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Barr’s Theorem for geometric theories that uses only constructively acceptable proof-theoretical
tools is obtained.
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1 Introduction

Notable parts of algebra and geometry can be formalised as coherent theories over first-order
classical or intuitionistic logic. Their axioms are coherent implications, i.e., universal closures
of implications D1 ⊃D2, where both D1 and D2 are built up from atoms using conjunction,
disjunction and existential quantification. Examples include all algebraic theories, such as the
theory of groups and the theory of rings, all essentially algebraic theories, such as category
theory [7], the theory of fields, the theory of local rings, lattice theory [22], projective and
affine geometry [22, 17], the theory of separably closed local rings (aka “strictly Henselian
local rings”) [9, 17, 25].

Although wide, the class of coherent theories leaves out certain axioms used in algebra
such as the axioms of torsion Abelian groups or of Archimedean ordered fields, or used in
the theory of connected graphs, as well as in the modelling of epistemic social notions such
as common knowledge. All the latter examples can however be axiomatised by means of
geometric axioms, a generalization of coherent axioms that allows infinitary disjunctions.

Geometric implications give a Glivenko class [18], as shown by Barr’s Theorem:

▶ Theorem 1 (Barr’s Theorem [3]). If T is a coherent (geometric) theory and A is a coherent
(geometric) sentence provable from T in (infinitary) classical logic, then A is provable from
T in (infinitary) intuitionistic logic.
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7:2 Constructive Cut Elimination in Geometric Logic

Barr’s Theorem1 has its origin, through appropriate completeness results, in the theory of
sheaf models, with the following formulation:

▶ Theorem 2 ([12], Ch.9, Thm.2). For every Grothendieck topos E there exists a complete
Boolean algebra B and a surjective geometric morphism Sh(B) −→ E.

An extremely simple and purely syntactic proof of the first-order Barr’s Theorem for
coherent theories has been given in [14] by means of G3 sequent calculi: it is shown how to
express coherent implications by means of rules that preserve admissibility of the structural
rules. As a consequence, Barr’s theorem is proved by simply noticing that a proof in G3C.G
– i.e., the calculus for classical logic extended with rules for coherent implications – is also a
proof in the intuitionistic multisuccedent calculus G3I.G.

In [16], this approach to Barr’s Theorem has been generalized to (infinitary) geometric
theories using G3-style calculi for classical and intuitionistic infinitary logic G3[CI]ω (with
finite sequents instead of countably infinite sequents) and their extension with rules expressing
geometric implications G3[CI]ω.G. To illustrate, the geometric axiom of torsion Abelian
groups

∀x.
∨

n>0
nx = 0

is expressed by the infinitary rule

{nx = 0, Γ ⇒ ∆ | n > 0}
Γ ⇒ ∆ .

The main results in [16] are that in G3[CI]ω.G all rules are height-preserving invertible, the
structural rules of weakening and contraction are height-preserving admissible, and cut is
admissible. Hence, Barr’s Theorem for geometric theories is proved in [16] as it was done in
[14] for coherent ones: a proof in G3Cω.G is also a proof in the intuitionistic multisuccedent
calculus G3Iω.G.

We observe that the cut-elimination procedure given in Sect. 4.1 of [16] is not constructive.
This is an instance of a typical limitation of cut eliminations in infinitary logics [6, 11, 23]
since these proofs use the “natural” (or Hessenberg) commutative sum of ordinals α#β:

(ωαm + · · · + ωα0) #(ωβn + · · · + ωβ0) = (ωγm+n+1 + · · · + ωγ0)

where γm+n+1, . . . , γ0 is a decreasing permutation of αm, . . . , α0, βn, . . . , β0; see [24, 10.1.2B].
The resort to the natural sum is inescapable for proofs using cut-height (i.e., the sum of the
derivation-height of the premisses of cut) as inductive parameter: it ensures that we can
apply the inductive hypothesis when permuting the cut upwards in the derivation of one
premisses. Nevertheless, it makes the proof non-constructive since

[its] definition utilises the Cantor normal form of ordinals to base ω. This normal
form is not available in CZF [Constructive Zermelo–Fraenkel set theory] (or IZF
[Intuitionistic Zermelo–Fraenkel set theory]) and thus a different approach is called
for. [20, p. 369]

1 Barr’s theorem is often alleged to achieve more in that it also allows to eliminate uses of the axiom of
choice. That such formulations of Barr’s theorem should be taken with caution is demonstrated in [20]
where the internal vs. external addition of the the axiom of choice is considered and it is shown that the
latter preserves conservativity whereas the former does not.
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We constructivise2 the cut-elimination proof for G3[CI]ω.G by giving a procedure that
replaces the induction on the cut-height with two transfinite inductions on the height of
the derivations of the right and the left premiss of cut respectively – see Lemmas 20 and
21 – and it replaces the main induction on the depth of the cut-formula with two instances
of Brouwer’s principle of Bar Induction – see Theorem 23.3 As a consequence, we are
able to give a proof of Barr’s Theorem for geometric theories that uses only constructively
acceptable proof-theoretic tools. Moreover, our proof strategy allows to constructivise the
cut-elimination procedure for other infinitary calculi.

