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CHAPTER 1

AIMS, TOOLS AND BACKGROUND

1.1. Introduction

Both in the fields of manufacturing and architecture, origami is often taken as 
a reference for its kinetic properties, its elegant and geometric shapes, for its 
capability to rationalize the creative process following precise geometric rules 
and specific spatial references and its capacity to combine shape and motion in 
a functional or ornamental way. If the crease is replaced with a hinge and the 
paper with a panel of a rigid material, or the hands of the origami artist with 
a CNC machine, it is not hard to imagine the numerous possible applications 
of this art and technique. Dynamic facades, deployable structures, temporary 
shelters, portable furniture, retractile roofs, unfoldable boxes, are some exam-
ples of kinetic designs that can take advantage of origami strategies. Differently 
from structures with bars and panels, origami can be used to obtain continuous 
surfaces without assembling different parts, optimizing the constructive process, 
the transportation, and the cost, at the expense of the designing time, in fact de-
signing with origami makes the shape and movement harder to control with the 
contemporary professional cad applications, typically used by designers, because 
they were not developed with origami in mind.

In the design process of such applied origami, it is very difficult for the designer 
to control the form to fit design contexts while preserving the necessary func-
tionalities of the original patterns. Therefore, without sufficient knowledge or 
intelligent design systems, the result designs would end up in either just a mere 
copy and paste of an existing origami pattern or an ‘origami-inspired’ design 
which is not using the proprieties of origami in functional ways. (Demaine & 
Tachi, 2010)

In accordance with Tachi and Demaine’s studies, it is observable that the cause 
of this lack of variety could be attributed to insufficient knowledge, or to the 
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inefficiency of the design tools. When designing kinetic structures with folded 
surfaces it is necessary to control both shape and motion at the same time with-
out losing the developability property of the surfaces. Consequently, the use of 
mathematical or geometrical rules play an important role for the success of the 
project, which increase complexity and time consumption at the very beginning 
of the design stage.

This lack of efficient tools has been already pointed out by many research-
ers in the past few decades, they tried to reduce this gap by studying the 
mathematical implications of origami art or by developing specific computer 
applications, however theorems and formulations are often hardly directly ap-
plicable by designers and architects to the creative process, ant the developed 
applications are still limited in number and usually not very well integrated 
into the typical workflow of a designer. In this book we propose several sim-
plified methods to design origami-like geometries, using a synthetic approach 
based on geometric constructions typical of the descriptive geometry, applied 
with a parametrical node-based application (Grasshopper for McNeel Rhi-
noceros). Working with geometrical constructions and spatial references is 
more natural for most of the professionals that operate in the fields of manu-
facturing and architecture because it is related to the representation method 
typically used by architects and designers.

The variety of possibilities that origami offers is boundless, for this reason, 
the aim of the research that gave birth to this book was not to provide a spe-
cific command or a piece of software that performs specific tasks, because this 
would not provide extensive design freedom. Thus, this book presents a series 
of case studies and operative guidelines which will help optimizing the design 
process that involves origami geometries, while at the same time guaranteeing 
maximum design flexibility. Our targets are all those professionals interested in 
origami design but without a specific background in mathematics or computer 
science, thus the use of scripting and algebraic formulations will be limited as 
much as possible.

1.2. Research Field

The origami world for his capability to combine technique and art, static 
nature and dynamism, straight lines and curves, recursive patterns and sculpt-
ed figures, planar configurations and three-dimensional objects, stiffness and 
flexibility, is versatile and applicable in a vast number of fields like engineer-
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ing, manufacturing, astronomy, medicine, chemistry, architecture, robotics, 
computer science, art, fashion, design. The application fields are innumerable 
as well as the researchers that use origami constructions to improve some as-
pect of their projects.

One of the most influential researchers in the field of applied origami is To-
mohiro Tachi. He investigates the paper folding since the first decade of the 21th 
century (Tachi, n.d.-a). He developed some of the most versatile and powerful 
computer applications focused on the design of origami, his aim is to simplify 
the origami design process to make it accessible to a vaster number of designers. 
He developed several mathematical theorems about origami, and he demon-
strated their usefulness applying them in many practical applications, such as 
the “Rigid-origami table” which folds and unfolds in a single rigid motion or 
the “Vault structure” designed with rigid-foldable curved tubular arches (cf. sec-
tion 3.4 for more about rigid foldability). He also developed some techniques to 
thicken the zero-thickness study model while preserving the kinematics of the 
original pattern (Tachi, 2011b).

With similar aims and approaches, in the last few years, some researches in 
the “Sapienza” University of Rome in Italy explored the kinematic properties 
of origami from the point of view typical of the descriptive geometry, and they 
searched for solutions suitable to be applied to the field of kinetic architecture 
(Casale & Calvano, 2012; Casale et al., 2013).

Erik Demaine, computer scientist, mathematician, artist and professor at 
MIT, has a pluriannual experience into origami science, he is nowadays one 
of the most active and influential theorists in the field of computational ori-
gami, he contributed to the development of some computer applications that 
solve some specific origami problems related to pattern design, rigid-foldability, 
flat-foldability and curve-folding.

Because computer applications for designing origami are lacking, many dif-
ferent researchers started developing their own digital tools, such as Tomohiro 
Tachi, Jun Mitani, Ke Liu and Glaucio H. Paulino, Zhonghua Xi, only to name 
a few (cf. section 1.3.1 for more about computer applications for origami). 
However, one of the first and most influential computer applications developer 
for origami design was Robert J. Lang.

Lang is considered one of the most important origami scientist and artist 
of all times. He contributed to refine and extend some of the most advanced 
techniques still used by scientists and artists to design complex origami patterns. 
He also worked on several projects for aerospace applications which is probably 
the most advanced frontier of this art and technique. For example, he contrib-
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uted to the design of the “Eyeglass” telescope for Lawrence Livermore National 
Laboratory and to the “Starshade” project for NASA, which are respectively a 
foldable lens for a space-based telescope and an occulter for the sunlight that 
will be used to look for planets orbiting faraway stars (Feder, 2018). He also 
contributed developing an algorithm to optimize the air-bag flattening in col-
laboration with the EASi airbag company (Lang, 2015a).

Some other interesting uses of origami into practical applications are the 
“Origami-Based Deployable Ballistic Barrier” by Seymour et al. (Seymour et 
al., 2018); the “Deployable Locomotive Fairing” designed to improve the aer-
odynamics of the locomotives by Tolman et al. (Tolman et al., 2018); and the 
origami stent by Kuribayashi et al., that facilitate the insertion of the stent inside 
the human body by folding it in a specific way (Kuribayashi et al., 2006), only 
to name a few. All these applications were possible also thanks to Thomas Hull, 
Toshikazu Kawasaki, Humiaki Huzita, Koshiro Hatori, Koryo Miura and many 
others who contributed to set the basis and extend the fundamental theorems of 
the origami mathematics.

This book adds a small contribution in this vast landscape, it tires to nar-
row the gap between theories and applications, opening this field full of possi-
bilities to all those professionals without a specific background in engineering, 
mathematics, and computer science, who want to use origami functionalities 
in their projects.

1.3. Tools

To model folded surfaces in a three-dimensional digital environment and to 
integrate them into the design of a building or a piece of furniture, it is highly 
preferred the use of computer applications which can exchange files with the 
software used by architects and designer. Less export/import operations are 
usually preferable. This is important to limit time consumption and conver-
sion problems.

Parametric/procedural modelling/animation is the widespread approach that 
is usually used to control such type of complex geometries and integrate them 
into the projects while speeding up the shape-finding process at the same time. 
Traditional 3D modelling computer programs can produce parametrical mod-
els through the integrated scripting interface, which is usable by users that can 
script in the programming language that the software requires. This kind of 
applications are tricky to use, and the programming language usually changes 
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from software to software. Thus, they are usually harder to learn than the logic 
environment of a graphical parametric node-based modeller, such as Dynamo, a 
plug-in for Autodesk Revit (Autodesk, n.d.), or Grasshopper, a plug-in for Rhi-
noceros (Rutten, n.d.). This kind of applications converts code strings in visual 
“nodes” that can be connected reciprocally to compose complex algorithms for 
documentation, fabrication, coordination, simulation and analysis. The research 
of the tools has been carried out analysing the international professional and ac-
ademic landscape. Ultimately, Grasshopper for McNeel Rhinoceros was chosen 
for the following reasons: it is integrated into applications already used by both 
architects and designers, it is one of the most versatile parametric node-based 
modelers available up to now, it is affordable, it is user-friendly, it has a lot of 
free add-ons that speed up different processes, it has an active online communi-
ty, it has an efficient assistance, it allows to integrate missing nodes by scripting 
with common programming languages (Python, VB, C#). Although, any other 
analogous application can be used to achieve similar results, because of that the 
procedures will be explained in the most general way possible so that they can 
be easily transposed in a different software with different tools and interface.

According to the initial statement, the generative algorithms in this book 
will be carried out trying to limit as much as possible scripting and mathemat-
ical formulations, thus all the definitions will be based as much as possible on 
geometric constructive procedures, using visual references and geometric prim-
itives as construction tools.

This approach is comparable to the “Synthetic method”. The synthetic meth-
od has been used for centuries by mathematicians and scientists as an alternative 
to the analytical method and it can be compared to the field known today as 
“Descriptive geometry” extensively studied and disseminated by the geometer 
and mathematician Gaspard Monge (1746-1818) (Cardone, 2017). From that 
time, where ruler and compass were the most used tools, the methods and the 
solutions are greatly improved. Riccardo Migliari et al. into the book Geome-
tria descrittiva (Migliari, 2009a, 2009b) proposes several methods to solve some 
old and new problems of descriptive geometry with three-dimensional model-
ling applications. Today we can work into three-dimensional space, and we can 
move the point of view in space to verify spatial relations easier. We can also 
measure distances and angles without needing to project them into auxiliary 
planes, which does not only simplify the visualization of the problems, but it 
also may simplify the actual constructions needed to solve those problems in the 
first place. Furthermore, nowadays, the accuracy when drawing with this kind 
of applications is incredibly high, this gives to the synthetic method great pos-
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sibilities when looking for new problems and new solutions. The researchers of 
the Roman school, to which Migliari belongs, studied for many decades, until 
nowadays, the synthetic method and its implications, and they use it to study 
and solve complex modern geometrical problems or to verify problems from the 
past (Carlevaris et al., 2012; Fallavollita, 2008; Fallavollita & Salvatore, 2013; 
Migliari, 2008a, 2008b, 2012; Salvatore, 2012). An interesting contribution 
from the Roman school, based on the synthetic method but related to origa-
mi, is the book Architettura delle superfici piegate written by Andrea Casale and 
Graziano Mario Valenti (Casale et al., 2013) who use geometric constructions 
applied with the computer to solve the kinematics of origami.

1.3.1. Existing Software for Designing Origami

Figure 1 - Rigid 
Origami Simulator, 
by Tomohiro Tachi.
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Architects, designers, engineers, and artists interested in origami, have until to-
day developed their own tools for designing origami. Ron Resh was the pioneer 
of computer science applied to origami:

“[…] the design is a kind of feedback loop between the artist and the environ-
ment […] the computer can really speed up this kind of loop, (design) and I think 
it greatly aid creativity […] the excitement for me is to try to develop the comput-
er as a medium for exploration and as a medium for expression.” (Resh, 1992).

As Resh stated, the computer does not only speed up the creative process, 
but it becomes a medium for expression and exploration. Kostas Terzidis shares 
the same point of view when he says:

“We shouldn’t consider the computer as an extension of the mind, but rather 
as a partner in the design process with fundamentally different aptitudes and ways 
to reason.” (Terzidis, 2006). And “Computers should be acknowledged not only 
as machines for imitating and appropriating what is understood but also as vehi-
cles for exploring and visualizing what is not (yet) understood.” (Terzidis, 2009).

Thus, using the computer not only optimizes and speed up our design pro-
cesses but also opens new unexpected possibilities. In fact, at the beginning of 
the twenty-first century, when computer applications for the design of origami 
started spreading, the complexity of the new origami models increased rapidly.

Robert J. Lang was the first to develop a stand-alone, pubblicly availabe, com-
puter application to generate origami crease patterns called Treemaker (Lang, 
2015c). This software was made for designing crease patterns using the circle river 
packing technique (cf. section 1.4.3 for a brief explanation of the circle river packing 
technique). In 1998 with version 4.0 this software was released outside the aca-
demic sector. Tomohiro Tachi developed several pieces of software to analyse and 
design origami-like geometries. Some of them are aimed to design non-flat foldable 
patterns or aimed to analyse the folding motion of any rigid-foldable pattern. The 
software developed until now by Tachi are: Freeform Origami, Origamizer, Rigid 
Origami Simulator (Figure 1), which allow the users to develop modify and analyse 
origami models with intuitive 2D and 3D interfaces (Tachi, n.d.-b). Jun Mitani 
developed: Oriref and Orirevo, made to design origami with reflections (Mitani & 
Igarashi, 2011) and revolutions (Mitani, 2009), and Oripa, which is a software to 
design planar origami patterns and returns their collapsed flat-folded configuration. 
All these apps can be found on Mitani’s official web page (Mitani, n.d.). Tess is a 
software aimed to design origami tessellations developed by Bateman (Bateman, 
n.d.). Pepakura is not properly an origami software for purists, but it is somehow 
related to origami, because it works with folds, other than cuts, to make 2D pattern 
starting from a generic three-dimensional mesh (Tamasoft, n.d.). Another interest-
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ing recent application that returns the folding animation of a given origami pattern 
is the Origami Simulator by Amanda Ghassaei (Ghassaei, n.d.), which run directly 
on the internet browser. We want also to cite Merlin 2 by Ke Liu and Glucio H. 
Paulino which is a versatile powerful tool for the analysis of origami structures (Ka-
waguchi et al., 2016; Liu & Paulino, 2018).

In the following table, we report some of the most important applications 
that concern origami and folding, at the present moment.

Table 1 - Origami computer applications.

Year Software Author
? Pepakura Tama Software

1998 Treemaker Robert J. Lang
2003 Reference finder Robert J. Lang
2007 Tess Alex Bateman
2007 Rigid Origami Simulator Tomohiro Tachi
2008 Origamizer Tomohiro Tachi
2010 Freeform Origami Tomohiro Tachi
2011 Oripa Jun Mitani
2011 Oriref Jun Mitani
2011 Orirevo Jun Mitani
2011 Orirevo Morph Jun Mitani
2013 Single Vertex Rigid Origami Simulator Zhonghua Xi
2014 Origami Pattern Designer Zhonghua Xi
2014 Tes Generator Zhonghua Xi
2014 Rigid Origami Folder Zhonghua Xi
2015 Origami Folder Zhonghua Xi
2017 Origami Simulator Amanda Ghassaei
2017 Merlin Ke Liu and G. H. Paulino
2018 Merlin 2 Ke Liu and G. H. Paulino
2018 DeltaMod Naoya Tsuruta

These applications (and many others not reported here), simplify the design of 
origami-inspired geometries and mechanisms to be used in architecture and man-
ufacturing, but a deep theoretical origami knowledge is needed to properly use 
most of them. Furthermore, some applications often absolve only one task. They 
are useful tools, nevertheless, they require numerous exporting and importing 
operations to be able to use them into a real professional workflow. These file 
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conversions may cause loss of data while moving the model from one software to 
another, e.g. the mountain valley assignments, the folded or unfolded state, the 
folding animation, the overlapping sequence of the layers, the colour or the shader 
of the surface. Some researchers are already working trying to partially solve this 
problem through the creation of a file extension specific for origami. This innova-
tion could revolutionize the design of these folded patterns. The file extension is 
called “.fold” from the GitHub repository by E. Demaine, it is defined as follows:

FOLD (Flexible Origami List Data-structure) is a file format (with extension 
.fold) for describing origami models: crease patterns, mountain/valley patterns, 
folded states, etc. Mainly, a FOLD file can store a mesh with vertices, edges, 
faces, and links between them, with optional 2D or 3D geometry, plus the top-
ological stacking order of faces that overlap geometrically. A mesh can also easily 
store additional user-defined data. (Demaine, n.d.)

While we wait for the enhancing of the interoperability between these applica-
tions, the solution that we propose is trying to clarify how a designer needs to 
think while designing with origami and what strategies he needs to follow to 
make a creative and interesting origami-based design. To do so we will propose a 
variety of algorithms and case studies using the same parametric modelling soft-
ware so that any designer would be able to work in the same platform without 
needing to switch software, saving time and preventing data loss.

1.4. Background

1.4.1. Brief History of Origami

Figure 2 - Shinto temples orned with zigzagging cut-and-folded paper streamers 
called “shide”. (Pictures courtesy of K. Toma and M. Winkler under the “Free to use 
Unsplash License”)
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Origami has no certain origins. The paper degrades easily, for this reason, it 
is impossible to know who was the first who folded a piece of paper or when 
exactly origami has been invented. The implications of the origin of traditional 
origami on the field of origami applied to architecture and manufacturing are 
minimal because the origami as we know today is very different from the one 
practised in ancient times. Despite that, it is still interesting to see where it all 
started and in how many different fields origami played a more or less important 
role before becoming a reference for designers and engineers.

There are many theories about origami origins. Someone says that origami 
originated in China concurrently with the paper invention around 2000 years 
ago, this theory is based on the fact that many believe that paper was born in 
105 BCE, when the Chinese official of Han dynasty, Cai Lun, wrote a docu-
ment that explained the procedure to produce paper used at the time. Koshiro 
Hatori in his article History of Origami in the East and the West before Interfusion 
(Hatori, 2011) states that all these assumptions are wrong, because there is no 
evidence of origami from that period and, furthermore, the paper wasn’t invent-
ed in China in that period. Hatori reports recent studies, by Imami Sakamoto, 
which dates high-quality foldable bark paper around 5000 years BCE, and there 
are proves of a similar type of rough paper found in different parts of the world 
at that time (Meso-America, Hawaii, Southeast Asia). Furthermore, even if they 
folded the paper in half or more it is hard to consider that as an actual origami. 
This philosophical observation about the number of folds needed to consider 
a folded sheet as a proper origami makes even harder trying to date its origins. 
This does not mean that an independent Chinese origami tradition does not 
exist. For example, the “Yuan bao” is a traditional Chinese origami represent-
ing a golden nugget which was invented by an unknown designer earlier than 
the tenth century CE when it was already a tradition folding and burn it at 
funerals (Mitchell, n.d.). There is also who believe that origami originated in 
Japan in the Heian era (circa 794-1192 CE). The theory is based on traditional 
anecdote where Abe-no Seimei took a piece of paper and he transmuted it into 
a real heron. However, even this hypothesis is not sufficient to prove that they 
were talking about origami as we know them nowadays, because, according to 
what Hatori reports, some version of the stories says that the heron was made 
by knotting the paper or drawing or cutting it instead of folding it. In addition, 
Hatori explains that the Japanese paper strips, “Shide” sometimes mounted on 
wooden sceptres called “Gohei”, “Onbe” or  “Heisoku”, used in Shinto rituals 
and the paper dolls, “Hitogata”, were not made of paper in ancient Japan, and 
they are not necessarily folded even now. The word “ori-gami”, came from “oru” 
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meaning “to fold” and “kami” meaning “paper” or “divinity”. This leads us to 
think that there is a strict relationship between Japanese religion and the art 
of paper folding, but in ancient Japanese language the pronunciation of those 
words were different, so Hatori believe that it is hard to see a univocal connec-
tion even between the traditional origami and the Japanese religion.

The oldest unequivocal document about origami in Japan is a short poem 
composed by Ihara Saikaku in 1680, where he speaks about “Origami butter-
flies in Rosei’s dreams”. He refers to origami “Ocho” and “Mecho” which are 
male and female butterflies, Japanese people still use those folded paper models 
to ornate bottles at weddings. This means that origami was already deep-rooted 
in Japanese culture when the poem was written, in fact, the samurai warriors 
between 1603 and 1868 were supposed to fold wrapping paper, shaping it in a 
symmetric regular figure. Such type of folded figure named “Noshi” is probably 
dated between 1333-1573 and it was gifted as a token of good luck. What is 
surprising is that an older document reported by Viciente Palacios where we can 
recognize an origami boat was probably edited in Venice for the first time in 
the 13th century. It is the Tractatus de Sphaera Mundi by Giovanni Sacrobosco, 
according to Viciente, the image of the boat on the bottom has been found 
in the 1490 edition, but it could have been present even in an earlier edition. 
However, even in this case, Hatori discourages to take it as a certain clue because 
no written evidence of origami in Europe in that period has been found yet, 
and the picture could also have represented a simple stylized boat instead of an 
accurate origami boat.

Another European document that proves that origami was present in Europe 
in ancient times, which is probably unrelated to Japanese origami tradition, was 

Figure 3 - Tractatus de Sphaera Mundi written by Giovanni Sacrobosco on the left, 
two figures similar to paper boats on the right.
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the baptismal certificate which was folded in a way that is known today as the 
“double blintz base”, and it can be dated back to the 16th century before the 
protestant reformation. In addition, there are several examples of love letters 
dating back to the early nineteenth century folded in a similar way which could 
be related to an autonomous European tradition of paper folding.

What is almost certainly true is that there is not a univocal place or time 
where and when origami was born, but it probably had a concurrent diffusion 
in many different countries and ages because the paper by its nature invites 
to folding it. Nevertheless, it is still an open problem, which we will probably 
never be able to solve due to the lack of evidence. What is certain is that the 
origami, even if it could not be born exclusively in Japan, nowadays is consid-
ered strictly related to Japanese culture. The reason for this can be related, on 
the one hand, to the higher number of references to origami in the ancient and 
modern Japanese art compared to other countries; for example the first known 
book about ornamental origami is the Japanese book Hiden Senbazuru Orikata 
first published in 1797; and on the other hand, it can be related to the work of 
many Japanese artists who lived in 20th to 21st century such as Akira Yoshiza-
wa (1911-2005) who is considered the father of modern origami and the one 
who redefined the graphical system which is used today to represent the folding 
procedures of origami, known as “Yoshizawa-Randlett system”. He probably 
created more than 50.000 original models, of which only a small amount was 
published in his 18 books. For his contribution, as an ambassador of the Jap-
anese culture in the world, he has been awarded from Emperor Hirohito with 
the “Order of the Rising Sun”, which is the highest honour conferred in Japan.

1.4.2. Origami in Education – Art, Design and Math
In the past, origami was not only used for artistic or ceremonial purposes. 
Thanks to its intrinsic geometrical properties, it was often used for educational 
purposes. One of the first well-documented examples of origami used in class-
es was the experience of Joseph Albers who used origami as a tool to experi-
ence construction at Bauhaus in the 1920s. Quoting the artist Hans Beckmann 
words on his experience in Joseph Albers’s basic design course at Bauhaus:

I remember vividly the first day of Vorkurs, Josef Albers entered the room, car-
rying with him a bunch of newspapers. […] he then addressed us saying: Ladies 
and gentlemen, we are poor, not rich. We cannot afford to waste materials or 
time. We have to make the most out of the least. All art starts with a material, 
and therefore we have first to investigate what our material can do. So, at the 
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beginning, we will experiment without aiming at making a product. At the mo-
ment, we prefer cleverness to beauty. […] Our studies should lead to construc-
tive thinking. […] I want you now to take the newspapers […] and try to make 
something out of them that is more than you have now. I want you to respect 
the material and use it in a way that makes sense ‒ preserve its inherent charac-
teristics. If you can do without tools like knives and scissors, and without glue, 
the better. (Roth et al., 2013)

In the book Geometric folding algorithms: linkages, origami, polyhedra by De-
maine and O’Rourke, the authors report an interesting and extensive research 
about the history of origami in math. They report a contribution precedent to 
the Bauhaus experience that used origami with educational purposes, which 
was the geometry essay by Rev. Dionysius Lardner written in 1840. This book 
illustrates several geometric concepts using paper folding. Furthermore, Sun-
dara Row in 1893 wrote a text where origami was used as a tool to make ge-
ometrical constructions as an alternative to ruler and compass. These writings 
can also be considered as the firsts known contributions to origami in the field 
of mathematics, even if in these cases the origami is used as a tool and not as 
the focus of the study (Demaine & O’Rourke, 2007). In 1936 is dated the 
first known contribute signed by Margherita Piazzola Beloch, which considers 
origami as the focus of a research about mathematics. In this book, she starts 
the investigation of the origami axioms, which later will be investigated fur-
ther by Humiaki Huzita, the Japanese-Italian mathematician who, in 1985, 
presented the first 6 of the 7 axioms which define the operations that can be 
made with a single piece of paper, folded with linear creases with no cuts and 
completed on a plane. Someone believed that the 7th axiom was discovered in 
2002 by Koshiro Hatori, a Japanese folder who found a new type of single fold 
alignment which could not be attributed to any of the Huzita axioms. From 
that moment, the 7 axioms started to be known as “Huzita-Haori” axioms, 
but according to Robert J. Lang’s point of view, the seven axioms should have 
been named “Huzita-Justin axioms” (Lang, 2016), because in fact it turned 
out later that all the 7 axioms were already been completed by a French re-
searcher Jacques Justin in 1989, who published the paper Résolution par le 
pliage de l’équation du troisième degré et applications géométriques in which he 
enumerated 7 possible combinations of one single fold alignments. This fact 
instilled the doubt in Lang that the axioms could have been not concluded, 
thus a few years later he proved their completeness mathematically (Lang, 
2015b). The full set of axioms is reported in Table 2.
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Table 2 - Huzita-Justin Axioms.

HUZITA-JUSTIN AXIOMS
1 Given two points p1 and p2 we can fold a line connecting them.
2 Given two points p1 and p2 we can fold p1 onto p2

3 Given two lines l1 and l2, we can fold line l1 onto l2

4 Given as point p1 and a line l1, we can make a fold perpendicular to l1 
passing through the point p1

5 Given two points p1 and p2 and a line l1, we can make a fold that places p1 
onto l1 and passes through the point p2

6 Given two points p1 and p2 and two lines l1 and l2 we can make a fold that 
places p1 onto line l1 and places p2 onto line l2

7 Given a points p1 and two lines l1 and l2, we can make a fold perpendicular 
to l2 that places p1 onto line l1

For those who are interested to study further the origami axioms, more details 
can be found in: Origami and geometric constructions and Huzita-Justin axioms 
by Robert J. Lang (Lang, 2015b, 2016), The mathematics of origami by Sheri 
Yin (Yin, 2009), Some results to the Huzita axioms by H. R. Khademzadeh and 
H. Mazaheri (Khademzadeh & Mazaheri, 2007), Résolution par le pliage de 
l’équation du troisième degré et applications géométriques by Jacques Justin (Justin, 
1989), and Geometric folding algorithms: linkages, origami, polyhedra by Erik D. 
Demaine and Joseph O’Rourke (Demaine & O’Rourke, 2007). A lot of studies 
about axioms, and about geometrical constructions that are possible thanks to 
the origami axioms, can be also found on Thomas Hull’s web page and other 
publications by him (Hull, n.d., 2003a, 2003b, 2006).

Even if the seven axioms of origami are not easily directly applicable to prac-
tical designs in the field of engineering, manufacturing and architecture, they 
are the basics of the “mathematics of paper folding”. Starting from these basic 
axioms, the scientific community became more and more interested in origami 
mathematics. The studies were extended to many different problems, such as 
the flat-foldability, the definition of generalized techniques to design any shape 
only by folding, the degree of freedoms of a pattern and so on. There are many 
theorems about flat-foldability, extensively studied by Jun Maekawa, Toshikazu 
Kawasaki, Jacques Justin (cf. section 3). Later Thomas Hull continued their 
work on flat-foldability from the early nineties until today. On the contrary, 
there is not a large bibliography about non-flat foldable patterns, one of the few 
references is the paper written by David A. Huffman Curvature and Creases: A 
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Primer on Paper (Huffman, 1976). One of the first examples of computational 
origami is attributable to Ronald Resh. Between the late 1950s and early 1970s, 
he worked with paper folding both artistically and computationally. In the 70s 
he developed a computer program at the University of Huta that converted any 
space curve in a curve-folded edge (Schmidt & Stattmann, 2009).

Robert J. Lang developed around 1993 an algorithm, which became later a 
standalone software, to design crease patterns, this contribution determines a 
conjunction point between origami intended as an art and the origami intend-
ed as a technique, but probably the most important Lang’s contribution is his 
book Origami design secrets (Lang, 2003, 2011). The first edition dates back to 
2003 re-edited in 2011. His “magnum opus” on origami design methods was 
extended by another recent publication Twists, Tilings and Tessellations. Mathe-
matical methods for Geometric Origami (Lang, 2018) which extends the previous 
publications with new methods to design tessellations, twists and corrugations. 
Erik Demaine asserted that “Lang’s work may be viewed as the start of the recent 
trend to explore computational origami” (Demaine & O’Rourke, 2007).

The next frontier of the origami mathematics will probably be focused on 
the curved folding, which has already been approached by Tachi and Demaine 
et al. (Tachi, 2011a, 2013; Demaine et al., 2015, 2018; Demaine et al., 2011) 
but it still has a lot of open problems. Lang also asserted that he is interested in 
studying further this topic, which is still mostly unexplored.

1.4.3. Math Meets Art – Most Known Methods to Design Origami

Figure 4 - Examples of crease patterns developed using 22.5 technique on the left 
(Egret by Riccardo Foschi); and box pleating technique on the right (Scorpion by 
Riccardo Foschi).
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All the theorems developed since the second half of the twentieth century 
until today were not only a matter of mathematicians, engineers and scientists, 
also the artistic community started applying some of those theorems to increase 
their design possibilities. The result of that was a surprising increase in the com-
plexity of the figurative origami models. This gave birth to a new artistic design 
approach based on mathematical rules.

Before this revolution, the traditional method to design origami usually con-
sisted of a trial-and-error process. This method is still used by the most part of 
origami designers, and it starts by fixing the subject to design; then the design-
ers try to get a schematic geometric figure by using their experience and a tri-
al-and-error method. The geometrical base must be as much close to the desired 
subject as possible so that they can shape and sculpt it to achieve a more realistic 
look. The design method is focused on finding clear folding steps and reference 
easy points in spite of looking for an optimized crease pattern (CP).

Sometimes the process can also be reversed, the artist folds a random base 
without having in mind a particular subject searching for the inspiration while 
folding it, and only after folded the base he/she searches for a figure that could 
match the base and he/she starts shaping it accordingly.

The most recent mathematically-based approach is characterized by applying 
mathematical or graphical rules to draw an accurate crease pattern before even 
folding a single crease, only after the pattern is finished the artist will find the 
folding sequence. Sometimes there is not an easy step by step process to collapse 
complex patterns, and sometimes it is necessary to collapse it all at once making 
it way more difficult to fold than a traditional step-by-step sequence. The first 
approach is usually used for simple models, the second one is necessary for very 
complex models because the design time would be too long if approached with 
the trial-and-error method.

Ryujin by Kamiya Satoshi, for example, is one of the most complex models 
ever created. It is folded from a 2m × 2m single square sheet of paper and rep-
resents an eastern style scaled dragon with several claws horns and fangs. It took 
Kamiya many months to design and fold its final version, and without a precise 
design strategy, and solid mathematical/geometrical basis, Kamiya would not 
have probably been able to design it.

Many different widespread mathematically-based approaches exist, some of 
them aim to optimize the paper usage, others aim to simplify the design pro-
cess, others want to push to another level the possibilities of origami even if the 
method is not convenient for the folders, some of them aim to be as flexible 
and reliable as possible. The most known are explained in Lang’s book Origami 
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design secrets (Lang, 2011), most of them come from the analysis of traditional 
techniques, enriched by Lang’s experience. He explains how to design any ori-
gami figure, just by modifying a traditional known pattern, or by assembling 
different pieces of known patterns that he calls “tiles” or “molecules”.

To understand how to mate two tiles it is necessary to understand the rivers 
and circle rules, which will not be explained in depth here. Suffice it to say that 
circles represent flaps and points, and rivers represent connectors between flaps 
and points in the folded geometric base model. To obtain a flat foldable origami 
composed by different tiles it is necessary to line up all the rivers and the circles 
of the adjacent tiles. The natural consequence of a tiles-based method (molecule 
method) is to investigate all the possible ways to arrange the tiles (thus the river 
and the circles) on the plane (the sheet of paper). The answer to this problem is 
a well-known geometrical problem called circle packing, which is defined as the 
study of the arrangement of circles on a given surface such that no overlapping 
occurs and so that all circles touch one another.

The tree theory explained by Lang is an evolution of the circle packing and 
molecule technique, and it consists in drawing a schematic figure where the 
lengths of the limbs are the lengths of the flaps, and thus, they are the radii of 
the circles which have to be arranged on the unfolded sheet as a guide to draw 
the crease pattern. Once drawn all the creases the verse of each crease must 
be assigned (valley or mountain) which can be done through the rules of flat 
foldability (cf. section 3.5). When connecting with creases the packed circles, 
the angles between creases are often odds, and thus it can be very hard to find 
references just by folding.

The box pleating technique became famous between origami artists to avoid 
this problem, due to its simplicity both in terms of designability and foldability. 
This technique was born to design box-like origami and evolved becoming a 
self-standing technique which can be used to design any kind of flat-foldable or 
non-flat-foldable origami. In the “box pleating” method, angles which are not 
multiple of 45° are not allowed thus it solves the problem of odd angles greatly 
simplifying the pre-creasing process. However, it partially limits the design free-
dom; Lang says “Because of their simple angles, box-pleated crease patterns can 
be much easier to develop linear folding sequences for. They come with a cost, 
however; not all circle patterns possess box-pleatable molecules.” (Lang, 2011).

In architecture, manufacturing and engineering, the design processes differ 
from the ones used by artists. Usually, the shape-finding process starts from the 
context or it is aimed at finding particular movements to be applied in particular 
situations instead of finding a specific shape. The necessity to control the move-
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ment makes the design process longer and harder. In these fields, it is not easy 
to identify a set of known approaches because they usually differ case by case. 
However, for sure the common ground is the use of computer applications and/
or math, to generate, control, modify and analyse the behaviour of rigid-folda-
ble surfaces.



