Vocalization

Vocalization starts with a preamble that describes the query (e.g., “The query
result shows the sum of quantity grouped by product”). The preamble is a pre-
liminary description which acts as a context for the subsequent insights. Note
that, if the time necessary to vocalize the preamble is greater than tgen, the user
will not perceive any pause in the vocalization. After the preamble, the insights
in S are vocalized. Specifically, they are sorted by descending coverage cov (i.e.,
from the most general to most specific), then their natural language descriptions
NL’s are concatenated and vocalized.

6 A closer look at the VOOL modules

The core set of modules currently implemented is summarized below:

– Statistics returns general statistics on the overall result (e.g., the average
value of the Quantity measure and its skewness).

– Bottom-k/Top-k [20], applied to a single measure, returns the worst/best
performing facts (e.g., sales with lowest/highest Quantity).

– Outliers [19] returns the facts whose measure values deviate from the data
distribution (e.g., anomalous sales).

– Clustering [18] returns groups of facts that maximize intra-group similarity
and minimize inter-group similarity (e.g., facts with similar Quantity).

– Correlation returns the degree of Pearson correlation between pairs of mea-
sures (e.g., how Quantity and Revenue correlate).

– Slicing variance, applied to a single measure, returns the degree of correlation
between the values of a measure in the cubes before and after the application
of a slice-and-dice operator (e.g., how quantities by product change after
applying selection predicate StoreCity=‘Rome’).

– Aggregation variance, applied to a single measure, returns the facts with
the highest variation in the values of that measure after a roll-up or drill-
down operator (similarly to [4]; e.g., after a roll-up from Product to Category,
returns the categories showing the highest variation in products’ Quantity).
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Note that some of these modules are inspired from well-known approaches (e.g.,
[4,10,29,8]); in some of these cases we just had to devise a textual description of
the insight and/or adapt the returned measures of interestingness/relevance. As
already mentioned, this set can smoothly be extended with modules that follow
the requirements expressed in Section 1.

In the remainder of this section we describe an end-to-end implementation
of the Top-k module, which operates on both initial and refined queries. For
simplicity, we will drop the superscript denoting the module from the notation
of insights. Let q = (C0, Gq, Pq,Mq) be an initial query, with Mq = {m}, and
C ′ the resulting cube. The goal of the Top-k module is to describe the three
facts in C ′ having the highest values of m, namely, {γ1, γ2, γ3} (we will assume
that γ1.m ≥ γ2.m ≥ γ3.m ≥ . . .). Three insights including from one to three
components are returned:

s1 = {{γ1}}, s2 = {{γ1}, {γ2}}, s3 = {{γ1}, {γ2}, {γ3}}

These insights are characterized as follows:

NL(sk) =































“The fact with highest m is γ1 with γ1.m”, if k = 1;

“The two facts with highest m are γ1 with γ1.m and

γ2 with γ2.m”, if k = 2;

“The three facts with highest m are γ1 with γ1.m,

γ2 with γ2.m, γ3 with γ3.m”, if k = 3;

cov(sk) =
k

|C ′|

As to the interestingness, for each component vk = {γk} it is

int(vk) =
γk.m− γk.m

∑k

i=1(γi.m− γk.m)

where k > 3. While the coverage formula is obvious, the interestingness of sk
corresponds to the percentage of m that is retained by the Top-k tuples (e.g., the
total Quantity retained by the Top-3 products with respect to the overall units
sold by the Top-k facts). The reason for limiting the denominator to the Top-k
facts rather than summing on all the query results is to avoid that a long tail of
several low values makes int() meaningless. Conversely, by considering only the
highest non-top values (in our implementation we set k = 6) the interestingness
function properly expresses how high are the Top-3 as compared to the next
ones. Finally, the reason why all measure values are shifted by γk.m is to cope
with the case of negative values (e.g., if the measure expresses a temperature).

As to refined queries, while NL and cov remain unchanged, the interest-
ingness of a component changes depending on the result of the previous query.
Given two consecutive cubes C and C ′, a fact in C ′ is considered to be interesting
(in the sense of peculiar) if its measures deviate significantly from those in the
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Product Quan�ty
Beer 80

Wine 70

Cola 30

Bagel 8

Pizza 6

Bread 5

Category Quan�ty
Beverages 180

Food 19

C' = q(Sales,{Product}, ∅, {Quantity})

C = q(Sales,{Category}, ∅, {Quantity})

Fig. 4. Example of corresponding facts (gray lines) between the results of two consec-
utive queries, C and C