2 Syntax and sequent calculi for infinitary logics

Let S be a signature containing, for every n ∈ N, a countable (i.e., finite, possibly empty, or
countably infinite) set RELS

n of n-ary predicate letters P n
1 , P n

2 , . . . , and a countable set CON
of individual constants c1, c2, . . . . Let VAR be a denumerable set of variables x1, x2, . . . . The
language contains the following logical symbols: =, ⊤, ⊥, ∧, ∨, ⊃, ∀, ∃, as well as countable
conjunction

∧
n>0 and countable disjunction

∨
n>0.

The sets TER of terms is the union of VAR and CON . The set of formulas of the
language LS

ω is generated by:

A ::= P n
i t1, . . . , tn | t1 = t2 | ⊤ | ⊥ | A ∧ A | A ∨ A | A⊃A | ∀xA | ∃xA |

∧
n>0

An |
∨

n>0
An

where ti ∈ TER, P n
i ∈ RELS

n , and x ∈ V AR.
We use the following metavariables:

x, y, z for variables and x⃗, y⃗, z⃗ for lists thereof;
t, s, r for terms;
P, Q, R for atomic formulas;
A, B, C for formulas.

We use A(x⃗) to say that the variables having free occurrences in A are included in x⃗. We
follow the standard conventions for parentheses. The formulas ⊤, ¬A and A ⊃⊂ B are
defined as expected. When considering (infinitary) classical logic we can shrink the set
of primitive logical symbols by means of the well-known De Morgan’s dualities (including∨

n>0 An ⊃⊂ ¬
∧

n>0 ¬A), however also in the classical case we consider a language where
all operators (excluding ¬ and ⊃⊂) are taken as primitive. This is not just useful but even
necessary since our purpose is to extract the constructive content of classical proofs and
many of the interdefinabilities do not hold in intuitionistic logic.

The notions of free and bound occurrences of a variable in a formula are the usual ones.
We posit that no formula may have infinitely many free variables. A sentence is a formula
without free occurrences of variables. Given a formula A, we use A(t/x) to denote the formula
obtained by replacing each free occurrence of x in A with an occurrence of t, provided that t

is free for x in A – i.e., no new occurrence of t is bound by a quantifier.
Each formula A has a countable ordinal d(A) as its depth (the successor of the supremum

of the depths of its immediate subformulas). More precisely

2 By “constructive” here we mean not relying on classical logical principles such as excluded middle or
linearity of ordinals but we do not mean acceptable in all schools of constructive mathematics.

3 See [20, §7] for a different proof, based on constructive ordinals, of cut elimination in infinitary logic.
The proof in [2] does not use ordinals, but it is inherently classical in that it uses a one-sided calculus
based on De Morgan’s dualities.

TYPES 2021



7:4 Constructive Cut Elimination in Geometric Logic

▶ Definition 3 (Depth of A). d(A) = sup{d(B) | B is an immediate subformula of A} + 1.

For example, ⊥ and atoms P have depth 1, since they have no immediate subformulas and
the supremum of an empty family of ordinals is 0. The definition of depth implies that, if A′

is a proper subformula of A, then d(A′) < d(A).
Sequents Γ ⇒ ∆ have a finite multiset of formulas on each side. The inference rules for∨

n>0 are thus:

{Γ, An ⇒ ∆ | n > 0}
Γ,

∨
n>0 An ⇒ ∆

L
∨ Γ ⇒ ∆,

∨
n>0 An, Ak

Γ ⇒ ∆,
∨

n>0 An
R

∨
k.

Observe that L
∨

n>0 has countably many premisses, one for each n > 0. The rules for
∧

n>0
are dual to the above ones.

Derivations built using these rules are thus (in general) infinite trees, with countable
branching but where (as may be proved by induction on the definition of derivation) each
branch has finite length. The leaves of the trees are those where the two sides have an atomic
formula in common, and also instances of rules L⊥, R⊤. To make this precise, we give a
formal definition of the notion of derivation D and the associated notions of its height ht(D)
and its end-sequent.

▶ Definition 4 (Derivations, their height and their end-sequent).
1. Any sequent Γ ⇒ ∆, where some atomic formula occurs in both Γ and ∆, is a derivation,

of height 0 and with end-sequent Γ ⇒ ∆.
2. Let β ≤ ω. If each Dn, for 0 < n < β, is a derivation of height αn and with end-sequent

Γn ⇒ ∆n, and

. . . Γn ⇒ ∆n . . .

Γ ⇒ ∆ R

is an instance of a rule with β premisses, then

. . .

... Dn

Γn ⇒ ∆n . . .

Γ ⇒ ∆ R

is a derivation, of height the countable ordinal supn(αn)+1 and with end-sequent Γ ⇒ ∆.4
If X is a calculus, we use X ⊢ Γ ⇒ ∆ to say that Γ ⇒ ∆ is derivable in the calculus X.

By this definition each derivation has a countable ordinal height (the successor of the
supremum of the heights of its immediate subderivations). Thus, if Γ and ∆ have an atomic
formula in common, then Γ ⇒ ∆ has a derivation D of height ht(D) = 0. The sequent
⊥, Γ ⇒ ∆ (regarded as a zero-premiss rule) has a derivation of height 1. Observe that the
definitions of depth of a formula and of height of a derivation differ from those in [6]: we
use the successor of a supremum rather than the supremum of the successors (note that
supn>0(n + 1) = ω ̸= ω + 1 = (supn>0(n)) + 1). It follows that, if D′ is a sub-derivation of
D, then ht(D′) < ht(D). If a sequent has a derivation of height α we say it is α-derivable
and write ⊢α Γ ⇒ ∆.