 29

CHAPTER 2

ORIGAMI-INSPIRED DESIGNS

Origami existed for centuries, but it is from fairly recent times that it became a re-
current reference for designers and architects, however the examples of already exist-
ing objects and structures inspired to origami are already innumerable. So before to 
deep dive into the actual topic of this book, which is the development of algorithms 
to help designer designing origami with digital tools, it is important to have a clear 
idea of what it is already existing in this field, and use this knowledge as a starting 
point. So in the next sections there are collections of projects inspired from origami 
for a diversity of aspects. This extensive gathering has the aim to outline the general 
trend of the selected application fields. The projects were selected by filtering those 
which were from the fields of permanent architecture, temporary architecture, 
artistic installations, furniture and manufacturing, and fashion. The catalogue of 
projects does not in any way claim to provide a comprehensive and exhaustive cat-
aloguing of all the existing origami-related projects because the number of suitable 
cases with regards to the assumed criteria would have been too wide to be listed in 
this context. Therefore, the collection here presented has to be considered as a limit-
ed list of references, but vast enough to be able to make some robust considerations. 
In accordance to all of these assumptions, the gathered projects will be subdivided 
into the 5 sub-groups: “Permanent Architecture”, “Temporary Architecture”, “In-
stallations”, “Goods and Furniture”, “Fashion and Clothing” (Figure 5).

Figure 5 - Classification of projects into families based on the application fields, 
scale and functions. (Reference of the pictures in the next section)
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2.1. Classification Criteria

All the projects selected are briefly presented in the next sections, gathered into syn-
optic tables where all their origami-related characteristics are synthetised visually 
with a set of icons (icons with relative meanings in Figure 6). The classes of origa-
mi-related functions are six: Kinematics, Packing, Fast Deployment, Stiffness, De-
velopability, Ornamental. Every project can match with one or more characteristic. 
The Ornamental class includes all the designs which take inspiration from origami 
for aesthetical reasons. This class will be the only one described with 2 columns in 
the summary histograms (Figure 7, Figure 8): one enumerates the works inspired to 
origami while having other origami-related characteristics, the second enumerates 
the works inspired by origami exclusively for ornamental reasons. This distinction is 
important because all those projects that are related to origami only for ornamental 
reasons do not require to follow design strategies that make use of accurate origami 
rules. For “Stiffness” are intended those works which use folds to get a stronger 
structure. The “Kinematics” class includes those works that use origami rules to 
achieve specific movements. In the “Packing” class are included those works that 
exploit origami mechanisms to reduce their dimensions for transportation stock-
ing or for space optimization. The “Fast deployment” class includes all those works 
where the origami mechanisms are used to pack and deploy rapidly the structure. 
The “Developability” class includes all those works which were fabricated by folding 
a flat sheet. The developability characteristic is often used to optimize the cutouts 
and the scraps during the production and to optimize the assembling time. The cri-
teria adopted for this classification were as objective as possible, although some cases 
were hard to be assigned to one class univocally. Nevertheless, the objective of this 
analysis was not to extract a precise number of projects in one or the other class, but 
it was to trace a trend of the field, thus even if some projects may be not univocally 
classifiable, the high number of case studies considered will tend to globally flatten 
out eventual uncertainties, and the outlined trend of each group of projects will not 
lose relevance.

Figure 6 - Origami-related characteristics outlined from the analysis of the projects.
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2.2. Synoptic Tables
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2.3. Synoptic Tables Data Analysis

In the field of “Permanent Architecture” (Figure 7), it is evident that a major 
part of projects is inspired by origami only for ornamental reasons without any 
other functional purpose. The Tokyu Plaza, the Fuji television Wangan studio, 

Figure 7 - Histograms of Permanent Architecture, Temporary Architecture, and 
installations.
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the stage of the Cozzarelli price at the National Academy of Science and the 
Yokohama International Passenger Terminal are examples of this category. All 
these examples are clearly using folded surfaces only for ornamental purposes 
because, in these cases, the folding is neither contributing to make the struc-
ture stiffer, nor to make the surface movable, nor to optimize the assembling 
or transportation. When designing with origami, the designer often needs to 
control the shapes in a dynamic way, and not all architects are specialized in 
using advanced 3D-animation applications. In addition, static architecture cas-
es are way more numerous than kinetic architecture ones, because they are less 
expensive and easier to maintain, but even if we analyse only the kinetic archi-
tecture field, the origami mechanisms are always simple and often copied from 
traditional well-known patterns. These numbers tell us that there is the desire 
of using origami as a reference because of its beautiful appearance and useful 
functionalities. Nevertheless, very often, due to the complexity of designing 
origami mechanisms at that scale, and probably due to the lack of digital tools 
specifically aimed to origami design, the examples of buildings that are refer-
enced to origami in a functional way are still rare. On the contrary, it is clear 
that in “Temporary Architecture” the kinematic and mechanical properties of 
origami are way more used as tools to improve the projects functionalities, and 
the projects inspired from origami exclusively for ornamental purposes are rar-
er. One interesting example of origami-inspired temporary architecture is the 
“Plate house” by Gattas and You (Gattas & You, 2016) who used origami tech-
niques to design a self-supporting sandwich structure made by cardboard.

One of the reasons of such different numbers between temporary and per-
manent architecture is probably related to the scale of the objects. Smaller 
dimensions allow the designers to use the self-supporting properties of the 
materials that benefits from creases; moreover, the developability is used a 
lot more because it can cut the production costs and time. Furthermore, the 
temporary architecture examples, by their nature, need to be moved, so the 
deployment and the packing characteristics become more relevant compared 
to the aesthetics. Nevertheless, the risk, highlighted earlier, of falling into the 
mere copy of traditional patterns while designing with origami is still an el-
ement strongly present also in this kind of projects. In fact, designers often 
search for solutions into existing patterns and standard constructions proba-
bly because of the lack of design tools or a lack in their knowledge and famil-
iarity with origami constructions.

In the field of “Installations”, however, we can see increased efforts to find in-
novative solutions and patterns. For example, the Resonant chamber by RVTR 
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(Thün et al., 2012) is a virtuous example of applied origami, where the origami 
properties are used to make a morphing suspended ceiling capable of changing 
its shape according to the variable acoustic conditions of the space where it is 
installed into.

Other interesting examples are the “Computing Curved-Folded Tessella-
tions through Straight Folding Approximation” (Chandra et al., 2015b) and 
the “Curved folding metal twins” installation by Chandra et al. (Chandra et al., 
2015a), where they used curved folding as a tool to design nice looking curved 
stiff sculptures by folding a developable surface. In this case, the creases are not 
used to generate motion, but they are utilised to optimize the fabrication pro-
cess and to increase the stiffness of the structure.

The same researchers (in collaboration with Zaha Hadid Architects) also 
designed the “Arum Shell” installation, exhibited at the “Biennale di Ven-
ezia” in 2012 (Bhooshan, 2016), which is a beautiful example of modular 
structure constructed with curved-folded developable metal plates folded with 
robotized mechanical arms at RoboFold company (Epps, n.d., 2014; Epps 
& Verma, 2013). These projects are usually academic works or experimenta-
tions made by groups of researchers and artists. Sometimes they have the only 
function of displaying design skills or advertise some architecture firm. Often 
the projects focus just on exploring the shape or on testing the properties of 
the material or the efficiency of a certain technology. In many cases, we have 
noticed that the prototyping phase proceeds in parallel with the creation of 
the generative algorithms and the analysis of the digital model. In this way, 
the correctness of the model can be tested through a comparison between the 
digital surface and the physical prototype.

Figure 8 - Histograms of Goods and Furnitures, and Fashion and Clothing.
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Differently, from what happens in the field of “Permanent Architecture”, in the 
“Goods and Furniture” and “Fashion” fields (Figure 8), we found a higher per-
centage of projects that take advantage of origami design techniques, rather than 
projects that use origami exclusively for ornamental purposes. For example, the 
developability is a relevant point in both fields, not only for the possibility to 
produce an object from a single sheet of the same material but also to optimize 
the space consumption and the assembling time. The reason of this difference 
is probably due to the fact that in large-scale projects inspired by origami even 
if the folded surface is designed to be globally developable, it would require to 
be assembled instead of being cut and folded from one single sheet of the same 
material. Thus, the global developability does not really bring a real advantage 
in architectonic-scale origami. Furthermore, even if it would be found a way 
to produce and fold a large-scale sheet of the same material (which is already a 
difficult task), the material should be flexible enough to be foldable while being 
stiff enough to be self-supporting, which is not an easy target to reach for any 
large-scale continuous surfaces.

2.4. Designing with Folded Surfaces – Critical Observations

According to the collected projects, and considering the analysed data, it is ev-
ident that small-scale projects rather than architectonic-scale projects make use 
of origami-related characteristics for many different functional purposes and 
not only for ornamental purposes. Furthermore, in both the fields of manufac-
turing and architecture, we can find a multitude of designs that use well-known 
patterns taken from traditional origami designs, or from previous projects (e.g. 
the Yoshimura pattern, the Miura pattern, the water-bomb base pattern). There 
are many different reasons that may explain this trend. The first is probably 
due to the scale of the objects because using origami for large-scale projects 
involves the problem of thickness, and it becomes harder to fold a large-scale 
surface from a single sheet of the same material. Furthermore, in big-size pro-
jects, the typical continuous surfaces proper of origami designs introduces new 
issues about the mechanical resistance of the joints or about the shape and the 
dimensions of the hinges that could possibly replace the creases. Moreover, ori-
gami mechanisms may have moving parts which are harder, more expensive and 
more time-consuming to design and maintain compared to static projects. Last-
ly, small-size designs can be prototyped by using directly the physical models 
instead of passing through digital simulations. On the contrary, for large-scale 
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projects the accuracy needed is much higher, thus the digital models of the 
folded surfaces are necessary. This makes the workflow harder because to be able 
to simulate digitally the folding animation of origami, the designer must deal 
with the kinematics of the specific mechanism that he is trying to design. This 
requires a deep understanding of the origami theories. Furthermore, the moving 
parts influence the design process from earlier stages. For example, if we want to 
design a traditional chair the design process would be similar to the one schema-
tized into Figure 9. The design process would usually follow a linear sequence of 
steps starting from the idea, up to the final object, passing through the sketch, 
the technical drawing (2D drawings and 3D model) and the prototype. If we 
compare this process with the one of a foldable origami-inspired chair, the de-
sign workflow would appear similar to the one illustrated in Figure 10.

Figure 10 - An example of a design process of an origami-inspired foldable chair.

Figure 9 - An example of a design process of a traditional non-foldable chair.

The sketch would have marginal importance because it would only contribute 
to the design of the preliminary aesthetic or functional aspects, which are not as 
crucial as the accurate analysis needed to address the kinematics. The prelimi-
nary conceiving phase would probably see the substitution of the sketch with a 
paper model which would already help the designer to reflect on some impor-
tant aspects like the developability, the rigid-foldability, the blocking creases, 
and the DOF. The preliminary prototype, however, usually does not consider 
the thickness of the panels, which is something that it is usually postponed in a 
later step when a more accurate and rigid advanced prototype is built. However, 
the preliminary and advanced prototypes together are not sufficient to test every 
single aspect of the project, because the panels of which they are made may 
have a different elasticity compared to the one of the final object. Furthermore, 
the rigid-foldability and the DOF are difficult to verify only by using physical 
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models, thus a digitalization of the prototype may help to make an accurate 
analysis of these aspects. The conversion of the physical prototype into a digital 
model may be achieved by 3D scanning the model, this solution is often used in 
curved-folding designs (Kilian et al., 2008) or by constructing and animating it 
by following the mathematical rules that regulate its pattern which would return 
much more versatile results with much higher accuracy.

However, also the digital model has some limits. For example, it is hard to 
simulate accurately the folding motion considering thickness, friction, elasticity 
and deformations. Furthermore, it might be easy to run into self-intersected 
configurations which are possible in the digital model but not allowed in the 
real one. Thus, if not checked carefully, this may cause the final object to block 
at a certain point because of a non-perfect rigid-foldability or overlooked col-
lisions and self-intersections. Thus, once verified the real behaviour of the ad-
vanced prototype, the designer may have to update and eventually implement 
the analysis of the mathematical model or the discrete model developed previ-
ously. Because of all these reasons, we can clearly see that the design process is 
much harder, and it is not a linear process anymore.
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CHAPTER 3

DEFINITIONS AND THEOREMS

This chapter introduces, to those who are not origami experts, some im-
portant concepts of origami theory, without which it would be impossi-
ble to understand the discussions in the following chapters. In particular 
we will clarify the following terms and topics: Fold-angle (cf. section 3.1), 
Developability (cf. section 3.2), Degree of Freedom (DOF) (cf. section 
3.3) , Rigid-foldability (cf. section 3.4), Flat-foldability (cf. section 3.5), 
Non-flat-foldability (cf. section 3.6).

3.1. Fold Angle

For “Fold angle” it is intended the dihedral angle between two consecutive 
faces divided by a crease at any moment of the folding motion. The dihedral 
angle is an angle between two planes in a third plane, which is perpendicular 
to the intersection line between the former two planes. To measure the fold 
angle, we can measure the actual angle between the two planes from surface 
to surface, or we can measure the angle between their normal vectors. In the 
former case, the fold angle of a flat-foldable origami with one single linear 
crease goes from 180° (unfolded flat configuration) to 0° (folded configura-
tion) or from 180° to 360° depending on the mountain/valley assignment. 
In the latter, the fold angle goes from 0° (unfolded flat configuration) to 
±180° (folded configuration). Usually, the scientific community favours the 
normal-to-normal measuring method.

3.1.1. Fold Angle Over Time – From Plot Analysis
In Figure 11 you can see the plotted graph of the fold angle over time, however, 
it does not consider the sign of the crease or the verse of rotation of one or the 
other face. That happens because we asked the software to measure and return 
the angle between the normal vectors, and as a result, it plotted the smaller pos-
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sible angle frame-by-frame. The two faces rotate around the crease, and at 180° 
they pass through each other and continue their motion until they reach the flat 
unfolded state again. After passing 180° the verse of the valley fold reverses in-
stantly and it transforms to mountain, but in the graph, there is no evidence of 
that. We would have the same function shape if the two surfaces, once reached 
180°, would reverse their verse of rotation returning to the unfolded state with-
out passing one through each other. Therefore, we need to add a piece of new 
information to define the fold angle. We can, for example, multiply for -1 the 
angle value once the rotation angle is greater than 180°.

This is sufficient to define the mountain valley assignment. Mathematically 
it can be solved as follows. Consider a unit vector along the direction of the 
crease line, multiply it with the unitized cross product between the normal vec-
tors of the two faces. This will return ±1 according to the verse of the crease in 
relation to the verse of the normal vectors of the surfaces. Multiplying this value 
with the angle between the normal vectors of the faces will return a signed angle 
according to the folding verse of the crease, as shown in Figure 12. The formula 
used to obtain the graph in the figure is the following:

𝜌𝜌! = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠	(||𝑉𝑉" , 𝑉𝑉# , 𝑉𝑉$||) ∙ 𝜌𝜌. (1)

Which, in the explicit form is:

𝜌𝜌! = 𝜌𝜌 ∙ %!×%"
'|%!×%"|'

∙ 𝑉𝑉$. (2)

Where:
ρs is the signed angle between the normal vectors Va and Vb according to the 
verse of the fold;
ρ is the angle between the normal vectors Va and Vb;

Figure 11 - Fold angle without folding verse information.
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Va is the normal vector to face A;
Vb is the normal vector to face B;
Vo is the vector along the direction of the fold.

Figure 12 - Signed angle between normals.

As you can see the plotted function of the angle jumps from 180° to –180° 
at t1, which is what we were looking for because the jump corresponds to the 
instant flip of the verse of the fold at the moment of the self-intersection. In 
this case, the function is periodical, and every time it hits 0° it restarts equal to 
itself. Therefore, it gives us evidence about the mountain/valley assignment, but 
it does not keep track of the number of total rotations. Thus, if we want to also 
add that information, we need to implement the formula as follows:

𝜌𝜌) = 𝜌𝜌 + 90° − 390° ∙ %!×%"
'|%!×%"|'

∙ 𝑉𝑉$4. (3)

Figure 13 - Keeping track of the total rotation of the faces.
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The graph shown in Figure 13 keeps track of the total reciprocal rotations 
of the faces A and B, and the fold changes verse when the function intersects 
the ordinates values multiples of 180° (π). To be able to keep track of rotations 
bigger than 360° (2π) though, the formula needs to be updated as follow:

𝜌𝜌) = 360° ∙ 𝑛𝑛 + 𝜌𝜌 + 90° − 390° ∙ %!×%"
'|%!×%"|'

∙ 𝑉𝑉$4. (4)

Where: n is the number of complete turns.

Now if we apply this method to measure the fold angles of every crease in a more 
complex pattern we would have something similar to the graph shown in Figure 
14, which represents the plots of the fold angles over time of a degree-4 single 
vertex (cf. section 3.5 and 3.6 for more about flat foldability of degree-4 vertices).

Figure 14 - Analysis of the fold angle speed for each fold in a degree-4 vertex CP 
(crease pattern).

The plot shown in figure follows the expression (2), therefore, when the func-
tion lies in the negative side of the Cartesian plane it means that the crease is 
mountain folded, on the contrary, when it lies in the positive side, the crease is 
valley folded. In Figure 14 the fold angle ρAB, which is the controller fold angle, 
has been animated with constant speed, therefore its function is the only one 
with a linear path, but it is not the one that hit 180° first. In fact, at the time t 
included in the Δt domain, one of the other folds flips and its function jumps 
from the positive space to the negative space of the Cartesian plane. The time t 
represents the moment when the vertex self-intersects and the verse of the fold 
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AE (once the two faces adjacent to it passes through each other) instantly flips 
changing its mountain/valley assignment.

To find the values of the maximum fold angles for each crease, it is sufficient 
to intersect all the fold angle functions with the abscissa t and extrapolate the 
relative ordinate values. Furthermore, in the same way, it is possible to extrapo-
late all the fold angle values for each fold at any t.

3.2. Developability

The developability is the property of any surface to be unfolded or unrolled into a 
plane without distortions or cuts. Conversely, it is a non-planar surface which can 
be shaped by transforming a plane by folding, rolling. The developable surfaces are 
always ruled surfaces, but not every ruled surface is developable, for example, the 
hyperboloid is a ruled surface which is not developable (Migliari, 2009a). Ruled 
surfaces that are developable are for example cylinders or cones. A developable 
surface mathematically is a surface with zero Gaussian curvature, on the contrary 
non-developable surfaces have double curvature or non-zero Gaussian curvature. 
The Gaussian curvature in differential geometry is called K and represents the 
product of the principal curvatures K1 and K2 at a given point of the surface.

For example, a sphere has a Gaussian curvature equal to 1/r2 in every point of 
its surface. On the contrary, a plane or a cylinder have Gaussian curvature equal 
to 0 everywhere. In these examples, the Gaussian curvature is equal in every point 
of the surfaces, but in general, it can be different from point to point, for example, 
a torus has negative Gaussian curvature in the inside and positive in the outside.

Because origami is mostly made by planar faces, we cannot use the Gaussian 
curvature to judge its developability. In rigid origami, the developability of a 
given pattern is measured by summing all the sector angles between the creases 
at every vertex. If all the summations of all the sector angles at every vertex are 
equal to 360° the pattern is developable.

Traditional origami is always developable because it starts from a flat sheet 
of paper, but in the last few years some researchers started to study the possi-
ble applications of non-developable vertices into origami-like mechanisms, for 
example in the paper Folding Mechanisms with Discriminate Extremal Configu-
rations for Structural Purposes by Buffart et al. (Buffart et al., 2018) make some 
considerations about using non-developable non-flat-foldable vertices to design 
movable mechanisms with given extremal configurations. Also, Tachi proposed 
a method using degree-4 non-developable vertices to convert three-dimensional 
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polyhedra (cut along some edges) into one-DOF mechanisms that can fold and 
unfold with a smooth motion without bifurcations (Tachi & Horiyama, 2018).

The vertices with the sector angles that sum up to an angle smaller than 360° 
can be configured into synclastic configurations (or pyramidal), The vertices 
with the sector angles that sum up to an angle bigger than 360° can be con-
figured into anticlastic configurations (hyperbolic paraboloid, or saddle state). 
If they are degree-4, both the non-developable synclastic or anticlastic vertices 
have two extremal configurations that can be reached through a folding motion 
without bifurcations (because there is not any flat state), and the extremal con-
figurations can be both flat-folded, or both non-flat-folded, or one flat-folded 
and one non-flat-folded. This characteristic increase greatly the design possibili-
ties, but it is harder to design and fabricate than a developable vertex.

Figure 16 - Non-developable synclastic degree-4 vertices – types.

Figure 15 - Non-developable anticlastic degree-4 vertices – types.
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3.3. Degree of Freedom (DOF)

The “Degree of freedom” (DOF) of a system is the number of parameters that 
can vary independently. For example, a point in a plane has two degrees of free-
dom, which represent the possible translation axis or the coordinates which are 
needed to identify all the possible positions of the point. A non-infinitesimal 
object will have more than three degrees of freedom because it can also rotate in 
space. For example, a segment in three-dimensional space has six DOF, three for 
translations and three for rotations.

In rigid folding, the DOF usually represent the number of fold angles that 
can vary independently without bending, flexing or ripping the faces. The iden-
tification of the degree of freedom of folded surfaces is a problem that has not 
been generalized yet. Nevertheless, a rigid origami pattern can be compared 
to a rigid linkage, and there are many approaches that allow calculating the 
DOF of linkages. However, most of the times with symmetric and periodi-
cal patterns these methods give wrong results due to the occurrence of special 
conditions. For example, if we calculate the DOF of the Miura-ori (cf. section 
4.7.4 for more about Miura-ori), without considering its symmetry conditions, 
it is apparently not foldable at all, but because of the symmetry conditions, the 
pattern still has 1 single DOF. In the Miura-ori case, as well as in all the cases 
with closed loops of faces, there are redundancies into the definition of the fold 
angles of each crease, which means that the same fold angle is constrained mul-
tiple times from different directions, but because of the symmetry conditions if 
the over-constrained angles are equals from all the directions then there are no 
inconsistencies and the mechanism can move anyway (Tachi, 2011a).

To calculate the DOF of a simple accordion it is sufficient to count all the 
creases, each one of them will increase the DOF by one. Thus, we can say that: if 
a pattern has some creases which do not converge to internal vertices, and there 
are no closed loops of faces, each new crease increases the global DOF by one. 
Another method to find the DOF of a pattern consists of counting the naked 
edges of the pattern and subtract 3 to that number, this approach works only 
with patterns with only triangular faces (e.g. Yoshimura pattern).

However, why is the DOF analysis so important for the animation of ori-
gami geometries? In the Miura-ori case, it is well known that it is sufficient 
to constrain only one single fold angle to control the folding motion because 
folding two consecutive faces will propagate the motion to all the other faces 
in the pattern univocally (the motion is univocal only if the mountain/valley 
assignment is given, thus it may generate problems at flat state where the 
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mountain valley creases are flattened into the plane). This means that you 
need to change only one input fold angle, to control the folds of the entire 
surface, being able to shape the folded surface in all the possible available con-
figurations. If we consider a straight accordion with only two non-intersecting 
linear folds, we need to control the two fold angles separately to be able to 
shape the folded surface in any possible configuration. This means that each 
fold angle which can move independently from the others increases the DOF 
by one and requires one more controller input to configure the surface in all 
its possible configurations.

For accordions and symmetrical cases, it is relatively easy to foresee the num-
ber of necessary controller inputs by trial-and-error. However, it is harder in pat-
terns that are more complex. For this reason, it is important to analyse the DOF 
in advance. Unfortunately, there is not a general method to calculate the DOF 
yet. An easy approach to test the degree of freedom of any pattern is by building 
a rigid physical model, but it may be deceptive for wide patterns or when the 
material is not rigid enough. Another approach is by simulating the animation 
digitally through physics engines, for example using the software “Freeform ori-
gami” by Tachi or with Grasshopper and its plug-in Kangaroo Physics. This last 
solution is more reliable than the physical model; however, both methods give 
only qualitative results. They do not return automatically exactly the DOF of 
the pattern if it is more than one.

It must be said that special cases are often the most interesting cases for mov-
able mechanisms, thus it would be important and interesting to study further 
this aspect of paper folding and develop a generalized method that does not nec-
essarily need physical simulations and trial-and-error methods. One of the most 
interesting one-DOF origami mechanism known is the rigid-foldable degree-4 
single vertex, a vertex where only four creases meet (cf. sections 3.5., 3.6., 4.6., 
4.7., 6.3.3. for more about degree-4 vertices).

3.4. Rigid-Foldability

An origami pattern is rigid-foldable when it can be folded and unfolded with-
out bending, stretching, intersecting or cutting the faces. This kind of origami 
structure is not like paper origami, because the faces must be infinitely rigid. In 
fact, they are more related to thick-origami (cf. section 6.1 for more about thick 
origami), because in the real world the stiffness of any object is strictly depend-
ent by the material and the area of its section.
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Thus, the question now is how to judge if a pattern is rigid-foldable or not. 
There are some special cases where the rigid-foldability can be easily evaluated 
only by watching the distribution of the creases in the CP and their mountain/
valley assignments. For example, in a developable degree-4 single vertex pattern, 
the rigid-foldability is guaranteed if and only if there are three creases with the 
same mountain/valley assignment spaced with sector angles smaller than 180°, 
plus one crease with the opposite sign (Abel et al., 2016).

Another example of a rigid-foldable, one-DOF pattern, which is easily 
recognizable is a pattern composed by multiple degree-4 rigid-foldable vertices 
joined in a linear array (without making closed loops). Tachi refers to these pat-
terns as a “2×n quadrangle array(s)”, and he says that they are always one-DOF 
rigid-foldable mechanisms, he also asserts that an “m×n (where m>2) quadran-
gle array […] yields over-constrained static structure or a redundant one-DOF 
mechanism because fold angles are multiply defined” (Tachi, 2011a). Thus, how 
do we judge if whether an m×n quadrangle array is rigid-foldable or not?

Abel et al. give us a preliminary answer: “Rigid foldability has been represented 
using extrinsic parameters of the folded state, e.g., the existence of a set of fold 
angles satisfying compatibility conditions, or the existence of intermediate state” 
(Abel et al., 2016). With this statement, Abe et al. refer to two different methods 
to judge rigid-foldability of a pattern. The first approach refers to the method pre-
sented by Belcastro and Hull (Belcastro & Hull, 2002), where they evaluate the 
rigid-foldability by calculating the fold angle of a closed loop of creases, if the fold 
angles of the loop are all compatible, then the pattern is rigid-foldable. The second 
method reported by Abe et al. was stated by Tachi as follows (Tachi, 2010a): “If 
and only if BDFFPQ mesh, homeomorphic to a disk with more than one interior 
vertex, has one intermediate folded state, the surface is finitely rigid- foldable.”, 
which means that in an origami pattern if a flat-unfolded configuration and at 
least an intermediate folding configuration free of deformations exist, then it is 
guaranteed that the faces during the whole motion do not deform.

We can try applying a qualitative approach based on this last assumption. 
However, to be able to test this condition qualitatively, we need to simulate 
the folding motion of the pattern, usually we do this operation with physical 
models or with digital simulators (like the software Freeform origami), but in 
both cases we do some errors related to the elasticity of the material or to the 
tolerance of the software. Thus, this kind of tests based on simulations may re-
turn positive results even if the pattern is not rigidly foldable for a small amount.

If we merge the two approaches in one, we can judge if a pattern is rig-
id-foldable precisely by calculating the fold angles of all the closed loops of a 
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crease pattern in only one intermediate configuration, and if the compatibility 
is confirmed then the pattern is rigid-foldable.

Figure 17 - Examples of a rigid-foldable and non-rigid-foldable degree-4 vertices.

3.4.1. Reciprocal Diagram to Judge the First-Order Rigid-Foldability

Figure 18 - Zero-area reciprocal diagram of a degree-4 single vertex pattern.

The reciprocal diagram is a well-known and powerful graphical tool for under-
standing and designing structural systems. It also has applications in the origami 
field, in which it has been introduced, for the first time, by D. A. Huffman in 
1977 (Huffman, 1977). The reciprocal diagram is composed by straight seg-
ments perpendicular to each crease line in a CP, the perpendicular segments 
form a closed loop around the vertex, such that the direction of the perpen-
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dicular segment is ±90° relatively to the direction of the creases. The sign, and 
thus the verse of the vector, depends on the mountain/valley assignment of the 
folds. The area of the resulting self-intersecting polygon must be equal to zero, 
as shown in Figure 18.

The reciprocal diagram has been investigated more recently by Demaine et 
al. in the paper Zero-Area Reciprocal Diagram of Origami, where they assert that 
the reciprocal diagram can be used to investigate the first order approximation 
of rigid origami:

We can view a polyhedral lifting as the first-order approximation of rigid ori-
gami, i.e., an origami surface is composed of rigid panels and rotational hinges 
connecting them together. Hence, it seems proper to use the reciprocal diagram 
for the analysis of rigid foldability and the design of rigidly foldable structures. 
However, it turns out soon that the existence of reciprocal diagram alone is a 
poor tool to judge rigid foldability of origami. For example, a degree-3 vertex 
has a nontrivial reciprocal diagram, but there is no valid folding for this pattern. 
(Demaine et al., 2016)

According to what Demaine et al. assert the reciprocal diagram cannot be used 
to judge the rigid foldability in general, but it can be used as a tool to test the 
infinitesimal rigid-foldability, which is the property of an infinitely rigid creased 
surface to behave like a movable mechanism when it is close to the unfolded state.

We will see later in section 3.5.3 an alternative use of the reciprocal diagram 
as a tool to animate a degree-4 flat-foldable vertex.

3.5. Flat-Foldability

The flat-foldability is the property of an origami pattern to be collapsible into a 
plane without cutting, stretching or adding new creases to the pattern. Almost 
all the traditional figurative origami models are flat-foldable because the folding 
steps are performed flattening the model into a flat surface. Mathematically the 
flat foldability is described by simple rules that we are going to explain briefly 
in the next section.

3.5.1. Four Rules of Flat-Foldability – Kawasaki and Maekawa Conditions
The flat foldability of a crease pattern follows 4 simple rules, explained by Rob-
ert Lang in his presentation at “TED talks” in 2008 (Lang, 2008):
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• At any interior vertex, M - V = ±2: mountain and valley creases always 
differ by 2, 2 more or 2 less.

• 2 colourability: crease patterns can be coloured with just two colours 
without ever having the same colour meeting.

• Alternate angles around a vertex sum to a straight line: considering angles 
between creases around a vertex of the crease pattern, numbering the an-
gles on a circle all the even numbers head up to a straight line, the same 
happens for the odd numbers.

• No self-intersection at overlaps: no matter how you stack folds and sheets, 
a sheet can never penetrate a fold.

Figure 19 - four rules of flat foldability.

These four simple rules are everything we need for judging a flat foldable origa-
mi. They are based on mathematical theorems discovered in the last four dec-
ades. The first rule is described mathematically by the Maekawa theorem.

Theorem 1: Maekawa-Justin (Hull, 2003a)

𝑀𝑀 − 𝑉𝑉 = ±2.	 (5)

Where: M and V are respectively the mountain and valley creases adjacent to a 
vertex in a flat origami CP.

It means that the mountain folds and the valley folds in a flat-folded single 
vertex pattern differ always by 2. The second and third rules are described by 
the Kawasaki theorem. It was discovered by Kawasaki in 1989, although was 
also discovered independently by Justin in the same year. It gives a criterion to 
determine if a single vertex crease pattern can be folded to form a flat figure. The 
theorem statement is the following:
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Theorem 2: Kawasaki-Justin theorem (Demaine & O’Rourke, 2007; Hull, 2003a)
A single-vertex crease pattern defined by angles θ1 + θ2 + ·· + θn = 360° is flat 

foldable if and only if n is even and the sum of the odd angles (θ2i + 1) is equal 
to the sum of the even angles (θ2i), or equivalently, either sum is equal to 180°:

𝜃𝜃* 	+ 𝜃𝜃	+ +	··· +𝜃𝜃,-* =	𝜃𝜃. 	+ 𝜃𝜃	/ +··· +𝜃𝜃, = 	180°.	 (6)

It can also be written as follows:

𝜃𝜃* 	− 𝜃𝜃. 	+ 𝜃𝜃	+ 	−··· −𝜃𝜃., 	= 0.	 (7)

The fact that the creases must be even implies that, for any flat-foldable crease 
pattern (even with multiple internal vertices), it is always possible to colour the 
regions between the creases with two colours, such that each crease separates 
two areas of different colours, this is always true for each side of the paper. Also, 
the fact that the sum of odd and even angles must be equal implies that either 
odds and evens angles sum to a straight line.

The Kawasaki theorem for developable flat-foldable vertices was generalized 
by Demaine in 2007 for non-developable pieces of paper as follows:

Theorem 3: Kawasaki-Justin-Demaine generalized for non-flat pieces of paper 
(Demaine & O’Rourke, 2007)

A single-vertex crease pattern defined by angles θ1, θ2, ... θn,  is flat foldable 
if and only if n is even and the alternating sum of the angles θi is equal to 0, 
360°, or −360°:

𝜃𝜃* − 𝜃𝜃.	+ 𝜃𝜃+	− 𝜃𝜃/	+··· +𝜃𝜃,-* − 𝜃𝜃,	=
= ? (−1)0 	𝜃𝜃0 	 ∈ {0, 360°, −360°},

01*
(8)

The theorem 2 (Kawasaki-Justin) is included in the theorem 3 (Kawasaki-Jus-
tin-Demaine) and can be only used when working with flat pieces of paper.

For what concerns the self-intersection rule the problem can be approached 
dividing the cases into two simple groups of crease patterns: a pattern with parallel 
creases, and a pattern with creases incident in a single vertex. The flat-foldability 
of the pattern depends on many factors: the order of mountain and valley creases, 
the distance or the angle between consecutive creases. For example, if the pattern 
is composed by all parallel folds with alternated verses, it is always foldable, but if 
there are consecutive folds with the same verse the foldability depends on the se-
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quence of the verses of the folds, and on the distances between the folds. The same 
can be said for a case where the creases converge in a single vertex, but instead of 
the distances, we must consider the angles between them. For a much comprehen-
sive explanation in mathematical terms and more bibliographic references refer 
to the extensive investigation made by Demaine, in his book Geometric folding 
algorithms: linkages, origami, polyhedral (Demaine & O’Rourke, 2007).

3.5.2. Flat-Foldable Degree-4 Single Vertex – Relations Between Fold Angles

Figure 20 - Flat-foldable degree-4 vertex notation.

A particularly interesting flat-foldable pattern is the flat-foldable degree-4 single 
vertex. It is flat-foldable when it is characterized by a particular symmetry con-
dition between opposite creases as shown in Figure 20. Because this particular 
pattern has only one-DOF every fold angle is univocally related to all the other 
fold angles. In this section, we are going to report the well-known formulations 
that relate the fold angles in a degree-4 vertex, and we are going to apply them 
to a folded surface with a Grasshopper’s definition to test their correctness.

