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Abstract
We identify a relationship between the solutions of a nonsymmetric algebraic T -
Riccati equation (T -NARE) and the deflating subspaces of a palindromicmatrix pencil,
obtained by arranging the coefficients of the T -NARE. The interplay between T -
NAREs and palindromic pencils allows one to derive both theoretical properties of the
solutions of the equation, and newmethods for its numerical solution. In particular, we
proposemethods based on the (palindromic)QZ algorithm and the doubling algorithm,
whose effectiveness is demonstrated by several numerical tests.
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1 Introduction

We consider the Nonsymmetric Algebraic T -Riccati Equation (T -NARE)

DX + XT A − XT BX + C = 0, (1)

where A, B,C, D ∈ R
n×n are coefficient matrices and the n × n matrix X is the

unknown, while the superscript T denotes transposition.
Equation (1) has been considered in [3], with applications to Dynamic Stochastic

General Equilibrium models. In the same paper, existence results are given in terms
of nonnegativity properties of the coefficients, together with an analysis of the con-
vergence of Netwon’s method to the required solution. Recently, the problem of the
existence of solutions, when A = D = 0 and C is symmetric, has been studied in [6].
Matrix equations of the kind XT BX = C are encountered also in image restoration
problems [14], in inverse eigenvalue problems [1], and in the numerical solution of a
cubic matrix equation arising in conservative dynamics [4].

The nonsymmetric T -Riccati equation takes the name from the Nonsymmetric
Algebraic Riccati Equation (NARE)

DX + X A − XBX + C = 0, (2)

that has received great attention in the literature in the last decades (see for instance
the book [5]), and from the T operator applied to the unknown X in (1), when this
premultiplies amatrix coefficient. Indeed, recently, there has been a great interest in the
T counterpart of classical linear matrix equations. For instance, look at the Sylvester
equation AX + XB = C , whose T counterpart AXT + XB = C has been the subject
of a number of both computational and theoretical papers; see, e.g., [7, 9–13, 19].

It is well-known that there is a strict connection between Eq. (2) and the matrix

H =
[

A −B
−C −D

]
. (3)

More specifically, X is a solution to (2) if and only if there exists an n-dimensional

invariant subspace of H spanned by the columns of

[
I
X

]
, where I is the identitymatrix

(compare [5, Thm. 2.1]). This property reduces a nonlinear equation to an eigenvalue
problem, that can be associated with the linear matrix polynomial H − z I . For this
reason, perhaps with some abuse, we say that H − z I is a linearization of the matrix
Eq. (2). (Note, however, the similarity with the linearization procedure for matrix
polynomials.)

Apparently, a representation of the solutions of (1) in termsof a deflating subspace of
a pencil is not known in the current literature. Moreover, the only available algorithms
for the numerical solution of (1) are the fixed point iterations proposed in [3], whose
convergence results are provided under specific nonnegativity assumptions on the
matrix coefficients.
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Our main contribution is the introduction of a linearization for the T -NARE (1).
More specifically, we define the T -palindromic pencil ϕ(z) = M + zMT , where

M =
[
C D
A −B

]
,

and A, B, C , and D are the matrix coefficients in (1). We show that, if the pencil ϕ(z)

is regular and X is a solution to (1), then the columns of

[
I
X

]
span a deflating subspace

of ϕ(z). Also, a converse result holds under suitable assumptions on some eigenvalues
of ϕ(z). The precise statement is given in Theorem 2. We say that the pencil ϕ(z)
is a linearization of the T -NARE (1). We also relate the solutions of the T -NARE
with the solutions of a suitable Discrete-time Algebraic Riccati equation. Moreover,
we show existence properties of the solutions under nonnegativity properties of the
matrix coefficients, by weakening the assumptions of [3].

The linearization of the T -NARE, besides being interesting per se, is exploited to
relate the solutions to (1) with the solution of certain discrete-time algebraic Riccati
equations. More practically, it opens the way to compute the solution of a T -NARE by
relying on invariant subspaces algorithms, such as the QZ and the Doubling Algorithm
(DA). Moreover, it is possible to exploit the palindromic structure of the linearization
by applying the palindromic QZ algorithm, a structured variant of the QZ algorithm,
that we endow with an ordering procedure and that is shown to be superior, in terms
of forward error, in some difficult problems.

In our tests, the proposed algorithms are shown to be more efficient than Newton’s
method, the reference algorithm in [3]. Moreover, from the numerical experiments,
we deduce that the (palindromic) QZ algorithm is the algorithm achieving the highest
numerical accuracy, while the DA is the fastest one.

The paper is organized as follows: Sect. 2 provides some preliminary material
on matrix pencils, in Sect. 3 we present the interplay between T -NAREs and T -
palindromic pencils, while Sect. 4 is devoted to the case of matrix coefficients with
nonnegativity properties. In Sect. 5 we describe the new algorithms for the T -NARE
and some tests are performed in Sect. 6. The final section draws some conclusions.

2 Preliminaries

We recall some properties of matrix pencils that will be used throughout the paper.
For more details on this subject we refer the reader to [15].

Amatrix pencil p(z) = A+zB, with A, B ∈ C
n×n , is said to be regular if det(p(z))

is not identically 0. The finite eigenvalues of a regular pencil p(z) are the zeros of
det(p(z)), while infinity is an eigenvalue of p(z) with multiplicity d ≥ 1 if det(p(z))
has degree n − d. Notice that, for a regular pencil, 0 is an eigenvalue if and only if A
is singular, while ∞ is an eigenvalue if and only if B is singular.