4 Derivations can thus be represented as (infinite) trees, where the nodes are the sequents in the derivation,
and a node that corresponds to a premiss of a rule is an immediate successor of the node that corresponds
to the conclusion of such rule. Therefore, a node that corresponds to the conclusion of a rule with β
premisses has β immediate successors.



G. Fellin, S. Negri, and E. Orlandelli 7:5

▶ Definition 5 (Sequent calculi for infinitary logics with equality).
1. G3Cω is defined by the rules in Tables 1 and 3;
2. G3Iω is defined as G3Cω with the exception of rules L ⊃, R ⊃, R∀, and R

∧
that are

defined as in Table 2.
By G3[CI]ω we denote any one of the two calculi above. Observe that a multi-succedent
intuitionistic calculus as the one we use is closer to a classical calculus than the usual calculus
with the restriction that the succedent of sequents should consist of at most one formula
(used, for example in [20]). As in the finitary case such a multi-succedent choice is particularly
useful for proving Glivenko-style results [15].

As usual, we consider only derivations of pure sequents – i.e., sequents where no variable
has both free and bound occurrences. We say that Γ ⇒ ∆ is G3[CI]ω-derivable (with height
α), and we write G3[CI]ω ⊢(α) Γ ⇒ ∆, if there is a G3[CI]ω-derivation (of height at most
α) of Γ ⇒ ∆ or of an alphabetic variant of Γ ⇒ ∆. A rule is said to be (height-preserving)
admissible in G3[CI]ω, if, whenever its premisses are G3[CI]ω-derivable (with height at most
α), also its conclusion is G3[CI]ω-derivable (with height at most α). A rule is said to be
(height-preserving) invertible in G3[CI]ω, if, whenever its conclusion is G3[CI]ω-derivable
(with height at most α), also its premisses are G3[CI]ω-derivable (with height at most α).
In each rule depicted in Tables 1, 2, and 3 the multisets Γ and ∆ are called contexts, the
formulas occurring in the conclusion are called principal, and the formulas occurring in the
premiss(es) only are called active.

3 From geometric implications to geometric rules

By a geometric implication we mean the universal closure of an implicative formula whose
antecedent and consequent are formulas constructed from atomic formulas and ⊥, ⊤ using
only ∧, ∨, ∃, and

∨
n>0. More precisely:

▶ Definition 6 (Geometric implication).
A formula is Horn iff it is built from atoms and ⊤ using only ∧;
A formula is geometric iff it is built from atoms and ⊤, ⊥ using only ∧, ∨, ∃, and

∨
n>0;

A sentence is a geometric implication iff it is of the form ∀x⃗(A⊃B) where A and B are
geometric formulas.

By a coherent implication we mean a geometric implication without occurrences of
∨

n>0.
As is well known, for geometric implications we have a normal form theorem.

▶ Theorem 7 (Geometric normal form (GNF)). Any geometric implication is equivalent to a
possibly infinite conjunction of sentences of the form

∀x⃗(A⊃B)

where A is Horn and B is a possibly infinite disjunction of existentially quantified Horn
formulas.

This normal form theorem is important because, as shown in [14] for coherent implications
and in [16] for geometric ones, we can extract from a sentence G in GNF a geometric rule LG

(where the name LG indicates that it is a left rule) that can be added to a sequent calculus
without altering its structural properties. To be more precise, let us consider the following
sentence G in GNF:

∀x⃗(P1(x⃗) ∧ · · · ∧ Pk(x⃗)⊃
∨

n>0
∃y⃗(Qn1(x⃗, y⃗) ∧ · · · ∧ Qnm

(x⃗, y⃗))) (G)

TYPES 2021



7:6 Constructive Cut Elimination in Geometric Logic

Table 1 The calculus G3Cω (z fresh in L∃ and R∀).

Initial sequents:
P, Γ ⇒ ∆, P

Γ ⇒ ∆, ⊤ R⊤
Γ ⇒ ∆, A Γ ⇒ ∆, B

Γ ⇒ ∆, A ∧ B
R∧

Γ ⇒ ∆, A, B

Γ ⇒ ∆, A ∨ B
R∨

⊥, Γ ⇒ ∆ L⊥
A, B, Γ ⇒ ∆

A ∧ B, Γ ⇒ ∆ L∧
A, Γ ⇒ ∆ B, Γ ⇒ ∆

A ∨ B, Γ ⇒ ∆ L∨

A, Γ ⇒ ∆, B

Γ ⇒ ∆, A⊃B
R⊃

Γ ⇒ ∆, A(y/x), ∃xA

Γ ⇒ ∆, ∃xA
R∃

Γ ⇒ ∆, A(z/x)
Γ ⇒ ∆, ∀xA

R∀

Γ ⇒ ∆, A B, Γ ⇒ ∆
A⊃B, Γ ⇒ ∆ L⊃

A(z/x), Γ ⇒ ∆
∃xA, Γ ⇒ ∆ L∃

A(y/x), ∀xA, Γ ⇒ ∆
∀xA, Γ ⇒ ∆ L∀

{Γ ⇒ ∆, Ai | i > 0}
Γ ⇒ ∆,

∧
n>0 An

R
∧ Γ ⇒ ∆,

∨
n>0 An, Ak

Γ ⇒ ∆,
∨

n>0 An

R
∨

Ak,
∧

n>0 An, Γ ⇒ ∆∧
n>0 An, Γ ⇒ ∆

L
∧ {Ai, Γ ⇒ ∆ | i > 0}∨

n>0 An, Γ ⇒ ∆
L

∨

Table 2 Non-classical rules for G3Iω (z fresh in R∀).