The relationship between the fold angles in a degree-4 vertex has been stud-
ied by many researchers such as David A. Huffman, Thomas C. Hull, Robert 
J. Lang and Tomohiro Tachi (Huffman, 1976; Hull, 2006; Lang et al., 2016; 
Tachi, 2009). In particular, Lang in his paper Single Degree-of-Freedom Rigidly 
Foldable Cut Origami Flashers asserts that the vertex is flat foldable if and only if:

𝜃𝜃* + 𝜃𝜃+ = 𝜃𝜃. + 𝜃𝜃/ = 𝜋𝜋. (9)

and for flat foldable vertices the major fold angles are equal:

𝜌𝜌. = 𝜌𝜌/. (10)
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and the minor fold angles are equal but with a different sign:

𝜌𝜌* = −𝜌𝜌+. (11)

Furthermore, he derives the known formulations of the fold angles of a flat-fold-
able degree-4 vertex proposing a particularly simple expression that describes 
the relationship between adjacent fold angles as follows:

234#$5$

234#$5#
= −

234#$5$

234#$5%
=

234#$5&

234#$5#
= −

234#$5&

234#$5%
=

674 #
$((#)($)

674 #
$((#+($)

. (12)

This expression can be used to animate the pattern with Grasshopper by writing 
the following rearrangement of the expression (Expression 13) into the “Expres-
sion” component and using the result as the rotation value of the corresponding 
adjacent faces, as shown in Figure 21. The expression must be written in the 
following form, in order to be readable by the software:

2 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠𝑠𝑠𝐴𝐴((𝐻𝐻1 + 𝐻𝐻2)/2)/(𝑠𝑠𝑠𝑠𝐴𝐴((𝐻𝐻1 − 𝐻𝐻2)/2)) ∗ 𝐴𝐴𝐴𝐴𝐴𝐴(𝑅𝑅1/2)) = 𝑅𝑅2. (13)

Where:
Atan (...) is tan –1 (...)
H1 is θ1
H2 is θ2
R1 is ρ1
R2 is ρ2

Whit this expression we calculate ρ2 from ρ1, θ1 and θ2, and because ρ3 = – ρ1 
and ρ4 = ρ2 we already have all the four angles and we can animate all the faces 
of the degree-4 flat-foldable vertex.

Figure 21 - Generative algorithm that animates a degree-4 flat-foldable vertex by 
calculating the fold angles with mathematical formulations.
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3.5.3. Flat-Foldable Degree-4 Single Vertex – Reciprocal Diagram and Fold 
Angles

We anticipated in section 3.4.1 that the reciprocal diagram can also be used 
as a tool to identify the fold angles of a flat-foldable degree-4 vertex, this is pos-
sible because the lengths of the segments of the reciprocal diagram are strictly 
related to the sector angles, thus they have a relation to the expression (12).

The formulation (12) that relates consecutive angles can be rearranged in the 
following form:

𝜌𝜌0 = 2 𝑡𝑡𝑡𝑡𝑡𝑡-*(𝑘𝑘 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡 5,±#
.
). (14)

Where k is:

𝑘𝑘 =
!0,#$(9#:9$)

!0,#$(9#-9$)
. (15)

By experimental method, we discovered that the constant k, in a flat-foldable de-
gree-4 vertex, can also be calculated by dividing the length of the longest segment 
with the length of the shortest segment of the reciprocal diagram as follows:

𝑘𝑘 = 	<#=	?@A?	B?,A)C
<0,	?@A?	B?,A)C

. (16)

To draw parametrically a reciprocal diagram, we need to identify the single 
crease with opposite sign and draw a vector with an angle equal to +90° relative-
ly to that crease. We do the same thing with the other three creases but rotating 
the relative vectors by an angle of -90°. Then we draw a line along the direction 
of each vector, and we extend each one of them until they meet the relative ad-
jacent two lines, like so we find 4 intersection points. We connect the 4 points 
with a polyline following the verse of the vectors, obtaining a self-intersecting 
closed loop of four edges shaped like a ribbon. The ribbon forms two triangular 
areas, which need to be equalized to make a proper reciprocal diagram with 
zero-area. To equalize the areas, we translate one of the edges keeping it parallel 
to itself while extending the two adjacent edges of the ribbon until the two tri-
angles have the same area. As shown in Figure 18, if we fix the position of the 
vectors 02*, 03*, 04* we can find the position of 01* by calculating d using the 
internal angles of the polygon as follows:

𝑑𝑑 = M .D !0, E#
!0, F !0, G#

. (17)
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Once drawn the reciprocal diagram, we calculate k by measuring the maximum 
and minimum lengths of the edges. In a flat-foldable degree-4 single vertex the 
reciprocal diagram is always symmetric, thus there are two equal segments that 
are the longest and two equal segments that are the shortest, we just pick one of 
each pair of segments to calculate k. With k, obtained with parametrical method 
(as shown in the full generative algorithm shown in Figure 22, we can now cal-
culate all the fold angles at any folded state in any flat-foldable degree-4 vertex.

Figure 22 - Generative algorithm for the animation of a flat-foldable degree-4 
vertex calculating k by using the reciprocal diagram.

3.5.4. Calculating k Through Reciprocal Diagram – Proved by Experimental 
Method
As stated in the previous section we proved by experimental method that the 
reciprocal diagram could be used to calculate the constant k needed in the equa-
tion 14 that allows to calculate all the fold angles of a flat-foldable degree-4 
vertex. We proved it with the parametrical approach as follows.

Construct parametrically the reciprocal diagram of a given degree-4 vertex 
and calculate the constant k as explained in section 3.5.3. Choose one control-
ler crease and fix its fold angle to a value between 0° and 180°. Calculate the 
fold angle of one of the adjacent creases applying the expression 14 using the 
constant k just calculated. Because the opposite fold angles in a degree-4 vertex 
are always equal we already have all the fold angles that we need to univocally 
define the position of each face of the degree-4 vertex. Now we rotate the faces 
around the adjacent creases to configure the flat pattern into the target folded 
configuration that matches the fold angle of the controller fold. If the angles are 
correct the faces will be configured into a closed loop of planar faces with no 
deformations in the faces.
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Now, because the whole process is parametric, we can animate the folding 
and unfolding of the vertex by changing the input fold angle. By animating the 
vertex, we can prove that the faces always make a closed loop at any value of the 
controller fold angle. The preservation of the shape of the faces is guaranteed by 
construction, the preservation of the closed loop, instead, is verified by setting 
off the animation and testing the continuity between adjacent faces frame-by-
frame. To prove that this approach works with every flat-foldable vertex we 
tested different flat-foldable degree-4 patterns at limit cases and at intermediate 
symmetric cases (we avoided trivial cases like symmetry reflections of the pat-
terns and flipped mountain/valley assignment) as shown in Figure 23.

Of course, we can prove this also by the analytical method by relating the ex-
pression 14 with the construction of the reciprocal diagram by applying simple 
trigonometry rules and proportions between angles and lengths.

Figure 23 - Examples of test cases of asymmetric and symmetric flat-foldable 
vertices animated by calculating the constant k by dividing the longest and shortest 
segment of the reciprocal diagram.

3.6. Non-Flat-Foldability1

A non-flat-foldable pattern is a pattern that cannot be flat-collapsed into the 
plane without adding new creases. It is the counterpart of the flat-foldable pat-
tern introduced in the previous section, and it has some interesting properties 
that may be used into a movable mechanism. One of the most useful property 
is that it blocks at a certain three-dimensional configuration. If the pattern has 
one-DOF the configuration is univocal (considering a given mountain/valley 
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assignment) and this makes it very useful to design deployable or compacta-
ble objects. Two examples of self-blocking foldable mechanisms, designed using 
non-flat-foldable degree-4 vertices, are presented in section 6.3 and section 6.2 
and they are a rigid-foldable chair and a rigid-foldable ladder.

The blocked configuration is often called “locked”, “arrested” (Buffart et al., 
2017), “binding” (Lang, 2018), and recently has been also called “Blockfaltung” 
by Lang (Lang, 2018). We use “blocked” (Klett & Drechsler, 2011) because 
some of the terms already used may be interpreted as configurations where the 
movement is obstructed in both directions, which is not the case.

3.6.1. Non-Flat-Foldable Degree-4 Single Vertex – Huffman’s Formulations
Flat-foldable degree-4 vertices are special cases of generic degree-4 vertices. If we 
trace 4 creases that converge into a point with random angles, it is more proba-
ble to come up with a non-flat-foldable degree-4 vertex instead of a flat-foldable 
one. Thus, we can say that the major part of degree-4 vertices is non-flat-folda-
ble. Furthermore, as we previously stated, non-flat-foldable vertices may be very 
useful for practical applications, for this reason, we want to explain carefully 
how they work and how to treat them mathematically (in this section) and ge-
ometrically (in sections 4.6.2. and 4.6.3.).

Figure 24 - Non-flat-foldable degree-4 single vertex notation.

Huffman in the paper Curvature and Creases: A Primer on Paper (Huffman, 1976) 
generalised the formulation, reported in section 3.5.2, for every degree-4 vertex. In 
fact, the formulations for flat-foldable degree-4 vertices are a simplification of the 
Huffman’s formulations which work both for flat and non-flat foldable vertices.
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The following formulations relate ρ4 to ρ2 and ρ3 to ρ1:

𝑠𝑠𝑠𝑠𝑠𝑠. 𝜌𝜌/2
𝑠𝑠𝑠𝑠𝑠𝑠. 𝜌𝜌.2

=
sin 𝜃𝜃. sin 𝜃𝜃*
sin 𝜃𝜃+ sin 𝜃𝜃/

(18)

𝑠𝑠𝑠𝑠𝑠𝑠. 𝜌𝜌+2
𝑠𝑠𝑠𝑠𝑠𝑠. 𝜌𝜌*2

=
sin 𝜃𝜃/ sin 𝜃𝜃*
sin 𝜃𝜃. sin 𝜃𝜃+

(19)

Huffman also associates ρ2 to ρ3 by a “very difficult”2 derivation:

⎣
⎢
⎢
⎢
⎡
1 ∓ U

𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃+ 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃*
𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃. 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃/

V
1 − 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃. 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃*𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃+ 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃/

𝑠𝑠𝑠𝑠𝑠𝑠. 𝜌𝜌.2
1 − 𝑠𝑠𝑠𝑠𝑠𝑠. 𝜌𝜌.2 ⎦

⎥
⎥
⎥
⎤

∙

⎣
⎢
⎢
⎢
⎡
1 ± U

𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃+ 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃*
𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃. 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃/

V
1 − 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃/ 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃*

𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃. 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃+
𝑠𝑠𝑠𝑠𝑠𝑠. 𝜌𝜌*2

1 − 𝑠𝑠𝑠𝑠𝑠𝑠. 𝜌𝜌*2 ⎦
⎥
⎥
⎥
⎤

= 	1 −
𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃+ 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃*
𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃. 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃/

= 

∙  

(20)

Rearranging these formulations in the forms ρ2, ρ3 = f (ρ1, θ1, θ2, θ3, θ4) and 
(once found ρ2) ρ4 = f (ρ2, θ1, θ2, θ3, θ4) we can find all the fold angles knowing 
only ρ1 and the sector angles θ1, θ2, θ3, θ4.

Unfortunately, it is not trivial rearranging these functions, so we solved them 
with the help of mathematical software to calculate all the alternative forms and 
the possible solutions, which could be more than one depending on the sym-
metry conditions.

For the rearranged forms, to be able to input them into Grasshopper, we 
used the original notation by Huffman even if it is not the standard notation 
of a degree-4 vertex, because it uses ASCII characters that are the only charac-
ter that the “Expression” component in Grasshopper accepts, thus the factors 
change as follows:

𝜌𝜌* = 𝑞𝑞, 𝜌𝜌. = 𝑛𝑛, 𝜌𝜌+ = 𝑝𝑝, 𝜌𝜌/ = 𝑚𝑚, 𝜃𝜃* = 𝐷𝐷, 𝜃𝜃. = 𝐶𝐶, 𝜃𝜃+ = 𝐴𝐴, 𝜃𝜃/ = 𝐵𝐵. 
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Therefore, knowing n, A, B, C, D we can calculate q, p and m. For the purposes 
of this algorithm, we only consider interesting solutions, which are not simple 
mirror reflections of the only 2 possible folding modes, that can be found sim-
ply changing the sign of the result of the interesting solutions. The variable q has 
two interesting solutions, one for each possible folding mode, variable p is relat-
ed to q. For flat-foldable degree-4 vertices, the interesting solution is only one 
as well as the folding mode. The variable m has only one interesting solution. 
Below we report the solutions of q, p, and m transcribed in ASCII characters 
solved in function of n, A, B, C, D. The fold angle n is the angle of the controller 
crease which is conveniently also the crease that blocks first in this case.

Fold angle q, solution 1, in function of n, A, B, C, D.

-2*Acos(-1.*Pow(-1.*Pow(Sin(C),-1) - 
2*Pow(1.*Pow(Cos(n/2.),-1),2)*Pow(1.*Pow(Sin(C),-

1),3)*Pow(Sin(D),2) - Pow(1.*Pow(Cos(n/2.),-
1),4)*Pow(1.*Pow(Sin(A),-1),2)*Pow(1.*Pow(Sin(C),-

1),3)*Pow(Sin(B),2)*Pow(Sin(D),2) 
- 2.*Pow(1.*Pow(Sin(A),-1),2)*Pow(Sin(C),-1)*Pow(S
in(D),2)*Pow(Tan(n/2.),2) + 2.*Pow(1.*Pow(Sin(C),-
1),2)*Pow(Sin(A),-1)*Pow(Sin(B),-1)*Pow(Sin(D),
3)*Pow(Tan(n/2.),2) - 2*Pow(1.*Pow(Cos(n/2.),-

1),2)*Pow(1.*Pow(Sin(A),-1),2)*Pow(1.*Pow(Sin(C),-
1),3)*Pow(Sin(D),4)*Pow(Tan(n/2.),2) - 

1.*Pow(1.*Pow(Sin(A),-1),4)*Pow(Sin(C),-1)*Pow(Si
n(D),4)*Pow(Tan(n/2.),4) + 1.*Pow(1.*Pow(Sin(A),-

1),3)*Pow(1.*Pow(Sin(C),-1),2)*Pow(Sin(B),-
1)*Pow(Sin(D),5)*Pow(Tan(n/2.),4) + 

1.*Pow(1.*Pow(Cos(n/2.),-1),4)*Pow(1.*Pow(Sin(C),-
1),4)*Pow(Sin(A),-1)*Pow(Sin(D),3)*Sin(B) + 

2*Pow(1.*Pow(Cos(n/2.),-1),2)*Pow(1.*Pow(Sin(A),-
1),3)*Pow(1.*Pow(Sin(C),-1),2)*Pow(Sin(D),3)*Po
w(Tan(n/2.),2)*Sin(B) + 1.*Pow(1.*Pow(Sin(C),-

1),2)*Pow(Sin(B),-1)*Sin(A)*Sin(D) + 
2.*Pow(1.*Pow(Cos(n/2.),-1),2)*Pow(1.*Pow(Sin(C),-

1),2)*Pow(Sin(A),-1)*Sin(B)*Sin(D),0.5)*Pow(-
1.*Pow(1.*Pow(Cos(n/2.),-1),2)*Pow(Sin(C),-1) 

- 2*Pow(1.*Pow(Cos(n/2.),-
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1),2)*Pow(1.*Pow(Sin(C),-1),3)*Pow(Sin(D),2) 
- 1.*Pow(1.*Pow(Cos(n/2.),-

1),2)*Pow(1.*Pow(Sin(A),-1),2)*Pow(1.*Pow(Sin(C),-
1),2)*Pow(Sin(B),2)*Pow(Sin(C),-1)*Pow(Sin(D),2) 

- 2.*Pow(Sin(C),-1)*Pow(1.*Pow(Sin(A),-
1)*Pow(Sin(C),-1)*Sin(B)*Sin(D),0.5)*Pow(Po
w(1.*Pow(Cos(n/2.),-1),2) - 1.*Pow(Sin(A),-
1)*Pow(Sin(B),-1)*Pow(Tan(n/2.),2)*Sin(C)
*Sin(D),0.5) + 2.*Pow(1.*Pow(Cos(n/2.),-
1),2)*Pow(Sin(C),-1)*Pow(1.*Pow(Sin(A),-

1)*Pow(Sin(C),-1)*Sin(B)*Sin(D),0.5)*Pow(Po
w(1.*Pow(Cos(n/2.),-1),2) - 1.*Pow(Sin(A),-

1)*Pow(Sin(B),-1)*Pow(Tan(n/2.),2)*Sin(
C)*Sin(D),0.5) - 4.*Pow(1.*Pow(Sin(A),-
1),2)*Pow(Sin(C),-1)*Pow(Sin(D),2)*Pow(T
an(n/2.),2) + 2.*Pow(1.*Pow(Cos(n/2.),-

1),2)*Pow(1.*Pow(Sin(A),-1),2)*Pow(Sin(C),-
1)*Pow(Sin(D),2)*Pow(Tan(n/2.),2) + 

2.*Pow(1.*Pow(Sin(C),-1),2)*Pow(Sin(A),-
1)*Pow(Sin(B),-1)*Pow(Sin(D),3)*Pow(Ta
n(n/2.),2) - 2*Pow(1.*Pow(Cos(n/2.),-

1),2)*Pow(1.*Pow(Sin(A),-1),2)*Pow(1.*Pow(Sin(C),-
1),3)*Pow(Sin(D),4)*Pow(Tan(n/2.),2) + 

2.*Pow(1.*Pow(Sin(A),-1),2)*Pow(Sin(C),-
1)*Pow(Sin(D),2)*Pow(1.*Pow(Sin(A),-
1)*Pow(Sin(C),-1)*Sin(B)*Sin(D),0.5
)*Pow(Pow(1.*Pow(Cos(n/2.),-1),2) - 

1.*Pow(Sin(A),-1)*Pow(Sin(B),-1)*Pow(Tan(n/
2.),2)*Sin(C)*Sin(D),0.5)*Pow(Tan(n/2.),2) 
- 1.*Pow(1.*Pow(Sin(A),-1),3)*Pow(Sin(B),-

1)*Pow(Sin(D),3)*Pow(Tan(n/2.),4) + 
1.*Pow(1.*Pow(Sin(A),-1),3)*Pow(1.*Pow(Sin(C),-

1),2)*Pow(Sin(B),-1)*Pow(Sin(D),5)*Pow(T
an(n/2.),4) + 1.*Pow(1.*Pow(Cos(n/2.),-

1),4)*Pow(1.*Pow(Sin(C),-1),4)*Pow(Sin(A),-
1)*Pow(Sin(D),3)*Sin(B) + Pow(1.*Pow(Sin(A),-
1),3)*Pow(1.*Pow(Sin(C),-1),2)*Pow(Sin(D),3
)*Pow(Tan(n/2.),2)*Sin(B) + 1.*Pow(Sin(A),-
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1)*Pow(Sin(B),-1)*Pow(Tan(n/2.),2)*Sin(D) 
- 2.*Pow(Sin(A),-1)*Pow(Sin(B),-

1)*Pow(1.*Pow(Sin(A),-1)*Pow(Sin(C),-
1)*Sin(B)*Sin(D),0.5)*Pow(Pow(1.*Pow(Cos

(n/2.),-1),2) - 1.*Pow(Sin(A),-1)*Pow(Sin(B),-
1)*Pow(Tan(n/2.),2)*Sin(C)*Sin(D),0.5)*Pow(T
an(n/2.),2)*Sin(D) + 1.*Pow(1.*Pow(Sin(C),-

1),2)*Pow(Sin(B),-1)*Sin(A)*Sin(D) + 
4.*Pow(1.*Pow(Cos(n/2.),-1),2)*Pow(Pow(Sin(C),-

1),2)*Pow(Sin(A),-1)*Sin(B)*Sin(D) - 
1.*Pow(1.*Pow(Sin(C),-1),2)*Pow(Sin(A),-1)*Sin(B)*Sin(D) 
- 1.*Pow(1.*Pow(Cos(n/2.),-1),4)*Pow(1.*Pow(Sin(C),-

1),2)*Pow(Sin(A),-1)*Sin(B)*Sin(D) - 
2.*Pow(1.*Pow(Cos(n/2.),-1),2)*Pow(Pow(Sin(C),-

1),2)*Pow(Sin(A),-1)*Pow(1.*Pow(Sin(A),-
1)*Pow(Sin(C),-1)*Sin(B)*Sin(D),0.5)*Pow(Po
w(1.*Pow(Cos(n/2.),-1),2) - 1.*Pow(Sin(A),-

1)*Pow(Sin(B),-1)*Pow(Tan(n/2.),2)*Sin(C)*Sin(
D),0.5)*Sin(B)*Sin(D) + 2.*Pow(1.*Pow(Sin(C),-

1),2)*Pow(Sin(A),-1)*Pow(1.*Pow(Sin(A),-
1)*Pow(Sin(C),-1)*Sin(B)*Sin(D),0.5)*Pow(Po
w(1.*Pow(Cos(n/2.),-1),2) - 1.*Pow(Sin(A),-

1)*Pow(Sin(B),-1)*Pow(Tan(n/2.),2)*Sin(C)*Sin(D),0
.5)*Sin(B)*Sin(D),-0.5))

Fold angle q, solution 2 in function of n, A, B, C, D.

2*Acos(1.*Pow(-1.*Pow(Sin(C),-1) - 
2*Pow(1.*Pow(Cos(n/2.),-1),2)*Pow(1.*Pow(Sin(C),-

1),3)*Pow(Sin(D),2) - Pow(1.*Pow(Cos(n/2.),-
1),4)*Pow(1.*Pow(Sin(A),-1),2)*Pow(1.*Pow(Sin(C),-

1),3)*Pow(Sin(B),2)*Pow(Sin(D),2) 
- 2.*Pow(1.*Pow(Sin(A),-1),2)*Pow(Sin(C),-1)*Pow(S
in(D),2)*Pow(Tan(n/2.),2) + 2.*Pow(1.*Pow(Sin(C),-
1),2)*Pow(Sin(A),-1)*Pow(Sin(B),-1)*Pow(Sin(D),
3)*Pow(Tan(n/2.),2) - 2*Pow(1.*Pow(Cos(n/2.),-

1),2)*Pow(1.*Pow(Sin(A),-1),2)*Pow(1.*Pow(Sin(C),-
1),3)*Pow(Sin(D),4)*Pow(Tan(n/2.),2) - 
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1.*Pow(1.*Pow(Sin(A),-1),4)*Pow(Sin(C),-1)*Pow(Si
n(D),4)*Pow(Tan(n/2.),4) + 1.*Pow(1.*Pow(Sin(A),-

1),3)*Pow(1.*Pow(Sin(C),-1),2)*Pow(Sin(B),-
1)*Pow(Sin(D),5)*Pow(Tan(n/2.),4) + 

1.*Pow(1.*Pow(Cos(n/2.),-1),4)*Pow(1.*Pow(Sin(C),-
1),4)*Pow(Sin(A),-1)*Pow(Sin(D),3)*Sin(B) + 

2*Pow(1.*Pow(Cos(n/2.),-1),2)*Pow(1.*Pow(Sin(A),-
1),3)*Pow(1.*Pow(Sin(C),-1),2)*Pow(Sin(D),3)*Po
w(Tan(n/2.),2)*Sin(B) + 1.*Pow(1.*Pow(Sin(C),-

1),2)*Pow(Sin(B),-1)*Sin(A)*Sin(D) + 
2.*Pow(1.*Pow(Cos(n/2.),-1),2)*Pow(1.*Pow(Sin(C),-

1),2)*Pow(Sin(A),-1)*Sin(B)*Sin(D),0.5)*Pow(-
1.*Pow(1.*Pow(Cos(n/2.),-1),2)*Pow(Sin(C),-1) 

- 2*Pow(1.*Pow(Cos(n/2.),-
1),2)*Pow(1.*Pow(Sin(C),-1),3)*Pow(Sin(D),2) 

- 1.*Pow(1.*Pow(Cos(n/2.),-
1),2)*Pow(1.*Pow(Sin(A),-1),2)*Pow(1.*Pow(Sin(C),-
1),2)*Pow(Sin(B),2)*Pow(Sin(C),-1)*Pow(Sin(D),2) 

+ 2.*Pow(Sin(C),-1)*Pow(1.*Pow(Sin(A),-
1)*Pow(Sin(C),-1)*Sin(B)*Sin(D),0.5)*Pow(Po
w(1.*Pow(Cos(n/2.),-1),2) - 1.*Pow(Sin(A),-
1)*Pow(Sin(B),-1)*Pow(Tan(n/2.),2)*Sin(C)
*Sin(D),0.5) - 2.*Pow(1.*Pow(Cos(n/2.),-
1),2)*Pow(Sin(C),-1)*Pow(1.*Pow(Sin(A),-

1)*Pow(Sin(C),-1)*Sin(B)*Sin(D),0.5)*Pow(Po
w(1.*Pow(Cos(n/2.),-1),2) - 1.*Pow(Sin(A),-

1)*Pow(Sin(B),-1)*Pow(Tan(n/2.),2)*Sin(
C)*Sin(D),0.5) - 4.*Pow(1.*Pow(Sin(A),-
1),2)*Pow(Sin(C),-1)*Pow(Sin(D),2)*Pow(T
an(n/2.),2) + 2.*Pow(1.*Pow(Cos(n/2.),-

1),2)*Pow(1.*Pow(Sin(A),-1),2)*Pow(Sin(C),-
1)*Pow(Sin(D),2)*Pow(Tan(n/2.),2) + 

2.*Pow(1.*Pow(Sin(C),-1),2)*Pow(Sin(A),-
1)*Pow(Sin(B),-1)*Pow(Sin(D),3)*Pow(Ta
n(n/2.),2) - 2*Pow(1.*Pow(Cos(n/2.),-

1),2)*Pow(1.*Pow(Sin(A),-1),2)*Pow(1.*Pow(Sin(C),-
1),3)*Pow(Sin(D),4)*Pow(Tan(n/2.),2) 

- 2.*Pow(1.*Pow(Sin(A),-1),2)*Pow(Sin(C),-
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1)*Pow(Sin(D),2)*Pow(1.*Pow(Sin(A),-
1)*Pow(Sin(C),-1)*Sin(B)*Sin(D),0.5
)*Pow(Pow(1.*Pow(Cos(n/2.),-1),2) - 

1.*Pow(Sin(A),-1)*Pow(Sin(B),-1)*Pow(Tan(n/
2.),2)*Sin(C)*Sin(D),0.5)*Pow(Tan(n/2.),2) 
- 1.*Pow(1.*Pow(Sin(A),-1),3)*Pow(Sin(B),-

1)*Pow(Sin(D),3)*Pow(Tan(n/2.),4) + 
1.*Pow(1.*Pow(Sin(A),-1),3)*Pow(1.*Pow(Sin(C),-

1),2)*Pow(Sin(B),-1)*Pow(Sin(D),5)*Pow(T
an(n/2.),4) + 1.*Pow(1.*Pow(Cos(n/2.),-

1),4)*Pow(1.*Pow(Sin(C),-1),4)*Pow(Sin(A),-
1)*Pow(Sin(D),3)*Sin(B) + Pow(1.*Pow(Sin(A),-
1),3)*Pow(1.*Pow(Sin(C),-1),2)*Pow(Sin(D),3
)*Pow(Tan(n/2.),2)*Sin(B) + 1.*Pow(Sin(A),-
1)*Pow(Sin(B),-1)*Pow(Tan(n/2.),2)*Sin(D) 

+ 2.*Pow(Sin(A),-1)*Pow(Sin(B),-
1)*Pow(1.*Pow(Sin(A),-1)*Pow(Sin(C),-

1)*Sin(B)*Sin(D),0.5)*Pow(Pow(1.*Pow(Cos
(n/2.),-1),2) - 1.*Pow(Sin(A),-1)*Pow(Sin(B),-
1)*Pow(Tan(n/2.),2)*Sin(C)*Sin(D),0.5)*Pow(T
an(n/2.),2)*Sin(D) + 1.*Pow(1.*Pow(Sin(C),-

1),2)*Pow(Sin(B),-1)*Sin(A)*Sin(D) + 
4.*Pow(1.*Pow(Cos(n/2.),-1),2)*Pow(Pow(Sin(C),-

1),2)*Pow(Sin(A),-1)*Sin(B)*Sin(D) - 
1.*Pow(1.*Pow(Sin(C),-1),2)*Pow(Sin(A),-1)*Sin(B)*Sin(D) 
- 1.*Pow(1.*Pow(Cos(n/2.),-1),4)*Pow(1.*Pow(Sin(C),-

1),2)*Pow(Sin(A),-1)*Sin(B)*Sin(D) + 
2.*Pow(1.*Pow(Cos(n/2.),-1),2)*Pow(Pow(Sin(C),-

1),2)*Pow(Sin(A),-1)*Pow(1.*Pow(Sin(A),-
1)*Pow(Sin(C),-1)*Sin(B)*Sin(D),0.5)*Pow(Po
w(1.*Pow(Cos(n/2.),-1),2) - 1.*Pow(Sin(A),-

1)*Pow(Sin(B),-1)*Pow(Tan(n/2.),2)*Sin(C)*Sin(
D),0.5)*Sin(B)*Sin(D) - 2.*Pow(1.*Pow(Sin(C),-

1),2)*Pow(Sin(A),-1)*Pow(1.*Pow(Sin(A),-
1)*Pow(Sin(C),-1)*Sin(B)*Sin(D),0.5)*Pow(Po
w(1.*Pow(Cos(n/2.),-1),2) - 1.*Pow(Sin(A),-

1)*Pow(Sin(B),-1)*Pow(Tan(n/2.),2)*Sin(C)*Sin(D),0
.5)*Sin(B)*Sin(D),-0.5))
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Fold angle p is in function of q, A, B, C, D.

2*Asin(Pow((Pow(Sin(q/2),2)*Sin(A)*Sin(D))/
(Sin(C)*Sin(B)),0.5))

Fold angle m in function of n, A, B, C, D.

2*Asin(Pow((Pow(Sin(n/2),2)*Sin(C)*Sin(D))/
(Sin(A)*Sin(B)),0.5))

These textual solutions have been generated using the software Mathematica by 
Wolfram research (WolframResearch, n.d.). Obviously they could have been 
simplified with subfunctions or they could have been written in a slimmer man-
ner using alternative forms, but we decided to leave them as they have been 
returned by Mathematica because this is what the application returns as a first 
calculation step, which might convince a nonprofessional user to judge it as too 
complex to handle, making him/her giving up at this stage.

This kind of intimidating steps is less likely to happen while approaching the 
same problem with the geometrical constructive approach, that we are going to 
present in sections 4.6.2. and 4.6.3.

This case study is a clear example of the greater complexity of the algebraic 
approach compared to the graphical constructive approach. 

3.6.2. The Blocking Crease
The blocking crease is the first crease that hit 180° in a CP. In a degree-4 
non-flat-foldable single vertex the blocking crease is always one, but they can be 
more than one in a CP with multiple vertices or multiple degrees of freedom. 
The identification of the blocking crease is important for animating the folding 
and unfolding of a one-DOF pattern because if it is used as the controller crease 
and the domain of its fold angle is limited between 0° and 180° it prevents the 
pattern to self-intersect.

To identify the blocking crease before folding the pattern we could use 
the well-known Huffman formulations that would allow us to find the max-
imum fold angles of every crease, but because those formulations are valid at 
any time t, they are unnecessarily complex for finding only the fold angles at 
blocked state.

Thus, in the following sections, we present a simplified method using spher-
ical trigonometry and triangular inequalities on the sphere, that will allow us 
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to identify the crease that blocks first from the unfolded pattern, in a degree-4 
single vertex, analysing exclusively the blocked state.

Adding this procedure at the beginning of the algorithms explained in 
4.6.3 or 3.6.1 would solve the problem of the identification of the crease 
that blocks first before folding anything. This would allow us to choose the 
optimal controller crease from early stages of the animation process. Before 
explaining this new approach, we need to recall some concepts of the kine-
matics of a degree-4 vertex.

3.6.3. Understanding the Kinematics of a Non-Flat-Foldable Developable 
Degree-4 Vertex
A non-flat-foldable degree-4 developable vertex is a vertex with four incident 
creases forming a convex angle to adjacent ones, which does not satisfy Kawa-
saki’s condition, i.e., the alternating sum of angles does not sum to 0°. The fold 
angle ρ ∈ [–180°, 180°] is the angle between the normal vectors of adjacent fac-
es. The sector angle 0 < θ < 180° is the angle between adjacent creases. First, we 
briefly characterize the kinematics of a non-flat-foldable degree-4 vertex. In the 
following statements, it is assumed that the faces can pass through each other, 
and any state with two coplanar faces is called a “blocked state”.

• A non-flat-foldable degree-4 vertex forms a one-DOF mechanism with 
no bifurcations in its fold angle function except at the completely un-
folded states.

• At the unfolded states, at most two folding modes intersect. The moun-
tain/valley assignment of each folding mode always has three creases with 
the same signs forming a “Y” shape (convex angle to each other) and 
one crease with opposite sign (Abel et al., 2016). For non-flat-foldable 
degree-4 vertices, exactly two creases can be the oppositely signed crease, 
one for each folding mode.

• In either mode, only one single crease folds flat first, and it blocks the 
movement when self-intersections are avoided. Hence, the state is called 
the “first blocked state”.

• Ignoring self-intersection, if the folding motion continues, the faces can 
pass through each other and the single vertex pattern will reach another 
configuration where two different faces are coplanar, thus we call it the 
“second blocked state”.

• The signs flip after the self-intersection, and the second blocked state is 
equivalent to the first blocked state of the other folding mode (refer to 
Figure 25).
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Figure 25 shows the fold angles variation over time when ρA is the controller 
crease represented as a linear function of time. The fold angle functions of the 
other creases depend on the controller crease because it is a one-DOF mech-
anism. Focus on folding mode two. The folded state reaches the first blocked 
state at t1 when the ρD function jumps from +180° (π) to –180° (-π). The jump 
happens because after that point, the faces pass through each other and the sign 
of the crease flips (passing from valley to mountain in this case). In t2, the folded 
surface reaches the second blocking configuration when ρA jumps from +180° 

Figure 25 - Folding animation snapshots, and fold angle plots of a given degree-4 
vertex (the folding mode one has the same kinematics as mode two played 
backwards with mirrored mountain valley assignment). Notice that the unfolded 
state in t4 is flipped (upside-down compared to the flat-folded state in t0).
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to -180°. While two creases A and D rotate 360°, the other creases B and C ro-
tate to some amount smaller than 180° and go back to 0. Function ρB reaches its 
maximum at t1, and ρC reaches its minimum at t2. At 0 and t4, all the fold angles 
go to 0 at the same time, because at 0 and t4 the vertex is completely unfolded.

