

Graphite solubility (molar fraction C) in aqueous fluids buffered at different Δ FMQ conditions. Calculations are performed by conventional thermodynamic modelling of graphite-saturated COH fluids(1) for model cool, intermediate and warm subduction regimes. Regardless of geothermal gradient, the carbon content initially decreases with depth to a minimum, then increases over a narrow depth range and remains nearly constant to greater depth. The solubility pattern tracks a transition from CH₄ dominated fluids at shallow depths, and CO₂ dominated fluids at greater depth; the minima occur where the bulk XO = 1/3 (H₂O stoichiometry; "water maximum" conditions). Shallow fluid compositions intersect the H₂O–CH₄ miscibility gap.

Histogram of the post-quench isotopic composition of graphite. Analyses are performed by means of NanoSIMS and LA-ICP-MS. Dashed line: isotopic composition of the starting graphite (EA-IRMS). Error bar represents typical uncertainty of LA-ICP-MS analyses.

Comparison of the experimental data fit (solid black lines) with conventional isotopic modelling (solid red lines). Modelling is performed assuming $T = 700^{\circ}$ C, room pressure and that δ^{13} C = 0‰ and -20‰ are equivalent to 13 C = 100% and 0%, respectively. CO₂/CaCO₃ molar ratio is displayed in the *x*-axis. (A) In the conventional isotopic model, CO₂, aragonite and graphite can all freely exchange isotopes and reach mass-balance equilibrium. The experimental conditions are replicated with 30 µmol aragonite and progressive oxidation of 166.5 µmol of graphite to CO₂ from 0 µmol (*x* = 0) to 30 µmol (*x* = 1); (B) graphite is treated as a chemically reactive phase, oxidizing to CO₂, but as an isotopically inert phase; in this case only aragonite and CO₂ can freely exchange isotopes to reach mass-balance equilibrium.

Details of the experimental design. (A) Outline of the typical experimental capsule; in the inner Au–Pd capsule, permeable to H₂, synthetic graphite and labelled Ca¹³CO₃ interact with excess ultrapure water (~20 wt%). In the outer Au capsule, the buffering assemblage ferrosilite + magnetite + coesite constrains the hydrogen fugacity. The expected fO_2 in the inner capsule is $\Delta FMQ = -0.16$. (B) Example of post-quench double capsule (sample COH98) containing the assemblage graphite + aragonite (checked by micro-Raman spectroscopy). Outer gold capsule diameter: 4.5 mm; natural light photograph. (c) Back-scattered electron image of the inner Au–Pd capsule of sample COH92 after NanoSIMS analysis. Size of a typical pit in aragonite is shown within the magenta circle.

Back-scattered electron image of the buffering assemblage in the outer capsule. The occurrence of ferrosilite + magnetite + coesite is confirmed by electron-microprobe analysis and micro-Raman spectroscopy.

Supplementary Table 1. Run table of the experiments performed at 3 GPa–700°C and analyses of volatiles and of bulk after-run aragonite.

Supplementary Table 2. Molality of CO₂ in analyzed fluids.

Supplementary Table 3. Deep Earth Water thermodynamic modelling of aqueous fluids at the investigated experimental conditions.

Supplementary Table 4. Conventional thermodynamic modelling of graphite-saturated fluids (C–O–H system) at the investigated experimental conditions.

Supplementary Table 5. Nano-SIMS analyses of graphite and aragonite in sample COH92.

Supplementary Table 6: LA-ICP-MS analyses of graphite and aragonite.

Supplementary Table 7: Parameters of Equation 6.

Supplementary Table 8: Thermal decomposition of oxalic acid di-hydrate and retrieval of the mass-bias QMS correction.

Supplementary Table 9: LA-ICP-MS analysis of standard carbonates.

Supplementary Table 10: Bulk analyses of labeled reagent and standard carbonates.