A⊃B, Γ ⇒ ∆, A B, Γ ⇒ ∆
A⊃B, Γ ⇒ ∆ L⊃

A, Γ ⇒ B

Γ ⇒ ∆, A⊃B
R⊃

Γ ⇒ A(z/x)
Γ ⇒ ∆, ∀xA

R∀
{Γ ⇒ Ai | i > 0}

Γ ⇒ ∆,
∧

An

R
∧

Table 3 Rules for equality in G3[CI]ω.

s = s, Γ ⇒ ∆
Γ ⇒ ∆ Ref

P (t/x), s = t, P (s/x), Γ ⇒ ∆
s = t, P (s/x), Γ ⇒ ∆

Repl

Table 4 Geometric rule LG expressing the geometric sentence G.

. . . Qn1(x⃗, y⃗n), . . . , Qnm
(x⃗, y⃗n), P1(x⃗), . . . , Pk(x⃗), Γ ⇒ ∆ . . .

P1(x⃗), . . . , Pk(x⃗), Γ ⇒ ∆ LG
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Such a sentence G determines the (finitary or infinitary) geometric rule given in Table 4 with
one premiss for each of the countably many disjuncts in

∨
n>0(Qn1(x⃗, y⃗) ∧ · · · ∧ Qnm

(x⃗, y⃗)).
The variables in y⃗n are chosen to be fresh, i.e. are not in the conclusion; and without loss of
generality they are all distinct. The list y⃗n of variables may vary as n varies, and maybe
no finite list suffices for all the countably many cases. The variables x⃗ (finite in number)
may be instantiated with arbitrary terms. Henceforth we shall normally omit mention of the
variables.

We need also a further condition for height-preserving admissibility of contraction to
hold:

▶ Definition 8 (Closure condition). Given a calculus with geometric rules, if it has a rule
with an instance with repetition of some principal formula such as:

. . . Q1, . . . , Qn, P1, . . . , Pk−2, P, P, Γ ⇒ ∆ . . .

P1, . . . , Pk−2, P, P, Γ ⇒ ∆ Lc
G

then also the contracted instance

. . . Q1, . . . , Qm, P1, . . . , Pk−2, P, Γ ⇒ ∆ . . .

P1, . . . , Pk−2, P, Γ ⇒ ∆ Lc
G

has to be included in the calculus.

As for the finitary case [14], also in the infinitary case the condition is unproblematic, since
each atomic formula contains only a finite number of variables and therefore so are the
instances; it follows that, for each geometric rule, the number of rules that have to be added
is finite. Moreover, in many cases contracted instances need not be added since they are
admissible in the calculus without them. To illustrate, we consider the coherent rule Repl for
equality given in Table 3:

P (t/x), s = t, P (s/x), Γ ⇒ ∆
s = t, P (s/x), Γ ⇒ ∆

Repl

This rule generates contracted instances only when its two principal formulas (as well as
its active formula) are copies of the same reflexivity atom t = t. In this case, after having
applied contraction, we can replace the instance of Repl with an instance of Ref (instead of
Replc). That is, we can transform:

t = t, t = t, t = t, Γ ⇒ ∆
t = t, t = t, Γ ⇒ ∆ Repl into

t = t, t = t, t = t, Γ ⇒ ∆
t = t, t = t, Γ ⇒ ∆ LC

t = t, Γ ⇒ ∆ Ref

But this does not hold in general. For example, if < is an Euclidean relation, we must
add both of the following rules:

s < r, t < s, t < r, Γ ⇒ ∆
t < s, t < r, Γ ⇒ ∆ Euc and

s < s, t < s, Γ ⇒ ∆
t < s, Γ ⇒ ∆ Eucc

otherwise the valid sequent t < s ⇒ s < s would not be contraction-free derivable. In
presence of Ref, no added rule is needed.

▶ Theorem 9 ([16]). If we add to the calculus G3[CI]ω a finite or infinite family of geometric
rules LG, then we can prove all of the geometric sentences G from which they were determined.

TYPES 2021



7:8 Constructive Cut Elimination in Geometric Logic

In the following, we shall denote with G3[CI]ω.G any extension of G3[CI]ω with a
finite or infinite family of geometric rules LG (together with all needed contracted instances
thereof).

Before proceeding with the structural properties, we give some examples of geometric
axioms and their corresponding rules.

▶ Example 10 (Geometric axioms and rules).
1. The axiom of torsion Abelian groups, ∀x.

∨
n>1(nx = 0), becomes the rule

. . . nx = 0, Γ ⇒ ∆ . . .

Γ ⇒ ∆
RTor

2. The axiom of Archimedean ordered fields, ∀x.
∨

n≥1(x < n), becomes the rule

. . . x < n, Γ ⇒ ∆ . . .