Because of the two creases ρA and ρD flipped their signs, when the pattern 
again reaches the flat state (at t4), the mountain/valley assignment has changed 
to that of mode one except that all the signs are flipped. Thus, folding mode 1 
is given by the backward play of folding mode two with mirrored mountain/
valley assignment.

3.6.4. First Blocking Crease in a Developable Degree-4 Vertex

The following considerations prove that in a developable non-flat-foldable de-
gree-4 single vertex pattern there are only two possible creases that can be the 
candidate creases among which there is only one that hit 180° first.

Focus on the first blocking state. The mountain/valley assignment must 
guarantee rigid foldability from the unfolded state, so there must be three creas-

Figure 26 - Only two possible blocked cases in a generic degree-4 vertex (in the 
upper one the blocking crease is O2; in the bottom one the blocking crease is O4).
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es with the same sign and one crease with opposite sign (Abel et al., 2016). 
Assume that they are three valleys and one mountain, without loss of generality.

In the blocked state, only one crease is flat-folded in non-flat-foldable cases. 
This is true because if at least two creases are flat at the same time, then all four 
creases are coplanar in this configuration, and the pattern would be flat-foldable.

Refer to Figure 26. Consider the first blocked state. Because only one crease 
is fully folded, a three-faced pyramid (OABC) is formed. Two edges of the pyr-
amid (O—A– and O—B–) are formed by faces adjacent in the unfolded state, and one 
edge (O—C–) is formed by two faces non-adjacent in the unfolded state but touch-
ing in the folded state. The former two edges have the same mountain/valley 
assignment, which is valley, and the other edge (O—C–) is made by two creases of 
opposite signs (O—1– and O—2– or O—1– and O—4–), one of which folds flat.

The turn angle at C is positive (valley) because ABC is a spherical triangle, 
but this should be equal to the summation of fold angles of the two creases 
forming O—C–. This means that the crease hitting 180° (the one with bigger abso-
lute value) is positive (valley). So, the crease that hits 180° first must be subse-
quent or precedent to the crease with opposite sign. This limits the solutions to 
two possible candidate flat-folded creases (O—2– or O—4–).

Figure 27 - Testing which crease blocks the movement first, among the two 
possible candidates.

Consider having an unfolded pattern where the crease that blocks the move-
ment is still unknown (Figure 27). Considering the previous assumptions, it is 
known that the crease that hits 180° first is always one of the two valley creases 
adjacent to the single mountain crease. The following formulations are aimed 
to test which of the two identified candidate creases is the actual one that hits 
180° first, without the need of folding the pattern. Spherical trigonometry and 
triangular inequality on a sphere are used. The pyramid can be considered as a 
spherical triangle on a unit sphere. Triangular inequality on a sphere is given by:
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+𝑏𝑏 > 𝑐𝑐	and 𝑏𝑏 + 𝑐𝑐 > 𝑎𝑎 and 𝑐𝑐 + 𝑎𝑎 > 𝑏𝑏. (21)

Because:

𝑎𝑎, 𝑏𝑏, 𝑐𝑐 < 180°. (22)

The mountain crease is called 1, and the valley creases are called 2, 3, and 4 
counterclockwise. Considering the previous assumptions, the flat-folded crease 
is in general either 2 or 4. If crease 2 folds flat first, then creases 3 and 4 form 
edges O—A– and O—B–. Therefore, a = θ4, b = θ2 – a = θ1, c = θ3 and this should 
satisfy θ2 + θ4 > θ1 + θ3. If crease 4 folds flat first, then creases 2 and 3 form 
edges O—A– and O—B–. Therefore a = θ3 – θ4, b = θ1, c = θ2, and thus it should 
satisfy θ2 + θ4 < θ1 + θ3. Conversely, judging from the given set of angles, the 
following tests can be used:

If:  𝜃𝜃. + 𝜃𝜃/ > 𝜃𝜃* + 𝜃𝜃+ then 𝑂𝑂2eeee folds flat first. (23)

If:  𝜃𝜃. + 𝜃𝜃/ < 𝜃𝜃* + 𝜃𝜃+ then 𝑂𝑂4eeee folds flat first. (24)

If: 𝜃𝜃. + 𝜃𝜃/ = 𝜃𝜃* + 𝜃𝜃+ the degree-4 vertex is flat-foldable (limit case). (25)

Thus, if we want to use the crease that blocks first as controller crease into a 
Grasshopper definition, we can insert one of these very easy inequations into the 
“Expression” component of grasshopper, setting as input the sector angles, and 
with a “Key/Value search” component we can substitute to the “False” or “True” 
result the index of the crease O—2– or O—4– as shown in Figure 28. This index will 
afterwards be used to select the crease that will be the first axis of rotation and 
we will set the domain of the rotation angle of its adjacent faces from 0° to 180°.

Figure 28 - Identification of the index of the crease that blocks first.
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3.6.5. Other Fold Angles at Blocked State – With the Spherical Law of Cosine

Figure 29 - Spherical trigonometry standard notation compared with the degree-4 
vertex notation when O2 blocks first.

Once the crease that blocks the movement is identified, its fold angle is equal to 
180° at the blocked state. The next question is how to calculate the fold angles 
of the other creases at the blocked state. Refer to Figure 29. Assume that the 
blocking crease is O—2–. (For cases where the blocking crease is O—4–, the notation is 
a mirror reflection). Then, by the cosine rule of spherical trigonometry,

cos 𝐴𝐴 = 	 HI6 #-HI6 " HI6 J
674 " 674 J

. (26)

Applying this to the fold angles in the degree-4 vertex we will get:

𝜌𝜌* = −𝑐𝑐𝑐𝑐𝑐𝑐-* J$! 9%-J$!(9$-9#) J$! 9&
!0,(9$-9#) !0, 9&

. (27)

𝜌𝜌. = 	180°. (28)

𝜌𝜌+ = 	180° − 𝑐𝑐𝑐𝑐𝑐𝑐-* J$! 9&-J$! 9% J$!(9$-9#)
!0, 9% !0,(9$-9#)

. (29)

𝜌𝜌/ = 180° − 𝑐𝑐𝑐𝑐𝑐𝑐-* J$!(9$-9#)-J$! 9& J$! 9%
!0, 9& !0, 9%

. (30)

These expressions to calculate the fold angles are valid only at the blocked state. 
We can use this approach to design patterns of developable foldable three-di-
mensional structures with specific fold angles as shown in section 6.2.2.
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3.7. About the Relation Between Origami Functionality and Real 
Applications

Some of these definitions highlight possible connections with the functionality 
of the origami when applied to real projects. For example, designing consid-
ering developability may be a way to reduce the cut-outs and scraps from the 
production, or it may be a way to produce assembling-free objects reducing the 
production costs and eventually the assembling time and issues. Furthermore, 
the rigid-foldability is strictly related to the fabrication with rigid panels and 
stiff materials, also the non-flat-foldability is related to patterns that block at 
a certain non-planar configuration thus realizing something with folded rigid 
panels will open new possibilities in the creation of mechanisms that self-block 
at a certain three-dimensional configuration or that can use blocking folds to in-
crease the structural stiffness and stability. The study of the DOF could be useful 
to design deployable systems, for example designing a one-DOF mechanism 
helps preventing unexpected behaviour, it would also prevent the mechanisms 
to jam because of bifurcations in its folding and unfolding, it would decrease the 
amount of the necessary actuators and motors to move the mechanism. Lastly, 
designing considering flat-foldability may be an efficient way to design objects 
that have to be stored in a small space for transportation or stoking. All these 
relations are clearly reflected in the projects that we collected and analysed in 
chapter 2.
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CHAPTER 4

CONSTRUCTIVE METHODS 
FOR SOLVING THE KINEMATICS 
OF ORIGAMI

4.1. Families of Folded Surfaces

In the book Architettura delle superfici piegate Casale et al. assert that the infinite 
variety of configurations that can be obtained folding a planar surface can be 
divided into three groups: “Chaotic”, “Shape-oriented”, “Structured”.

Figure 30 - Families of folded surfaces, the list obviously does not represent all the 
existing crease pattern, it represent only the set of families and subfamilies that 
we studied in this section.
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In the “Chaotic” family, the surface is crossed by a dense mesh of irregular 
creases. Once collapsed, the surface can be configured in various three-dimen-
sional irrational shapes, this behaviour is hard to control and to foresee. Fur-
thermore, in architecture, there is no reason to try to analyse it from a kinematic 
point of view.

If we take a sheet of paper and we crumple it strongly with our hands, we can 
force it to assume infinite different configurations, opening it and stretching 
it properly. The more is dense the starting crease pattern, the more the surface 
will be capable to adapt to specific configurations. Apart from the obvious dif-
ficulty in determining the relationship between the initial subdivision and the 
final shape, it is equally difficult and meaningless searching for the geometrical 
relationship between the parts participating in this kind of spatial configuration. 
(Casale et al., 2013)

In the “Shape-oriented” family, the plane is divided into a multitude of different 
polygons, placed side by side to generate a pattern that must assume a specific 
spatial configuration. Figurative traditional origami and packaging can be cate-
gorized in this group. Some of the projects, among the ones that we selected in 
section 2, which could be added to this category are, for example, the “Origami 
pavilion” by Tal Friedman, the “Common Ground” by Zaha Hadid Architects 
(Bhooshan, 2016), the “Folding Table” by Tachi or the “Curved Folding Metal 
Twins” by Chandra et al. (Bhooshan, 2015; Chandra et al., 2015a).

The “Structured” family is defined by groups of equal tiles. The surface 
can be configured into a lot of different shapes, using a little number of dif-
ferent tiles, this characteristic makes this family of folded surfaces easier to 
animate and to design. The well-known solar panel by Koryo Miura (Miura, 
1985), the self-deployable cardiac stent by Kuribayashi et al. (Kuribayashi 
et al., 2006), or the “Resonant Chamber” by RVTR (Thün et al., 2012), are 
related to this family of surfaces. In general, the tessellations and the corru-
gations from traditional origami, are perfect examples of this family of folded 
surfaces. We focus only on the “Shape-oriented” and “structured” families. 
The structured folded surfaces are easy to design because they are character-
ized by groups of equal faces, also the variety of shapes that they can assume 
is limited, thus the algorithms will be more focused on the animation of the 
surfaces instead of being focused on the final folded shape. The “Structured” 
family will be explored in this chapter. The “Shape-oriented” family will be 
addressed in chapter 5 and 6.
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To study the “Structured” family, we divided it into six sub-classes of patterns 
which will be presented following a growing complexity criterion. The sub-classes 
synthetized in Figure 30 are patterns with: a single linear crease, multiple non-in-
tersecting linear creases, a single degree-4 internal vertex, a chain of degree-4 verti-
ces, multiple internal degree-4 vertices and multiple degree>4 vertices.

4.2. Operative Tools

All the crease patterns proposed will be created and animated with a construc-
tive synthetic approach applied with a parametric three-dimensional modeller, 
Grasshopper (Rutten, n.d.), a node based parametric modeller integrated into 
Rhinoceros 6 by McNeel associates (McNeel, n.d.). Because of that, for clarity 
sake, sometimes we will refer to specific components of Grasshopper or Rhino. 
Nevertheless, we will try to put the reader in the condition to reproduce the 
same constructions also with different parametric\mathematical modellers ex-
plaining the processes and describing the algorithms step by step.

4.3. Analogy with Computer Programming and Terminology 
Clarification

4.3.1. Clustering and Nesting
In computer programming, a widespread practice that helps to keep the code 
simple and clear is to divide the code into clusters and save them for future 
uses. This type of approach is very common in Object-Oriented-Programming 
(OOP), where these clusters of code are called objects and classes. This approach 
is useful when scripting because it allows the programmer to keep the code short 
and clear and more importantly to find the errors faster because there is no need 
to test the previously tested clusters of code. Furthermore, it helps to keep the 
script easily readable, transmissible and editable.

To make digital three-dimensional parametric animated folded surfaces, it 
can be followed a similar approach, starting from elementary cases grouped in 
families, up to harder ones by referring to already solved simpler problems add-
ing variables and components to them. The algorithms will be presented with 
a growing complexity criterion, starting from patterns with one or more single 
non-intersecting linear creases, followed by patterns with one or more internal 
degree-4 vertices and patterns with vertices with a degree greater than 4. For 
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this reason, the first cases may appear trivial, but they are the necessary building 
blocks for the following algorithms of higher complexity.

The operation of grouping some nodes inside a single new component is 
called “nesting”, we will refer to these nested nodes as “clusters” as they are 
called in Grasshopper. Furthermore, we will refer to a small part of a folded 
surface as a “molecule”, because we consider it as a group of “atoms” (creases 
and faces) that can be joined to make bigger patterns or “macro-molecules”. The 
word “molecule” is usually used to define a part of a pattern composed by many 
different folds. Robert J. Lang in the book Origami design secrets provides a com-
prehensive explanation of a design method based on the stitching of different 
molecules (Lang, 2011).

4.3.2. Definition of “Algorithm”
We consider the “Algorithm” as a process or set of rules that we need to follow 
to reach an expected result. Another interesting definition of “Algorithm” is the 
one given by Kostas Terzidis in his book Algorithmic architecture:

An algorithm is a computational procedure for addressing a problem in a finite 
number of steps. It involves deduction induction, abstraction, generalization, 
and structured logic, it is the systematic extraction of logical principles and the 
development of a generic solution plan. Algorithmic strategies utilize the search 
for repetitive patterns, universal principles, interchangeable modules, and in-
ductive links […] An algorithm may be compared to the steps in a recipe; the 
steps of gathering the ingredients, preparing them, combining them, cooking, 
and serving are algorithmic steps in the preparation of food […] Theoretically, 
an algorithm is the abstraction of a process and serves as a sequential pattern that 
leads towards the accomplishment of a desired task. (Terzidis, 2006)

In computational modelling, the word “Algorithm” is often used to refer to the 
parametric generative procedures.

4.4. Single Linear Crease

We start the study of the animation of the folded surfaces with the most el-
ementary crease pattern, which is composed of one single linear crease. This 
kind of fold has been called by Casale et al. “First fold” (Casale et al., 2013). 
A rectangular piece of paper can be folded in half along its middle line gen-
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erating two rectangular equal faces, or it can be folded along any other line, 
dividing the piece of paper into trapezoidal, parallelogrammical, or triangular 
faces. Even if the fold line is only one, there are many possible ways to animate 
the folding of a single creased piece of paper. For example, we can simply ro-
tate the faces around the crease, or we can intersect the paths of the vertices or 
the edges of the faces and use the intersections as geometric references. Fur-
thermore, we can anchor different parts of the piece of paper to the construc-
tion plane, for example, we can make the crease lifting from the construction 
plane while constraining the opposite edges to slide on the plane. Or we can 
anchor a face, the crease, or an edge to the construction plane rotating the 
unconstrained elements out of plane. We can even use a reference curve or a 
curved surface as a rail on which the edges would slide. We will explore many 
different methods and we will apply them on patterns with a single crease line 
before approaching more complex cases.

4.4.1. Single Linear Crease Between Equal Rectangular Faces, Two Edges 
Slide on Construction Plane – Intersecting Circles
This method uses intersecting circles as geometric references to find all the 
possible configurations. The circles represent the paths of the vertices op-
posed to the crease when the adjacent faces rotate around it. This approach 
works only if the starting rectangular surface is folded in half generating 
equal rectangular faces. We perform a symmetrical motion of the two faces 
making the opposite edges sliding on the construction plane of the same 
amount while lifting the crease from the plane. The following method refers 
to Figure 31.

Draw two rectangular surfaces, then draw the crease AB, and the edges 
BC and BF, we will use these geometries as inputs of the Grasshopper’s defi-
nition. Now, reparametrize the domain of the curves BC and BF between 

Figure 31 - Single linear crease between rectangular faces with intersecting circles. 
The input slider controls the distance from C to B and from F to B.
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0 and 1. Match the parameter 1 of each curve with the point B and the 
parameters 0 with points C and F. On an input slider (that we call “Folding 
percentage”) set a value between 0.00 and 1.00 and extract a point on both 
BC and BF curve at that parameter and call those points C’ and F’. Draw 
two circles on C’ and F’. The circle radii are equal to the length of the edges 
BC and BF (in this case they are equal one to each other as well because the 
starting rectangles are equal). The circles are drawn on a plane perpendicular 
to the crease AB. If we move the cursor of the slider, we will see the circles 
moving along the edges BC and BF. At this point, intersect the circles get-
ting two points, and select the upper one or the lower one (in grasshopper 
we can use the “Boolean toggle” component or the “Value List” compo-
nent to make the selection). This last operation allows us to switch between 
mountain and valley folding. We call B’ the chosen intersection of the cir-
cles. Lastly, draw a polyline passing through C’, B’, and F’ and extrude it 
along AB. In this way, we construct the rectangular faces and we can see 
them folding and unfolding by moving the cursor of the folding-percentage 
slider. The 0.00 and the 1.00 values (we could also use integer values, but 
adding decimals makes the animation smoother.) on the slider represent the 
unfolded state (0%) and the completely folded state (100%). We can notice 
that with this method the edges DC and EF slide on the construction plane 
and the crease AB leaves the plane moving along the Z axis. The full algo-
rithm with the used nodes is shown in Figure 32.

Figure 32 - Generative algorithm for the single linear crease between equal 
rectangular faces with intersecting circles.
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4.4.2. Single Linear Crease Between Asymmetric Rectangular Faces, Two 
Edges Slide on Construction Plane – Intersecting Circles
In the previous example, we solved the kinematics of a rectangular surface 
creased exactly in half. But what if we move the crease a bit toward one side or 
the other? We can use intersecting circles to identify the position of the crease as 
we did in the last example. However, if we want to constrain the opposite edges 
(CD and EF) to slide on the construction plane, we cannot consider a vertical 
symmetry. So, the algorithm works as follows.

Figure 33 - Single linear crease between asymmetric rectangular faces animated 
with intersecting circles, making the edges EF sliding on the construction plane.

First, draw the edges CB and BF and draw the crease AB. Set a slider between 
0.00 and 1.00 and remap the output value to a domain between 0 and the 
length of the segment BF. Multiply this value by two and use the result to move 
the point F along the segment CF. Like so the point F will never be farther than 
its original distance from point B. Now, draw two circles on C and the moving 
point F with radii respectively equal to the initial edges CB and FB. Move the 
point F together with its relative circle and intersect the two circles. Select one 
intersection point and draw a polyline passing through the points CBF as we 
did in the previous algorithm. Extrude the polyline to generate the folded sur-
face1 (Foschi, 2019).

4.4.3. Single Linear Crease Between Rectangular Faces, Crease on 
Construction Plane – Varying Fold Angle
In this section, we show a different approach. Now we use the fold angle as a 
variable parameter instead of moving and intersecting two circles on the construc-
tion plane. This method is conceptually easier to understand but it gives a differ-
ent result. Compared to the method with intersecting circles, the method with 
fold angle returns a fold animation of the surface where the crease stays on the 
construction plane and the edges leave the plane along an arch of circumference 
centred in B. Furthermore, we use an angular input instead of a percentage value.
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The algorithm is developed as follows. Refer to Figure 34. Draw two rectangular 
faces and the crease AB. After that, rotate both faces around the crease AB, face 1 
clockwise, and face 2 counterclockwise. To match the input angle to the exact an-
gle between the normal vectors of the two faces, it is necessary to divide it by two 
before plugging it into the corresponding “Rotate axis” components. This step is 
necessary because we plugged the same angle into both the “Rotate axis” nodes to 
have vertical symmetry. On the contrary if we would have rotated only one face 
keeping the other on the plane, we would not have needed to halve the angle.

To animate the folding process of the surface it is sufficient to move the an-
gle slider which has as boundaries 0° and +180°. We could also set the domain 
boundaries from -180° to +180° so that the crease assignment would flip from 
valley to mountain once passed the flat state. Nevertheless, if we choose bigger 
absolute values to limit the domain, the surface would self-intersect after passed 
180°. Figure 35 shows the complete generative algorithm.

Figure 34 - Single linear crease between rectangular faces with the fold angle as a 
variable input.

Figure 35 - Generative algorithm for single linear crease between equal rectangular 
faces with fold angle input.
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4.4.4. Single Linear Crease Between Triangular Faces, Crease on 
Construction Plane – Varying Fold Angle
The single linear crease between triangular faces (Figure 36) is conceptually no dif-
ferent from the single linear crease between rectangular faces (Figure 34) explained 
in section 4.4.3, because we rotate the two faces around the fold line on the con-
struction plane as we did in the previous case. However, we decided to present also 
this case because we used a little different method to generate faces. Furthermore, 
this algorithm will be part of a more advanced algorithm later. In particular, we used 
the “Extrude Point” node instead of the “Extrude” node. The “Extrude Point” node 
creates a triangular face starting from a segment and a point which is a faster solution 
to re-create the faces in this case. As in the case of the single linear crease between rec-
tangular faces, we considered vertical symmetry, and we divided the input angle by 
two to make the slider value matching exactly the angle between the normal vectors 
of the two faces. In Figure 37 it is shown the full generative algorithm.

Figure 36 - Single linear crease between triangular faces animated by varying the 
fold angle.

Figure 37 - Generative algorithm for the single linear crease on triangular faces 
animated with fold angle AB.
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4.4.5. Single Linear Crease Between Triangular Faces, Two Edges Slide on 
Construction Plane – Intersecting Circles

Figure 38 - Single linear crease between triangular faces with intersecting circles, 
the outer edges slide on the construction plane.

In this case, we use again intersecting circles to find the only two possible po-
sitions of the crease while constraining the edges AC and AD to slide on the 
construction plane. However, this time the circles are drawn on different planes 
because the crease and the outer edges are not parallel anymore.

The algorithm works as follows. Draw the crease AB, the edges AC and AD. 
Measure the absolute value of the angle between AC and AD (we will use this value 
in a moment). Project the point B on the edges AC and AD finding the relative 
points J and K. Draw the two planes passing through the points J and K and per-
pendicular respectively to AC and AD. Draw one circle on each plane with centres 
respectively on J and K and radii equal to JB and KB. Set one input slider with a do-
main that goes from 0.00 to 1.00 and remap the output value to a domain that goes 
from 0.00 to the angle between AC and AD just measured. Rotate the edges AC and 
AD around the point A (on the construction plane) of half of the remapped value 
and rotate with them the relative circles centred on J and K. Find the intersection 
points between the two circles and chose one of them. That point is now the new 
position of B. Draw a polyline passing from the moved points CBD and extrude it 
toward point A. Like so we generated the two triangular faces that we can animate 
by moving the slider from 0.00 to 1.00. In most of the definitions that use intersect-
ing circles, at the limit cases, the circles perfectly overlap (when the surface is 100% 
folded in this case), this causes the “Curve | Curve” node (which solves intersection 
events between two input curves) to return a “null” value. To solve this problem, we 
can both extend the generative algorithm with an “if” statement that triggers only 
when the problematic configuration occurs, or it can be simply limited the domain 
of the input slider to stop a bit earlier of the critical values (99,999% in this case). 
This last method is the one we used in the generative algorithm shown in Figure 39.
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4.4.6. Single Linear Crease Between Trapezoidal Faces, Two Edges Slide on 
the Construction Plane – Intersecting Circles

Figure 39 - Generative algorithm for the single linear crease between triangular 
faces with intersecting circles, the outer edges slide on the construction plane.

Figure 40 - Single linear crease between trapezoidal faces, built and animated with 
intersecting circles.

The method to build and animate two trapezoidal faces with outer edges and 
crease converging to a point, while constraining the edges EC and FD to slide 
on the construction plane, is analogous to the triangular faces case shown in 
section 4.4.5. The trapezoidal faces can be asymmetric, but the edges EC and 
FD and the crease AB must converge to the same point L so that we can use the 
same approach used for the triangular faces, because the trapezoid faces would 
be simply a slice of two triangular faces.

In general, if we have two trapezoid faces that do not have the outer edges 
and the crease converging to the same point, we would not be able to force the 
edges EC and FD to slide on the same plane (wile rigid-folding the surface) 
because the edges would belong to the same plane only at completely unfolded 
(and folded) configuration.
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On the contrary, if we do not want to keep the outer edges CE and DF on 
the same plane, we can apply the method that uses the fold angle as the only var-
iable input, as shown in section 4.4.3 and 4.4.4. In that way, any combination 
of trapezoidal faces would work.

The algorithm that we used to animate the surface shown in Figure 40 has 
the same structure of the algorithm presented in section 4.4.5 with some ad-
ditional nodes that cut the triangular faces into two trapezoidal faces. Refer to 
Figure 41 for the full algorithm.

4.5. Patterns with Multiple (Non-Intersecting) Linear Creases

If we fold a piece of paper with two non-intersecting creases, we obtain a crease 
pattern with two DOF. Adding another non-intersecting crease, the DOF will 
increase to 3, and so on. Thus, an ideal parametric generative algorithm should 
have an input controller parameter for every DOF. This approach would guaran-
tee the maximum shaping freedom, and the surface could be conformed to every 
possible configuration. When the creases are a small number this is feasible, but 
when the pattern has a high number of creases, even if having a controller for each 
fold would be the most versatile solution, working with it would rapidly become 
cumbersome. However, we can forcefully limit the number of controllers to make 
it more manageable. For example, we can force all the creases to fold of the same 
amount at the same time, by using as inputs the same fold angle for every crease. 
Alternatively, if we want a more versatile behaviour, we can make the surface slid-

Figure 41 - Generative algorithm for the folding animation of two trapezoidal faces 
with outer edges and crease converging into the same point. The outer edges are 
constrained to slide on the construction plane.



Constructive Methods for Solving the Kinematics of Origami 97

ing along a linear or a curved rail. We can also set a mathematical rule to control 
automatically the propagation of the fold angle non-linearly.

What is important to keep in mind is that using a smaller number of input 
parameters compared to the number of DOF would reduce the available con-
figurations into which the pattern could be shaped. Furthermore, if we want to 
fabricate a pattern with more than one DOF where several creases must move 
at the same time of a precise amount, we must add an actuator for each one of 
those creases, even if in our algorithm we used the same input angle. In this sec-
tion we propose some examples starting from the straight accordion, up to the 
triangulated accordion, animated with specific fold angles applied to groups of 
creases, or constraining the creases to slide on a curved and linear rail.

4.5.1. Straight Accordion – Array of “Single Linear Crease Between 
Rectangular Faces” Molecules

Figure 42 - Straight accordion joining rectangular molecules animated with fold angles.

In section 4.4.1 we have shown how to make a base generative algorithm to animate 
a surface folded into two equal rectangular faces. Now, that we have the base mole-
cule, it is easy to make a sequence of parallel linear creases. To do that, we join mul-
tiple base molecules linearly. The new generative algorithm starts with the clustered 
algorithm shown in Figure 35. Then extract the bounding box of the base molecule 
finding its dimensions along X, Y, and Z axes. After that, use the X dimension as 
the input of the “Linear array” node which uses it to space the consecutive copies 
of an amount equal to the animated base molecule width. In this way, the distance 
is related to the fold angle, which reaches its maximum at the completely unfolded 
state and its minimum at its completely folded state. The full generative algorithm 
is shown in Figure 43. This algorithm returns an animated straight accordion where 
all the fold angles are equal and fold at the same time with constant propagation 
However, as we said this does not cover all the possible configurations of a straight 
accordion, because its DOF is higher than the number of the controller inputs used. 
Thus, to increase the animation freedom in the next section we will show how to 
make the accordion sliding on a linear and a curved rail.
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4.5.2. Straight Accordion Sliding on a Rail – Intersecting Circles

Figure 43 - Generative algorithm for the straight accordion joining 9 molecules 
with a single linear crease. Inside the initial cluster node, there is the generative 
algorithm shown in Figure 35.

Figure 44 - Straight accordion, uniform motion on a linear rail.

Figure 45 - Straight accordion, folding and unfolding along a curved path.

In Figure 44 it is synthesized the construction of a straight accordion made 
with intersecting circles. This approach gives a similar result to the one shown 
in Figure 42, but it is much more versatile, because the molecules are not equal 
copies, thus they can be conformed not only to a linear segment but also to a 
curved path as shown in Figure 45.

The generative process is similar to the one explained in section 4.4.1, but it 
starts with a curved rail. This curve (it can also be a straight line) is divided in “n” 
parts (5 in this case), which represent the number of mountain folds (or valley). 
Between adjacent points, there must be the same linear distance. To achieve 
this result, we used Grasshopper’s “DivDist” node. On each point we draw a 
circle, the construction plane of the circle is perpendicular to the creases, and 
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their radii are equal to half the initial distance between two consecutive points 
on the curve. Then, all the points are moved uniformly along the curve to make 
all the circles intersecting. The intersection points are filtered and used to build 
and animate the surface with the same approach used in section 4.4.1. The full 
definition is shown in Figure 46 and Figure 47.

Figure 46 - Generative algorithm to animate a straight accordion on a linear or 
curved rail – Part 1.

Figure 47 - Generative algorithm to animate a straight accordion on a linear or 
curved rail – Part 2.
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4.5.3. Straight Accordion on a Rail with Non-Uniform Fold Angle 
Distribution – Intersecting Circles and “Graph Mapper”

Figure 48 - Straight accordion animation with non-uniform fold angle distribution 
on a linear rail.

To increase even more the shaping freedom without increase too much the 
number of controller inputs we can remap non-uniformly the fold angles on 
each fold without necessarily controlling them one by one. We can do that with 
the “Graph Mapper” component, this component remaps the values of a list 
according to a chosen mathematical function. In this example, we used a Bezier 
function. We set as the input of the graph mapper the parameters of each point 
along the curve so that we can remap and use them as new parameters that de-
fine the new position of each point along the curve. When the Bezier is a linear 
function all the points stay at the original position, when we move the Bezier 
control points the surface starts folding non-uniformly because the points on 
the curve are no more uniformly spaced. In this way, we can partially fold some 
section of the surface leaving completely unfolded other sections as shown in 
Figure 48. It must be pointed out that with this approach to get correct behav-
iours, we must know which shape of the remapping function are usable and 
which are not, with some particular shape of the Bezier curve, the points, when 
remapped, may be too far one from the other and the surface would lose its 
developability or behave in an unpredictable way. To avoid this kind of incon-
veniences it is suggested to use a Bezier curve and to move one control point 
at a time checking in real time if the surface does not stretch or self-intersect as 
shown in Figure 482 (Foschi, 2019).
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4.5.4. Accordion on Two Circular Rails – Intersecting Circles
The accordion on two circular rails has a behaviour similar to the straight ac-
cordion on a linear or a curved rail, but the unfolded pattern has the creases 
converging into a point rather than being parallel to each other, thus the faces 
are trapezoids instead of rectangles. The approach used here starts from multiple 
adjacent “Single linear crease between trapezoidal faces” molecules constructed 
following the same approach used in section 4.4.6. An accordion with parallel 
creases can be conformed only into a cylindrical surface. On the contrary, the 
accordion with all the creases converging into a point can be conformed into a 
cone. An example of the conical motion is shown in Figure 49.

The animated surface is obtained from a generative algorithm that takes as 
inputs two concentric circles used as rails, and an integer numeric slider which 
defines the number of folds that are distributed at equal distances along the two 
circles. The circles can be coplanar, or they can belong to two different parallel 
planes. The circles are divided into a given number of parts, the points so ob-
tained are remapped to make them slide along the circular paths, similarly to 
what done in section 4.5.2. The domain of each circle is reparametrized between 
0.00 and 1.00, then the parameter of the curve where each point is located is 
extracted. Afterwards, all the parameters are remapped to a new domain smaller 
than 1, and they are redistributed again on the circles. Moving continuously the 
top boundary of the domain between 1.00 and 0.00 will make the point slide 
on the circle. The point located on the start of the circular path will remain 
fixed. The other points, when remapped, will tend to compress getting closer 
to the initial point sliding along the reference curve. On each odd point, we 
draw a circle that at the completely unfolded state is tangent to the adjacent 
circles drawn centred on the adjacent odd points. When the points slide on the 
rails, they get closer and every circle intersect the adjacent ones in two points. 
Only one of two intersecting points is chosen for each pair of adjacent circles 
(the upper or the bottom one). Choosing one or the other intersection will flip 
the mountain /valley assignment of the surface and will make it fold inside or 
outside the reference cone defined by the two starting circular rails. Once select-
ed all the intersections all the points are connected to make a zig-zag line that 
alternates the intersection points and the odd points on the circles. Lastly, the 
two zig-zag lines are plugged into a “Loft” component which generates a surface 
between each segment of the upper zig-zag line with the correspondent aligned 
segment of the zig-zag line constructed on the bottom circle. To animate the 
surface, it is sufficient to move the top boundary of the remapped domain with 
a slider with a range that goes from 0.00 to 1.00. When the top boundary of the 
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remapped domain is 0.5 the surface is exactly halfway to be completely folded, 
so the slider that controls that number can be considered as a percentage of the 
folding motion3 (Foschi, 2019).

Figure 49 - Radial accordion sliding on two non-coplanar circular rails.

4.5.5. Triangulated Accordion – Joining Multiple “Single Linear Crease 
Between Triangular Faces” Molecules

Figure 50 - Two equal molecules joined that can fold independently making a 
macro-molecule composed of 4 faces.

A triangulated accordion is an accordion where all the faces are triangular, and 
the mountain valley assignment is alternated. Thus, the liner folds are not par-
allel anymore and they touch on the perimeter of the paper. To model and 
animate it we can join many “Single linear crease between triangular faces” mol-
ecules (explained in section 4.4.5). We can both use as input a single slider 
that controls the fold angles of all the molecules at once, or we can use one 
input slider for each newly attached molecule. The former approach returns a 
less versatile result in terms of shaping freedom. In this section, we propose a 
method where two different sliders are used to control separately the folding of 
all the odd and even triangular molecules. In this way, the formers can be folded 
independently from the latter molecules and this approach allows to configure 
the folded surface into a fan, as shown in Figure 53. Figure 51 shows the full 
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generative algorithm to join 2 molecules of 2 triangular faces. The clustered 
nodes contain the algorithm proposed in section 4.4.5. The two molecules can 
be folded independently by moving the sliders that control the folding amount 
of each one of them. The algorithm is developed as follows (refer to Figure 50 
for notation). We refer to the vertices of the first molecule as A1, B1, C1, D1, and 
the vertices of the copied molecule as A2, B2, C2, D2. Copy the first molecule 
and move it along the A1D1 edge matching the vertex A2 of the copied molecule 
with the vertex D1 of the first molecule, then rotate the copied molecule around 
the vertex D1 of the first molecule to match the vertex D2 of the second mole-
cule with the vertex A1 of the first molecule. Now the two molecules are joined, 
and they can be controlled with different input sliders. Now the vertices D1 and 
A2 become D, the vertices A1 and D2 become A, the vertices C1 and B1 become 
C and B, and the vertices C2 and B2 become F and E.