A k-dimensional subspace V ⊂ C
n is a deflating subspace of the regular matrix

pencil p(z) = A + zB if there exists a k-dimensional subspace W ⊂ C
n such

that AV ⊂ W and BV ⊂ W . If the columns of V ∈ C
n×k and W ∈ C

n×k span the
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subspacesV andW , respectively, then there exist A′, B ′ ∈ C
k×k such that AV = W A′

and BV = WB ′. The eigenvalues of the k × k pencil A′ + zB ′ are a subset of the
eigenvalues of p(z) and are said to be the eigenvalues of p(z) or, equivalently, the
spectrum, associated with the deflating subspace V .

A deflating subspace V is said to be a graph deflating subspace if, for any matrix
V ∈ C

n×k whose columns span V , the leading k × k submatrix of V is invertible.
In other words, V admits a basis made of the columns of the matrix

[
I
X

]
, for some

matrix X .
A pencil p(z) = A + zB is said to be T -palindromic if B = AT , in this case

p(z)T = zp(1/z), that is, if λ is an eigenvalue of p(z), then 1/λ is an eigenvalue
of p(z) as well (this holds also for 0 and ∞, with the conventions 1/0 = ∞ and
1/∞ = 0).

A reciprocal-free set S ⊂ C ∪ {∞} is a set such that if λ ∈ S then 1/λ /∈ S.
Given x ∈ C

n and a matrix S ∈ C
n×n , the vector x is said to be S-isotropic if

xT Sx = 0. More generally, if V is the subspace spanned by the columns of a full rank
matrix V ∈ C

n×k , then the subspace V and the matrix V are said to be S-isotropic if
V T SV = 0.

The following result gives a sufficient condition under which a deflating subspace
of a palindromic pencil is S-isotropic.

Theorem 1 [22, Theorem 3.3] Suppose p(z) = S+zST is a regular n×n palindromic
pencil, and the columns of W ∈ C

n×k span a k-dimensional deflating subspace asso-
ciated with the spectrum Λ ⊂ C∪ {∞}. If Λ is reciprocal-free, then W is S-isotropic.

3 A linearization for nonsymmetric algebraic T-Riccati equations

In this section we introduce a linearization of the T -NARE (1), which allows us to
show theoretical properties of the solutions and to relate the T -NARE to a suitable
discrete-time algebraic Riccati equation.

We associate with the T -NARE (1) the 2n × 2n T -palindromic pencil

ϕ(z) = M + zMT , M =
[
C D
A −B

]
. (4)

The solutions of the T -NARE (1) are related to the deflating subspaces of the pencil
ϕ(z) in (4). In particular, the following result provides a necessary and a sufficient
condition for a matrix X to be a solution of (1), in terms of the properties of the
deflating subspaces of ϕ(z). Note that the sufficient condition requires a reciprocal
free assumption on a suitable subset of eigenvalues of ϕ(z).

Theorem 2 Assume that the pencil ϕ(z) in (4) is regular. If the matrix X is a solution
to (1), then

ϕ(z)

[
I
X

]
=

[−XT

I

]
α(z), (5)
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where

α(z) := A − BX + z(DT − BT X), (6)

i.e., the columns of
[
I
X

]
span a deflating subspace of the pencil ϕ(z), associated with

the eigenvalues of the n × n pencil α(z).
Conversely, if X is an n × n matrix such that the columns of the matrix

[
I
X

]
span a

deflating subspace of ϕ(z) corresponding to a reciprocal-free set of eigenvalues, then
X is a solution to (1).

Proof If X is a solution to (1), then we have

M

[
I
X

]
=

[−XT

I

]
(A − BX). (7)

Moreover, X solves also the equation obtained by applying the T operator to all the
summands of Eq. (1), i.e.,

XT DT + AT X − XT BT X + CT = 0.

Therefore, one has

MT
[
I
X

]
=

[
CT AT

DT −BT

] [
I
X

]
=

[−XT

I

]
(DT − BT X). (8)

From Eqs. (7) and (8) we obtain

ϕ(z)

[
I
X

]
=

[−XT

I

]
(A − BX + z(DT − BT X)),

i.e., the columns of
[
I
X

]
span a deflating subspace of the pencil ϕ(z), associated with

the eigenvalues of the pencil α(z).
Conversely, assume that the columns of

[
I
X

]
span a deflating subspace of ϕ(z),

associated with a reciprocal-free set of eigenvalues.
We may easily observe that X is a solution to (1) if and only if

[
I XT

]
M

[
I
X

]
= 0,

i.e., thematrix
[
I
X

]
isM-isotropic. Since ϕ(z) = M+zMT is a regular T -palindromic

pencil, the matrix
[
I
X

]
is M-isotropic thanks to Theorem 1, and thus X solves (1). �	

In the following, when X is a solution to (1) such that the columns of
[
I
X

]
span a deflating subspace of the regular pencil ϕ(z), associated with the eigenval-
ues λ1, . . . , λn , we say that X is associated with the eigenvalues λ1, . . . , λn of ϕ(z)
as well. Notice that, in general, the solution X is a complex matrix. If the complex
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eigenvalues in the set {λ1, . . . , λn} appear in complex conjugate pairs, then the cor-
responding deflating subspace of ϕ(z) is spanned by the columns of a real matrix,
therefore the solution X is real.

An interesting consequence of Theorem 2 is that certain solutions of the T -NARE
are solutions of a suitable Discrete-time Algebraic Riccati Equation (DARE).

Corollary 1 If X is a solution to (1) such that det(A − BX) 
= 0, then X is a solution
to

CT + AT X = (C + DX)(A − BX)−1(DT − BT X). (9)

Similarly, if X is a solution to (1) such that det(DT − BT X) 
= 0 then X is a solution
to

C + DX = (CT + AT X)(DT − BT X)−1(A − BX).