Γ ⇒ ∆
RArc

3. The axiom of connected graphs,

∀xy.x = y ∨ xRy ∨
∨

n>1
∃z0 . . . ∃zn(x = z0 & y = zn & z0Rz1 & . . . & zn−1Rzn)

becomes the rule
x = y, Γ ⇒ ∆ xRy, Γ ⇒ ∆ . . . x = z0, y = zn, z0Rz1, . . . , zn−1Rzn, Γ ⇒ ∆ . . .

Γ ⇒ ∆
RConn

3.1 Structural rules
We present here the results concerning the admissibility of the structural rules, cut excluded,
in the calculi G3[CI]ω.G. All these results have been proved in Sect. 4 of [16] by simple
transfinite induction on ordinals, either on the depth of a formula or on the height of a
derivation.

▶ Lemma 11 (Generalised initial sequents). The sequent A, Γ ⇒ ∆, A is G3[CI]ω.G-derivable,
for A arbitrary formula.

▶ Lemma 12 (α-conversion). If G3[CI]ω.G ⊢α Γ ⇒ ∆ then G3[CI]ω.G ⊢α Γ′ ⇒ ∆′, for
Γ′ ⇒ ∆′ a bound alphabetic variant of Γ ⇒ ∆.

▶ Lemma 13 (Substitution). If G3[CI]ω.G ⊢α Γ ⇒ ∆ and t is free for x in Γ ⇒ ∆ then
G3[CI]ω.G ⊢α Γ(t/x) ⇒ ∆(t/x).

▶ Theorem 14 (Weakening). The left and right rules of weakening:

Γ ⇒ ∆
A, Γ ⇒ ∆ LW

Γ ⇒ ∆
Γ ⇒ ∆, A

RW

are height-preserving admissible (hp-admissible, for short) in G3[CI]ω.G.

▶ Lemma 15 (Invertibility).
1. Each rule of G3Cω.G is hp-invertible.

2. Each rule of G3Iω.G except R⊃, R∀, and R
∧

is hp-invertible.
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▶ Theorem 16 (Contraction). The rules of left and right contraction:

A, A, Γ ⇒ ∆
A, Γ ⇒ ∆ LC

Γ ⇒ ∆, A, A

Γ ⇒ ∆, A
RC

are hp-admissible in G3[CI]ω.G.

4 Constructive cut elimination

We are now ready to prove that the following context-sharing rule of cut:

Γ ⇒ ∆, C C, Γ ⇒ ∆
Γ ⇒ ∆ Cut

is eliminable in the calculus G3[CI]ω.G + {Cut} obtained by extending G3[CI]ω.G with
Cut. In order to give a proof of cut elimination that uses only constructively admissible
proof-theoretical tools we must avoid the “natural” (or Hessenberg) commutative sum of
ordinals: we cannot use cut-height as inductive parameter as done in the Gentzen- and
Dragalin-style proofs. In order to avoid it, we make use of a proof strategy introduced in [13]
for fuzzy logics that has been extensively used in the context of hypersequent calculi; see
[4, 8, 10]. This proof strategy can be seen as a simplified and local version of the proof given
by H.B. Curry in [5]. The proof is based on two main lemmas (Lemmas 20 and 21 below)
that are proved by induction on the height of the derivation of the right and of the left
premiss of cut, respectively. Moreover, (almost) all non-principal instances of cut are taken
care of by a separate lemma (Lemmas 18 and 19) which shows that cut can be permuted
upwards with respect to rule instances not having the cut formula among their principal
formulas.

Observe that, differently from [4, 13, 10], we will not consider an arbitrary instance of Cut
of maximal rank (i.e., such that its cut formula has maximal depth among the cut formulas
occurring in the derivation), but we will always consider an uppermost instance of Cut, i.e. a
cut the premisses of which are cut-free derivations. Otherwise, in Lemmas 20 and 21 as well
as in Theorem 23, we would have to assume that ordinals are linearly/totally ordered; but in
a constructive setting this assumption implies the law of excluded middle [1]. In Theorem 23
we will proceed, instead, by using two instances of Brouwer’s principle of Bar Induction: the
first will be used to show that an uppermost instance of Cut is eliminable and the second
to show that all instances of Cut are eliminable. Note that although it is a constructively
admissible principle, Bar Induction increases the proof-theoretic strength of CZF, cf. [19].

▶ Definition 17 (Cut-substitutive rule). A sequent rule Rule is cut-substitutive if each instance
of cut with cut formula not principal in the last rule instance Rule of one of the premisses of
cut can be permuted upwards w.r.t. Rule as in the following example:

A, Γ ⇒ ∆, B, C

Γ ⇒ ∆, A⊃B, C
R⊃

C, Γ ⇒ ∆, A⊃B

Γ ⇒ ∆, A⊃B
Cut

;

A, Γ ⇒ ∆, B, C

C, Γ ⇒ ∆, A⊃B

A, C, Γ ⇒ ∆, B
hp-inv

A, Γ ⇒ ∆, B
Cut

Γ ⇒ ∆, A⊃B
R⊃

▶ Lemma 18. Each rule of G3Cω.G is cut-substitutive.