Figure 51 - Joining 2 equal molecules controlled by 2 different fold angle (%) sliders.

The new macro-molecule (with vertices ABCDEF) is made by 2 smaller mole-
cules of two faces each. We can now mate as many macromolecules as we want 
to make a chain of them where the odd ones fold together independently from 
the even ones as shown in Figure 53. Grasshopper, unfortunately, does not allow 
looping or recursive definitions, so each molecule must be copied manually as 
many times as needed. A more elegant alternative can be achieved using a plug-
in called Anemone (Zwierzycki, n.d.). Anemone implements Grasshopper with 
2 new nodes that perform loops. The “Loop Start” that needs as input one or 
more variables (in our case the animated macro-molecule of 4 faces) and the 
“Loop End” that records the data from each cycle and resend the resultant data 
to the “Loop Start” component. The number of cycles can be set attaching an 
integer number as an input into the “Loop Start” node. In-between the two 
nodes there must be connected the definition that needs to be repeated. In 
our case the copy and rotation of the macro-molecule (Ai+1 and Ci+1 must be 
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matched with Di and Fi). The loop definition (that follows the definition shown 
in Figure 51) is shown in Figure 52. It must be pointed out that in the solution 
that uses Anemone, the animation has a flickering problem. Every time that the 
cursor of the slider that animates the surface moves, the surface disappears for an 
instant because the loop definition needs to update. For a flicker-free animation, 
the copy and paste method (with no loops) is suggested.

Figure 52 - Looping generative algorithm that repeats the cycle 4 times. The 
definition that is cycled copies and rotates the macro-molecule 4 times starting 
every time from the newly created macro-molecule. The two upper nodes, with two 
arrows in their icons, are from Anemone plug-in for Grasshopper.

The cases in Figure 53 and Figure 54 are particular cases where all the faces are 
equal, but with a different the orientation of the diagonals, thus the kinematics 
of the surface changes. They both can be folded starting from straight accor-
dions creased along the diagonal of each face. A faster and easier approach to 
triangulate and animate a straight accordion is by reflecting a straight accordion 
with respect to a plane that cuts all the faces along their diagonals as shown in 
Figure 55. However, this method is limited in terms of possible configurations 
compared to the one explained above, because in this method we use only one 
single slider to control all the folds at once.

Figure 53 - Triangulated accordion, alternated diagonals, non-uniform motion.
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4.6. Single Degree-4 Vertex4

Now that we explored the animation of patterns with multiple linear non-inter-
secting creases, according to the increasing complexity criterion, we investigate 
patterns with a single internal vertex. The simplest rigid-foldable pattern with 
only one internal vertex is the degree-4 vertex as demonstrated by Abel et al. in 
the paper Rigid Origami Vertices: Conditions and Forcing Sets (Abel et al., 2016). 
They also proved that any degree-4 vertex must have one and only one crease 
with the opposite verse with respect of the other three to be rigidly foldable. 
Also, they asserted that “A single-vertex crease pattern (C, µ) can be continuous-
ly parameterized in a family of rigid origami folds if and only if (C, µ) contains 
a bird’s foot.” This means that in a degree-4 vertex there must be a “Y” shaped 
family of three folds to be rigid-foldable.

As the reader can see, the problem increased rapidly in complexity. The pat-
terns with more non-intersecting creases studied previously, only involved ani-
mation problems related to the increasing DOF and controller inputs. On the 
contrary, now we cannot focus only on the animation of the pattern, but also 

Figure 54 - Triangulated accordion, parallel diagonals, uniform motion.

Figure 55 - Triangulated accordion obtained by reflecting the straight accordion, 
uniform motion.
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with the correct pattern design. Furthermore, in patterns with internal vertices, 
the fold angle of each crease may be influenced by the adjacent creases. In fact, 
the degree-4 single vertex as we saw in section 3.5.2 is a one-DOF mechanism 
(Tachi, 2011a), thus, to animate it, we do not need to deal with an increasing 
number of controller inputs.

4.6.1. Symmetric Reverse Fold – Reflecting a Single Linear Crease

Figure 56 - Symmetric reverse fold on a single linear fold molecule by reflection 
with respect of the plane passing through COD points.

The easiest way to make and animate a degree-4 vertex is by reflecting a “single 
linear fold” molecule. This kind of approach, based on reflection, has been ex-
tensively used also for curve folded designs by Mitani (Mitani & Igarashi, 2011). 
This type of fold in traditional origami is called “Reverse fold”. The “Reverse fold” 
can be performed reflecting any completely flat-folded or partially folded surface 
with respects of a reflection plane. We used the same technique to make the tri-
angulated accordion in section 4.5.5. The triangulated accordion is a limit cases 
of a reverse fold. Casale et al. call it “Second fold” and they define it as a valley or 
mountain zig-zag crease running in a transversal direction relative to a set of linear 
folds which they call “First folds” (Casale et al., 2013). This kind of terminolo-
gy (first and second folds) focuses the attention on the order of the steps of the 
folding process, on the contrary, the traditional terminology (reverse fold) focuses 
the attention on the nature of the fold itself. When the first creases intersect the 
second creases, the verse of the first creases flips changing from valley to mountain 
or vice-versa. The reverse fold can generate flat-foldable or non-flat-foldable pat-
terns depending on the angle of the reflection plane and the configuration of the 
set of first creases. Performing a reverse fold to a pattern with “n” non-intersecting 
creases will change its DOF from “n” to one. For example, if we add to a straight 
accordion with five linear creases, a transversal reverse zig-zag crease intersecting 
all the linear creases, the DOF changes from 5 to 1.
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In section 4.4 we learned how to solve the kinematics of patterns with a 
single linear crease, starting from those algorithms we can easily construct a 
symmetric reverse fold by reflection. The method used here is based on splitting 
the original poly-surfaces and reflecting it with respects of an angled plane.

Refer to Figure 56. First, draw on the two given faces (face 1 and face 2) two 
symmetrical segments, OC and OD, with respects of the single given linear 
crease AB. Because OC and OD are symmetric, the pattern is flat-foldable. 
Copy the transformation of each face (simple rotation around an axis), and 
apply it to the relative segments OC and OD, through the “Transform” com-
ponent, so that they will move together with their relative faces. After that, 
construct a plane passing through the animated segments (OC, OD) and split 
and mirror the faces with respect of the plane. Now, to animate the vertex just 
change the fold angle value continuously. The full generative algorithm is shown 
in Figure 57.

Figure 57 - Symmetric reverse fold on a single linear fold molecule by reflection, 
generative algorithm. The initial cluster contains the algorithm explained in 4.4.2.

4.6.2. Asymmetric Reverse Fold – Reflection and Collision Detection

Figure 58 - Asymmetric reverse fold animated with the reflection method when ρAB 
is equal to 97.5° the folded surface blocks because ρOC hits 180°. After that point, 
if we continue folding the surface will self-intersect. The intersection between the 
faces 1.1 and 2.2 is highlighted in green.
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The construction method for the asymmetric reverse fold is analogous to the meth-
od explained in the previous section (4.6.1). However, if we do not limit the domain 
of the controller fold angle properly, the surface will self-intersect after passed the 
blocking configuration as shown in Figure 58. Thus, if we want to know which an-
gles make the vertex self-intersecting, we can apply the following method.

First, explode the input 4 faces 1.1, 1.2, 2.1, 2.2 (not animated), and count 
how many collisions there are between the unfolded faces (with the “Collisions 
Many|Many” component). Then, perform the reverse fold as explained 4.6.1. 
Partially fold the vertex and test the collisions again. Compare the collisions at 
flat state with the collisions at folded state. If the collisions increased the algo-
rithm will return “True”, if they remain unvaried it will return “False”. When 
we change the fold angle value ρAB if it is “True”, then we passed the blocking 
point, or we are exactly on the blocking point.

Now if we want to synthetically and automatically extract the maximum 
value that we can assign to ρAB without self-intersecting the vertex, we can ap-
ply the following method. Move slowly the cursor of the slider ρAB from 0% to 
100%, and record frame by frame (with a “Data recorder” component), in two 
separate parallel lists, the values of ρAB and the relative Boolean values resultant 
from the collision test. Now compare the two lists and erase all the angular 
values that correspond to “True” (with a “Cull pattern” component). Sort the 
angles from the smallest to the largest and choose the largest one. In this way, 
we just found an approximation of the blocking angle. The accuracy of the max-
imum angle value is proportional to the number of frames between the flat and 
the folded state. The full definition is shown in Figure 59.

Figure 59 - The generative algorithm for the identification of the maximum 
fold angle, testing the animated surface for collisions; the maximum fold angle 
is generated within a given tolerance, thus it is an approximation; the cluster 
contains the definition shown in Figure 57.
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We can also use the maximum fold angle found to limit the domain of the 
ρOB value by inputting the calculated maximum ρOB and the fold angle slider 
into the same “Minimum” component as shown in Figure 60. In this way, even 
if we set a fold angle greater than the maximum ρOB, the output value will stop 
at the maximum ρOB.

Figure 60 - Re-animating the second fold molecule avoiding self-intersections, the 
extracted max fold angle node is the result of the algorithm in Figure 59.

4.6.3. Generic Degree-4 Vertex – Intersecting Cones

Figure 61 - Animation of a degree-4 single vertex CP.

The reflection method shown in the previous sections is an easy approach, but it 
does not solve all the possible degree-4 vertices. It can be used only to animate 
vertices where the opposite mountain and valley creases are colinear. The vertex 
shown in Figure 61, for example, cannot be solved with the reflection method. 
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In this section, we propose a different approach to animate any rigid-foldable 
degree-4 vertex.

The algorithm is visualized in Figure 62 and Figure 63 and it works as 
follows. Draw 4 adjacent faces ABFC, ACGD, ADHE and AEIB as shown 
in Figure 61, the faces must be drawn considering the rigid-foldability con-
ditions of a degree-4 vertex presented in section 3.4. Revolve the crease AD 
using as axis the fold AE generating a cone with apex in A. Similarly revolve 
the AD fold around the axis AC. Rotate the faces ABFC and ACGD around 
the crease AB clockwise, and the faces AEIB and ADHE around the same axis 
of the same amount but counterclockwise. Doing so the vertex D will split 
in D’ and D’’ and the two cones intersect generating 2 segments, meeting 
into the apex of the cones. These two segments represent the possible po-
sitions of the AD fold so that rotating the faces ACGD and ADHE to that 
point their AD edge would perfectly match. Choose the intersection line AK’ 
which matches the mountain valley assignment of the given pattern, choosing 
the other intersection line will generate the other folding mode of the same 
pattern. Rotate AD’’HE around AE to mate D’’ with K’. Do the same thing 
with the face ACGD’ rotating it around the AC axis mating D’ with K’. The 
algorithm is finished.

Now, if we change the value of  we will be able to animate the surface. If the 
pattern is non-flat-foldable, and if the controller fold AB is not the fold that hit 
180° first, the model will self-intersect during motion, we can solve it by testing 
the collisions as shown in the previous section (4.6.2).5

Figure 62 - Three-dimensional modelling and animation of a generic degree-4 
single vertex with intersecting cones – Part 1.
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4.7. Multiple Degree-4 Vertices

In section 3.3 we introduced some concepts about the DOF, and in section 
3.5 and 3.6 we explained the kinematics of degree-4 vertices. As we said, 
patterns with multiple degree-4 vertices may not be rigid-foldable if some 
symmetry conditions do not occur. However, it is not always easy to recognize 
those patterns. Furthermore, testing the compatibility of every fold angle in 
every closed loop of faces may be a very time consuming and cumbersome op-
eration. Thus, in this section, we will start solving the kinematics of easy sym-
metric well-known patterns with multiple degree-4 vertices that are known to 
be rigid-foldable.

4.7.1. Joining “Symmetric Reverse Fold” Molecules – Critical Observations 
About Global Rigid-Flat-Foldability

Figure 63 - Three-dimensional modelling and animation of a generic degree-4 
single vertex with intersecting cones – Part 2.

Figure 64 - Reverse fold on straight accordion, joining “symmetric reverse fold” 
molecules.
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A straight accordion without reverse folds has more than one DOF. If we add 
one reverse fold to the same accordion, as shown in Figure 64, its DOF will 
decrease to one. Furthermore, if every segment of the reverse fold is symmetric 
with respect to the adjacent linear first folds, the pattern is also flat-foldable.

To animate a flat-foldable straight accordion with a single reverse fold, we 
can reflect a straight accordion with respects of a reflection plane following 
the same approach explained in section 4.6.1, or we can perform a linear ar-
ray of a “symmetric reverse fold” molecule following the same approach that 
we proposed in section 4.5.1 (the definition using this approach is shown in 
Figure 66).

If we want to use the former approach (the “reflection of a straight accordi-
on” method), we need to pay attention to the fact that the straight accordion 
must be animated using the same fold angle for every crease, so that we can 
reflect the first two consecutive animated faces of the accordion as shown in 
4.6.1 and using the same animated plane to reflect all the other faces.

If we want to apply the second method (the linear array of “symmetric 
reverse fold” molecules), we can follow two main approaches: we can join the 
molecules side-by-side or along their linear first folds. If they are mated side 
by side we will have a pattern with one long single zig-zag shaped reverse fold 
as shown in Figure 64, if we mate them along their linear first fold we will 
have a surface with more V-shaped reverse folds and one single first fold, as 
shown in Figure 65. A pattern with more than one reverse fold can be shaped 
in different ways depending on the orientation of the molecules and the angle 
of the reverse folds.

Figure 65 - Different behaviour during the collapsing, depending on the direction 
of the second folds.
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If we join more than one “symmetric reverse fold” molecule along their line-
ar first crease with alternated orientation, we would risk of ending up having 
self-collisions between the ending molecules at the opposite sides of the pattern, 
and it would be impossible to complete the folding motion without self-in-
tersecting or flexing the faces, as shown in Figure 67. This means that it is not 
sufficient to attach rigid-flat-foldable molecules to have a guaranteed globally 
rigid-foldable pattern. Furthermore, if we attach side by side two molecules 
with symmetric second folds but different angles, we obtain a globally non-fat 
foldable pattern because the new internal vertex (resulting from the attaching 
of the two molecules) does not respect the Kawasaki’s condition, as shown in 
Figure 68. The problem of global rigid-flat-foldability avoiding stretches and 
self-intersections, for a generic pattern, is proven to be at least NP-hard (Akitaya 
et al., 2016), thus simulating the folding motion, for now, is one of the most 
reliable methods to test if a pattern is rigid-flat-foldable or not.

Figure 66 - Generative algorithm for the symmetric reverse fold on a straight 
accordion, joining “symmetric reverse fold” molecules, the cluster on the right 
contains the generative algorithm explained in section 4.6.1.

Figure 67 - Possible and impossible rigid flat-foldability due to self-intersections, 
even if the Kawasaki theorem is verified in every internal vertex.
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4.7.2. Joining “Asymmetric Reverse Fold” Molecules

Figure 68 - Stitching two different symmetric flat foldable molecules side by side 
generates a globally non-flat-foldable pattern.

Figure 69 - Joining asymmetric molecules, the first case on the left is unfoldable, 
the second and third cases are non-flat-foldable.

In section 4.7.1 we placed side by side a series of “Symmetric reverse fold” mol-
ecules making a reverse-folded flat-foldable accordion. With the “Asymmetric 
reverse fold”, the result will be non-flat-foldable, but the procedure is similar. 
However, the molecules must be mated matching the endpoints of the reverse 
fold instead of aligning their outer perimeter. Alternatively, to match the end-
points of the reverse fold and also the outer perimeter of adjacent molecules, we 
can mirror the even or odd molecules as shown in Figure 69. Alternatively, in-
stead of mating equal molecules side-by-side we can reflect a straight accordion 
with an angled plane as we do in the following algorithm.
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Refer to Figure 70. First, animate the straight accordion as explained in 4.5.1. 
Then, draw two asymmetric creases OC and OD on the first two faces. Reverse 
fold the first two faces of the accordion following the method explained in sec-
tion 4.6.1 and 4.6.2. After that, slice the whole accordion with the same plane 
and reflect it consistently with the first two faces. The full generative algorithm 
is shown in Figure 71. To keep the structure of the nodes simple and clear we 
animated the surface with self-intersections. However, if there is the need to 
stop the animation at the blocked state, we can apply the collision detection 
method explained in 4.6.2.

Figure 70 - Animation of an asymmetric reverse fold on a straight accordion, with 
the reflection of a straight accordion with respects of a mirror plane constructed 
on CO and DO.

Figure 71 - Generative algorithm to animate a straight accordion with an asymmetric 
reverse fold the cluster on the right contains the algorithm explained in section 4.4.2.

4.7.3. Reverse Fold on Triangulated Accordion – Joining “Symmetric 
Reverse Fold” Molecules
The reverse fold on a triangulated accordion is comparable to the reverse fold 
on a straight accordion, but in the starting rectangular molecule, the first fold is 
drawn along the diagonal AD instead of along the symmetry vertical axis of the 
rectangle. The algorithm works as follows.
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Refer to Figure 72. Animate the faces AED and ABD by rotating them around 
the crease-line AD symmetrically. Draw the creases FO and CO to be sym-
metrical with respects of the crease AD. Once drawn the two creases apply the 
reflection method to perform a reverse fold as shown in section 4.6.1. Now 
draw a plane passing through B, C and D and use it as a reflection plane to 
mirror the first molecule. We now obtained a symmetrical macro-molecule with 
8 faces, which we are going to copy and paste one after another, as shown in 
Figure 73, using a looping definition. We use a looping definition because the 
macro-molecules need to be rotated other than translated to match perfectly the 
following molecule edges, thus we cannot use a simple translational array as we 
did in the previous section. The looping definition is shown in Figure 75 and it 
consists into matching the two planes constructed on the points A, F and E and 
the plane passing from their respective reflected points A’, F’ and E’.

Figure 72 - Reverse fold on a triangulated accordion – construction and animation 
of the macro-molecule.

Figure 73 - Joined macro-molecules to make a longer triangulated accordion with 
the reverse fold.

Even in this case, it is not easy to foresee if the surface will self-intersect just by 
watching its CP. It is much easier to judge it by animating the surface. In fact, 
not every configuration of the reverse-fold gives rigid folding motions from start 
to finish. For example, in Figure 76 we can see two examples of flat-foldable 
reverse folded triangulated accordions with different behaviours. Both can be 
folded in-plane, but in the second case, the surface can fold flat and rigidly, 
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without colliding or self-intersecting. On the contrary in the first case, the sur-
face is rigid-foldable only for a certain amount, and once reached a specific fold 
angle it starts self-intersecting. Thus, to be able to reach the flat configuration 
continuing the folding motion without self-intersecting the surface, it would be 
necessary to flex the faces or slide a bit the fold-lines (as it would happen into 
a real model made by paper). In Figure 77 we can see an example of a paper 
model that apparently can be folded rigidly, but the digital simulation proves 
the opposite. This misalignment between the two models is caused by the fact 
that the paper is flexible, and the digital model is not. Furthermore, in the pa-
per model the creases try to self-correct shifting from the original position for 
a small amount so that the initial pattern would slightly change and in some 
cases, it would be barely perceptible.

Testing the rigid foldability is very important especially if we want to use the 
pattern for real applications made by rigid patterns, because using a pattern that 
is not perfectly rigid-foldable may cause serious problems over the short or the 
long term. For example, if the faces are very rigid and connected with hinges, 
but the used pattern is not perfectly rigid-foldable (even for a small amount as 
in Figure 77), given that we are able to fold it forcefully exploiting the elasticity 

Figure 74 - Generative algorithm for a reverse-folded triangulated accordion – Part 1.

Figure 75 - Generative algorithm for a reverse-folded triangulated accordion – Part 2.
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Figure 76 - Non-flat-rigid-foldability and rigid-flat-foldability of the triangulated 
accordion, varying the angle of the reverse fold.

Figure 77 - Apparent incongruence between the digital and physical models; the 
faces of the former self-intersect, the faces of the latter remain apparently planar.

of the material, every time the mechanism is folded and unfolded, it would be 
subject to stresses and deformations caused by the colliding faces and that may 
cause faster deterioration of the joints.
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4.7.4. The Miura Pattern – Planar Rectangular Array of “Symmetric Reverse 
Fold” Molecules – Intersecting Circle with Plane of Symmetry
The Miura pattern, or Miura-ori, is probably the most famous and most used 
corrugations of all times, it has been studied and used for actual applications in 
several fields. Its diffusion is due to the fact that it is a one-DOF mechanism and 
it has a particular property of expanding and contracting with negative Poisson’s 
ratio. The Japanese engineer Koryo Miura, in the mid-80s, studied this pattern, 
which derives from the uniform compression buckling pattern of a thin plate 
(Miura, 1997), to create a solar panel deploying system. This system was revo-
lutionary because the solar panel so folded was able to unfold univocally with 
minimal fold actuators and without the help of the human interaction (Miura, 
1985), for this reason, it has been renamed with his name. However, according 
to what recently stated by Hellmuth Stachel, the Miura-ori might already have 
been known before: “However, already before K. Miura, this technique was 
known; according to a personal communication with Gy. Darvas, it was kept 
as a military secret in Russia in the thirties of the last century. There are many 
applications of Miura-ori.” (Stachel, 2015).

The Miura-ori pattern is composed of equal parallelogram faces, this guaran-
tees that the surface has an in-plane expansion and contraction. Recent studies 
developed methods to modify the traditional pattern but preserving the rigid 
foldability, in order to give to the surface different spatial configuration (Tachi, 
2010b; Tachi, 2009).

The traditional Miura pattern can be divided into elemental equal molecules 
composed by four adjacent faces and it can be digitally modelled and animated 
by reflecting many times a straight accordion, or by joining many equal mol-
ecules of four equal parallelogrammical faces. In this section, we are going to 
follow the second approach.

We can use the method explained in section 4.6.1 to animate the mole-
cules, but the faces must be all equal and with a parallelogrammical perim-
eter before applying a rectangular array. However, we highlighted that this 
method generates problems in the flat-folded configuration because when the 
two segments of the reverse fold converge into one (at flat-folded state) the 
reflection plane would be no more univocally identified. Thus, the algorithm 
at that limit case could behave in an unexpected way. In the same section we 
solved this problem limiting the domain of the controller fold angle, however, 
in this section we want to propose an alternative method to solve the problem 
at the limit configurations without limiting the domain or using cumbersome 
“if statements”.
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In Figure 78 it is represented one single Miura molecule. We can further sim-
plify the problem focusing only on one single face (ABCD), because the faces 
are all equal, thus any other face is a simple translation or reflection of the same 
reference face. To be able to obtain an XY in-plane expansion of the Miura-ori 
during folding we want the segment AD to stay on the XY plane and the seg-
ment AB on the YZ plane.

The algorithm for the construction of the parametric animatable Miura-ori 
works as shown in Figure 79. Define a construction plane XY. Define point A in 
the origin of the plane, copy and move that point along X and Y to define other 
3 points: B, C and D to form a rectangle. Move the points C and D along Y to 
shear the rectangle to get a rhomboid. Connect three sliders to these nodes to be 
able to control the width the length, and the amount of shear of the rectangle. 
Rotate clockwise ABCD around the Z-axis passing from A. Set the angular do-
main between the segment AD and the Y-axis. The rotation angle will be rem-
apped in 0-100 domain to be controlled with a slider that we call “Collapsing 
(%)”. Draw a circle on the plane perpendicular to AD passing from B. Intersect 
the circle with the plane YZ obtaining 2 points, (I’ above the XY plane, I’’ under 
the XY plane). Select the upper point. Rotate the polygon ABCD around the 
AD axis to match B to I’. Mirror ABCD along YZ plane and mirror the two 
polygons together along XY plane. Then, translate the last two polygons along 
AB. The Miura molecule is finished. To make a wider Miura-ori pattern just 
copy and move this molecule as many times as you need along the direction X 

Figure 78 - Single Miura-ori face used to model the symmetrical molecule of the 
Miura-ori.
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and Y. To animate the collapsing of the Miura-ori just move the Collapsing% 
slider, and to change the initial Miura pattern proportions, move the sliders 
connected to the “Width (cm)”, “Length (cm)” and “Shear (cm)” inputs. With 
this method, the circle has always one or at most two intersection points with 
the plane, so that the limit cases are univocally defined, and the algorithm never 
returns unexpected behaviours. This approach works only for modular symmet-
ric flat-foldable Miura-ori6 (Foschi, 2019).

Figure 79 - Miura-ori constructions and animation.

4.7.5. The Sink Fold – Reflecting the Tip of a Degree-4 Vertex

Figure 80 - Sink fold obtained by reflection.

Another known pattern with multiple degree-4 vertices is the sink fold. It con-
sists into a closed loop of creases around a single vertex. Consecutive edges of 
the loop are symmetrical with respects of the crease that they touch. In particu-
lar we are going to sink fold a degree-4 vertex. The sink fold is a traditional fold 
that pushes a folded vertex inside the model using the reflection method. There 
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are two types of sink folds in traditional origami, the closed sink and the open 
sink. The former does not fold rigidly, thus we will only consider the open sink 
in this section. The sink fold is called by Casale et al. “third fold”. They define 
it as the fold that articulates the structure in the points where the direction of 
the configuration changes, thus in concomitance with the intersection between 
what they call “second fold” and “first fold”. They assert that this fold chang-
es the formal quality of the surface and changes its structural characteristics, 
because adding ribs to the structure affects its static behaviour, but it does not 
change the DOF or the global behaviour of the previous pattern during motion, 
it only changes the local geometry (Casale et al., 2013). Nevertheless, sometimes 
the global rigid-flat-foldability could be compromised, depending on the con-
figuration of the sink fold.

To make a sink fold with paper in the traditional way it is sufficient to fold a 
piece of paper making a single flat-folded vertex, at this point fold and unfold its 
tip marking a new crease through multiple layers of paper. Once unfolded the 
whole pattern we see a closed loop of new creases around the vertex which have 
to be marked as a mountain. Lastly, we reverse all the creases inside the loop of 
new creases and fold again the vertex pushing the tip inside the model.

In digital reconstruction, we can perform the same action using a reflection 
plane. However, even if we start from a flat-foldable degree-4 vertex, not every 
reflection plane guarantees a flat-rigid-foldable sink-folded pattern, because 
once pushed the tip of the vertex inside the model if the plane has not a specific 
orientation, it could cause collisions during folding. The following exemplifica-
tion will help us understanding how the angle of the reflection plane may affect 
the rigid-flat-foldability of the pattern.

In the example shown in Figure 81, we perform a sink fold on a molecule 
with a single symmetric reverse fold constructed with the method proposed in 
section 4.6.1 and reflected with respect of a plane. To prevent the pattern with 
sink fold to be no more rigid-flat-foldable the angle between the reverse-folded 
linear crease and the sink fold plane must be bigger than 0° and smaller than 
90°. In general, an easy way to construct a sink folded degree-4 vertex pre-
serving the same kinematic of the original pattern without sink fold is to fold 
the pattern all the way to reach its blocking configuration, at this point reflect 
the tip of the degree-4 vertex with respect of the chosen reflection plane. The 
reflection plane must be angled making sure that self-intersections are avoided. 
If there are no self-intersections at the blocked state (or flat-folded state), then 
the kinematics of the mechanism is preserved, and the surface will not intersect 
during the whole motion.
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Another issue that it needs to be considered when making a digital simula-
tion of a sink fold, is that the reflection plane must intersect all the creases of the 
vertex inside the boundaries of the surface because, differently, it would generate 
a pair of new reverse folds instead of a sink fold (Figure 82).

Figure 81 - Rigid-flat-foldability condition for the sink fold on reverse folded 
degree-4 vertex.

Figure 82 - Sink fold that degenerates into two simple reverse folds. This happens when 
the reflection plane does not intersect all the creases of the initial degree-4 vertex.
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To animate a pattern with sink fold we start from the reverse fold molecule and 
we reflect the tip of the degree-4 vertex. Refer to Figure 83 for the notation. First, 
start from a flat-foldable degree-4 vertex pattern, then add to that pattern some 
new creases that form a closed loop around the single vertex. The segments of the 
newly drawn loop of creases at the unfolded state must be symmetric with respects 
of the creases that they touch. Then use the same definition shown in 4.6.1 to an-
imate the molecule with “symmetric reverse fold”. After this, move and rotate two 
of the segments of the sink fold drawn on the plane by copying and re-applying 
the rotations and translations of the relative faces to which they belong. In this 
case, we copy the transformations of the faces 1.1 and 2.1 of the original reverse 
fold molecule to the new segments EF and EH. Draw a plane passing through EF 
and EH segments and use it to split the surface. The folded surface is now split 
into two independent poly-surfaces, which are called in Grasshopper B-reps, they 
are split along the EFGH planar polygon. Pick the upper or the lower B-rep and 
reflect it with respects of the same plane. Lastly, we can animate the surface with 
the sink fold by moving the cursor of the slider that controls the fold angle. With 
this approach, the kinematics of the original starting molecule without sink fold 
is preserved. The generative algorithm is shown in Figure 84 and the initial cluster 
contains the algorithm explained in 4.6.1.

Figure 83 - Sink fold by reflecting a reverse folded molecule explained in 4.6.1.

Figure 84 - Generative algorithm of the sink fold molecule animated with reflection 
with respect of a plane passing from at least two segments of the sink fold, the 
cluster node contains the algorithm explained in section 4.6.1.
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4.8. Patterns with Single or Multiple Degree>4 Vertices

So far, all the patterns with internal vertices that we studied were made only 
by degree-4 vertices, and they had only one-DOF and for this reason, we were 
able to animate them with only one single controller crease that propagated its 
motion to all the other creases univocally. But how can we animate all the other 
patterns with vertices with a degree greater than four and with a DOF greater 
than one?

The possibilities are several, and the complexity of the problem increases 
drastically. At the present moment, the approach which is mostly used by the 
scientific community to animate a generic origami pattern is based on physical 
simulations that iteratively distribute the errors on every face and crease, pre-
serving its developability and rigidity of the faces according to a certain toler-
ance. The software Freeform Origami by Tachi (Tachi, 2010b) works with this 
principle, as well as the web-based application Origami Simulator by Amanda 
Ghassaei (Ghassaei, n.d.). These simulators try to fold the crease pattern all 
at once. To do so, the surface is stretched and displaced during motion and it 
temporarily loses its developability for a small amount. These deformations are 
due to forces exerted by mountain and valley creases. Because there are forces 
involved, we often refer to this kind of simulations as physical simulations.

Even if some applications that fold almost any origami pattern exist, they are 
hard to include into a professional designing pipeline, due to the reasons we high-
lighted in section 1.3.1. Furthermore, integrating the simulation into the original 
design context would open new possibilities about the interaction with the con-
text and other parts of the project that are not necessarily origami-related.

Fortunately, even if Grasshopper does not have built-in components for 
physical simulations, a plug-in called Kangaroo physics (Piker, n.d.) scripted 
by Daniel Piker will allow us to work with such type of simulations into Grass-
hopper without the necessity of scripting our own custom components. Kan-
garoo Physics is a “live physics engine for interactive simulation, form-finding, 
optimization and constraint solving”. This plugin implements in Grasshopper a 
set of new tools that facilitate working with (e.g.) forces, meshes, point clouds, 
and interconnected points. It also implements a wide set of “Goal nodes” which 
constrain some properties of the input geometry during the simulation, and a 
“Kangaroo Solver” which animates a given geometry according to the forces and 
constraints set by the goal nodes. Once set off the simulation, the solver gener-
ates a set of motion vectors for each goal node plugged into the “GoalObjects” 
input. The move vectors are applied to each particle they act on (e.g. the vertices 
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of a mesh, the endpoints of some segments, the origin points of a group of sol-
ids), and the solver iteratively minimises the total sum of the weighted squares 
of all the move distances. With this method all the constraints have a certain 
amount of error inversely proportional to the strength we set for each of them, 
thus the error is distributed non-uniformly to all the constraints.

The formulation that the Kangaroo solver uses to calculate the position P of 
each point is the following:

𝑃𝑃0,,?L = 𝑃𝑃0,JMN +
∑ P.∙R.
/
.0#
∑ P./
.0#

. (31)

Where: i refers to the particle index, n is the number of goals acting on that particle, 
ω is the weighting and G is the moving vector for goal j (Brandt-Olsen, 2016).

For example, we can set the strength of the nodes that constrains the preserva-
tion of the developability of the original pattern to a very high value, and we 
can set the strength of the node that constrains the fold angle of each crease to a 
certain given fold angle with a lower strength. Like so even if the real fold angles 
of each crease may be different from the one that we set while preserving the 
invariance of the shape and planarity of the faces as much as possible.

This approach is similar to the one used by Tachi and Ghassaei in their ap-
plications, it is fast and efficient to calculate because it performs the folding of 
each fold all at once, but it stretches and deforms a bit the surface during mo-
tion. The same approach could solve all the cases shown in the previous sections 
faster, but with lower accuracy, thus it can be considered an alternative method 
but with different aims and needs.

4.8.1. Degree>4 Vertices – Physical Simulation
The aim of the algorithm presented in this section is to simulate the folding ani-
mation of an origami pattern with one or more degree-4 vertices or vertices with 
a degree greater than four, and a DOF greater than one, with a given mountain/
valley assignment. To help the designer controlling the animated surface we im-
plement the possibility of anchoring some points and sliding some other points 
on a given plane. Furthermore, for vertices with a DOF greater than one it will 
be possible to set a different fold angle for each crease or group of creases. The 
first part of the algorithm is focused on identifying the creases which are moun-
tain, valley or unassigned, the second part is focused on setting some constraints 
that will be inputted into the “Kangaroo Solver” component. As a result, we will 
obtain the real-time folding simulation of the given pattern.
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In Figure 85 we show an exemplification pattern with a generic degree-6 vertex 
with a DOF greater than one. The crease AB is left unassigned, the creases AO, 
BO, CO, DO are set to be folded with a positive given fold angle, the same 
angle, but negative, is assigned to FO. EO is a mountain crease as FO but its 
fold angle is set to be the double of the other crease angles. In this way, we ex-
periment asymmetric folding motions on symmetric patterns.