Proof Since XT (A − BX) + C + DX = 0, if A − BX is invertible, then XT =
−(C + DX)(A − BX)−1. By post-multiplying the latter equation by DT − BT X
and by using (1), one gets (9). The case where det(DT − BT X) 
= 0 can be treated
analogously. �	

The following result gives sufficient conditions under which the assumptions of
Corollary 1 are satisfied.

Proposition 1 Assume that the pencil ϕ(z) in (4) is regular. If X is a solution to (1)
associated with a reciprocal-free set of eigenvalues of ϕ(z), then at least one of the
matrices A − BX and DT − BT X is nonsingular.

If the matrix M in (4) is nonsingular, then any solution X to (1) is such that
det(A − BX) 
= 0 and det(DT − BT X) 
= 0.

Proof By Theorem 2, the solution X is associated with the eigenvalues of the pencil
α(z) in (6). Since the eigenvalues of the pencil α(z) constitute a reciprocal-free set by
hypothesis, then 0 and ∞ cannot be both eigenvalues, therefore one of the matrices
A− BX and DT − BT X is nonsingular. Concerning the second part, assume that M is
nonsingular, then 0 and ∞ cannot be eigenvalues of ϕ(z) and thus of α(z), this show
that both A − BX and DT − BT X are nonsingular. �	

Under the assumption that ϕ(z) has no eigenvalues on the unit circle, the solution
X associated with the eigenvalues of ϕ(z) lying inside (or outside) the unit circle is
unique and real, according to the following result.

Theorem 3 Let ϕ(z) and α(z) be as in (4) and (6), respectively. If ϕ(z) is regular with
no eigenvalues on the unit circle and there exists an n-dimensional graph deflating
subspace

[
I
X

]
of ϕ(z) corresponding to eigenvalues lying inside the open (outside the

closed) unit disk, then X is the unique solution to (1) such that the eigenvalues of α(z)
are inside the open (outside the closed) unit disk. Moreover, X is a real matrix.
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Proof Since ϕ(z) is a palindromic pencil, its eigenvalues come in pairs (λ, 1/λ), and
since det ϕ(z) 
= 0 if |z| = 1, then ϕ(z) has n eigenvalues inside the open unit disk
and n eigenvalues outside the closed unit disk. Since the n eigenvalues inside the open
(outside the closed) unit disk are disjoint from the remaining n, then the deflating
subspace corresponding to the n eigenvalues inside the open (outside the closed) unit
disk is unique [2]. The assertion follows from Theorem 2 and from the property that
complex conjugate eigenvalues have the same modulus. �	

By borrowing an idea from the study of nonsymmetric algebraic Riccati equations
[5], we consider the dual equation

Y T D + AY − B + Y TCY = 0, (10)

that is obtained by exchanging the role of A and D, and the role of B and C in (1). By
following the same arguments used in Theorem 2 for equation (1), we find that, if Y
is a solution to (10), then

ϕ(z)

[
Y
I

]
=

[
I

−Y T

]
β(z), β(z) = D + CY + z(AT + CT Y ). (11)

We say that Y is associated with the eigenvalues of β(z).
Therefore, if X and Y are solutions to (1) and (10), respectively, then

ϕ(z)

[
I Y
X I

]
=

[−XT I
I −Y T

] [
α(z) 0
0 β(z)

]
.

Hence, if X and Y are such that I − XY is invertible (that is equivalent to require
that

[
I Y
X I

]
is invertible), then we derive the following result, that provides a block

diagonalization of the pencil ϕ(z).

Theorem 4 Let X and Y be solutions to Eqs. (1) and (10), respectively, such that
det(I − XY ) 
= 0. Then

ϕ(z) =
[−XT I

I −Y T

] [
α(z) 0
0 β(z)

] [
I Y
X I

]−1

,

where α(z) and β(z) are defined in (6) and (11), respectively.

We conclude with a result that will be useful to show the convergence of doubling
algorithms for computing the solution associated with the eigenvalues inside/outside
the unit circle.

Theorem 5 Assume that ϕ(z) is regular, with det ϕ(z) 
= 0 when |z| = 1, and that
ϕ(z) has two deflating subspaces spanned by the columns of

[
I
X

]
and

[
Y
I

]
, associated

with the eigenvalues inside and outside the unit disk, respectively. Then X and Y solve
(1) and (10), respectively, the matrices DT − BT X and D − CY are invertible, and

M

[
I
X

]
= MT

[
I
X

]
W , M

[
Y
I

]
V = MT

[
Y
I

]
, (12)
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where W = (DT − BT X)−1(A − BX), V = (D + CY )−1(AT + CT Y ). Moreover,
ρ(W ) = ρ(V ) < 1.

Proof From the second part of Theorem 2, it follows that X is a solution to (1). Hence,
from the first part of Theorem 2, Eq. (5) is verified. Under our assumptions, the
eigenvalues of α(z) lie inside the unit disk. This implies that DT − BT X is invertible
since, if it were singular, then α(z) in (6) would have an eigenvalue at ∞. By equating
the terms in z in (5), we obtain

[−XT

I

]
= MT

[
I
X

]
(DT − BT X)−1.

By plugging this expression in (5) and by comparing the constant terms, we obtain

M

[
I
X

]
= MT

[
I
X

]
W ,

whereW = (DT − BT X)−1(A− BX). Since the eigenvalues ofW coincide with the
eigenvalues of α(z), we have that ρ(W ) < 1. Similarly, by using (11), we proceed for
the deflating subspace

[
Y
I

]
. The property ρ(V ) = ρ(W ) holds since the eigenvalues

of V are the reciprocals of the eigenvalues of β(z) in (11), that coincide with the
eigenvalues of α(z). �	

4 A T-NARE with nonnegativity properties

Given a real matrix A, we write A ≥ 0 (A > 0) if all the entries of A are nonnegative
(positive), and we say that the matrix A is nonnegative (positive). Moreover, we write
A ≥ B if A − B ≥ 0.