Proof. By inspecting the rules in Tables 1 and 3 it is immediate to realise that each of them
is cut-substitutive because they are all hp-invertible (using Lemma 13 for rules L∃, R∀, and
for geometric rules with a variable condition). ◀
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▶ Lemma 19. Each rule of G3Iω.G except R⊃, R∀ and R
∧

is cut-substitutive.
Proof. Same as for G3Cω.G. ◀

▶ Lemma 20 (Right reduction). If we are in G3[CI]ω.G and all of the following hold:
1. D1 ⊢ Γ ⇒ ∆, A

2. D2 ⊢ A, Γ ⇒ ∆
3. A is principal in the last rule instance applied in D1
4. A is not of shape ∃xB or

∨
n>0 Bn.

Then there is a G3[CI]ω.G + {Cut}-derivation D concluding Γ ⇒ ∆ containing only cuts
on proper subformulas of A.
Proof. By transfinite induction on ht(D2).

If D2 is a one node tree, the lemma obviously holds.
Else, we have two cases depending on whether A is principal in the last rule instance

Rule applied in D2 or not.
In the latter case, if we are in G3Cω.G + {Cut}, the lemma holds thanks to Lemma

18: we permute the cut upwards in D2 and then we apply the inductive hypothesis and an
instance of Rule. If we are in G3Iω.G + {Cut} and the last step of D2 is not by one of
R ⊃, R∀, and R

∧
then it holds by Lemma 19. In the remaining three cases, we have two

subcases according to whether D1 ends with a step by an invertible rule or not. In the latter
subcase, D1 ends with one of R⊃, R∀, and R

∧
. We permute the cut upwards in the right

premiss. To illustrate, we consider the case of R
∧

. We transform
... D11

Γ ⇒ B(y/x)
Γ ⇒ ∆′,

∧
An, ∀xB

R∀

... D2i

{∀xB, Γ ⇒ Ai | i > 0}
∀xB, Γ ⇒ ∆′,

∧
An

R
∧

Γ ⇒ ∆′,
∧

An
Cut

into
... D11

Γ ⇒ B(y/x)
Γ ⇒ ∀xB

R∀
... D2i

{∀xB, Γ ⇒ Ai | i > 0}
{Γ ⇒ Ai | i > 0}

IHi, i > 0

Γ ⇒ ∆′,
∧

An
R

∧
If, instead, D1 ends by an invertible rule then we apply invertibility, thus transforming the
derivation into one having only cuts on proper subformulas of A. To illustrate, if D1 ends
with a step by R∧, we transform

... D11
Γ ⇒ ∆′,

∧
An, B

... D12
Γ ⇒ ∆′,

∧
An, C

Γ ⇒ ∆′,
∧

An, B ∧ C
R∧

... D2i

{B ∧ C, Γ ⇒ Ai | i > 0}
B ∧ C, Γ ⇒ ∆′,

∧
An

R
∧

Γ ⇒ ∆′,
∧

An
Cut

into

... D12
Γ ⇒ ∆′,

∧
AnC

... D11
Γ ⇒ ∆′,

∧
An, B

C, Γ ⇒ ∆′,
∧

An, B
LW

... D2
B ∧ C, Γ ⇒ ∆′,

∧
An

B, C, Γ ⇒ ∆′,
∧

An
Lem. 15

C, Γ ⇒ ∆′,
∧

An
Cut

Γ ⇒ ∆′,
∧

An
Cut
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Next, we consider the case with A principal in the last rule instance applied in D2. We
have cases according to the shape of A.

If A ≡ P for some atomic formula P , then the last rule instance in D2 is by a geometric
rule (rules for equality included) LG concluding P1, . . . , P, . . . , Pk, Γ′′ ⇒ ∆′, P and D1 is the
one node tree P, Γ′ ⇒ ∆′, P . The conclusion of cut is the initial sequent P, Γ′ ⇒ ∆′, P which
is cut-free derivable.

The cases with A ≡ ⊥ or A ≡ B ◦ C, for ◦ ∈ {⊤, ∧, ∨,⊃}, are left to the reader.
If A ≡ ∀xB we transform (if we are in G3Iω.G + {Cut}, ∆ is not in the premiss of R∀)

... D11
Γ ⇒ ∆, B(y/x)

Γ ⇒ ∆, ∀xB
R∀

... D21
B(t/x), ∀xB, Γ ⇒ ∆

∀xB, Γ ⇒ ∆ L∀

Γ ⇒ ∆ Cut

into the following derivation having only cuts on proper subformulas of A (if we are in
G3Iω.G + {Cut} then ∆ is introduced in D11 by height-preserving weakenings, which can
be done since D11 is in G3Iω.G):

... D11
Γ ⇒ ∆, B(y/x)
Γ ⇒ ∆, B(t/x) Lem. 13

... D1
Γ ⇒ ∆, ∀xB

... D21
∀xB, B(t/x), Γ ⇒ ∆

B(t/x), Γ ⇒ ∆ IH

Γ ⇒ ∆ Cut

If A ≡
∧

Bi we transform (∆ not in the premisses of R
∧

if we are in G3Iω.G + {Cut})

... D1i

{Γ ⇒ ∆, Bi | i > 0}
Γ ⇒ ∆,

∧
Bn

R
∧

... D21
Bk,

∧
Bn, Γ ⇒ ∆∧

Bn, Γ ⇒ ∆
L

∧
Γ ⇒ ∆ Cut

into the following derivation having only cuts on proper subformulas of A (if we are in
G3Iω.G + {Cut} then ∆ is introduced in D1k by height-preserving weakenings):

... D1k

Γ ⇒ ∆, Bk

... D1
Γ ⇒ ∆,

∧
Bn

... D21∧
Bn, Bk, Γ ⇒ ∆

Bk, Γ ⇒ ∆ IH

Γ ⇒ ∆ Cut
◀

▶ Lemma 21 (Left reduction). If we are in G3[CI]ω.G and all of the following hold:
1. D1 ⊢ Γ ⇒ ∆, A

2. D2 ⊢ A, Γ ⇒ ∆
Then there is a G3[CI]ω.G + {Cut}-derivation D concluding Γ ⇒ ∆ containing only cuts
on proper subformulas of A.