The steps of the algorithm are the following. First, set the inputs of the defini-
tion: a planar surface which can be compared to the piece of paper that we are going 
to fold, and a set of straight lines arranged on the surface which are going to form 
the CP. Now divide the creases into two lists: mountain and valley. Then slice the 
surface along the creases so that each face of the crease pattern is a separate piece. 
Join all the surfaces into a single poly-surfaces (B-rep) and convert it into a simple 
mesh to allow kangaroo to process it. Now, compare the position of each input val-
ley crease and mountain crease to the position of each edge of the mesh and divide 
them in two separate lists. To do so, use the “Closest Points” component comparing 
the mid-point of each mesh edge to the mid-point of each crease line. Extract for 
each mountain or valley edge of the mesh the two adjacent mesh faces. As a result of 
these steps, we obtained two branched lists. Each branch represents the mesh edge 
index and it contains a list made of two elements which are the two indices of the 
two adjacent faces. To do this last step more easily we used the Sandbox plugin for 
Grasshopper (Schwinn, n.d.) which analyses the input mesh topology and returns 
for each edge the list of adjacent faces automatically. Lastly, triangulate the mesh, 
because if the faces are all triangular it is sufficient to constrain the length of each 
edge to be able to preserve the developability of the surface.

Figure 85 - An example of a degree>4 vertex, animated with physical simulation, 
applying different fold angles to the creases, in this way the animation is 
asymmetric even if the pattern is symmetric.
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Now we have all we need to set up the Kangaroo goal nodes. The goal nodes that 
we are going to use are: “CoPlanar”, “Length(line)”, “Anchor”, “OnPlane”, “No-
FoldThrough”, “Hinge”, “Show” and “Grab”. The “CoPlanar” and “Length(line)” 
nodes are used to constrain the surface to remain developable and rigid. These two 
components are sufficient to guarantee and preserve the rigid-foldability of the sur-
face because the “Length(line)” takes as input the edges of the triangulated mesh so 
that the developability is preserved, and the “CoPlanar” node takes as input the edg-
es of each face of the mesh before the triangulation, so that the original faces will try 
to remain planar preserving the rigidity of the faces. Then we use the “Anchor” and 
“OnPlane” goal nodes to lock the surface in one place or to constrain the expansion 
and contraction of the surface along one particular plane so we prevent the surface 
to navigate the three-dimensional space uncontrollably while folding. Specifically, 
the “Anchor” node tries to keep a group of points on a given location, and the 
“OnPlane” node tries to keep a group of points on a given plane. The “OnPlane” 
node is different from the “CoPlanar” node, because the “OnPlane” node tries to 
keep the points on a given plane, if no plane is set as input it considers the plane 
as target attractor plane, the “CoPlanar” node instead, tries to keep the points on 
a plane (recomputed for each iteration) that is the interpolation of the input point 
cloud. The “NoFoldThrough” and “Hinge” nodes are the components responsible 
of the folding motion, the former prevents the surface to intersect once the adjacent 
faces reach their maximum fold angle, the latter takes two triangular faces as input 
and rotates them around the common edge of a certain given angle. We need two 
different “Hinge” nodes to perform mountain and valley folds, we multiply to -1 the 
angle that is inputted into the mountain “Hinge” node.

We said that only triangular faces can be processed by the “Hinge” node but 
also patterns with polygonal faces can be animated. It is sufficient to split their 
faces into triangles before plugging them into the “Hinge” node. However, we 
need to add an additional “Coplanar” constraint to keep the triangular faces 
that belong to the same polygonal face on the same plane because otherwise, 
the pattern would fold as if we added new unassigned creases. The higher the 
strength of this constraint is, the stiffer the faces are; and if we want the surface 
to behave more elastically, we can simply decrease the strength of this constraint.

To make some creases folding faster or slower than other as shown in Figure 
85 we need a third “Hinge” node which is going to take as input the same angle 
multiplied or divided by a certain number (in this case we multiplied it by two). 
There is no limit to the number of “Hinge” nodes that can be used. We poten-
tially could add one hinge node for every crease, setting a different fold angle 
for every one of them. In this way, we would increase the shaping freedom at 
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the expenses of easier operability. In the example shown in the figure, we added 
only one additional “Hinge” node as an exemplification.

Lastly, we use the “Show” node to set the geometry that we want to see during the 
simulation, and the “Grab” node to add the possibility to interact with the surface in 
real time into the Rhino viewport by grabbing the vertices with the mouse pointer. 
This node is useful to help the designers judging the DOF of the surface or helping 
the surface to fold properly if it gets stuck for any reason7 (Foschi, 2019). This al-
gorithm can be used to simulate, potentially, the folding animation of any foldable 
pattern, even one-DOF patterns. This versatility makes this approach very effective.

4.8.2. Testing the Algorithm with Different Patterns
In the last section, we asserted that the folding animation based on physical simula-
tion is very efficient and versatile. Once built the generative algorithm, the simula-
tion is easy to set up because we only need to draw the CP and divide the creases into 
groups: mountain, valley and unassigned (and faster mountain and valley if needed). 
In this section we show some tests we did on well-known traditional patterns, to 
prove its efficiency and versatility. In Figure 86 and Figure 87 we simulated the 
folding of the traditional “magic ball” and “Yoshimura” patterns, both patterns have 
more than one DOF, thus we tested them with uniform and non-uniform fold-an-
gle distribution. As the reader can see, the surface can be folded symmetrically or 
asymmetrically just by changing the fold angle speed of some designated creases.

Figure 86 - Folding physical simulation of a traditional “magic ball” origami pattern, 
with uniform and non-uniform fold angle distribution.

Figure 87 - Folding physical simulation of a traditional “Yoshimura” origami 
pattern, with uniform and non-uniform fold angle distribution.
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We verified the preservation of the developability of the pattern during and after 
the simulation, and we compared the area of the surface and the unfolded pattern 
before and after the animation, and as expected it loses the developability only 
for a small amount during motion. Nevertheless, once reached the equilibrium 
state, the global error is minimal, and, in most scenarios, it would be already 
acceptable. However, we can minimize the developability and rigidity errors 
even more, by increasing the strengths of the “CoPlanar” and “Length(line)” 
nodes by a great amount. Nevertheless, if we increase the strengths of these two 
nodes too much the animation would slow down drastically because the forces 
applied by the “Hinge” nodes would be overwhelmed by the forces applied by 
the “CoPlanar” and “Length(line)” components. Thus, to minimize the devel-
opability and rigidity errors without slowing down the animation too much, we 
can balance the strength of the various goal nodes during the simulation, and 
once reached the desired configuration, we can make the strengths of the goal 
nodes equal to zero all at once except for the strength of the “CoPlanar” and 
“Length(line)” nodes. In this way, the forces applied on the surface disappear 
except for the forces responsible of preserving the developability and the rigidity 
properties, so that the surface self-adjusts finding a new equilibrium configura-
tion which is almost equal to the previous equilibrium configuration, but with 
minimal geometry errors.

Figure 88 - Folding simulation of two discretized curve creases (with a different 
discretization degree) with physical simulation.

In Figure 88 it is shown the simulation of a pattern with two discretized curved 
creases. The patterns on the left and on the right start from the same two curve 
creases but with different discretization degrees. The ruling of the curved surface 
has mountain or valley assignments, in this way the folding animation is more sta-
ble, nevertheless it could also be left unassigned and they would assume a moun-
tain or valley assignment automatically from the adjacent creases with an assigned 
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verse. This example approximates a curve crease because with discretization all the 
vertices are degree-4, thus the surface has only one-DOF. Nevertheless, in the real 
world, the curved creases can be performed only on flexible materials and they are 
usually made without deciding the ruling in advance, thus the ruling can change 
over time and the DOF would be more than one. This case is an easy special case 
that uses two concentric arcs of circumference as curved creases, thus the ruling 
match the direction of the radii of the circles, however for more complex curved 
creases the calculation of the ruling that is necessary to connect the curves while 
preserving the rigid foldability of the discretized pattern may not be as easy to 
calculate as in this case. There are some interesting studies about this problem 
(Bhooshan et al., 2015; Demaine et al., 2015, 2018; Dias et al., 2012; Kilian et al., 
2008; Tachi, 2013; Tachi & Epps, 2011) but there is not a generalized theory yet. 
An interesting tool to study curve folding is the “Origami Simulator” by Amanda 
Ghassaei (cf. section 1.3.1).

4.8.3. Limits of the Algorithm and Known Problems – Pop-Up and Pop-Down

Figure 89 - Self-folding animation of a wide “magic ball” pattern, without and with 
the pop-up assignment problem.

Unfortunately, the physical simulation is not always reliable, the reason of that 
is that folding all the creases at the same time may cause some defects and prob-
lems on some vertices, it happens especially when there are a big number of 
creases in the pattern. We can try to tweak the strength values of the goal nodes 
or move the slider that animates the folding very slowly or grabbing the sur-
face directly from the Rhinoceros viewport (by using the Kangaroo “Grab” goal 
node) trying to correct the defects while they occur, and most of the times these 
tricks work, but sometimes the simulation still fail for a known problem which 
sometimes occurs in self-foldable origami. This problem is caused by the fact 
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that most of the origami vertices can be folded in two different ways without 
changing the mountain/valley assignment. These two possible configurations 
are known as “pop-up” and “pop-down” states (Tachi & Hull, 2016). Some 
origami single vertex patterns can be folded pushing the central vertex upward 
or downward without changing their mountain/valley assignment, and the bi-
furcation of the motion happens at the completely unfolded state. Thus, when 
we try folding a pattern just by constraining the mountain valley assignment 
there are equal chances to get a pop-up or pop-down result if no other forces 
are applied. Furthermore, in patterns with a big number of vertices, because the 
physical simulation for its nature displace the vertices for a small amount while 
distributing the errors, it makes the surface behaving as a flexible surface, thus 
some vertices could take the path of the “pop-up” state and some other of the 
“pop-down” state even if they are not compatible, blocking the folding of the 
surface as shown in Figure 89.

To solve the problem, we can use many different methods, for the “magic 
ball” pattern shown in figure it was sufficient to slow down the animation of 
a big amount giving the necessary time to the Kangaroo solver to distribute 
the error to all the faces and to let the surface self-adjusting before passing the 
point of no-return where some vertices take the wrong pop-up/down assign-
ment. Other methods could use attractor forces that may help the vertices to 
move in the correct direction from the first instant, or we could decrease the 
stiffness of the edges making the pattern more willing to self-correct exploiting 
the flexibility of the faces. Anyway, this kind of solutions has to be evaluated 
and tested case by case.

This kind of defects does not happen only in digital simulations, but also in 
the real world if the surface is flexible enough. The implications of these defects 
on real folded materials has been extensively studied by Silverberg et al. who 
consider a Miura-ori defected pattern as a case study to make some considera-
tions about the design of reprogrammable mechanical metamaterials (Silverberg 
et al., 2014).
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CHAPTER 5

PATTERN DESIGN FROM A GIVEN 
SHAPE

Designing an origami-inspired object does not always require solving its kin-
ematics and digitally simulate the folding and unfolding of the surface. Ani-
mating the surface is useful for example for rigid-foldable kinetic mechanisms. 
However, movable mechanisms, even if they are one of the most important 
targets of applied origami, are not the only cases that may benefit from origami 
properties. For example, for a paper lampshade, or a cardboard box, we do not 
necessarily need to simulate the folding and unfolding of the pattern, but we 
may want to manipulate the three-dimensional object in space while preserving 
its developability. Thus, in this part of the book, we present some case studies 
that exemplify the design of objects or buildings inspired by already existing 
projects, through the use of specific algorithms developed with Grasshopper 
(Rutten, n.d.; Tedeschi, 2014) that are aimed to achieve a three-dimensional 
folded configuration that is developable. Thus, instead of starting from the un-
folded pattern, we start from reference geometries in space (e.g. curves, surfaces, 
meshes) that we consider as attractors, guides, rails, anchor points, and we build 
the folded geometry on them while following strict rules that guarantee the de-
velopability of the CP. These case studies are mainly focused on the construction 
of the generative algorithms, and they do not solve all the issues that may arise 
from fabrication. We will focus on the fabrication problems in chapter 6.

5.1. Lampshade – Vertices Extrusion and Reflection

Imagine having an old lamp by Le Klint (Le Klint, n.d.), that is missing its 
original shade, and we want to renew it by making a different shade that fits 
perfectly the old structure. Because we already have a reference structure, we 
cannot use any accordion-shaped piece of paper because with a high probability 
it would not perfectly fit on it. For example, we cannot use a straight accordion, 
because, as we saw in section 4.5.2 it is only conformable into cones if no elastic 
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deformations are allowed. We could instead use the method explained in section 
4.5.4 to design an accordion with converging creases that would fit perfectly on 
a cone. However, that solution leaves no room for creativity, thus, because the 
design possibilities are endless, in this section we propose a more versatile pro-
cedure that allows us to manipulate the folded shape constraining it to the two 
circular rails while preserving its developability. We start generating a triangu-
lated accordion between the two rails, and to make it more appealing we reflect 
the bottom points with respects of specifically placed reflection planes, and we 
deform and manipulate the global shape to make it asymmetric.

Refer to Figure 90. First, draw two concentric circles on the same plane, 
then move on the Z axis one of the two circles. Draw an equal number of 
equally spaced points on the two circles. Take the even points of the upper 

Figure 90 - Folded lamp shade algorithm, steps.
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circle and move them away from the circle along the radii directions. Do the 
same thing with the odd points of the bottom circle. Connect the points 
of the upper circle to make a zig-zag-shaped closed polyline. Do the same 
thing with the bottom points. Select the two segments adjacent to each even 
point of the upper polyline and extrude them to the relative even point of 
the bottom polyline making triangular faces. Do the same thing with the 
bottom polyline but using the odd points. With this method, we constructed 
a “chain” of triangular faces that is guaranteed to be a developable surface 
because the triangles are always planar. Thus, starting from this developable 
surface, to push even further the research of an appealing shape, we reflect the 
bottom points inside with planes passing from pairs of even points and a third 
point, not on the horizontal plane. Now the algorithm is ready, and we can 
play with the inputs to explore different shapes. We can add more faces, or 
change the angle of the reflection planes, or even rotate independently the up-
per and bottom circles to get a twisted look. It is also possible to add variation 
to the design by adding “Graph Mappers” nodes as shown in section 4.5.3 to 
distribute non-uniformly distances, lengths and angles. In the example shown 
in Figure 91 we reported two examples of possible shapes that can be obtained 
with this approach1 (Foschi, 2019).

Figure 91 - Two possible solutions of lampshades for the same support structure, 
achieved with the same algorithm.

The last thing to do to be able to fabricate this lamp cover is to develop on 
a plane the folded surface and check if there are no overlapping parts on the 
unfolded pattern. If some parts are overlapping, we can either split the pattern 
into different parts and assemble them later, or we can change a bit the design, 
for example lowering the number of points or shortening the moving distances 
of the points, to be able to get a CP which does not overlap.
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5.2. Folded Facade – Vertices Extrusion from Reference Curved Rails

The same technique used for the lampshade can be used to design any oth-
er geometry that uses triangulated accordions placed on support rails, like the 
façade of the Biomedical Research Center by Vaillo & Irigaray Architects. In 
this section we show a variation of the project by Vaillo and Irigaray, using 
curved support rails instead of straight ones. In this case, the property of being 
developable is probably not crucial for construction purposes due to the bigger 
dimensions, but it may be useful for decreasing the waste and trims from the 
production phase. The algorithm has the same structure of the algorithm shown 
in section 5.1, but we add variation by drawing additional reference curve rails 
instead of using “Graph Mapper” nodes.

Figure 92 - Folded triangulated façade algorithm, steps.

Refer to Figure 92. Draw one straight line, copy it and move it along the Z axis. 
Draw two freeform curves close to the straight lines. Divide the curves into an 
equal number of pieces. Connect the even points of the bottom freeform curve 
with the odd points of the relative closest straight line. Do the same thing with 
the upper points but with inverted even/odd assignment. Explode the upper 
polyline in independent segments and split the list of segments into sub-lists 
with two elements each. Extrude each pair of segments to the relative closest 
even point of the bottom straight line. Do the same thing with the bottom 
segments. As well as the algorithm shown in 5.1, this algorithm generates a 
developable “” chain of triangular faces. The developability is guaranteed by the 
fact that the triangles are always planar and there are not internal vertices in the 
CP2 (Foschi, 2019). In Figure 93 it is shown a possible application where many 
folded patches are anchored to a generic building façade.
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5.3. Building Envelope – Reflection of a Creased Developable 
Surface

The project by Localarchitecture and Danilo Mondada of the temporary chapel 
for the Deaconesses in Saint-Loup is one beautiful example of architecture de-
signed with origami rules. In this case, it has been used the reflection method 
(cf. section 4.6.1) (Mitani & Igarashi, 2011) as a tool for the shape-finding 
phase (Buri & Weinand, 2008). In this case, from a structural point of view, 
the developability property may even have a counterproductive effect on the 
project because being developable entails the fact that it may tend to slide until 
it lies on a plane, which is not desirable for a structure that must be self-sup-
porting. However, with properly designed anchor points this factor may have 
no relevance at all. Nevertheless, developability may play an important role in 
the manufacturing process. For example, for a wood and hinges structure, the 
panels might be assembled on the ground and lifted up all at once in a single 
motion limiting the need of scaffoldings and cranes; or if built in concrete, the 
panels may be pre-casted in situ, placing them one next to each other, without 
empty spaces between them, with minimal shuttering, minimal soil occupation, 
and minimal costs of transportation.

In this section we explore an approach to design this inspiring and versatile shape 
proposed by Buri and Weinand, starting from a polyline path and a section profile.

Refer to Figure 94. Draw a polyline with the first point on 0 on the XZ plane 
(this will be the path). Draw a polyline with the first point on 0 on the XY plane 
(this will be the profile). Build the first reflection plane on the first kink point of 
the path, its normal vector is directed like the bisector of the angle between the 

Figure 93 - An example of a foldable facade shaped like a triangulated accordion 
on curved rails.
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first two segments of the path. Now project the profile points to the reflection 
plane along the direction of the first segment of the path, and draw a new polyline 
passing through them. Now perform a straight loft with the first profile and the 
projected profile as sections. The first section of the folded surface is built, and it is 
an accordion with parallel creases. To build the restart sections we need to repeat 
this process on all the other segments of the path. To do so, we need to exclude 
the first segment of the path and switch the original profile with the new projected 
profile and apply the same algorithm over and over until all the segments of the 
path are processed. To perform this kind of looping definitions in grasshopper, 
we need to use the Anemone plug-in that we already introduced in section 4.5.5.

The algorithm explained above fails when it reaches the last segment because 
there is not a subsequent segment to calculate the bisector with. Thus, to solve 
this problem, we need to set an exception for the last segment as follows. Every 
time the algorithm repeats, it erases the first segment of the path, when only one 
segment remains it returns “True”. “True” in Grasshopper can also be interpreted 
as a 1, and False as a 0, 1 and 0 are also the indices of the list containing the two 
planes, if the algorithm returns “True” use the XY plane, if it is “False” build the 
plane perpendicular to the bisector of two consecutive segments3 (Foschi, 2019).

Figure 94 - Folded roof by reflection, steps of the algorithm.
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5.4. Curve-Folded Table

5.4.1. Reflection of a Developable Curved Surface
The reflection method shown in section 5.3 is not only valid to make reverse 
folds starting from folded surfaces with linear creases, but it can also be used to 
reverse fold generic developable ruled surfaces (Mitani & Igarashi, 2011) gen-
erating curved creases. For example, we can use the reflection method to design 
a curved folded table similar to the one designed by Tachi applying the method 
shown in Figure 96.

Figure 95 - Building envelope example shaped like a reflected accordion.

Figure 96 - Curve-folded table algorithm, steps.
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The method works as follows. Draw a planar horizontal polygon (a square in 
this case). Extrude the edges along curved paths tangent to the surface. Draw 
vertical planes with origins coincident to the vertices of the polygon and rotate 
them around their relative Z axes to make them intersect both the adjacent 
surfaces (the planes are perpendicular to the relative angle bisector in this case). 
Split the poly-surface and erase the outer split as shown in the figure. Move the 
planes along their local Z-axis to make them intersect the horizontal polygon 
and the four curved legs. Then, split the polysurface again with the planes pay-
ing attention to not intersect the curved sections. Mirror the outer splits with 
respect of the relative splitting plane, so that we obtained a developable surface 
with curved creases. As we show in Figure 97, we can achieve different results by 
changing the number of sides, the shape of the initial polygon or the orientation 
of the reflection planes4 (Foschi, 2019).

Figure 97 - Curve-folded table variations and unrolled CPs.

5.4.2. Discretization of the Curved Crease
The pattern that we obtained could already be used as a cutting template to 
be fed to a CNC machine that would return a pre-creased thin sheet of metal 
ready to be folded. However, folded metal has a limited number of folding 
cycles, thus, to make a kinetic deployable table this might not be the optimal 
solution. An alternative solution, more suitable for making moving mecha-
nisms, might be the discretization of the curved surface into planar quadran-
gular faces. In general, the discretization of a curved folded surface into planar 
faces is not an easy problem to solve. However, it becomes very easy if we 
generate the curve fold by reflecting a developable cylinder or cone. This is be-
cause in general, in a developable surface, two consecutives linear generatrices 



Pattern Design from a Given Shape 141

do not always lie on the same plane unless they are infinitesimally spaced. 
Cylinders and cones however are special cases where all the consecutive gen-
eratrices lie on the same plane regardless of the distance between them. This 
means that we can simply convert the curved surfaces that we already used in 
the previous algorithm into a discretized polysurface where all the faces are 
planar and quadrangular, and we can reflect it with the same planes of reflec-
tion. We started from the same algorithm presented in the last section and we 
implemented it as follows.

Refer to Figure 98. Draw a developable polysurface shaped like a table as 
we did in section 5.4.1. Extract the lateral boundary curve of each leg and 
divide it into a certain number of parts. We want to add more points where 
the curvature is high. There are many approaches to solve this problem, be-
cause we do not need to have a perfect relation between the position of points 
and the curvature, we can use the following walkaround. Create a very dense 
polyline that approximate the curve and reduce it with the “Reduce polyline” 
component, this component compares the angles between the segments ad-
jacent to each point and according to a certain tolerance keeps or erases the 
point. After that extrude the polyline to generate a polysurface that approx-
imates the initial curved surface. The polysurface so generated is a develop-
able surface made by planar rectangular faces, thus we can use the reflection 
method as we did in the previous section. In Figure 106 we show the correct 
unfolding of the discretized pattern.

Figure 98 - Discretization of a curve-folded table.
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5.5. Conformable Corrugated Suspended Ceiling5

The installations “Tessel” by David Letellier and Lab[au] and “Resonant 
chamber” by RVTR, are two perfect examples of sculptures in form of sus-
pended ceilings that make use of a folded corrugated surface as a tool to create 
interesting shapes and movements. Both installations are kinetic sculptures 
that change their shape interacting with the perception of sound in a cer-
tain space. The first one, “Tessel”, is programmed to react to the sound and 
“dancing” with it. The aim of this sculpture is “[…] combining influences 
that question the link between geometry, movement and chaos, thus contin-
uing the quest for beauty in the synesthetic perception of sound and spatial 
phenomena.” (Letellier, 2010). Perceptively it creates a beautiful visual and 
acoustic effect that is similar to the behaviour of an almost living creature. The 
second project, “Resonant chamber”, has a more sophisticated behaviour and 
connects a beautiful geometric and enigmatic appearance to the practical need 
of acoustic optimization. It also combines the principles of rigid origami and 
dynamic, spatial, material and electro-acoustic technologies (Furuto, 2012). 
The intention of this project is creating a continuous surface that changes 
automatically according to the sound conditions to influence its perception 
in the environment where it is placed, one of the possible application fields 
pointed out by the designers is a theatre or any other place with a variable 
audience, where the acoustic conditions are very important and they may vary 
in relation to the distribution and number of the spectators.

Some of the most obvious challenges that the designers of these sculpture 
had to face were how to control the motion of these surfaces; and how to hang 
them with an optimized number of cables. First of all, they have chosen patterns 
with more than one single DOF, to be able to increase the shaping possibilities, 
then they connected motors to the hinges, or they used retractile cables to be 
able to change the shape of the surface dynamically. In this section we are going 

Figure 99 - Unfolding of the discretized curve-folded table, which is only made by 
planar quadrangular faces.
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to explore this type of concept through parametric design, to be able to conform 
the shape as a given reference surface and to optimize the number of necessary 
cables to keep the shape in position once hanged.

5.5.1. Conformation of a Rigid Creased Surface to a Curved Surface
First of all, we focus on the shaping of the corrugation. The aim of the following 
method is to change the shape of a given creased rigid surface conforming it to 
a given curved surface without changing the pattern. To do so we are going to 
use Kangaroo Physics (Piker, n.d.), the plug-in for Grasshopper we already in-
troduced in 4.8, where it has been used to animate the folding and unfolding of 
degree>4 CPs. Contrary to what we did in 4.8, this time we are not going to set 
mountain/valley assignment, because we are more concerned about the global 
shape of the corrugation.

First of all, draw a planar surface. Then, draw the creases, split the surface 
with them, generating a polysurface, and convert the polysurface into a mesh. In 
this case, we draw the creases to generate only triangular faces. Draw a reference 
curved surface in the proximity of the original surface with similar proportions, 
this surface will be the attractor surface. Now we need to set up the Kangaroo 
nodes as shown in Figure 101 in order to move the mesh vertices to the attractor 
surface along the lines that connects the vertices and their relative closest point 
on the surface and at the same time preserving the developability of the mesh. 
To do so, we add a “Length(Line)” and an “OnMesh” goal nodes and connect 
them to the Kangaroo solver. The “Length(Line)” node constrains the length 
of the edges of the mesh, and the “OnMesh” node will try to bring the mesh 
vertices on the surface. Because the Kangaroo solver, once set off, tries to min-
imize the errors of the goal nodes by weighing them with the strength input of 
each node, we need to set the strength of the “Length(Line)” node much higher 
than the strength of the “OnMesh” node in order to prioritize the preservation 
of the developability of the surface more than the minimization of the distanc-
es between attracted points and surface. Like so, when the simulation starts, 
the mesh vertices start moving toward the surface while keeping their relative 
distance, thus keeping the faces of the surface rigid. By changing the attractor 
surface, the corrugation updates its shape trying to conform as better as possible 
to the new configuration.

In this case study, we used only triangular faces as in the “Tessel” reference, 
but what if we wanted to use a CP with quadrangular faces? We know that 
degree-4 vertices may generate patterns with only one-DOF. Thus, first of all, 
we need to test if the DOF of the CP is one or more. This is important because 
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if it is one, the surface will not be able to be conformed to a freeform surface, 
thus a one-DOF pattern would not be suitable for this kind of applications. 
If it is more than one and we want to keep the quadrangular faces planar we 
need to add a “CoPlanar” node setting as input every vertex relative to each 
face of the mesh so that the faces will remain planar. Also, we will need to 
triangulate the mesh before setting it as input for the “Length(Line)” node. 
Constraining the diagonals lengths and keeping the boundaries of the quad-
rangular faces planar we guarantee the preservation of the developability and 
rigidity of the faces.

Figure 100 - Conformation of a corrugation to curved surfaces without changing 
the CP.

Figure 101 - Generative algorithm of the conformation of a corrugation to a curved 
surface using Kangaroo.
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5.5.2. Conformation of a Flexible Miura-ori to a Curved Surface
Not only an unfolded pre-creased pattern can be conformed to curved surfaces, 
but also semi-pre-folded patterns. With semi-pre-folded pattern, however, we 
cannot make all the vertices of the mesh being attracted from the surface, be-
cause otherwise, the corrugation would flatten out completely, losing the moun-
tain/valley assignment, trying to conform as best as it can to the curved surface. 
In the case of the Miura-ori, shown in Figure 102, the vertices that are attracted 
from the surface are all the bottom vertices. Furthermore, the Miura-ori is a 
pattern with one single DOF, thus we had to triangulate all the faces to increase 
the DOF allowing non-uniform out-of-plane deformations of the global shape. 
We treated the diagonals as loose hinges as all the other creases. However, we 
can also simulate a flexible behaviour of the Miura-ori by adding a rotational 
stiffness to the faces adjacent to the diagonals. We can do that by adding a 
“Hinge” node that tries to keep the dihedral angles between the triangles divid-
ed by the diagonal equal to 180°. Thus, the quadrangular faces would have a 
more or less flexible behaviour according to the “Strength” value set to be very 
high for a stiffer behaviour, or low for a more flexible behaviour. We also added 
a “SphereCollide” node among the goal nodes, to avoid collisions between faces6 
(Foschi, 2019).

Figure 102 - Conformation simulation keyframes.

Most of the origami pattern cannot be conformed to any curved surface. The 
accuracy of the conformation depends on the pattern itself or from its scale in 
relation to the local curvature of the attractor surface. For example, in Figure 
103 the triangulated Miura-ori pattern is conformed to the same cylindrical 
surface with different results according to the different orientation of the pat-
tern in relation to the surface. In the first case, the Miura-ori conforms better 
than in the second case. The average distance between the attracted points and 
the surface in the former is approximately ten times smaller than the one in the 
latter. The average distance between the attracted points and the surface is an 
important factor that contributes evaluating the quality of the conformation, 
but most of the times not every section of the corrugation conforms equally to 
the surface, so how can we visualize better the error distribution?
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To visualize better the error distribution we applied a gradient texture map on the 
surface coloured in grey scale that colours with black the areas of the surface close 
to the projection of the most distant points from the negative side of the surface, 
with white the areas close to the projection of the most distant points from the pos-
itive side of the surface and with grey the areas close to the projections of the most 
accurate points, as shown in Figure 105. In Figure 104 it is shown the generative 
algorithm to colour a surface with Grasshopper on the left, and the histogram of the 
error distribution of the configuration shown in Figure 105 on the right.

Figure 103 - Different results due to the different orientation of the pattern 
compared to the attractor surface.

Figure 104 - Gradient error map, generative algorithm, and the histogram of the 
error distribution.
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5.5.3. Optimization of Supporting Cables and Anchor Points
The most trivial way of hanging a corrugated surface while keeping its shape 
perfectly is by anchoring all the vertices of the mesh, attaching them to wires 
with specific lengths. The lengths are given by the distances of the vertices them-
selves and their relative projected points on the ceiling. Because the force of 
gravity pulls the vertices vertically, they try to move downward, but because all 
the loads are absorbed entirely by the wires, the system is balanced and there 
is no residual movement. However, for complex tessellations and corrugations 
hanging hundreds of vertices may be not optimal in the real world. However, 
most of the corrugations built with loose hinges are impossible to hang with 
fewer cables than vertices, while keeping perfectly their shape, thus we need to 
choose either if anchoring all vertices, or if partially lose the initial shape. This 

Figure 105 - Gradient error map on a single curvature curved surface. Axonometric 
and top view.
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is true for corrugations with faces built for example with wood attached with 
hinges, but it is not necessarily true for corrugations folded for example with 
cardboard. Usually, a continuous material creased does not have a loose behav-
iour, because the creases still have some sort of stiffness, thus we can exploit 
that stiffness to lower the number of anchor points while preserving their global 
shape. Furthermore, some corrugations have a lower number of DOF and they 
behave more rigidly than others. Therefore, we need to analyse case by case to 
be able to find the optimal solution. In the digital world is very hard to make a 
physically accurate simulation of a creased sheet made by a continuous material, 
because in the real world a crease corresponds to a plastic deformation, thus the 
stresses and the internal forces are hard to foreseen and to replicate precisely dig-
itally, because they may be not homogeneous according to how much strength 
we used while creasing or how many times we folded and unfolded that specific 
crease. Thus, for those cases where we need to hang a corrugation made by a 
folded sheet of continuous material, once tested if the conformation is possible 
with that pattern on a specific curved surface, it is preferred to realize the pro-
totype of the surface with the same material at a similar scale and make tests in 
the real world. For those cases with loose hinges, however, we can simulate their 
behaviour more easily.

In this section, we are going to test some specific set of anchor points on a 
conformed Miura-ori by adding the force of gravity to our digital environment. 
The algorithm that we used to add the wires and to test the equilibrium of the 
system with the force of gravity works as follows7 (Foschi, 2019).

First, set up the standard nodes of Kangaroo as shown in previous sections. 
Among the standard goal nodes used to preserve the developability of the cor-
rugation, add another “Length(Line)” node for the wires with a lower strength 
compared to the “Length(Line)” node used for the Miura-ori edges. Then, add 
a “Load” node which pulls the assigned vertices along an assigned vector (we 
assigned a vector directed as the Z-axis with an amplitude of -1, and we set as 
input all the vertices of the Miura-ori). Then project all the Miura-ori vertices 
to a virtual planar ceiling, placed above the conformed Miura-ori, and anchor 
those points in place adding an “Anchor” goal node.

By setting off the Kangaroo solver now, we would not see any change into 
the system, because all the vertices are anchored, and all the forces are balanced, 
thus we need first to decrease the number of wires to see some changes. Decrease 
the number of wires by culling some vertices among the list of vertices that are 
projected to the ceiling plane, while doing that try to find a set of vertices that, 
once attached to the wires and hanged, preserves the global shape of the corru-
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gation without making it collapse. After tested many sets of vertices, we found 
out that anchoring the first ring of vertices of the Miura-ori is not sufficient to 
keep the global shape, however, anchoring the second ring of vertices is suffi-
cient to find an equilibrium state which is very close to the initial configuration 
as shown in Figure 106. In the figure we set the Miura-ori to have loose hinges, 
in fact even if the global shape is preserved while anchoring the second ring of 
vertices, the outer vertices sometimes collapse, it is particularly evident for the 
vertices of the outer left border.

Figure 106 - Gravity simulations comparison of a conformed Miura-ori with 
different patterns of anchored vertices. On the left we anchored the upper ring 
of external vertices and the system is in an equilibrium state, on the right we 
anchored the bottom ring of external vertices and the system collapse.

Figure 107 - Anchoring the second ring of vertices to find an equilibrium state once 
applied the force of gravity.
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In Figure 107 on the contrary we added a little bit of reciprocal rotational stiff-
ness to the faces adjacent to the diagonals, simulating a behaviour qualitatively 
similar to a flexible Miura-ori folded with paper, and as you can see only by an-
choring the second ring of vertices the global shape is almost perfectly preserved 
in all the cases we tested.