An usual assumption for the NARE (2) is that the matrix

M̂ =
[
A −B
C D

]
, (13)

is an M-matrix, i.e., a matrix of the form M̂ = σ I − H , where H ≥ 0 and ρ(H) ≤ σ .
Under mild assumptions on M̂ , it can be proven that there exists a minimal solution of
the NARE (2). More precisely, if there exists a vector v > 0 such that M̂v ≥ 0, then
the NARE (2) has a minimal nonnegative solution [17, Thm. 2], where the ordering is
meant component-wise. This holds, in particular, when M̂ is nonsingular or singular
irreducible.

Apparently, the case of the T -NARE (1) where M̂ is an M-matrix is much more
complicated than the case of a NARE (2), and has been treated in [3]. In particular, in
[3], the existence of aminimal nonnegative solution is guaranteed under the hypothesis
that the matrix

W = I ⊗ D + (AT ⊗ I )Π
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has a nonnegative inverse, where Π = ∑
i, j (ei e

T
j ) ⊗ (ei eTj ) (ek is the k-th vector of

the canonical basis of Rn) and that there exists a nonnegative matrix X̃ such that

DX̃ + X̃ T A − X̃ T B X̃ + C ≥ 0. (14)

Wewill show that undermilder assumptions than those in [3], there exists aminimal
nonnegative solution Xmin, i.e., such that Xmin ≤ X for any other possible nonnegative
solution X .

For this purpose, define the sequence {X
}
 by means of the recursion

DX
+1 + XT

+1A = XT


 BX
 − C, 
 = 0, 1, . . . , X0 = 0.

Under suitable assumptions on the coefficients of the T -NARE, the sequence {X
}

is well defined and converges to Xmin, as stated in the following proposition.

Proposition 2 Assume that det(W ) 
= 0, W−1 ≥ 0, D−1 ≥ 0, B ≥ 0, C ≤ 0, and
that there exist u, v ∈ R

n positive vectors such that Au − Bv ≥ 0 and Cu + Dv ≥ 0.
Then there exists a minimal nonnegative solution Xmin to (1) and the sequence {X
}

generated by (14) is well defined and converges to Xmin, with 0 ≤ X
 ≤ X
+1, and
X
u ≤ v for any 
 ≥ 0.

Proof We show by induction on 
 that 0 ≤ X
 ≤ X
+1 and X
u ≤ v. If 
 = 0,
then X0u = 0 ≤ v and X1 solves the equation DX1 + XT

1 A = −C , i.e., vec(X1) =
−W−1vec(C). SinceW−1 ≥ 0 and C ≤ 0, then 0 = X0 ≤ X1. Under the assumption
0 ≤ X
 ≤ X
+1, X
u ≤ v, we show that 0 ≤ X
+1 ≤ X
+2. Since W−1 ≥ 0, B ≥ 0
and C ≤ 0, we have

vec(X
+2) = W−1vec(XT

+1BX
+1 − C) ≥ W−1vec(XT


 BX
 − C) = vec(X
+1) ≥ 0.

Now we show that X
+1u ≤ v. The matrix X
+1 is such that

X
+1 = D−1(XT

 BX
 − C − XT


+1A).

Multiplying from the right by u yields

X
+1u = D−1(XT

 BX
 − C − XT


+1A)u. (15)

From the inequalities Au − Bv ≥ 0, D−1 ≥ 0, and X
+1 ≥ 0, we deduce that
−D−1XT


+1Au ≤ −D−1XT

+1Bv. Moreover, from the inequality Cu + Dv ≥ 0,

since D−1 ≥ 0, we deduce that −D−1Cu ≤ v. Hence, since B ≥ 0 and X
u ≤ v,
from (15), we derive

X
+1u ≤ v + D−1(XT

 − XT


+1)Bv ≤ v,

where the latter inequality follows since 0 ≤ X
 ≤ X
+1. Therefore, the sequence
{X
}
 is monotonic nondecreasing and bounded from above, since X
 ≥ 0 and X
u ≤
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v, with u, v > 0. Therefore there exists X = lim
 X
. Such a matrix X solves (1) by
continuity and is a nonnegative solution. We show that it is the minimal nonnegative
solution. Assume that Y ≥ 0 is a solution to (1). We may easily show by induction
on 
 that X
 ≤ Y for any 
 ≥ 0. Therefore the inequality holds also in the limit and
Xmin := X is the minimal nonnegative solution. �	

In the M-matrix case, it might be useful to consider the pencil

ϕ̂(z) =
[
A −B
C D

]
+ z

[
D −B
C A

]
,

that has an interesting structure. Indeed, when M̂ in (13) is an M-matrix, then the two
matrices in the pencil are M-matrices as well. We may formulate a result analogous to
Theorem 2, that relates any solution of the T -NARE with a graph deflating subspace
of the pencil ϕ̂(z).

5 Algorithms based on the linearization

The relationship between computing a graph deflating subspace of a palindromic
pencil and solving a T -NARE allows one to devise new algorithms for the solution of
the latter. In particular, we consider three algorithms:

– the QZ algorithm [16, Chapter 7];
– the Doubling Algorithm [5, Chapter 5];
– the palindromic QZ algorithm [20, 22].

The first two are general algorithms that provide certain invariant subspaces of pencils,
while the third one is specialized to the structure of the problem.