Supplementary Table 1: Run table of the experiments performed at 3 GPa-700°C and analyses of volatiles and of bulk after-run aragonite.

run	runtime	buffer	starting materials	Ca ¹³ CO ₃	graphite	Ca ¹³ CO ₃ /	run products (+fluid)	total volatiles	H ₂ O	CO2	CH ₄	CO ₂ mol% ¹³ C	X CO ₂ ^a	bulk aragonite	CO2/
	(h)	(double capsule)		μmol	μmol	graphite		μmol						mol% ¹³ C ^c	Ca ¹³ CO ₃
COH89	72	fs+mt+coe	Ca ¹³ CO ₃ + H ₂ O	55.6	-	-	arag ± cc	62.95	59.50	0.16	0.07	27.1	0.001 ^b	n.m.	0.003
COH99	72	Re+ReO ₂	Ca ¹³ CO ₃ + H ₂ O	52.6	-	-	arag ± cc	36.32	31.30	0.14	0.05	42.8	0.002 ^b	n.m.	0.003
COH82	72	fs+mt+coe	$Ca^{13}CO_3 + Cl-bear. Zr(OH)_4^d + H_2O$	91.0	-	-	arag + bdy ± cc	57.84	50.31	2.32	0.05	84.9	0.038 ^{b,d}	n.m.	0.025
COH83	72	fs+mt+coe	$Ca^{13}CO_3 + Cl-bear. Zr(OH)_4^e + H_2O$	52.4	-	-	arag + bdy \pm cc	22.69	18.87	0.97	0.02	86.4	0.042 ^{b,d}	n.m.	0.018
COH88	72	fs+mt+coe	graphite + H ₂ O	-	328.8	-	graph	14.93	6.58	4.81	0.05	1.43	0.422	-	
COH96	240	fs+mt+coe	graphite + H ₂ O	-	331.3	-	graph	20.72	10.37	5.32	0.00	1.11	0.339	-	-
COH170	0.24	fs+mt+coe	graphite + Ca ¹³ CO ₃ + H ₂ O	10.2	219.8	0.044	graph + arag ± cc	30.29	26.21	0.70	0.10	62.8	0.026	96.1	0.069
COH186	0.24	fs+mt+coe	graphite + Ca ¹³ CO ₃ + H ₂ O	29.6	194.0	0.132	graph + arag ± cc	14.35	11.69	0.34	0.00	52.9	0.028	97.2	0.012
COH106	2.4	fs+mt+coe	grapiteh + Ca ¹³ CO ₃ + H ₂ O	24.9	183.2	0.120	graph + arag ± cc	21.10	18.06	0.71	0.01	80.5	0.038	95.8	0.028
COH98	24	fs+mt+coe	graphite + Ca ¹³ CO ₃ + H ₂ O	29.5	174.0	0.145	graph + arag ± cc	22.94	17.88	2.51	0.02	88.4	0.123	88.1	0.085
COH92	72	fs+mt+coe	graphite + Ca ¹³ CO ₃ + H ₂ O	28.3	188.1	0.131	graph + arag ± cc	28.44	21.28	3.93	0.02	81.7	0.156	89	0.139
COH97	240	fs+mt+coe	graphite + Ca ¹³ CO ₃ + H ₂ O	29.2	190.6	0.133	graph + arag \pm cc	26.53	18.37	3.66	b.d.l.	82.2	0.166	82.9	0.125
COH171	0.24	fs+mt+coe	Ca ¹³ CO ₃ + OAD (0.3 mg)	37.8	-	-	arag ± cc	7.56	1.74	3.47	0.00	84.1	0.666	83.8	0.092
COH178	72	fs+mt+coe	Ca ¹³ CO ₃ + OAD (0.3 mg)	40.2	-	-	arag ± cc	11.07	3.89	5.27	0.04	79.9	0.575	80.8	0.131
COH184	72	fs+mt+coe	Ca ¹³ CO ₃ + OAD (0.3 mg)	29.9	-	-	arag ± cc	11.02	4.48	2.82	0.00	84.3	0.386	86.7	0.094
COH185	72	fs+mt+coe	Ca ¹³ CO ₃ + OAD (2 mg)	29.8	-	-	arag ± cc	41.52	17.08	17.99	0.05	54.7	0.513	55.3	0.604

a: $XCO_2 = CO_2/(H_2O+CO_2)_{molar}$ b: considering only ¹³CO₂ c: total decomposition by HCl + QMS analysis of evolved CO₂ d: chlorine in $Zr(OH)_4 = 0.6$ wt%; calculated final fluid Cl concentration = 0.89 mol Cl/kgH₂O e: chlorine in $Zr(OH)_4 = 0.6$ wt%; calculated final fluid Cl concentration = 0.54 mol Cl/kgH₂O n.m.: not measured b.d.l.: below detection limit fs: ferrosilite; mt: magnetite; coe:coesite; arag: aragonite; cc: calcite; graph: graphite; bdy: baddeleyite; OAD: oxalic acid di-hydrate