Proof. By transfinite induction on ht(D1).
If D1 is a one node tree, the lemma obviously holds.
Else, we have two cases depending on whether A is principal in the last rule instance

applied in D1 or not. In the latter case, the lemma holds thanks to Lemma 18 or 19 (if the
last step of D1 is by an intuitionistic non-invertible rule we proceed as in the analogous case
of Lemma 20).
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When A is principal in the last rule inference in D1, we have cases according to the shape
of A. If A is an atomic formula, or ⊤, or ⊥, or B ◦ C (◦ ∈ {∧, ∨ ⊃}), or ∀xB, or

∧
Bn, the

lemma holds thanks to Lemma 20.
If A ≡ ∃xB, we transform:

... D11
Γ ⇒ ∆, ∃xB, B(t/x)

Γ ⇒ ∆, ∃xB
R∃

... D2
∃xB, Γ ⇒ ∆

Γ ⇒ ∆ Cut

into the following derivation having only cuts on proper subformulas of A (Lemma 15 can be
applied since D2 is in G3[CI]ω.G):

... D11
Γ ⇒ ∆, B(t/x), ∃xB

... D2
∃xB, Γ ⇒ ∆

Γ ⇒ ∆, B(t/x) IH

... D2
∃xB, Γ ⇒ ∆

B(t/x), Γ ⇒ ∆ Lem. 15

Γ ⇒ ∆ Cut

If A ≡
∨

n>0 Bn, we transform:

... D11
Γ ⇒ ∆,

∨
n>0 Bn, Bk

Γ ⇒ ∆,
∨

n>0 Bn
R

∨ ... D2∨
n>0 Bn, Γ ⇒ ∆

Γ ⇒ ∆ Cut

into the following derivation:

... D11
Γ ⇒ ∆, Bk,

∨
n>0 Bn,

... D2∨
n>0 Bn, Γ ⇒ ∆

Γ ⇒ ∆, Bk
IH

... D2∨
n>0 Bn, Γ ⇒ ∆
Bk, Γ ⇒ ∆ Lem. 15

Γ ⇒ ∆ Cut
◀

In order to prove Cut elimination in a constructive way we use Bar Induction as done in
[21, p. 18] for ω-arithmetic. This strategy avoids the assumption of total ordering of ordinal
numbers. Before proving the theorem we introduce Brouwer’s principle of (decidable) Bar
Induction.

▶ Definition 22 (Bar Induction). Let B and I be unary predicates (the so-called “base
predicate” and “inductive predicate”, respectively) of finite lists of natural numbers (to be
denoted by u, v, . . . ). If:
1. B is decidable;
2. Every infinite sequence of natural numbers has a finite initial segment satisfying B;
3. B(u) implies I(u) for every finite list u;
4. If I(u ∗ n) holds for all n ∈ N then I(u) holds;

Then I holds for the empty list of natural numbers.

▶ Theorem 23 (Cut elimination). Cut is admissible in G3[CI]ω.

Proof. Throughout this proof, we use finite lists of natural numbers to index (partial)
branches of trees, i.e. directed paths from the root to a node, possibly a leaf. Consider a tree
such that each node has immediate successors either indexed by ω or else by some k < ω,
and such that each branch has finite length, then:
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The empty list {} indexes the root of the tree.
Suppose that u indexes a partial branch R of the tree and that the last node a has
immediate successor nodes indexed by k < ω, and let a natural number n be given. Let
m = n mod k: that is, m is the remainder of n after division by k. Then u ∗ n indexes
R extended with the mth immediate successor node of a. For example, in the case of a
2-premiss rule, odd numbers index the left premiss, even numbers the right premiss.

Notice that the above gives a partial surjective map, with decidable domain, from sequences
of natural numbers to branches in the given tree. Moreover, this ensures that every infinite
sequence has an initial segment that indexes a branch of the tree.5

Let D be a derivation in the calculus G3[CI]ω.G + {Cut}. The proof consists of two
parts, each building on an appropriate Bar Induction.

Part 1. We use Bar Induction to show that an uppermost instance of Cut with cut-
formula C occurring in D is admissible. We use the method defined above to index the
branches of the formation tree of the formula C – where C is the root of the tree and
atomic formulas or ⊤ or ⊥ are its leaves. Let B(u) hold if u indexes a branch whose
last element is an atom or ⊥ or ⊤; let I(u) hold if u indexes a partial branch whose last
element is a formula D such that an uppermost cut on D or on some proper subformula
thereof in G3[CI]ω.G + {Cut} is eliminable.
The following hold:

1. B(u) is decidable by simply comparing the list with the formation tree;
2. By definition of the indexing, the nth element of the sequence identifies the nth node

in a branch of the formation tree of a formula. After a finite number of steps from
the root we find an atom or ⊥ or ⊤ since all branches of the tree are finite and this
identifies an initial segment of the infinite sequence that satisfies B.