5.1 The QZ algorithm

Given A′, B ′ ∈ C
n×n , the QZ algorithm provides two unitary matrices Q, Z such that

A′′ := Q∗A′Z and B ′′ := Q∗B ′Z are upper triangular, where the superscript “∗”
denotes complex conjugate transposition. The pencil A′ + zB ′ is similar to the pencil
A′′+zB ′′, so if the former is regular, then its eigenvalues can be read from the diagonal
of the latter, as the solutions of the equation (A′′)i i − z(B ′′)i i = 0, when (B ′′)i i 
= 0,
or ∞ when (B ′′)i i = 0, for i = 1, . . . , n (the case (A′′)i i = (B ′′)i i = 0 cannot hold
for a regular pencil).

One can also get deflating subspaces from the matrix Z . Indeed, for 
 = 1, . . . , n,
the first 
 columns of Z span a right deflating subspace of the pencil A′+zB ′, associated
with the eigenvalues related to the first 
 diagonal entries of A′′ + zB ′′ from the top
left corner.

There exists a variant of the QZ algorithm for real matrices A′ and B ′ such that
Q and Z are real orthogonal and A′′ + zB ′′ is an upper quasi-triangular pencil, that
is A′′ + zB ′′ is block upper triangular with diagonal blocks of size 1, corresponding
to real eigenvalues, or 2, corresponding to pairs of complex conjugate eigenvalues.
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Also in the real case, the first 
 columns of Z yield a real deflating subspace associated
with the first 
 eigenvalues related to the diagonal blocks of A′′ + zB ′′, with the only
constraint on 
 that a 2 × 2 diagonal block cannot be split. In particular, if the sizes
of the diagonal blocks are ν1, . . . , νh , then the first

∑ j
i=1 νi columns of Z provide a

real deflating subspace for j = 1, . . . , h.
In our problem, ϕ(z) = M + zMT is a real pencil of size 2n. If det ϕ(z) 
= 0 on

the unit circle, one may want a deflating subspace corresponding to the n eigenvalues
inside/outside the unit disk. This can be obtained by relying on the reordered real
QZ algorithm that produces two upper quasi-triangular matrices M ′ := QT MZ and
M ′′ := QT MT Z , such that the n eigenvalues of the leading n×n principal submatrix
of M ′ + zM ′′ are the ones inside/outside the unit disk. The span of the first n columns
of Z is the required deflating subspace.

In principle, one can compute a deflating subspace associated with any subset of
n eigenvalues, provided this is reciprocal-free, to get a solution to (1), in view of
Theorem 2. The general procedure is summarized in Algorithm 1.

More details on the QZ algorithm can be found in [16, Chapter 7]. Concerning the
computational cost, according to [16, Chapter 7], the computation of M ′, M ′′ and Z
requires 50(2n)3 floating point operations (flops) – up to lower order terms – to which
we have to add the cost of computing Z̃21 Z̃

−1
11 , i.e., about 8/3n

3 flops.

5.2 The Doubling algorithm

Given a pencil ϕ(z) = A′ + zB ′, where A′, B ′ ∈ C
(m+n)×(m+n), with m eigenvalues

inside the unit disk and n outside, under suitable assumptions, the (Structured) Dou-
bling Algorithm (DA) allows one to find a deflating subspace corresponding to the
eigenvalues inside and outside the unit disk.

For a complete description of doubling algorithms,we refer the reader to [5, Chapter
5] and [18].

We restrict our attention to the case of interest, where ϕ(z) = M + zMT , with M
defined in (4), thus m = n. In particular, we are interested in computing the matrices
X and Y which define the deflating subspaces in Eq. (12), and which in turn solve Eqs.
(1) and (10), respectively.

Algorithm 1: QZ algorithm to solve (1).

input : M ∈ R
2n×2n as in (4) such that φ(z) = M + zMT is regular and has an n-dimensional

graph deflating subspace associated with a set Λ of n reciprocal free eigenvalues of φ(z).
output: An approximation X to the solution of (1), associated with the eigenvalues in Λ.

1 Compute unitary matrices Q and Z such that M ′ = Q∗MZ and M ′′ = Q∗MT Z are upper
triangular.

2 If needed, apply a reordering procedure on the diagonal of M ′ + zM ′′, getting Z̃ such that the first n
columns of Z̃ span the deflating subspace corresponding to the eigenvalues in the set Λ; otherwise,
set Z̃ = Z .

3 Partition Z̃ as Z̃ =
[
Z̃11 Z̃12
Z̃21 Z̃22

]
, where Z11 has size n, and set X = Z̃21 Z̃

−1
11 .
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First, one constructs a new pencil N + zK , right equivalent to ϕ(z), but in the form

N =
[
E0 0

−P0 I

]
, K =

[
I −G0
0 F0

]
. (16)

This is possible if and only if the matrix S =
[
CT D
DT −B

]
is invertible. Moreover, the

matrices E0, F0, G0, P0 can be recovered by comparing the block entries in equation
[24]

N + zK = S−1(M + zMT ). (17)

Then, the doubling algorithm consists in generating the sequences

E
+1 = E
(I − G
P
)
−1E
, P
+1 = P
 + F
(I − P
G
)

−1P
E
,

F
+1 = F
(I − P
G
)
−1F
, G
+1 = G
 + E
(I − G
P
)

−1G
F
,
(18)

for 
 ≥ 0, which are well defined if, at each step, I − G
P
 and I − P
G
 are
invertible. The (at least) quadratic convergence of the sequences generated by the
doubling algorithm is stated in the following results.