Run	mol ¹³ CO ₂ /	mol CO _{2(TOT)} /
	kgH₂O	kgH₂O
COH89	0.041	-
COH99	0.108	-
COH82	2.169	-
COH83	2.460	-
COH88	-	39.99
COH96	-	28.16
COH170	-	1.482
COH186	-	1.617
COH106	-	2.167
COH98	-	7.794
COH92	-	10.26
COH97	-	11.05
COH171	-	110.6
COH178	-	75.25
COH184	-	34.86
COH185	-	58.46

Supplementary Table 2: Molality of CO₂ in analyzed fluids.

 $CO_{2(TOT)} = {}^{12}CO_2 + {}^{13}CO_2$

Supplementary Table 3: Deep Earth Water thermodynamic modelling of aqueous fluids at the investigated experimental conditions.

saturated phases	aragonite		graphite	gra	phite+aragonite
P (GPa)	3		3		3
T (°C)	700		700		700
$\log(f H_2/1 \text{ bar})$	2.195		2.195		2.195
рН	5.090		2.210		4.200
$X CO_2 = [CO_{2(AQ)}/(H_2O+CO_{2(AQ)}]$	0.0002		0.305		0.284
C bulk solubility (molality)	0.1205		24.40		24.05
predicted species (decreasing m	olality)	predicted species (decreasing molality)	predicted species (dea	creasing molality
OH-	1.12E-01	CO2(AQ)	2.44E+01	CO2(AQ)	2.20E+01
CA(HCO3)+	8.94E-02	H+	6.78E-03	CA(HCO3)+	8.90E-01
CA(OH)+	1.37E-02	CO(AQ)	5.67E-03	HCO3-	8.07E-01
CA(HCOO)+	1.10E-02	HCO3-	5.39E-03	HCOO-	2.01E-01
CO2(AQ)	8.80E-03	нсоон	4.15E-03	CA(HCOO)+	1.49E-01
HCO3-	6.24E-03	HCOO-	1.32E-03	OH-	1.40E-02
CACO3(AQ)	3.50E-03	CH4(AQ)	3.19E-04	CO3	8.95E-03
CA++	2.97E-03	H2(AQ)	1.77E-04	CO(AQ)	5.57E-03
HCOO-	1.15E-03	OH-	8.98E-05	НСООН	4.00E-03
CO3	2.46E-04	СНЗСООН	3.67E-05	CACO3(AQ)	3.50E-03
H2(AQ)	1.77E-04	CH3CH2COO-	7.38E-07	CA++	6.42E-04
H+	1.12E-05	METHANOL(AQ)	7.20E-07	CH4(AQ)	3.19E-04
CO(AQ)	3.95E-06	ETHANOL(AQ)	3.00E-07	H2(AQ)	1.77E-04
НСООН	3.84E-06	CH3COO-	2.24E-07	CA(OH)+	1.31E-04
CH4(AQ)	1.67E-07	CO3	1.45E-07	CH3CH2COO-	1.13E-04
METHANOL(AQ)	5.02E-10	ETHANE(AQ)	1.17E-07	H+	1.12E-04
CH3COO-	1.03E-10	CH3CH2COOH	1.06E-07	СНЗСООН	3.54E-05
СНЗСООН	1.79E-11	ETHYLENE(AQ)	4.48E-09	CH3COO-	3.42E-05
CH3CH2COO-	1.77E-13	PROPANE(AQ)	8.26E-11	METHANOL(AQ)	7.07E-07
ETHANOL(AQ)	1.10E-13	02(AQ)	1.25E-20	ETHANOL(AQ)	2.94E-07
ETHANE(AQ)	3.21E-14	PROPANOL	5.76E-25	ETHANE(AQ)	1.17E-07
ETHYLENE(AQ)	1.23E-15			CH3CH2COOH	1.02E-07
СНЗСН2СООН	2.70E-17			ETHYLENE(AQ)	4.48E-09
02(AQ)	2.20E-20			PROPANE(AQ)	8.26E-11
PROPANE(AQ)	1.20E-20			O2(AQ)	1.20E-20
PROPANOL	1.107E-34			PROPANOL	5.652E-25
abundances among carbon-bear	ing species				
% Ca(HCO ₃) ⁺	74.27		-		3.70
% CO _{2(AO)}	7.31		99.93		91.40