3. B(u) implies I(u) since cuts on atomic formulas, ⊤, or ⊥ are admissible;
4. I(u ∗ n) for all n implies I(u): by Lemma 21 an uppermost cut on some formula E

can be reduced to cuts on proper subformulas of E.
By Bar Induction we conclude that the uppermost cut with cut-formula C is eliminable
from G3[CI]ω.G + {Cut}.
Part 2. We show that all cuts can be eliminated from D. We consider a derivation D in
G3[CI]ω.G + {Cut} and, as above, we use lists of natural numbers to index branches of
D. Let B(u) hold if u indexes a branch ending in a leaf of D; let I(u) hold if u indexes a
partial branch whose last element has a cut-free derivation (i.e., it is G3[CI]ω.G-derivable).
All conditions of Bar Induction are satisfied by this choice of B and I:

1. B(u) is decidable;
2. Given any infinite sequence of numbers, we have B(u) for every finite initial segment u

that represents a full branch R of the tree, i.e., a root-to-leaf path; and by construction
of the representation there are such u.

3. B(u) implies I(u) since the leaves of D trivially have a cut-free derivation;
4. I(u ∗ n) for all n implies I(u): having shown in part 1 that uppermost instances of Cut

are admissible, if all the premisses of a rule instance in D have a cut-free derivation,
then also its conclusion has a cut-free derivation.

By Bar Induction we conclude that the conclusion of D has a cut-free derivation. ◀

5 Since the number of nodes of the tree is at most countable, one may also define an encoding such that
the correspondence is unique. This however would require more effort and we would lose the property
that every infinite sequence has an initial segment that indexes a branch of the tree.
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▶ Corollary 24. The rule of context-free cut:

Γ ⇒ ∆, A A, Π ⇒ Σ
Π, Γ ⇒ ∆, Σ

Cutcf

is admissible in G3[CI]ω.G.

Proof. An immediate consequence of Theorem 23 since rules Cut and Cutcf are equivalent
when weakening and contraction are admissible. ◀

5 A proof of the infinitary Barr theorem

Barr’s theorem is a fundamental result in geometric logic: it guarantees that for geometric
theories classical derivability of geometric implications entails their intuitionistic derivability.
As recalled in the Introduction (Theorem 2), the result has its origin, through appropriate
completeness results, in the theory of sheaf models. The most general form of Barr’s theorem
[3, 26, 20] is higher-order and includes the axiom of choice, and stated as eliminating not
just classical reasoning but also the axiom of choice6.

If one is interested solely in derivability in geometric logic (finitary or infinitary, but
without the axiom of choice), Barr’s theorem can be regarded as identifying a Glivenko class,
i.e., a class of sequents for which classical derivability entails intuitionistic derivability and a
proof entirely internal to proof theory, without any detour through completeness with respect
to topos-theoretic models, can be obtained.

Consider now a classical theory axiomatised by coherent or geometric implications.
Extending the conversion into rules of [14] to cover the case of infinitary disjunctions
and using the results detailed above, we transform the classical geometric theory G into
a contraction- and cut-free sequent calculus G3Cω.G. We shall denote by G3Iω.G the
corresponding intuitionistic extension of G3Iω. The following holds:

▶ Theorem 25 (Barr’s theorem). If a coherent or geometric implication is derivable in
G3Cω.G, it is derivable in G3Iω.G.

Proof. Any derivation in G3Cω.G uses only rules that follow the (infinitary) geometric rule
scheme and logical rules. Observe that geometric implications contain no ⊃, nor ∀, nor

∧
in the scope of ∨, which means that no instance of the rules that violates the intuitionistic
restrictions is used, so the derivation directly gives (through the addition, where needed, of
the missing implications in steps of L⊃) a derivation in G3Iω.G of the same conclusion. ◀

A proof of Barr’s theorem for finitary geometric theories was given in [14] through a
cut-free presentation of finitary geometric theories and the choice of an appropriate sequent
calculus that, in effect, trivialises the result. By the results above, the same trivialization
works for infinitary logic: a classical proof already is an intuitionistic proof.

6 Conclusion

This paper has shown how it is possible to constructivise the cut elimination procedure given
in [16] for infinitary geometric theories and how, as a consequence, it is possible to obtain a
constructive proof of Barr’s theorem. The proof used here avoids the use of the natural sum

6 Cf. Footnote 1.
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of ordinals which made non-constructive most cut-elimination procedures for infinitary logics,
but it does not avoid the use of transfinite induction on ordinals since all proofs of the results
in Section 3.1, as well as the proofs of Lemmas 20 and 21, are by induction on ordinals. We
observe, however, that the alternative route of resorting to constructive ordinals has been
pursued in [20] to obtain a proof of cut elimination for infinitary logic and of Barr’s theorem.

In the future, we plan to get rid of ordinals altogether by introducing a new well-founded
inductive parameter that can supplant ordinals. Another open line of research is to extend
the purely logical proof of Barr’s theorem given here and in [16] to other infinitary Glivenko
sequent classes, as it has been done in [15] for the finitary ones.
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