′, the latter being obtained by drilling down the former from
Category to Product

corresponding fact(s) of C [8]. This is based on the idea of prior belief [2]: specif-
ically, the interestingness is defined as the difference of belief for corresponding
facts in the cubes before and after the application of an OLAP operator. For
instance, after drilling down from Category to Product, the more the Quantity

of Beer deviates from the Quantity of Beverages, the higher its peculiarity; in
other words, a user is less likely to expect a product with outstanding sales
coming from a category with middling sales. Measuring interestingness in this
way requires to define, for each fact in C ′, the “corresponding fact(s)” in C. To
this end we use, as in [8], a proxy function proxyC(γ) (with γ ∈ C ′) that mod-
els a one-to-many (many-to-one) mapping in case of drill-down (roll-up), and a
one-to-one mapping in case of slice-and-dice or addition/removal of a measure
(see Figure 4 for an example). Intuitively, if the OLAP operator changes the
group-by, the corresponding fact(s) of C are determined via the roll-up order;
if the operator changes the selection predicate, the corresponding facts of C are
one-to-one mapped to the facts of C ′; if the operator changes the measure, the
corresponding facts are the empty set. For the formal definition of proxy and
peculiarity pec(), we refer the reader to [8]. Finally, the interestingness of com-
ponent vk = {γk} describing the results of a refined query is defined as for initial
queries, but weighing measure values on fact peculiarity:

int(vk) =
(γk.m− γk.m) · pec(γk)

∑k

i=1(γi.m− γk.m) · pec(γi)

Example 5. As already shown in Table 1, if C ′ is the cube in Figure 3 resulting
from an initial query, examples of insights are

sT1 = (NL = “The fact with higher Quantity is Beer with 80”,

int = 0.44, cov = 0.20, cost = 9)

sT3 = (NL = “The three facts with higher Quantity are Beer with 80,

Wine with 70, and Cola with 30”,

int = 0.98, cov = 0.50, cost = 17)
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On the other hand, if C ′ is the result of a drill-down from Category to Product

as in Figure 4, the interestingness changes as follows:

sT1 .int =
(80− 5) · 0.21

64.33
= 0.24

sT3 .int =
(80− 5) · 0.21 + (70− 5) · 0.36 + (30− 5) · 1.0

64.33
= 0.98

Intuitively, following the prior belief principle, since Beer is the top product of
the top-selling category, Beer is less interesting than Cola (which is the worst-
selling beverage). ✷

7 Evaluation and conclusion

In this paper we have presented VOOL, an approach for vocalizing selected
insights out of the results of an OLAP session. To test the approach we have
implemented a prototype using Java and Python; the necessary mining models
are imported from the Scikit-Learn library and the insights are vocalized through
the text-to-speech Google APIs.

To evaluate the efficiency of VOOL, we made some experiments against the
Foodmart cube [15] to understand how the performance of each module scales
with respect to the cardinality of the query result. To this end we executed 10
OLAP sessions, each involving 3 OLAP steps; different combinations of modules
were tested, and all the modules were invoked in at least one session. The tests
were run on an Intel(R) Core(TM)i7-6700 CPU@3.40GHz with 8GB RAM. The
tests were repeated 10 times and the average results are reported. Figure 5 shows
the scalability of each module against query results with increasing cardinalities
(up to 104). We emphasize that, since our work focuses on the vocalization of
OLAP sessions —and not on the generic mining of multidimensional cubes—, 104

is large enough to be considered unrealistic for OLAP, since the results analyzed
by users are usually constrained by the visualization and interaction metaphors
adopted [9]. Noticeably, for query results including 104 facts, the computation
of all the modules requires less than 1 second. The only exception is Clustering,
which requires 7 seconds on average for query results with cardinality 104.

To assess the effectiveness of VOOL, we made some preliminary tests with 10
users, mainly master students in data science, with basic or advanced knowledge
of business intelligence and data warehousing. The users were briefly introduced
to the vocalization problem and to VOOL, then they were assigned three OLAP
sessions with different analysis goals (e.g., “As a shop owner, you are analyzing
the sum of quantity sold in each product department”) and the query results
were vocalized. On a scale from 1 (very poor) to 5 (very high), the average
results show that both the user experience and the description of query results
are deemed to be good (4.2± 0.6 and 3.8± 0.9, respectively). The insights with
highest/lowest appreciation are Aggregation variance and Statistics, respectively
(the latter sometimes is too simple to describe the whole result); the users asked
to refine some of the proposed modules and suggested extensions with new ones.
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Fig. 5. Performance scalability of the modules

Overall, these preliminary results confirm the effectiveness and efficiency of
VOOL. Besides refining and extending the modules, other directions that can
be envisioned for future research are: (i) handling the redundancy of insights
over single queries (since multiple modules can vocalize the same tuples, the
interestingness of an insight should also depend on those previously selected) and
sessions (vocalizing the same insight twice or more reduces its interestingness);
(ii) introducing a “tell me more” interaction, where users can ask for further
details as well as insights retrieved after the time budget; and (iii) conducting
additional tests to assess the correlation between the insights vocalized and the
users’ intentions.
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