Supplementary Table 4: Conventional thermodynamic modelling of graphite-saturated fluids (C–O–H system) at the investigated experimental conditions.

P(GPd), T(C) 3, 700	
ferrosilite	+
buffer magnetite	+
coesite	
log(fO ₂ /1 bar) outer capsule ^a -13.	21
$log(fH_2/1 bar)$ outer capsule = 2.1	95
$\log(fO_2/1 \text{ bar})$ inner capsule ^c -13.	36
XCO ₂ ^c 0.3	03
log(fO ₂ /1 bar) ^{FMQ,d} -13.	97
ΔFMQ^{e} inner capsule +0.	61

 $^{a}\log(fO_{2}/1 \text{ bar})$ of the buffering assemblage 3 FeSiO₃ + 0.5 O₂ = Fe₃O₄ + 3 SiO₂ (coesite), retrieved using the Perple_X package and the hpO2ver.dat database.

^b retrieved using the routine "fluids" of the Perple_X package (H–O HSMRK/MRK hybrid EoS).

^cretrieved on the basis of constant log($fH_2/1$ bar) using the routine "fluids" of the Perple_X package (GCOH-fluid MRK). ^dlog($fO_2/1$ bar) of the metastable assemblage 3 Fe₂SiO₄ + O₂ = 2 Fe₃O₄ + 3 SiO₂ (quartz).

 $^{e}\Delta FMQ = \log(fO_2/1 \text{ bar})^{sample} - \log(fO_2/1 \text{ bar})^{FMQ}$

Filename	¹³ C mol%	2 sigma
graphite		
analysis #1	1.119	0.006
analysis #2	1.141	0.003
analysis #3	1.171	0.003
analysis #4	1.181	0.003
aragonite		
analysis #1	4.101	0.006
analysis #2	8.81	0.04
analysis #3	10.12	0.04
analysis #4	13.04	0.05
analysis #5	20.3	0.2
analysis #6	24.0	0.8
analysis #7	27.3	0.2
analysis #8	28.6	0.3
analysis #9	29.1	0.2
analysis #10	31	1
analysis #11	31.6	0.1
analysis #12	32.4	0.7
analysis #13	41.4	0.8
analysis #14	41.5	0.7
analysis #15	84.0	0.8

Supplementary Table 5: Nano-SIMS analyses of graphite and aragonite in sample COH92.

	¹³ C mol%	2 sigma
graphite		
COH106_1	1.4	0.2
COH106_2	1.5	0.2
COH106_3	1.2	0.1
COH98_1	1.2	0.1
COH98_2	1.1	0.1
	1.1	0.1
_		
aragonite		
COH106_1	65.2	0.7
COH106_2	71.5	0.7
COH106_3	70.5	0.7
COH106_4	67.8	0.7
COH106_5	70.6	0.7
сон106_6	55.5	0.6
COH106 7	58.9	0.6
COH106 8	76.9	0.8
COH106 9	74.9	0.7
COH106 10	76.4	0.8
COH106 11	58.8	0.6
COH106 12	59 N	0.0
COH106 13	81 F	0.0 N R
COH106 14	71 6	0.0
COH106 15	71.0	0.7
COH98 1	/1.3	0.7
	45.5	0.5
	45.5	0.5
	40.2	0.5
	47.0	0.5
	30.2	0.4
	27.6	0.3
	38./	0.4
	38.6	0.4
COH92_5	42.0	0.4
COH92_6	37.9	0.4
COH92_7	38.4	0.4
COH92_8	43.7	0.4
COH92_9	49.8	0.5
COH92_10	41.0	0.4
COH92_11	45.9	0.5
COH97_1	36.5	0.4
COH97_2	98	1
COH97_3	88.9	0.9
COH97_4	55.4	0.6
COH97_5	38.0	0.4
COH97_6	73.7	0.7
COH97_7	60.5	0.6
COH97_8	53.1	0.5
 COH97_9	52.2	0.5
СОН97_10	57.2	0.6
СОН97_11	63.0	0.6