Because we added some reciprocal rotational stiffness to the faces simulating 
a behaviour similar to a sheet of paper, anchoring the second ring of vertices 
entirely is probably an over-kill. Thus, the next question is how can we find a 
more optimized solution without necessarily guessing a better set of anchored 
vertices? To optimize even more the vertices without guessing, we propose a 
method that compares the lengths of the wires before and after applying grav-
ity, so that we can identify the wires that are completely or almost completely 
unloaded and exclude them. Because the lengths of the cables are constrained 
with a “Line(length)” node also known as “spring” node, they behave exactly 
like springs. This means that they obey the relationship: 
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Where F is the Force, k is the stiffness and x is the extension (or Δ length). Thus, 
Δ length and tension are proportional. Therefore, we can use the length varia-
tion to apply a colour to the wires and visualize qualitatively the tension applied 
to each cable using the standard gradient map for tensions that goes from green 
to yellow to red as shown in Figure 108.

Figure 108 - Optimization of the cables through tension analysis.
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After erasing unloaded (or almost unloaded) wires we can run the simulation 
again and check if the corrugation keeps its shape. If we try to apply this method 
before erasing some cables by guessing we would not have found any unloaded 
cable, thus it may not work properly. Furthermore, in some corrugations even 
erasing a single wire would change its shape greatly, thus every case must be 
analysed specifically.

5.5.4. Changing Shape to the Surface – Adjusting Cables Lengths
In section 5.5.1 and 5.5.2 we show how to conform a creased surface to a curved 
reference surface and in section 5.5.3 we show how to hang it with wires. In this 
section, we are going to propose a reversed approach, that starts from a hanged 
un-conformed surface that we conform changing the lengths of the cables.

Figure 109 - Moving the surface changing cables lengths using a “Graph Mapper” node.

In Figure 109 we show how a semi-pre-creased Miura-ori can be shaped by 
using the “Graph Mapper” node. The generative algorithm works as follows8 
(Foschi, 2019).

Import the semi-pre-creased Miura-ori as a mesh. Extract all the vertices of 
the mesh, sort the list of vertices according to their z position and select all the 
upper vertices. Project the vertices on a plane placed above the corrugation. 
Connect with a line the upper vertices and their relative projection. Rescale the 
lines using as base points the relative projected points. To rescale the wires grad-
ually and following the shape of a function, use a “Graph Mapper” node. Then 
set up the Kangaroo nodes like explained in section 5.5.3 adding “Anchor”, 
“Load” and “Length(Line)” goal nodes attached to the Kangaroo “Bouncy Solv-
er”. Before setting off the simulation set a Bezier function in the “Graph Map-
per” and move all the control points on the top to make it shaped like a constant 
function y=1 so that the wires as the simulation begins are non-scaled. After 
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setting off the simulation change the function shape in the “Graph Mapper” 
moving the control points of the Bezier curve. As the points are moved, the wire 
length changes and the corrugation while being pulled down by the force of 
gravity and pulled up by the cables, finds a new equilibrium state changing its 
shape according to the lengths of the cables.



 153

CHAPTER 6

FABRICATION-AIMED DESIGNS

The case studies that we presented so far were all focused on the creation of 
patterns aiming to achieve a specific movement or aiming to a specific shape, 
but we always visualized and studied them through zero-thickness conceptual 
models. However, in the manufacturing and architecture fields, we may need 
to produce rigid-foldable mechanisms, or folded structures able to resist to 
certain loads. Rigid-folding and structural properties are strictly related to 
the stiffness of the material used, and as a matter of fact, the stiffness of any 
material is strictly related to its elasticity and to the area of its section (thus to 
its thickness). Thus, in this section we will study the origami-like mechanisms 
from another point of view, considering thickness, bending, forces, gravity, 
stability. In this chapter, we are going to present two case studies: a foldable 
ladder and a deployable chair. Both projects are originally designed, and we 
present them from start to finish focusing especially on the fabrication issues 
and on the possible solutions.

6.1. Known Origami Thickening Methods – State of the Art1

A zero-thickness surface is a good approximation to model an origami-like ge-
ometry folded with paper. However, in manufacturing, architecture and engi-
neering, is often necessary to use thick panels to enhance stiffness and rigidity 
of the folded mechanism. Most of the times the designers start modelling using 
zero-thickness surfaces, focusing only on the kinematics of the mechanism, but 
when they get to the prototyping phase, they cannot disregard the thickness. 
Thus, the problem that they face, is finding a way to add thickness to the ze-
ro-thickness surface without losing the original kinematics, preserving the DOF 
and avoiding self-intersections or collisions between the panels that would stop 
the folding motion. Many solutions have been already studied, proposed and 
used by many researchers. The most relevant known techniques are:



154 Origami Design Strategies for Architects and Designers

• “Offset panels” (Edmondson et al., 2015; Lang et al., 2018).
• “Hinge shifting”, also known as “Axis shifting” (Chen et al., 2015; Lang 

et al., 2018; Tachi, 2011b).
• “Tapered panels” (Tachi, 2011b).
• “Constant thickness attached panels” (Tachi, 2011b).
• “Membrane hinges” (Lang et al., 2018; Zirbel et al., 2013).
• “Rolling contacts” or “SORCE technique” (Lang et al., 2017, Patent No. 

US 2017/0219007 A1; Lang et al., 2018).
• “Strained joint” (Lang et al., 2018; Pehrson et al., 2016).
• “Double hinge” (Ku & Demaine, 2016; Lang et al., 2018).
• “Symmetric Miura-ori vertex by shifted hinges and carved panels” 

(Hoberman, 1988, Patent No. 4780344; Lang et al., 2018; Tachi, 2011b).
• “Slidable Hinges” (Lang et al., 2018; Tachi, 2011b; Trautz & Künstler, 

2009).
• “Double line” (Hull & Tachi, 2017).

6.1.1. Offset Panels

Figure 110 - “Offset panels” method.

The “Offset panels” method, theorised by Edmondson et al. (Edmondson et al., 
2015), is a versatile method that works with both flat-foldable and non-flat-fold-
able vertices. It allows the overlap of multiple layers, but it must be necessarily 
assembled, and the unfolded configuration does not lie on a plane. Further-
more, self-collisions are very common, and they must be checked carefully dur-
ing the design phase. To avoid self-collisions, it may be necessary to carve out 
or cuts some parts from the faces, thus the mechanism may present holes which 
is not optimal for applications that require material continuity. Refer to section 
6.2.3 for an example of this technique applied to a deployable ladder.
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6.1.2. Hinge Shifting

Figure 111 - “Hinge shifting” technique.

The “Hinge shifting” is one of the oldest known techniques for thickening origa-
mi, and it is cited by Lang et al. and Tachi in their reviews on thickening methods 
(Lang et al., 2018; Tachi, 2011b), and extensively studied by Chen et al. (Chen et 
al., 2015). This technique is easy to apply for a single linear crease, and it consists 
into moving the hinge on the valley side of the fold after thickened the panel. It 
may seem easy at a first glance, but it becomes trickier when it is used to solve 
patterns with internal vertices. Furthermore, the panels often need to be carved in 
some areas or fabricated with different thicknesses to be able to reach the perfectly 
flat-folded state. The dihedral angles between the adjacent faces are preserved, 
but because the hinges are shifted, the relative translations are not preserved, thus 
some holes generate in correspondence of the internal vertices when we start fold-
ing, and the DOF may change because we moved the creases out of plane.

6.1.3. Tapered Panels

Figure 112 - “Tapered panels” method.
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The “Tapered panels” method proposed by Tachi (Tachi, 2011b), is one of the 
best methods to preserve the original kinematics of the zero-thickness model, 
because it is easy to design and it preserves the position of the hinges, thus the 
thickened surface lies flat on a plane when unfolded. Furthermore, this method 
preserves the continuity of the material without generating holes. It can be built 
by marking or carving the crease lines from a single panel of the same material, 
with a specific tapering angle, which is equal to half the relative fold angle at 
the chosen partially-folded configuration. However, there are some major cons 
such as the fact that it is not possible to overlap more than two faces and the 
fact that the blocking creases cannot reach their maximum fold angle. The maxi-
mum collapsing amount can be regulated by changing the tapering angles of the 
panels, the smaller the tapering angles are, the smaller the collapsing amount is; 
the bigger the tapering angles are, the greater the collapsing amount is, and the 
thinner the panels become.

6.1.4. Constant Thickness Attached Panels

Figure 113 - “Constant thickness attached panels” method.

The “Constant thickness attached panels” is a direct consequence of the “Ta-
pered panels” method demonstrated by Tachi (Tachi, 2011b). It consists into 
substituting each tapered panel by glueing together two non-tapered panels 
with a constant thickness equal to half the thickness of the substituted tapered 
panel. This is possible only when the top and bottom faces of the tapered 
panel overlap for a significant amount. The mechanism so configured can 
be produced, by sandwiching a strong fabric or film between the two shifted 
panels (not by folding or carving a single panel). This method is easier to 
fabricate by hand rather than the tapered panel method. That is why is often 
used for prototyping. However, it suffers the same problems of the “Tapered 
panels” technique, about the limited fold angle. Furthermore, the mechanism 
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at the folded state tends to work like a lever which tries to pull apart the film 
and the attached panels, thus the durability is strongly dependent on the film 
and glue quality.

6.1.5. Membrane Hinges

Figure 114 - “Membrane hinges” method.

The “Membrane hinges” technique explored by Zirbel et al. (Zirbel et al., 2013) 
is easier to assemble and apply compared to other thickening techniques. How-
ever, with this method, the structure has a certain level of flexibility, because the 
faces are glued to a flexible membrane leaving a little space in correspondence 
of the valley (or mountain) creases equal to double the thickness of the panels 
(or even more in some cases), which makes the hinges loose and flexible. This 
technique has been proposed for structures that have to move in zero-gravity, 
where the stiffness is not as crucial as in other circumstances.

6.1.6. Rolling Contact or “SORCE” Technique

Figure 115 - “Rolling contact” or “SORCE” technique.
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The “Rolling contacts” method, also known as “SORCE technique” has been 
demonstrated and patented by Lang et al. (Lang et al., 2017, Patent No. US 
2017/0219007 A1). It is a method inspired by Jacob’s ladder toy, and similar 
mechanisms have been used in spinal implants, robot fingers and prosthetic 
knee joints. Lang et al. in the paper Thickness-Accommodation Techniques in Ori-
gami-Inspired Engineering assert that “A notable aspect of the SORCE technique 
is that it marries a fully flat unfolded state […] with a folded state incorporat-
ing arbitrary offsets between panels; furthermore, the DOF of the mechanism 
exactly reproduces the DOF of the zero-thickness model.” (Lang et al., 2018).

However, like other thickening techniques, also this method has some cons 
such as the fact that flexible membranes are used to keep together the rolling 
contact hinges, thus the elasticity of the membranes may increase the unexpect-
ed deformations of the theoretical model. Furthermore, this kind of mechanisms 
must be assembled, and their robustness is strictly related to the assembling 
quality. Relating to this problem Lang also asserts that “While conceptually 
simple to implement, modelling flexible membrane hinges is considerably more 
complicated than mechanisms with discrete hinges. Also, the curvature and 
convexity of the rolling contact surfaces and the tolerances must be considered 
during design to ensure robust joints.” (Lang et al., 2018).

6.1.7. Strained Joint

Figure 116 - “Strained joint” Technique.

The “Strained joint” technique, is a method demonstrated by Pehrson et al. 
(Pehrson et al., 2016).

Lang et al. in the paper A Review of Thickness-Accommodation Techniques in 
Origami-Inspired Engineering assert that “The strained joint technique for ac-
commodating thickness […] is related to the membrane technique. Instead of 
using a thin membrane, the thick material itself acts as an effective membrane, 
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i.e., one in which the ‘fold’ is distributed across a region, rather than being a 
discrete revolute joint. In this case, the panel material itself is dissected so as to 
be flexible along desired hinge lines” (Lang et al., 2018). The main con of this 
method is that we need to use different materials to realize a mechanism with 
strain-able joints while having rigid panels, which makes the fabrication harder 
than other methods that uses one single material. Instead of mixing different 
materials with different elasticity, there is a monolithic alternative that makes 
use of particular cuts in correspondence of the creases area. The system consists 
of dissecting the panels isolating some linked bars that can be flexed and twisted 
which makes the connections behaving like flexible joints. The larger the holes 
and the thinner the bars are, the more flexible will be the joint. However, if we 
chose to apply the dissection technique, we must use a flexible enough material, 
otherwise, the joints would break after a few folding cycles. This means that to 
be able to have flexible hinges also the faces would be a little bit flexible, thus 
the rigid-motion would not be perfect.

6.1.8. Double Hinge

Figure 117 - “Double hinge” method.

The “Double hinge” method explored by Ku and Demaine (Ku & Demaine, 
2016), is a method studied to thicken flat foldable patterns by doubling all the 
creases similarly to what happens in thick cardboard boxes. They proved that 
a double hinged solution for flat-foldable patterns with a single-vertex always 
exists, but the problem of thickening a flat-foldable pattern with multiple-verti-
ces is still open. The main con of this method is that it needs holes to solve the 
internal vertices.
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6.1.9. Symmetric Miura-ori Vertex by Shifted Hinges and Carved Panels

Figure 118 - “Symmetric Miura-ori vertex by shifted hinges and carved panels” 
method.

The method patented by Hoberman in 1988 (Hoberman, 1988, Patent No. 
4780344) was cited by Tachi as a thickening method in “Rigid-Foldable Thick 
Origami” (Tachi, 2011b). It is a special application of the “Hinge shifting” 
method as explained by Lang et al. (Lang et al., 2018). A limit of this method 
is that only symmetric Miura-like degree-4 vertices (bird’s foot vertices) can be 
thus accommodated.

6.1.10. Slidable Hinges

Figure 119 - “Slidable hinges” method.

The “Slidable hinges” method has been studied for the first time by Trautz and 
Künstler (Trautz & Künstler, 2009) on degree-4 vertices and it consists in slid-
ing the faces longitudinally in relation to the adjacent faces along the common 
crease lines while folding the pattern. The more the panels slide, the more the 
collapsing amount increases. The main cons of this method are that it cannot be 
built with material continuity, it does not reach the completely collapsed state, 
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it generates holes during folding, and the technology to realize slidable hinges is 
very likely more complex and more subject to friction than traditional hinges.

6.1.11. Double Line

Figure 120 - “Double line” technique.

The last method we review here is the “Double line” method proposed by Hull 
and Tachi (Hull & Tachi, 2017). This method is probably the most versatile even 
if it is probably harder to apply than most of the other methods. The “Double 
line” method consists in offsetting some critical creases, mainly the creases that 
block and some incident creases, as in the “double hinge” method proposed by 
Ku and Demaine (Ku & Demaine, 2016), but with additional creased struc-
tures at the vertex. The additional creased structure at the vertex is a set of new 
flat-foldable vertices that solves the intersection of the doubled creases and the 
other non-doubled creases that converged in the same vertex. The new vertices 
are connected with a single polyline (which generates an additional planar face 
if it forms a closed loop). Once doubled those creases the faces can be thickened 
and tapered following the same approach used in the “Tapered panels” method. 
Doubling the correct creases allows to space the touching faces while keeping 
their relative orientation during motion, creating room for thickening the faces. 
The main pros of this method are that it can be produced by a monolithic single 
panel. The crease lines can be marked by carving or stamping as it happens in 
the “Tapered panels” method, but with lower tapering angles, which is better 
to preserve the thickness and stiffness of the panels. The collapsing amount is 
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not limited, and the relative rotation of adjacent faces is preserved. Also, all the 
mountain and valley creases can be marked from the same side of the panel with 
half-cuts if they are mountain and triangular-groves if they are valley. Tradition-
al CNC machines or hot-stamping machines can be used to mark the creases 
and there is no need to build specifically designed machines helping to decrease 
the production costs. Furthermore, without any assembling phase, the product 
is ready to use. For all these reasons, this method is very suitable for industrial 
production. The main cons of this method are that it is harder to apply than 
most of the other methods we reviewed, and it preserves the kinematics of the 
mechanism only for what concerns the reciprocal rotation of the faces, not the 
translation. Furthermore, because every internal vertex split into multiple de-
gree-4 flat-foldable vertices the DOF of the pattern may change to one. How-
ever, even if the translations are not preserved, no holes appear during motion, 
because the structure at the vertex of the split line has its own rigid cinematic 
that preserve material continuity. Lastly, because doubling the lines spaces the 
faces, to be able to achieve a result with the same dimensions of the original 
non-doubled model, the original faces must be resized and rearranged case by 
case after doubling the critical creases. In the following case studies, we tested 
different thickening method, but we ended up always using the “Double line” 
method by Tachi and Hull because, for our purposes, it was more efficient than 
other techniques.

6.2. Case Study – One-DOF, Developable, Non-Flat Rigid-Foldable 
Ladder2

The first proposed case study is a one-DOF, developable, rigid non-flat-foldable 
ladder. This design is an exemplification of a one-DOF thick structure with 
multiple blocking degree-4 vertices. The structure self-blocks (or self-arrests) 
when the blocking creases reach the maximum fold-angle of 180°. The main 
issues raised during the design phase were: making a one-DOF rigid foldable 
mechanism that self-blocks at a ladder-shaped configuration; dimensioning the 
steps correctly while preserving the developability of the ladder; thicken the 
panels without losing the original kinematics and making it self-supporting and 
self-balanced. All these issues influenced the design process from the early de-
sign stages and will be discussed further in the next sections, thus even if the 
generative process is presented as a linear sequence of steps, for clarity’s sake, 
the reader should keep in mind that most of the stages of the process were de-
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veloped in parallel, and they were redesigned and discussed several times before 
reaching the final iteration. 

6.2.1. Preliminary Paper Prototype and Digitalization
When designing a new origami-inspired object often the first step is folding a 
paper mock-up, it helps materializing the idea and testing if it works as imagined. 
Also, it helps to make small changes to the initial pattern because, as long as the 
paper does not tear, the developability of the paper is preserved and guaranteed. 
This preliminary phase is crucial, and it helps the designer understanding fast how 
the global shape would look. However, because the paper model is elastic and 
flexible, it may mislead the understating of some formal or kinetic aspects, espe-
cially for what concerns the rigid foldability and the identification of the blocking 
configuration. Thus, it is recommended as from now, to convert the paper model 
into a much more accurate digital model. The preliminary digital model is not 
only useful to verify the rigid foldability and to make the first considerations about 
the shaping and folding motion, but it is the basic requirement for later accurate 
proportioning, and it is the fundamental starting point for the thickening phase.

Figure 121 - Ladder concept by grafting a chain of three Miura-like vertices.

The concept of the ladder came from the grafting of a Miura-ori pattern as 
shown in Figure 121. Similar patterns are used in the aerospace industry for 
making ultra-light sandwich panels (Klett & Drechsler, 2011). The preliminary 
digitalized prototype of the ladder was designed by trial-and-error method. The 
model is very simple and because of that it is possible to get sufficiently accu-
rate results using only reference points and simple graphical constructions. By 
trial-and-error method we tried to give a first rough shaping to the ladder. We 
angled the rises of the steps to make it steeper while keeping the treads long 
enough to fit a foot, and we dimensioned the steps to make the external corners 
aligned to the same oblique crease generated from the exceeding paper of the 
highest step as shown in Figure 122.
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6.2.2. Fine-Tuning the Dimensions of the Ladder with Trigonometry
Because the model is very simple, it is possible to get sufficiently accurate results 
by applying the trial-and-error method, only using reference points and simple 
graphical constructions. Although, to enhance even more the accuracy and to 
have total control on the shape and proportions of the model, we propose below 
a method based on simple mathematical formulations that allow the designer 
to get the wanted blocked state with fixed proportions without even needing 
to fold the CP. This method is a more accurate alternative of the trial-and-error 
method, but it may return similar results.

We start fixing some parameters according to the desired shape, refer to Figure 123:
• The angle ρ4 between each riser and tread of each step is fixed (ρ4 = 80°).
• Each riser and tread must be rectangular (θ4 = θ3 = 90°).
• The risers and the treads lengths (l) must be equal (to have the ribs O—2– 

and 6—5 aligned at blocked state).
• Each step height (h) is fixed (30 cm).

Figure 122 - The unfolding of the preliminary digitalized model of the ladder with 
angled rises.

Figure 123 - Ladder design fixing some variables (θ4 = θ3 = 90°, θ2 = 180° – θ1, 
h = 30cm, ρ4 = 80°). θ1 must be found.
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Because the ladder has mirror symmetry, we can focus on one half of the pat-
tern. The half pattern presents a chain of degree-4 vertices which is known to be 
a one-DOF mechanism (Tachi, 2011a). Also, because all the vertices have the 
same pattern, they all block at the same time. This allows us to focus only on one 
vertex (refer to vertex O in Figure 123). The creases O—1–, O—3–, and O—4– have fixed 
lengths and angles, thus the only crease that needs to be tuned is O—2–, which is 
also the crease that blocks the degree-4 vertex. To find the O—2– direction, either 
θ1 or θ2 are needed. Because θ1 + θ2 = 180°, we have θ2 = 180° – θ1. So, finding 
θ1 is all we need to solve the problem. The fixed parameters are the fold angle 
ρ4 = 180°, the angles θ4 = θ3 = 90°, θ2 = 180° – θ1, and θ1 + θ2 + θ3 + θ4 = 360°. 
If we substitute these values into the equation 13 and rearranging it, we obtain 
the following simplified expression:

𝜃𝜃* =
*ST°-5&

.
. (33)

Once we know all the angles, we can calculate the riser and the tread length (l), 
fixing h and ρ4:

𝑂𝑂1eeee = 𝑂𝑂3eeee = 𝑂𝑂4eeee = 𝑙𝑙 = C
!0, 5&

= +T	J<
!0, ST°

= 30.46	𝑐𝑐𝑐𝑐. (34)

𝑂𝑂2eeee = 2(𝑂𝑂1eeee) 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃* = 2 × 30.46	𝑐𝑐𝑐𝑐× 𝑐𝑐𝑐𝑐𝑐𝑐 50° 	= 39.16	𝑐𝑐𝑐𝑐. (35)

It is also possible to calculate O—1–, O—3–, O—4– = l and ρ4 fixing h and d using the 
Pythagorean theorem and trigonometry:

𝑂𝑂1eeee, 𝑂𝑂3eeee, 𝑂𝑂4eeee = 𝑙𝑙 = C$:@$

.@
	. (36)

𝜌𝜌/ = 90° − 𝑐𝑐𝑐𝑐𝑐𝑐-* pC
B
q. (37)

6.2.3. Thickening – “Offset Panels” Method
Once defined the zero-thickness pattern we moved to the thickening phase. The 
first method we tested was the “Offset panels” method. The Figure 124 shows the 
steps that we followed to design the first thick version of the ladder. To be able to 
offset the panels properly we folded and unfolded continuously the ladder, so we 
were able to visualize and measure better the correct offset distances and position 
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of the vertical connections of the joints. This method is convenient because it 
allows the designer to animate the thickened surface (Figure 125) by matching 
the transformations of the original zero-thickness animated folded surface. This is 
possible because the kinematics of the faces is perfectly preserved after thickening. 
However, due to the multiple overlapping layers, we had to cut numerous parts 
in correspondence of the hinges to avoid collisions, this problem caused the phys-
ical prototype to have much floppier behaviour than expected. Furthermore, the 
overlapping layers forced us to double the offset distance of the panel for every 
step, this caused the unfolded model to be too thick and not very useful for actual 
applications. For all these cons, we had to move to another thickening method.

Figure 124 - Thicken the ladder with “Offset panels”.

Figure 125 - Folding of the ladder thickened with “Offset panels” technique.

6.2.4. Thickening – “Tapered Panels” Method
The next thickening method we tested was the “Tapered panels” method. This 
method is convenient because it does not require to move the faces or the creas-
es. The method consists into extruding the faces in one direction (perpendicular 
to the plane of the unfolded model) and taper the panels along the bisecting 
planes, relative to each pair of adjacent faces, at the blocked configuration. So far, 
everything appears easy and straightforward, however, at the blocked configura-
tion, there are faces that touch, and because the bisecting plane of two touching 
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faces lies into the same plane of the two faces themselves, we cannot add thickness 
to those faces at their maximum fold angle. So, we must stop folding before reach-
ing the blocking configuration so that the faces are spaced of a certain amount 
allowing us to thicken and taper the faces without self-intersections or excessive 
tapering angles. Stopping the folding before reaching the blocking configuration, 
however, will prevent the model to reach the three-dimensional configuration that 
we designed in the first place. Thus, to be able to apply this thickening technique 
we must change a little bit the pattern to be able to reach the wanted three-dimen-
sional configuration before reaching the blocked state. In Figure 126 you can see 
how we corrected the pattern of each vertex. With this new pattern, the face on 
the side reaches the vertical position before reaching the blocking configuration so 
that there is room to add a certain thickness between the faces ABOG and BCO. 
Then, we corrected the whole pattern according to the single-vertex test, and we 
folded it to reach the semi-folded configuration. After that, we thickened the pan-
els by extruding them along the direction of their normal vectors to the inside, 
and we tapered them slicing the extruded panels with the bisecting planes between 
each pair of adjacent faces as shown in Figure 127.

Figure 126 - Correcting the pattern to make the top and the side faces blocking at 
a fold angle greater than 90°.

Figure 127 - Thickened ladder from the bottom, with tapered panels method.



168 Origami Design Strategies for Architects and Designers

This method is efficient and reliable; however, the adjacent panels are contacting 
only along the faces of the panels that are resultant from the tapering. Thus, the 
new blocked configuration is less stable than the previous blocked configuration 
because the contacting areas are smaller, and this may generate additional stress-
es on the hinges.

We may find a more stable blocked configuration by spacing for a smaller 
amount the blocking faces while keeping the same thickness of the panels, or 
by keeping the same semi-folded configuration and increasing the thickness. 
In both ways, after tapered the panels, the contacting area would be larger. 
However, such type of tapered panels is harder to fabricate, because traditional 
folding machines are not designed to taper the panel on such a wide area. It may 
be possible to fabricate the ladder with this thickening solution by tapering the 
panels one by one by CNC milling and glueing them onto a thin membrane 
or film, but because we wanted to limit the assembling, we decided to test a 
different thickening method.

6.2.5. Thickening – “Double Line” Method
The last thickening method we applied was the “Double line” method by Hull 
and Tachi. In the original approach that they propose, all the creases are dou-
bled and the internal vertices resulting from the doubling process are forced to 
be always flat-foldable, in this way there is only one possible solution for any 
flat-foldable CP. However, the ladder is a non-flat-foldable special case, thus 
we discovered that there is no need to double all the creases to be able to add 
thickness while preserving the maximum fold angle. Furthermore, to increase 
the design freedom, we did not constrain the internal vertices to be flat-foldable.

The ladder has mirror symmetry and even if all the vertices have the same 
CPs, some of them have inverted mountain\valley assignments. Thus, there are 
only two types of degree-4 non-flat-foldable vertices. If we add thickness to the 
panels downwards, we can solve the vertices with the valley blocking fold simply 
applying the “Tapered panels” method, thus we focused only on the vertex with 
the mountain blocking fold as shown in Figure 128.

We started doubling the mountain blocking crease, and after that, we solved 
the intersections with other existing creases by doubling only one of the other 
creases. In Figure 128 we illustrated two possible solutions with two doubled 
creases. Nevertheless, the ladder has multiple vertices connected, thus the il-
lustrated solution where the creases 01 and 04 are doubled, is not applicable, 
because to continue the pattern of the ladder we should attach the crease 04 to 
the crease 02 of the adjacent molecule, which are not compatible because they 
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are respectively a doubled and non-doubled crease. Thus, the solution where the 
creases 01 and 03 are doubled is the only valid solution in this case. After we 
decided which were the creases that needed to be doubled and because we chose 
to not constrain the internal vertices to be flat-foldable, we had to choose the 
offset distance and the angle of the crease connecting the two new vertices. In 
Figure 129 two possible solutions are illustrated. The creases AJ and BK are par-
allel, and their offset distance is equal in both cases. What it is changing are the 
angles θj1,2 and θk1,2, that make in the first case two non-flat-foldable vertices, 
and in the second case two flat-foldable vertices. Changing the internal angles of 
the vertices changes the distance of the parallel faces AHIJ and BCK at blocked 
state, thus the maximum allowed thickness of the panels also changes. The case 
with internal flat-foldable vertices is apparently more efficient because with the 
same offset we can get a result where there is more space between the faces AJHI 
and BCK, thus apparently, we can use thicker panels. However, the thickness 
of the face EFJK, which is one of the most stressed during use, is almost halved 
because of a higher tapering angle. Keeping tapering angles small makes the 
thickness more homogeneous, and thus also the loads are better distributed. 
Furthermore, with smaller tapering angles it is easier to be produced by CNC 
or folding machines. Moreover, in the first case the face EFJK is more perpen-
dicular to the ground, thus it can transmit the load better to the bottom face.

Once designed the single vertex, we repeated the same structure to every equal 
vertex of the ladder. This method allowed us to preserve the relative rotations of 
the thick faces while keeping thin enough the unfolded configuration. However, 
the conversion from thin to thick model while keeping the same height and width 
of the steps was not trivial. After doubled the critical creases and solved all the 
internal vertices, we followed the process illustrated in Figure 130 to rectify the 
shape and dimension of the ladder matching the concept model dimensions.

Figure 128 - Valid “Double line” solutions of a degree-4 vertex when the crease 01 
is mountain and blocks.
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First, we identified the critical creases that we needed to double, and we added 
new strips of paper (light blue) to the surface following the angles defined previ-
ously on the single vertex. Then, because we expanded the surface and we added 

Figure 129 - Comparison of different internal vertices after doubling the internal 
critical crease in a single degree-4 corner.

Figure 130 - Design process of the ladder, from the concept to the model with thick 
panels.
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some creases, the final dimensions and overall shape at folded state changed a 
little bit, thus we rectified it by adding missing parts and resizing everything to 
match the concept prototype as much as possible. Lastly, we added the thickness 
and we tapered the panels by bisecting the angles at folded configuration. As a 
final step before building the prototype, we simulated the folding and unfolding 
with thick panels. We checked and corrected possible problems like self-inter-
sections, colliding panels, missing tapers, missing parts etc.

Figure 131 - Folding of the ladder thickened with “Double line” method.

We built the first prototype by 3D printing the tapered panels and assem-
bling them by stitching them with common adhesive tape. After verified that 
it worked as expected, we built a full-size prototype by CNC milling wooden 
panels and gluing them on a thin membrane. The prototype gave us some hints 
about the stiffness of the structure and the possible problems that we will discuss 
in the next section.

Figure 132 - Full-scale wooden prototype, folding test.
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6.2.6. Stability Problems and Possible Solutions
The first problem we tried to solve was that the ladder tended to collapse when 
loaded. Because of its shape and its particular kinematics, surprisingly applying 
loads on the front two vertices of the first two steps did not interfere with the equi-
librium state. However, when we applied two loads on the two back corners of 
the last step, it caused the collapsing of the whole ladder (as shown in Figure 133).

Figure 133 - Collapsing of the model of the ladder under given loads.

The three solutions in Figure 134 are possible locking systems that preserve the 
CP and prevent the collapsing of the ladder once loaded. All three systems: hooks, 
clips, and belt, are aimed to keep the ladder in position when loaded and they are 
all removable mechanisms which allow to fold and unfold the ladder fast. A differ-
ent solution that helps keeping the ladder at blocked configuration is the solution 
proposed in Figure 135. This solution does not need any additional device but re-
quires anchoring the ladder to a vertical support like a wall or a self-supported pan-
el. This solution utilizes the gravity to keep the ladder at the folded configuration It 
is based on the fact that anchoring the side panel distributes the loads in a way that 
when a user steps on it the ladder tends to fold and to lock. The ladder so anchored 
once reached the blocked configuration, will tend to keep it as long as we apply a 
vertical force from the bottom directed upward. Another possible solution may be 
aimed to change a bit the pattern to angle the side faces and make them converge 
toward the base so that the forces transmitted to the side faces will point inward 
and will help keeping the ladder closed, however, this solution may fail with elastic 
panels and it would decrease the area of the footing making it less stable.

Another issue, raised by the physical simulations, was a problem encountered 
while folding the ladder caused by the well-known pop-up and pop-down problem 
that we already mentioned in 4.8.3. This problem is critical, and it may cause the 
one-DOF mechanism to fold incorrectly or even to jam or break. This problem is 
caused by the fact that the degree-4 vertices have two possible folding modes where 
the mountain/valley assignment changes. At completely flat state there is no way 
to know whether a crease will start folding as a valley or a mountain crease. And 
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even if a single crease starts folding with a wrong assignment it will cause a jam in 
the mechanism. A possible solution may be, for example, shaping the wall in a way 
that it would be impossible to unfold completely the ladder. This would solve the 
problem because there are no bifurcations in the motion except at the unfolded 
state, thus skipping the unfolded state will exclude the critical points where pop-up 
and pop-down problems occur. Another solution may be using non-developable 
non-flat-foldable vertices that skips the completely unfolded state making it im-
possible to change the pop-up or pop-down assignment, because a planar unfolded 
configuration does not exist into non-developable vertices. However, these solutions 
have been both excluded for portable ladder because not having a completely flat 
configuration would have compromised the portability and the stocking efficiency. 
This design, thus, is preferable for ladders with a small number of steps where the 
pop-up\pop-down assignment can be controlled manually.3

Figure 134 - Possible systems to keep the ladder at the blocked state even under load.

Figure 135 - Self-supporting ladder attached to a wall, it keeps the folded 
configuration by gravity.
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6.3. Case Study – One-DOF, Developable, Non-Flat Rigid-Foldable Chair4

Designing an origami-like chair, presents some issues similar to the ones en-
countered while designing the ladder, like the rigid foldability, the DOF, the 
proportions, the thickness and stiffness of the panels, the centre of gravity and 
the equilibrium conditions, but in this case also the aesthetics and the ergo-
nomics must be taken into account. For simpler designs, it is possible to modify 
directly the unfolded CP being able to foresee the folded result easily without 
necessarily using complex mathematical formulations, as we did for the ladder. 
However, while designing a piece of furniture, especially when there is ergonom-
ics involved, it would be better for designers to develop a system to control the 
shape at the blocked configuration directly in three-dimensions, while preserv-
ing the developability, without necessarily needing to work on the unfolded CP. 
Nevertheless, modifying the folded state without losing the developability may 
not be trivial, because moving a single vertex of the model, without particular 
precautions, will change the planar angles summation at the vertex making the 
model no more developable instantly. Therefore, in the next sections, we show 
the workflow we followed that allowed us to realize a one-DOF developable 
rigid-foldable self-blocking chair working directly in three-dimensional space 
while preserving the developability of the unfolded planar CP.