Theorem 6 Let M be as in (4) such that the assumptions of Theorem 5 are satisfied.
If the sequences {E
}
, {F
}
, {G
}
, {P
}
 generated by the doubling iteration (18),
with E0, F0,G0, P0 as in (16) and (17), are well defined, then for any matrix norm,

lim sup

→∞

2

√‖P
 − X‖ ≤ τ 2, lim sup


→∞
2

√‖H
 − Y‖ ≤ τ 2,

lim sup

→∞

2

√‖E
‖ ≤ τ, lim sup


→∞
2

√‖F
‖ ≤ τ,

where X and Y are the solutions to (1) and (10) associated with the eigenvalues of
ϕ(z) inside and outside the unit circle, respectively, and

τ = ρ
(
(DT − BT X)−1(A − BX)

)
= ρ

(
(D + CY )−1(AT + CT Y )

)
< 1.

Proof Theorem 5 implies that (12) holds, therefore the proof follows from the appli-
cation of Theorem 5.3 of [5]. �	

The quadratic convergence of the sequence {P
}
 to the solution X can be proved
also with the assumption that {F
}
 is bounded and that the pencil ϕ(z) satisfies the
hypotheses of Theorem 3 (see [5, Thm. 5.3]).

Wewish to point out that the application of the DoublingAlgorithm here is different
from the case of the NARE (2), where one looks for a graph invariant subspace of the
matrix H in (3) corresponding to eigenvalues on the left/right half plane. Indeed, for
solving a NARE with the doubling algorithm, a preprocessing step is needed to get a
pencil whose graph invariant subspace of interest has eigenvalues inside the unit disk.
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Algorithm 2: Doubling Algorithm to solve (1).

input : M ∈ R
2n×2n as in (4) such that φ(z) = M + zMT is regular and has an n-dimensional

graph deflating subspace corresponding to n eigenvalues inside the open unit disk;

max > 0 maximum number of iterations allowed;
ε > 0 tolerance.

output: an approximation X to the solution of (1) corresponding to the eigenvalues inside the open
unit disk.

1 Compute N =
[
E0 0

−P0 I

]
= S−1M , and K =

[
I −G0
0 F0

]
= S−1MT where S =

[
CT D
DT −B

]
.

2 
 = 0
3 while min{‖E
‖∞, ‖F
‖∞} > ε and 
 < 
max do

4

E
+1 = E
(I − G
P
)
−1E
, P
+1 = P
 + F
(I − P
G
)

−1P
E
,

F
+1 = F
(I − P
G
)
−1F
, G
+1 = G
 + E
(I − G
P
)

−1G
F
,


 = 
 + 1.

5 Set X = P
.

This preprocessing consists in applying rational transformations to the pencil H − z I ,
such as the (generalized) Cayley transform. The different rational transformations lead
to the variants of the DA algorithm, namely SDA, SDA with shrink-and-shift, ADDA
[18], that have been treated differently in the literature. In our case, for the T -NARE,
the eigenvalues are naturally split with respect to the unit circle, so that we can directly
apply the Doubling Algorithm starting from the form (16).

The Doubling Algorithm for (1) is reported in Algorithm 2. Note that one step of
the algorithm can be implemented with eight n × n matrix multiplications, two LU
factorizations, 4n solutions of triangular linear systems and some matrix additions,
for a total amount of about 64

3 n
3 flops per step.

5.3 The ordered palindromic QZ algorithm

The algorithms described in the previous sections do not exploit the palindromic
structure of the pencil ϕ(z) = M + zMT .

A structured version of the QZ algorithm for palindromic pencils, namely the Palin-
dromic QZ (PQZ) algorithm, has been developed and studied in [20, 22, 25]. The idea
is to reduce ϕ(z) to a similar pencil R + zRT , where R is anti-triangular.

We adapt the PQZalgorithm to our problem, endowing itwith an ordering procedure
on the anti-triangular entries of the matrix R that allows us to deduce the desired
deflating subspace.

The first step of the PQZ is the computation of the anti-triangular Schur form of
M , which exists in view of the following result.

Theorem 7 [22, Theorems 2.3–2.5] Let M ∈ C
2n×2n. Then there exists a unitary

matrix U ∈ C
2n×2n such that
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R = UT MU =

⎡
⎢⎢⎢⎣

0 · · · 0 r1,2n
... . .

.
. .

. ...

0 . .
. ...

r2n,1 · · · · · · r2n,2n

⎤
⎥⎥⎥⎦ , (19)

is in anti-triangular form.
Moreover, let the pencil ϕ(z) = M + zMT be regular and suppose that the matrix

R = UT MU is anti-triangular. Then, the spectrum of ϕ(z) is given b

{
λ j : r j,2n− j+1 · λ j = −r2n− j+1, j , j = 1, . . . , 2n

} ⊂ C ∪ {∞}, (20)

where the list (λ1, . . . , λ2n) is reciprocally ordered, namely λ j = 1/λ2n− j+1 for all
j = 1, . . . , 2n.

Corollary 2 With the assumptions in Theorem 7, if ϕ(z) has only zero or two eigenval-
ues of modulus 1, then the subset

{λ1, . . . , λn}

of the spectrum (20) of ϕ(z) is reciprocal-free.

Proof The result directly comes from the fact that the spectrum (20) is reciprocally
ordered. Moreover, if λ is an eigenvalue of ϕ(z) with modulus 1 and multiplicity 2,
then it appears only once in the first half of the spectrum, namely {λ1, . . . , λn}. �	

In the next theorem we show how to construct the solution X to (1) by exploiting
the anti-triangular Schur form (19) of M . To this end, we consider the following 2× 2
block partition of the unitary matrix U ,

U =
[
U11 U12
U21 U22

]
, Ui j ∈ C

n×n, i, j = 1, 2. (21)

Theorem 8 Let ϕ(z) = M + zMT with M as in (4). Assume that ϕ(z) is regular, with
exactly zero or two eigenvalues of modulus 1. Let U be a unitary matrix such that
R = UT MU is anti-triangular and its (1, 1)-block U11 with the notation in (21) is
nonsingular. Then the matrix X = U21U

−1
11 is a solution to (1).