Supplementary Table 6: LA-ICP-MS analyses of graphite and a

Independent	Parameter	sigma		
variable	estimate			
1	4.71676	0.0507989		
WAR	-2.87021	0.0494956		
Δ FMQ	-3.00212	0.163084		
ΔFMQ^2	2.15874	0.238246		
ΔFMQ^3	-2.08921	0.118716		
$\Delta FMQ \times WAR$	0.294843	0.0586424		
WAR ²	1.02176	0.0267483		
WAR ³	-0.12774	0.00443806		
$\Delta FMQ^2 \times WAR$	-1.02538	0.0513343		
WAR ⁻²	0.0030557	0.00010255		

Supplementary Table 7: Parameters of Equation 6.

WAR=water/aragonite molar ratio. $\Delta FMQ = \log(f O_2/1 \text{ bar})^{\text{sample}} - \log(f O_2/1 \text{ bar})^{FMQ}$

Supplementary Table 8: Thermal decomposition of oxalic acid di-hydrate and retrieval of the mass-bias QMS correction factor.

	¹² C-OAD mg	¹³ C-OAD mg	predicted ¹³ C/ ¹² C	predicted ¹³ C	integrated peak channel 44	integrated peak channel 45	ratio 45/44	ratio $45_{corr}^{a}/44$	¹³ C abundance %
regular OAD	3.6	0	0.013	1.25	5.53E-06	7.02E-08	0.013	-	1.29
labeled ¹³ C-OAD	0	9.91	191.283	99.5	2.86E-07	5.47E-05	191.283	-	99.5
mix 1	5.55	5.11	0.922	48.0	7.45E-06	6.38E-06	0.856	0.881	46.9
mix 2	7.52	1.53	0.214	17.6	8.79E-06	2.40E-06	0.273	0.281	22.0
mix 3	0.72	9.06	11.729	92.1	3.92E-06	4.45E-05	11.364	11.705	92.1
test_AA8	0.56	0.86	1.52	60.4	0.00	0.00	1.35	1.39	58.1

OAD: oxalic acid di-hydrate

a: using correction factor 1.03 for channel 45, corresponding to a regression line through mix1-mix2-mix3 with R^2 =0.99993

	¹³ C mol%	2 sigma
natural calcite		
natural_calcite_1	1.07	0.05
natural_calcite_2	1.09	0.05
natural_calcite_3	1.15	0.06
natural_calcite_4	1.12	0.06
natural_calcite_5	1.10	0.05
synthetic calcite		
synthetitc_calcite_1	43.9	0.4
synthetitc_calcite_2	43.7	0.4
synthetitc_calcite_3	44.4	0.4

Supplementary Table 9: LA-ICP-MS of standard carbonates.

synthetic calcite is precipitated from mixed ${}^{12}C-{}^{13}CNa_2CO_3$ solutions.

Supplementary Table 10: Bulk analyses of labelled reagent and standard carbonates.

	integrated peak	integrated peak			
	channel 44	channel 45	ratio 45/44	ratio 45 _{corr} ^a /44	¹³ C abundance mol%
synthetic ¹³ C calcite	6.83E-08	1.18E-05	173	178	99.4
precipitated (¹² C, ¹³ C) synthetitc calcite	4.45E-06	3.36E-06	0.755	0.778	43.8
natural-abundance calcite	5.62E-06	6.22E-08	0.0111	0.0114	1.13

a: using correction factor 1.03 for the integrated peak of channel 45.