6.3.1. Preliminary Paper Prototype

Figure 136 - The unfolding of the preliminary digitalized model of the chair.

In section 6.2.6 we saw that, if not correctly designed, a pattern may be not 
suitable to self-lock under certain loads conditions. For the ladder we solved 
that problem by glueing the side face to a wall so that we were able to achieve a 
result where once added loads on the steps, the faces tended to push one against 
the other making it block firmly; or we studied some other portable solutions 
involving additional locking systems like clips, hooks, and belts. However, to 
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simplify the usability of the chair, we tried to avoid external locking systems by 
exploiting the kinematics of the pattern itself and the force of gravity making 
it self-lockable (we will show later that in the first full-size prototype this was 
not achieved perfectly, in fact we had to stabilise the chair with external locking 
devices. However, we still think that a perfect self-locking chair is possible with 
a proper manufacturing process and selection of materials). Thus, this time, we 
considered this necessity from the early stages, and, after a certain number of pa-
per test prototypes, we found a solution that apparently was working as wanted.

However, those models were not returning the results we expected, because 
even with very small forces the paper bent and the chair collapsed. Thus, to 
test the behaviour with rigid faces, we digitalized the model (Figure 136) we 
tested its rigid kinematics by folding and unfolding it with the same algorithm 
we presented in 4.8.1, then we added loads on the front vertices while keeping 
the faces planar and rigid as we did for the ladder. The simulation confirmed 
that the chair is very stable under vertical loads as shown in Figure 137, and as 
more loads, we add as more it tends to tighten at blocked configuration. We 
also tested the structural stability under rotating torsional movement around 
the Z-axis through the centre of gravity, but as far as the faces remain rigid the 
digital model of the chair does not collapse. Nevertheless, without properly rigid 
panels this perfect rigid behaviour may fail, thus the prototyping phase and the 
testing phase with different materials and thicknesses are crucial. A more specific 
analysis about the collapsing conditions under certain stresses, considering elas-
ticity, and precise analysis of deformations may also be useful, but we decided to 
skip these digital simulations and test the resistance and the elastic deformations 
directly on the physical full-scale prototype.

Figure 137 - Digital physical simulation of the chair under given loads; the more 
loads we add, the more the chair tighten at blocked configuration as far as the 
faces remain rigid.
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6.3.2. Thickening – “Double Line” Method

Figure 138 - Design process of the chair, from the concept to the model with thick 
panels.

To further enhance the ergonomics, to verify the stiffness and to correct the di-
mensioning of the chair we realized a prototype at human-scale. Thus, we convert-
ed the zero-thickness prototype to a thick prototype, and based on the experience 
with the ladder, we used the “Double line” method, which appeared to be the 
most suitable also for this application. The workflow we followed for thickening 
the chair is illustrated in Figure 138. In “Double line” method we need to double 
the critical creases and some connected creases, and the first prototype of the chair 
had only two blocking vertices in the seat, with only two blocking creases. Thus, 
we doubled the two blocking creases and we solved the two blocking vertices by 
doubling also the crease that connects them. Even if in this case it is not crucial, 
we designed the two resulting vertices as flat foldable vertices. The back part did 
not need any double crease because none of its creases blocks and the only double 
crease shared with the seat is one of the boundary creases of the glued faces, thus it 
is sufficient to offset that crease toward the unglued face to be able to not interfere 
with the back part. After doubled the creases, we refolded the model matching the 
original maximum fold angle of the model without double creases, and we added 
thickness to the panels. The maximum thickness of the panels that we can use 
without intersecting the panels, is half the distance between the blocking faces. 
However, the offset distance of the doubled creases in the CP does not correspond 
to the distance of the faces when doubled the creases, because the angle between 
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adjacent faces is different by 90°, as shown in Figure 139. Because of that, in order 
to calculate the offset distance, given the thickness of the panels, we need to calcu-
late or measure the fold angles of the two doubled creases (Figure 140) and apply 
the simple trigonometry formulations reported below.

Apply the following formulation to calculate the offset distance d given the 
thickness of the panels ℎ

2
 and the fold angles ρ1 and ρ2:

𝑑𝑑 =
ℎ

𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎
(38)

Figure 139 - Changing the offset of the double lines changes the space between 
the blocking faces.

Figure 140 - Section A and B, and general notation.
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Where:
a = 180°
h = 2 × thickness of the panel 
d = double line offset distance

Once doubled the critical creases with the correct offset, we thickened the panels 
and tapered them. The tapering angle is given by half the fold angle at blocked 
state. Before building a human scale prototype the project was tested with a 
3D-printed 1:5 mock-up. The 3D-printed thick panels were glued to a sheet of 
plastic film (Tyvek) that functioned as a hinge between adjacent panels. After 
verified the correct behaviour of the small-scale model, a 1:1 prototype was built 
with a plastic sandwich panel with a thickness of 9 mm, the model was cut and 
folded with a CNC machine.

6.3.3. Blocked Degree-4 Vertex – From a Non-Developable Corner of 3 Faces
The tests we made on human-sized prototype highlighted some issues about the 
ergonomics, the weight, the portability, the stiffness and the size. We started 
correcting all these problems by re-modelling the zero-thickness digital mod-
el starting from the blocking vertices. To enhance the stiffness of the seat, we 
decided to change the pattern of the structure on the front making all the four 
vertices of the seat blocking at the same time, to do so we had to develop a 
method to work directly on the three-dimensional model while preserving the 
developability of the pattern.

The method we propose here is based on graphical constructions and a few 
trivial algebraic calculations. This method allows the designer to transform any 
non-developable corner of three faces into a developable degree-4 non-flat-fold-
able vertex. In this way, the designer can work directly on the three-dimensional 
folded model instead of working only on the unfolded CP. This method uses 
a zero-thickness mesh with planar faces, thus the thickness of the panels is not 
considered yet.

Any three-faces non-developable corner can be developed by cutting along 
any of the three edges splitting two faces. Thus, when we develop it, a gap will 
form between the two split faces.

Because we want to make it developable, we must fill that gap by extending 
one of the two split faces matching the bisector of the gap and adding an addi-
tional face in the remaining empty angle. Once refolded the three-faces corner 
the added face and the extended face will exceed outside the corner along the 
same plane of the extended faces. For each edge, there are only two possible 
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directions to which the exceeding part can be oriented. Thus, the possible devel-
opable degree-4 single vertex patterns, into which any three-faces corner can be 
transformed, are six in total as shown in Figure 141.

Figure 141 - On the left: all the possible developments of the same three-faces 
corner cutting along the 3 edges; on the right: all the possible degree-4 single 
vertex patterns without cuts.

To transform any non-developable corner of three faces into a developable de-
gree-4 vertex by graphical approach, apply the following steps. (1) Chose the edge 
to be cut, of a given three-faces three-dimensional corner (three possible choices). 
(2) Extend one of the faces adjacent to the chosen edge (two possible choices). (3) 
Measure the total angle at the corner of the 3 starting faces, subtract that angle 
to 360°, and divide the result by two. (4) Draw a reference line along the chosen 
edge. (5) Rotate the reference line around the corner of the calculated angle (the 
rotation happens in the same plane of the extended face, with the centre of rota-
tion in the corner). (6) Cut the extended face with the rotated reference line. (7) 
Draw an overlapped triangle on the outside triangular extrusion to close the loop 
of 4 faces. (8) This poly-surface made by 4 faces can now be developed in-plane 
without ripping, stretching or bending it. The proposed method has been imple-
mented using Grasshopper (Rutten, n.d.)5 (Foschi, 2019). Applying this method 
to differently connected vertices allows the designer to obtain a CP where different 
multiple vertices block exactly at the same time.

6.3.4. Adjusting Shape and Dimensions to Improve Ergonomics and Stability
The method explained in the previous section (6.3.3) comes in handy to rede-
sign the chair seat. Given that the chair has mirror symmetry, we focused only 
on one half of it, modelling only two of the four vertices of the seat as shown 
in Figure 142. The dimensions, the shape and the global proportions of the 
three-dimensional zero-thickness model were corrected according to the prob-
lems highlighted by the prototype at human-size. After redesigned all the four 
corners of the seat as blocking vertices, the perimeter of the pattern was not rec-
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tangular, so with minor additional tweaking, we were able to restore the rectan-
gular perimeter of the CP as shown in Figure 143 without losing the blocking 
four vertices. Lastly, we added some details like the hole for the handle, and the 
curve cuts for the armrests and we re-applied the thickening method based on 
“Double line” technique explained in 6.3.2.

Figure 142 - Designing the chair seat with 4 symmetric degree-4 self-blocking vertices.

6.3.5. Human-Size Prototype of the Chair – Critical Observations
In Figure 144 we reported the final digital model which was subsequently pro-
duced by Kawakami Sangyo company by CNC cutting and attaching two plas-
tic sandwich boards that they call “Plaperl”. This sandwich panel consists of two 
plastic boards with vacuum-formed cylinder in between. It has excellent rigidity 

Figure 143 - Improved version of the foldable chair, all the degree-4 vertices of the 
seat block at the same time, and the perimeter of the unfolded CP is rectangular.
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and lightweight and it is made of polyolefin that does not create toxic gases such 
as hydrogen chloride and dioxin. Thus, it is environmentally friendly and excel-
lent in recycling (http://www.putiputi.co.jp/en/). However, this material may 
not be the optimal choice for what concerns the aesthetics, because once creased 
or cut it exposes the inside core which is not very appealing. The final physical 
prototype at human-scale is shown in Figure 145.

Figure 144 - Corrected design with better size, weight and ergonomics.

Figure 145 - Unfolded and folded chair prototype at human-scale.

The human-size prototype works almost as expected, but it has some critical 
points that should be studied further, discussed and improved. We report be-
low some observations about the human-scale prototype that were also possible 
thanks to the comments of the users that examined the product.

• It has a unique original look that exposes the production process and 
folding function without losing the ergonomic shape and its elegant at-
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tractive simplicity. However, the sandwich panel exposes the core section 
at the edges of the panels, and in some other areas, which is acceptable for 
study experimental models or temporary use, but not for a final product 
and long-term use. The research of a better material is still in progress, we 
are thinking to use a semi-rigid felt-based material which is light enough, 
comfortable, but still rigid, easy to crease and durable even if folded and 
unfolded several times.

• The structural stability of the chair at folded state is satisfactory, it has no 
tendency of instability in rotational movement around the vertical axis, 
but when loaded it tends to generate a local buckling at the midpoint 
of the front mountain fold in the seat. We expected this kind of elastic/
plastic deformations in some areas of the chair, the prototype was also 
made to verify this kind of problems in all day use. To solve it we could 
use a thicker panel for the seat or add a reinforced ribbon where the 
deformations occur.

• The minimal thickness when unfolded is remarkable, however, the over-
all dimension at flat state is three times larger than a typical foldable chair 
with armrests. To solve this problem the pattern may be improved by 
adding one or more transversal creases that activate only at flat state to be 
able to fold it in half once flattened. An additional crease in the middle 
may help to avoid the buckling effect mentioned earlier, however, it may 
also compromise the stiffens at folded state, more tests are needed before 
drawing any conclusions.

• The panels used are not perfectly rigid, thus the bending of the faces 
causes the chair to not behave like a perfect rigid one-DOF mechanism. 
Unfortunately, we have no examples of realized origami mechanisms 
that behave like perfect one-DOF rigid mechanisms as in the simula-
tions, thus a non-perfect rigid behaviour was expected. Filipov, Tachi and 
Paulino studied an approach to improve the preservation of rigidity dur-
ing folding and unfolding by over-constraining the faces, glueing more 
folded sheets together with particular orientations to counterbalance the 
dynamic deformations (Filipov et al., 2015). However, this approach, for 
now, has been only tested on tubular structures, which are not compa-
rable to the chair at its actual version. Nevertheless, in this project, there 
are a small number of internal vertices, and the actuation of the folding 
and unfolding can be easily helped by the user even if it is not a perfect 
rigid one-DOF mechanism. Thus, we considered acceptable a non-per-
fect rigid behaviour for now. In addition, the chosen material, and the 
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manufacturing process are not optimal yet, thus improving these points 
would probably improve also the overall kinematics of the chair.

• Residual deformation tends to open the chair at flat state. This prob-
lem is probably also solvable changing the material, however, the residual 
deformation in this type of foldable furniture can be considered as an 
advantage because the memory of the material helps to avoid pop-up and 
pop-down problems at the beginning of the folding phase. We added a 
clip and a belt to keep the model flat, the same belt is used to stabilize the 
chair at the folded configuration.

• Wrong cut angles make the adjacent panels to push one against each 
other causing a resistance when almost reached the folded configuration. 
This is a crucial problem, the tapering of the panels is strictly related to 
the fold angle at folded configuration, thus a wrong tapering angle may 
cause instability, or it may cause the mechanism to block before reaching 
the final configuration. Fortunately, even if the CNC machine used is not 
designed to cut at any angle, we were able to achieve a satisfactory result 
exploiting the elasticity of the material. However, there is still room of 
improvement, because the pushing panels causes the chair to hardly keep 
the folded configuration and it causes a misalignment of some panels 
(especially in the armrests), we solved this problem by adding external 
locking devices as we did for the ladder design, which help to stabilize 
and lock the chair at the correct folded configuration.
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CONCLUSIONS

In the last decades, in the field of architecture, furniture, manufacturing and 
fashion, origami was often taken as a reference for its functional and orna-
mental properties. The analysis of several projects inspired to origami, carried 
out in this book, reveals that in the field of permanent architecture not many 
of them uses origami as a reference for functional purposes, while the oppo-
site can be observed in the other analysed fields. This may be caused by four 
main reasons: the lack of digital tools specifically designed for precise origami 
modelling; the fact that designing origami is hard especially at bigger scale or 
for kinetic applications where high accuracy is needed; the lack of specialized 
workforce that can build origami-like structures at architectonic scale; and the 
fact that kinetic architecture has higher costs of realization and maintenance 
than static architecture.

In this book we focused on trying to give solutions for the former two prob-
lems, which are a matter of drawing with the tools of descriptive geometry. 
Origami has endless possibilities, but the digital applications for designers have 
limited tools that can help designing foldable structures. We contributed to 
implement those tools by presenting a collection of algorithms, procedures, 
examples and case studies that the designers can use as starting points or as 
references for their projects. To do that we extensively investigated three main 
topics: solving the kinematics of given patterns from simple to complex; de-
fining procedures to design a pattern while working directly on the folded 3D 
configuration guaranteeing that it remains developable while we manipulate it; 
and addressing some problems that may arise during fabrication, for example 
the thickening of the faces.

We studied these topics with the synthetic approach, which is the approach 
usually used by architects and designers, which is based on geometrical con-
structions. In most of the cases involving designing with origami, the synthet-
ic method is highly preferable to the analytical method because it permits to 
visualise, and thus understand better and evolve procedures and results. Fur-
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thermore, it is easier to be used by who do not have a background in mathemat-
ics or computer science, while still returning highly accurate results. To study 
the procedures presented, we used Grasshopper for Rhinoceros, because it is one 
of the most used tools that architects and designers already use for parametric 
and computational modelling. This node-based tool is not the only tool capable 
to perform such operations, in fact specific applications for designing digital 
origami exist, however they usually absolve very specific tasks which do not 
provide a flexible enough workflow for most projects. On the contrary, with 
the parametrical approach, the possibilities are endless, and we can establish 
relations between other digital objects in the same virtual environment, so that 
we can extract from them pieces of information (e.g. the distance from other 
buildings, the proportions and shape of the structure, the position of the sun 
and the direction of the light, the length of anchoring cables or support rails) 
and we can use them as design constraints or as references and inputs to generate 
the origami structure. We also highlighted the importance of working with soft-
ware already used by professionals, because limiting the file conversions between 
different applications helps decreasing problems like incompatibility and data 
loss that may slow down the workflow.

With these premises, we made a catalogue of algorithms aimed to generate 
and solve the kinematics of specific rigid-foldable patterns, starting from the 
easiest cases (patterns with a single crease) up to more complex cases (patterns 
with multiple internal degree>4 vertices). These algorithms are a robust starting 
point for those designers who need to study the kinematics of their original 
patterns. We verified the validity, robustness and usefulness of the presented 
catalogue of generative algorithms by exemplifying their use into possible design 
workflows of buildings, furniture and objects, reproducing some existing pro-
jects. Thanks to the parametrical approach, the initial shapes, which mimicked 
the ones of the reference projects, evolved into different objects by just changing 
the input values.

Then, we focused on finding solutions for fabrication-related problems. In 
this context the case studies of the foldable chair and a foldable ladder allowed 
us to explore every generative step from start to finish, from the idea to the pro-
totyping, passing from the study of kinematics, stability, flexibility, anchoring, 
locking and finally thickening. We studied and tested many different known 
thickening methods, and we identified the most suitable one for our cases: the 
“Double line” method by Tachi and Hull.

Lastly, we highlighted the importance of designing by comparing the phys-
ical paper prototype with the digital model because both approximate some 
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aspects of the final thick-panels prototype. Both the physical and the digital 
models are not self-sufficient, and we must always compare them to limit the 
risk of misinterpretation and bad designing.

This is the content unravelled in this book, however a lot could still be said 
about the field of applied origami. Future works may focus on non-developa-
ble degree-4 vertices, because their characteristic of being single-flat-foldable or 
double-flat-foldable has not been extensively studied yet and might hide inter-
esting properties to be exploited in many fields. It may open new possibilities to 
solve the pop-up and pop-down problem in one-DOF mechanisms, and at the 
same time, degree-4 non-developable vertices can preserve or even improve the 
compactness of the folded and unfolded pattern while still having a self-block-
ing configuration (e.g. both the ladder and the chair designs could benefit from 
this type of vertices). Improving the chair and the ladder are works in progress 
and will eventually be mass-produced in the future.

For what concerns architecture it may be challenging and inspiring to fur-
ther develop the field of responsive folded surfaces, as we did not explore it in 
depth in this book, and it is a major topic in the field of kinetic architecture. 
Another interesting ongoing research by our research group is about the topic 
of the elastic deformations and soft curve folds in digital folding simulations.

In conclusion, our wish is that this text inspired those researchers who are 
already into applied origami but also those designers that just approached this 
field while giving them the tools to develop original origami-related projects 
more smoothly and efficiently.
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Notes

Chapter 3. Definitions and Theorems

1 Some parts of this sections are also published 
in the paper Designing Self-Blocking Systems 
with Non-Flat-Foldable Degree-4 Vertices (Foschi 
& Tachi, 2018) written by the author of this 
book and the co-supervisor Tomohiro Tachi. 
The paper has been presented at the 7-OSME 
(The 7th International Meeting on Origami in 
Science, Mathematics and Education). The 
meeting took place in Oxford between 5th and 
7th September 2018.
2 Huffman himself defines it as “very difficult”.

Chapter 4. Constructive Methods for Solving 
the Kinematics of Origami

1 To visualize the full grasshopper defini-
tion refer to the Appendix B.2. p. 166 of the 
PhD thesis by the same author available at 
DOI:10.6092/unibo/amsdottorato/8871.
2 To visualize the full grasshopper definition 
refer to the Appendix B.9. pp. 171-172 of the 
PhD thesis by the same author available at 
DOI:10.6092/unibo/amsdottorato/8871.
3 To visualize the full grasshopper definition 
refer to the Appendix  B.10. pp. 173-175 of 
the PhD thesis by the same author available at 
DOI:10.6092/unibo/amsdottorato/8871.
4 The reader may find confusing the fact that 
in this section we used a different notation 
compared to the one used in sections 3.5.2, 
3.5.3, 3.6.1, although in the generative algo-
rithms there are already a lot of nodes con-
taining integer numbers, thus for the sake of 
clarity the use of numbers to indicate points it 
is not suggested. Furthermore, we used a rec-
tangular perimeter instead of a disc perimeter 
because some of the algorithms that generates 
a single vertex will be used as building blocks 
to generate more complex patterns where the 
rectangular shape is preferable.
5 To visualize the full grasshopper definition 
refer to the Appendix B.14. pp. 178-180 of 
the PhD thesis by the same author available at 
DOI:10.6092/unibo/amsdottorato/8871.
6 To visualize the full grasshopper definition 

refer to the Appendix B.18. pp. 183-184 of 
the PhD thesis by the same author available at 
DOI:10.6092/unibo/amsdottorato/8871.
7 To visualize the full grasshopper definition 
refer to the Appendix B.20. pp. 186-187 of 
the PhD thesis by the same author available 
at DOI:10.6092/unibo/ amsdottorato/8871.

Chapter 5. Pattern Design from a Given Shape

1 To visualize the full grasshopper definition 
refer to the Appendix C.1. pp. 189-190 of the 
PhD thesis by the same author available at 
DOI:10.6092/unibo/amsdottorato/8871.
2 To visualize the full grasshopper defini-
tion refer to the Appendix C.2. p. 191 of the 
PhD thesis by the same author available at 
DOI:10.6092/unibo/amsdottorato/8871.
3 To visualize the full grasshopper defini-
tion refer to the Appendix C.3. p. 192 of the 
PhD thesis by the same author available at 
DOI:10.6092/unibo/amsdottorato/8871.
4 To visualize the full grasshopper definition 
refer to the Appendix C.4.1. p. 193 of the 
PhD thesis by the same author available at 
DOI:10.6092/unibo/amsdottorato/8871.
5 This section is excerpts from the paper Con-
formation of a flexible Miura pattern on a dou-
ble curvature surface written by the author of 
this book. The paper has been presented at the 
AFGS 2017 (the 11th Asian Forum on Graph-
ic Science). The meeting took place in Tokyo 
between 6th and 10th August 2017. The paper 
is part of the results of the research carried out 
during the PhD course (Foschi, 2017).
6 To visualize the full grasshopper definition 
refer to the Appendix C.5.2. pp. 197-198 of 
the PhD thesis by the same author available at 
DOI:10.6092/unibo/amsdottorato/8871.
7 To visualize the full grasshopper definition 
refer to the Appendix C.5.3. pp. 199-200 of 
the PhD thesis by the same author available at 
DOI:10.6092/unibo/amsdottorato/8871.
8 To visualize the full grasshopper definition 
refer to the Appendix C.5.4. pp. 201-202 of 
the PhD thesis by the same author available at 
DOI:10.6092/unibo/amsdottorato/8871.
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3 The three-step ladder was further developed 
after these first iterations developed during 
my PhD thesis. Now is much more stable and 
does not require external locking devices to 
keep its folded configuration, however because 
it might become an actual product one day we 
cannot publish the result here yet.
4 The chair design is also published in the 
paper Designing Self-Blocking Systems with 
Non-Flat-Foldable Degree-4 Vertices written by 
the author of this book and Tomohiro Tachi, 
presented at the 7-OSME (The 7th International 
Meeting on Origami in Science, Mathematics 
and Education). The meeting took place in Ox-
ford between 5th and 7th September 2018. The 
paper is part of the results of the research carried 
out during the period abroad encouraged by the 
PhD course (Foschi & Tachi, 2018).
5 To visualize the full grasshopper definition 
refer to the Appendix D.1. pp. 204-205 of 
the PhD thesis by the same author available at 
DOI:10.6092/unibo/amsdottorato/8871.

Chapter 6. Fabrication-Aimed Designs

1 The study of the thickening methods presen-
ted in this chapter was in a large part referenced 
to the paper A Review of Thickness-Accommoda-
tion Techniques in Origami-Inspired Engineering 
by Lang et al. (Lang et al., 2018) and to Conside-
ring Manufacturing in the Design of Thick-Panel 
Origami Mechanisms by Crampton (Crampton, 
2017); we extended the study of these methods 
and we commented them case by case.
2 The ladder design is also published in the 
paper Designing Self-Blocking Systems with 
Non-Flat-Foldable Degree-4 Vertices written by 
the author of this book and Tomohiro Tachi, 
presented at the 7-OSME (The 7th International 
Meeting on Origami in Science, Mathematics 
and Education). The meeting took place in Ox-
ford between 5th and 7th September 2018. The 
paper is part of the results of the research carried 
out during the period abroad encouraged by the 
PhD course (Foschi & Tachi, 2018).
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2306-2317.

WolframResearch. (n.d.). Mathematica. Accessed January 10, 2019, from http://www.
wolfram.com/mathematica-home-edition/.

Yin, S. (2009). The Mathematics of Origami. Accessed January 16, 2018, from https://
sites.math.washington.edu/~morrow/336_09/papers/Sheri.pdf.

Zirbel, S. A., Lang, R. J., Thomson, M. W., Sigel, D. A., Walkemeyer, P. E., Trease, 
B. P., Magleby, S. P., Howell, L. L. (2013). Accommodating Thickness in Origa-
mi-Based Deployable Arrays. Journal of Mechanical Design, 135(11): 111005. https://
doi.org/10.1115/1.4025372.

Zwierzycki M.  (n.d.) Anemone. Accessed June 27,2018, from http://www.food4rhino.
com/app/anemone.



 199

GLOSSARY

Accordion:  A sequence of alternated mountain and valley creases.

Algorithm:   A process or a set of rules to be followed to reach an ex-
pected result.

Array:   Collection of elements values or variables identified by an 
index.

Asymmetric reverse fold:  A reverse fold which is not flat-foldable.

Base:   A folded geometrical shape that has a structure which 
simplifies the desired subject.

Bifurcated motion:   When there are two possible paths into the motion of a 
mechanism.

Blocking crease:   The crease that hits 180° first in a rigid-origami pattern 
and arrests the motion of the whole mechanism. They 
can be more than one (e.g. in flat-foldable patterns all the 
creases hit 180° at the same time).

Boolean value:   A value which is “1” or “0” or reciprocally “True” or 
“False”.

Box pleating:   A folding technique which allows only the use of creases 
multiple of 45°, they are usually built on a grid.

Branced list  A list of lists.

B-rep:   B-rep stands for “Boundary representation”. In solid 
modelling and computer-aided design, it represents a col-
lection of connected surfaces which defines the boundary 
between solid and non-solid.
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Chaotic type:   It is a family of folded surfaces which has a crease pattern 
characterized by an irregular mesh of creases.

Circle packing:  Placing circles on a surface so that they do not overlap.

Circle river method:   A folding technique that constructs the crease pattern by 
packing non-overlapping circles and rivers into the sur-
face which is usually a square.

Closed sink fold:   A sink fold which locks after folding. It usually cannot be 
performed rigidly, it needs to exploit the paper flexibility of-
ten crumpling or forcing the point while pushing it inside.

Cluster:  A group of items nested into a single new item.

Collapse:   This term describes the action of folding a crease pattern 
all at once to form the folded base.

Corrugation:   A particular type of tessellation that has no triple or more 
layers overlapped. The entire original surface of the paper 
is usually visible. The most common corrugations are in 
form of a wave with alternated peaks and valley.

CP:  Crease Pattern.

Crease:   The mark that appears on the paper after folding and un-
folding it.

Crease assignment:  Determination if a crease is mountain or valley.

Crease pattern:   The scheme of creases on a flat sheet that is necessary to 
fold a particular base.

Crimp fold:   A sequence of symmetric valley and mountain creases 
with respects of a central pre-existing crease.

Curved fold:   A fold that starts from a curved crease and exploits the 
flexibility of the material to configure the surface into a 
curved shape. It can be performed only with a flexible 
sheet of material unless the ruling is predetermined, thus 
the curve has to be discretized into a polygonal chain.

Degree-4 vertex:  A point inside a crease pattern where only four creases 
meet.
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Degree>4 vertex:   A point inside a crease pattern where more than four 
creases meet.

Developable:  That can be unrolled/unfolded on a plane.

Dihedral angle:   The angle between two faces adjacent to the same crease, it is 
defined as the angle between the normal vectors of the faces.

DOF:  Degree of freedom.

Edge:   A single linear segment which is on the perimeter of a face 
or a sheet of paper.

Flap:   A region paper which is usually attached to the rest of the 
base by a single edge. It can be composed of one or more 
layer of folded paper.

Flat-foldable:  A pattern that can be folded in the plane.

Fold:   Acronym of “Flexible Origami List Data-structure” is a 
file format (with extension .fold) for describing origami 
models with meshes. Developed by E. D. Demaine, J. S. 
Ku and R. J. Lang.

Fold angle:   The angle between the limbs of a fold. Usually, it is meas-
ured by measuring the angle between the normal vectors 
of the faces adjacent to the crease.

Folding mode:   Way to rigid-fold a pattern with a specific mountain/val-
ley assignment. Any pattern usually has more than one 
folding mode.

Generative algorithm:  A sequence of operations that generates a particular result.

Generatrix:   A moving point, line, or surface forming a line, surface, or 
solid.

Grafting:   Modifying a crease pattern by slicing it along existing 
creases and adding a strip of new paper in order to add 
new features.

Hex pleating:   A design technique similar to box pleating but that uses 
only angles multiple of 30°. It usually starts from a grid 
made by equilateral triangles.
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Hinge:  A movable joint which connects adjacent faces or flaps.

Huzita-Justin axioms:   A set of rules related to the mathematical principles of pa-
per folding. They explain the operations that can be made 
while folding a piece of paper in the plane.

Inside reverse fold:   A type of reverse fold which changes the direction of the 
tip of a flap keeping its layers inside the rest of the flap.

List:   Several connected items that are written consecutively 
one below the other.

Macro-molecule:  A group of molecules.

Miura pattern or Miura-ori:   It is a pattern made by rhomboid faces. It is famous to be 
one of the easiest one-DOF corrugations. It has been used 
by the engineer Koryo Miura to optimize the packing of 
solar panels for space travels.

Molecule:   Part of a crease pattern that can be attached to another 
molecule by matching the outer edges and vertices of the 
crease pattern with corresponding edges and vertices of a 
different molecule.

Mountain fold:   A crease that is convex from the observer point of view. It 
is usually drawn with a red dot-dot-dash line or dash-dot-
ted line.

Nodal definition:   A group of linked nodes that make an algorithm in Grass-
hopper. Once set off, these definitions perform specific 
operations in a digital environment.

Node:   The endpoint of a line in a scheme structured as a tree. 
In Grasshopper, the nodes are the components which 
perform specific operations that can be connected one to 
each other with wires.

Non-developable:  That cannot be unrolled/unfolded on a plane.

Non-flat-foldable:  A pattern that can not be folded in the plane.

Nurbs:   Acronym for “Non-uniform rational basis spline”. It is a 
mathematical model commonly used in computer graph-
ics for generating and representing curves and surfaces.
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Offset base:   A base with a shifted crease pattern compared with the 
traditional. The shifting preserves the angle between the 
creases and it creates space in some location of the crease 
pattern which can be used to add features.

Origami:   Japanese word formed by “Ori” meaning “Folding” and 
“Kami” meaning “Paper”. It is the art of folding paper 
usually performed without cutting or glueing. It is usually 
associated with Japanese culture.

Open sink fold:   A sink fold which does not lock after folding. It can 
usually be performed without flexing or crumpling the 
paper.

Outside reverse fold:   A type of reverse fold which changes the direction of 
the tip of a flap keeping its layers outside the rest of the 
flap.

Petal fold:   A combination of two squash folds narrowed to form a 
rhomboid shape. It is used to fold the petals of the tradi-
tional iris flower.

Planar curved fold:   A curved fold that lies on a plane. It is usually performed 
by reflecting a developable ruled surface with respect of a 
slicing plane.

Pleat fold:   A sequence of alternated mountain and valley creases 
through one or more layers of paper.

Pre-creasing:   Folding and unfolding a crease before collapsing it. It is 
preferred to perform a pre-creasing before complex steps.

Rabbit-ear fold:   A type of folding that makes a flap from a triangular face 
by folding along the three bisectors of the triangle.

Reciprocal diagram:   A graphical tool for understanding and designing struc-
tural systems. In origami is used to investigate the first 
order approximation of rigid origami and other kinetic 
properties.

Recursive tessellations:   Is a particular type of tessellation where the same folds 
are repeated in a smaller scale following the principles of 
fractals figures. (The hydrangea of Fujimoto is one of the 
most famous).
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Reverse fold:   A type of fold that changes the direction of a flap by par-
tially inverting the direction of the central mountain or 
valley crease.

Rigid-foldable:   Something that is foldable without flexing or stretching 
the faces.

River:   A curved or rectangular constant-width region of paper 
that space the flaps in a crease pattern.

Self-arrests:   When a rigid origami structure reaches a state where at 
least one crease hit a fold angle of 180°, thus the two ad-
jacent faces are colliding and co-planar.

Self-blocks:  See “Self-arrests”.

Semi-pre-folded:   It is said about origami patterns which are configured in 
an intermediate folding state which is not unfolded nor 
completely folded.

Shape-oriented type:   It is a family of folded surfaces which has a crease pattern 
characterized by creases arranged specifically to make a 
particularly shaped figure.

Shaping:   The act of sculpting the abstract geometric base to form 
the finished model. In shaping sometimes, the paper is 
stretched or folded with free-form or curved creases.

Single linear crease:   A non-curving crease that does not intersect any other 
crease.

Sink fold:   A fold performed on an internal vertex which forms a 
pointy flap. It consists in mirroring the point inside the 
model, by inverting the mountain valley assignment of 
the last tip of the point and pushing it inside while col-
lapsing it.

Squash fold:  A type of fold where a single multi-layered-flap is opened 
and its layers are spread and flattened (usually) symmet-
rically.

Structured type:   It is a family of folded surfaces which has a crease pattern 
characterized by groups of equal tiles.
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Swivel fold:   The asymmetric version of the squash fold, where usually 
there is a pivot point on one of the creases, around which 
the whole flap rotates while being spread and flattened.

Tessellation:   It is a particular type of origami made by equal mole-
cules that can be spread in all the directions, the limit 
is only the dimension of the paper used. Tessellations 
are usually exhibited showing the front and back side or 
with backlight.

Tile:   A portion of a crease pattern that can be assembled into 
crease patterns by matching circles and river boundaries.

Tree structure:   The branched structure that contains lists or items at dif-
ferent hierarchy levels.

Triangulated accordion:   An accordion where all the quadrangular faces are divided 
along the diagonals and all the creases are redefined with 
an alternated mountain/valley assignment.

Unfold:   Open a folded model obtaining, as a result, a creased sheet 
of paper.

Unfoldable:   Something that cannot be folded.

Unsink:  Removing a sink fold.

Valley fold:  A crease that is concave from the observer point of view. 
It is usually drawn with a blue dashed line.

Vertex:  A point in a crease pattern where more than one crease 
converges.

Wire:  A line, thread or string that connects two nodes. In Grass-
hopper, wires are used to input into one or more nodes 
the outputs of other nodes. They move data in form of 
single items, lists, or trees.
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