Proof By construction, the columns of the matrix
[
U11
U21

]
span the deflating subspace

of ϕ(z) associated with the first n eigenvalues {λ1, . . . , λn}. Similarly, the columns of

[
U11
U21

]
U−1
11 =

[
I

U21U
−1
11

]
,

span the same subspace.
Since {λ1, . . . , λn} is a reciprocal-free set of eigenvalues as shown in Corollary 2,

the matrix X = U21U
−1
11 is a solution to (1) thanks to Theorem 2. �	
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The PQZ scheme is thus very similar to its unstructured counterpart. However, from
a computational point of view, the design of structure-preserving algorithms for the
anti-triangular Schur form (19) of M is a rather challenging task.

Different schemes have been illustrated in the literature and in all the numerical
examples we present in this paper we employ [22, Algorithm 3.5] equipped with the
palindromic QR procedure [25].

We must mention that the solution constructed from the first n columns of the
matrix U obtained from the PQZ algorithm is associated with a reciprocal-free set
{λ1, . . . , λn} of eigenvalues of the pencil ϕ(z), determined by the lower n antidiagonal
entries of R+ zRT . Nevertheless, one might be interested in a solution associated with
a different set of reciprocal-free eigenvalues of ϕ(z), for instance the set of eigenvalues
lying inside or outside the unit disk, if det(ϕ(z)) 
= 0 on the unit circle.

A remedy is to postprocess the pencil R+ zRT by applying a reordering procedure
that puts the desired eigenvalues on the lower part of the antidiagonal, so that the first
columns of the modified matrix U yield the desired solution. Taking inspiration from
[20, Section 4.1] we now illustrate the procedure that guarantees the computation of
the solution X to (1) associated with the n eigenvalues which lie inside the unit disk
when the latter set exists. In principle, the same procedure can be applied to get a
solution associated with any given reciprocal-free set of eigenvalues of ϕ(z).

Given the 2n eigenvalues {λ1, . . . , λ2n} ordered as in (20), we start by defining

k1 = max{i : i = 1, . . . , 2n, |λi | < 1} − n.

Clearly, 0 ≤ k1 ≤ n. If k1 = 0, we do not need to reorder any column of U and
X = U21U

−1
11 is the sought solution.

If k1 > 0, we consider the following 2k1 × 2k1 submatrix R(1) of R:

R(1) = [en−k1+1, . . . , ek1+n]T R[e2−k1+1, . . . , ek1+n],

partitioned as follows

R(1) =

⎡
⎢⎢⎣

0 0 R(1)
13

0 R(1)
22 R(1)

23

R(1)
31 R(1)

32 R(1)
33

⎤
⎥⎥⎦ ,

where R(1)
13 , R

(1)
31 , and R(1)

33 are scalars, R22 ∈ R
2(k1−1)×2(k1−1) is anti-triangular, and

R(1)
23 ∈ R

2(k1−1)×1 while R(1)
32 ∈ R

1×2(k1−1).
We need to compute a T -congruence transformation such that

⎡
⎣W ZT 1
Y T Ik1−2 0
1 0 0

⎤
⎦

⎡
⎢⎢⎣

0 0 R(1)
13

0 R(1)
22 R(1)

23

R(1)
31 R(1)

32 R(1)
33

⎤
⎥⎥⎦

⎡
⎣W Y 1
Z Ik1−2 0
1 0 0

⎤
⎦ =

⎡
⎢⎢⎣

0 0 R(1)
31

0 R(1)
22 0

R(1)
13 0 0

⎤
⎥⎥⎦ ,

where W is a scalar, Z ∈ R
2(k1−1)×1, and Y ∈ R

1×2(k1−1).
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A direct computation shows that the vectors Y and Z can be computed by solving
the following system of T -Sylvester equations

{
R(1)
31 Y + ZT R(1)

22 = −R(1)
32 ,

R(1)
13 Y + ZT (R(1)

22 )T = −(R(1)
23 )T .

(22)

The numerical solution of (22) can be carried out by, e.g., [12, Algorithm 2]. In our
numerical experiments, since the matrix variables are just vectors, we solve the linear
system of equations arising by Kronecker transformations, namely

⎡
⎣R(1)

31 · I2(k1−1) (R(1)
22 )T

R(1)
13 · I2(k1−1) R(1)

22

⎤
⎦ [

vec(Y )

vec(ZT )

]
= −

[
vec(R(1)

32 )

vec((R(1)
23 )T )

]
.

Once Y and Z are computed, we define

W = −(R(1)
33 + R(1)

32 Z + ZT R(1)
23 + ZT R(1)

22 Z)/(R(1)
31 + R(1)

13 ),

and perform a QR factorization

⎡
⎣W Y 1
Z I2(k1−1) 0
1 0 0

⎤
⎦ = P(1)G.

Then the first n columns of the matrix

U (1) =
⎡
⎣U (1)

11 U (1)
12

U (1)
21 U (1)

22

⎤
⎦ = U

⎡
⎣In−k1 0 0

0 P(1) 0
0 0 In−k1

⎤
⎦ ,

span a deflating subspace related to the set of eigenvalues {λi , i = 1, . . . , n, i 
=
n − k1 + 1} ∪ {λk1+n}.

We proceed by considering

k2 = max{i : i = 1, . . . , k1 + n − 1, |λi | < 1} − n,

and we repeat the same exact steps as before by defining R = (U (1))T MU (1).
This procedure is iterated until

k j = max{i : i = 1, . . . , k j−1 + n − 1, |λi | < 1} − n. (23)

is equal to 0, for a certain j ≥ 1.
In conclusion, we construct the solution X = U ( j)

21 (U ( j)
11 )−1 which is related to the

desired set of eigenvalues.
The overall palindromic QZ procedure is summarized in Algorithm 3. The com-

putational cost of Algorithm 3 is mainly driven by the number of flops needed to

123



Palindromic linearization and numerical solution…

Algorithm 3: PQZ algorithm to solve (1).

input : M ∈ R
2n×2n as in (4) and such that φ(z) = M + zMT is regular.

output: X , an approximate solution to (1).

1 Compute the Schur anti-triangular form of M , namely the matrices U and R in (19),
by [22, Algorithm 3.5].

2 If needed, apply a reordering procedure on the diagonal of R, getting Ũ such that its first n columns
span the deflating subspace corresponding to the eigenvalues inside/outside the unit disk; otherwise,
set Ũ = U .

3 If Ũ =
[
Ũ11 Ũ12
Ũ21 Ũ22

]
is such that Ũ11 is nonsingular, set X = Ũ21Ũ

−1
11 .

perform [22, Algorithm 3.5]. After a standard QZ step, that requires O(n3) flops, the
latter routine employs the palindromic QR algorithm [25] to compute a unitary matrix
related to the eigenvalues of ϕ(z) inside the annulus Λα = {λ ∈ C, 1/α ≤ |λ| ≤ α}
where α > 1 is a user-defined parameter. If m is the number of eigenvalues of ϕ(z) in
Λα , the palindromic QR step costsO(m4) flops. To conclude, the computational cost
of the reordering procedure we proposed above amounts toO(k3j ) flops for any index

k j in (23), leading to a cost of O(n4) flops in the worst case.

6 Numerical examples

In this section we illustrate the numerical behaviour of the proposed algorithms for
nonsymmetric T -NAREs (1): the invariant subspace methods presented in the previ-
ous sections, namely the Doubling Algorithm, and the standard and palindromic QZ
methods. We study the properties of the computed solutions and their relation to the
spectrum of ϕ(z) as outlined in Sect. 3 and compare them to the solutions computed by
Newton’s method for small-scale T -NAREs proposed in [3]. Unless stated otherwise,
in all the following examples we always use the value ε = 10−12 in the convergence
checks of both Newton’s method and DA.

Results were obtained by runningMATLABR2017b on a laptop with an Intel Core
i3 processor running at 2GHz using 3.5GB of RAM.

The implementation of QZ is based on the MATLAB routine ordqz, the imple-
mentation of DA follows the code enclosed to [5], while the implementation of PQZ is
based on [22]. As already mentioned, [22, Algorithm 3.5] needs an input parameter α.
In all the examples reported in Sect. 6 we use α = 1.1. From our numerical experience,
the performance of the solver turned out to be quite robust under small changes of the
parameter α (see [22] for more details).

We point out that while the deflating subspace algorithms (DA, QZ and PQZ) can
compute a solution associated with a reciprocal free set of eigenvalues, Newton’s
method could in principle compute any solution. On the other hand, it appears to be
difficult to find suited initial values for which Newton’s method converges to a sought
solution, associated with a desired eigenvalue distribution. From this point of view,
we can thus see the deflating subspace algorithms to be more flexible than Newton’s
method.
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Table 1 Example 1. “Rel. Res.” denotes the relative residual norm achieved by PQZ, QZ, DA and Newton’s
scheme from [3]; “Rel. Dist.” the relative distance between the solutions computed by the invariant subspace
methods and the one obtained by Newton’s scheme

n = 100 n = 300 n = 500

Rel. Res. Rel. Dist. Rel. Res. Rel. Dist. Rel. Res. Rel. Dist.

PQZ 3.11e−13 7.69e−13 1.60e−12 5.51e−14 3.67e−12 9.49e−14

QZ 1.70e−13 7.74e−13 1.01e−12 3.88e−14 2.25e−12 6.59e−14

DA 8.64e−16 7.72e−13 6.36e−16 7.74e−15 7.76e−16 1.22e−14

Newton 1.60e−12 – 1.29e−13 – 2.24e−13 –

Example 1 We consider the equation in Example 4.1 of [3], where the coefficient
matrices defining the T -NARE (1) are

A =

⎡
⎢⎢⎢⎢⎣

−1 −1
−1 −1

. . .
. . .

−1 −1
−1

⎤
⎥⎥⎥⎥⎦ , D =

⎡
⎢⎢⎢⎢⎣

4 −1
4 −1
. . .

. . .

4 −1
4

⎤
⎥⎥⎥⎥⎦ , E =

⎡
⎢⎢⎢⎢⎣

−1 −1
−1 −1

. . .
. . .

−1 −1
−0.9

⎤
⎥⎥⎥⎥⎦ ,

together with B = −A/‖A‖F , and C = E/‖E‖F . Empty entries in the matrices
represent zero entries.

As shown in [3], there exists a nonnegative minimal solution Xmin to this T -NARE
and Newton’s method with X0 = 0 converges to Xmin.

In Table 1, we report the relative residual norm

‖R‖F = ‖DX + XT A − XT BX + C‖F
‖X‖F ,

achieved by the numerical solution X computed by DA, QZ, PQZ and Newton’s
scheme along with the relative distance between solution obtained by Newtons’
method XNewt and the solution X computed by the invariant subspace methods,
namely ‖XNewt − X‖F/‖XNewt‖F , for different values of n.

From the results in Table 1we can notice that the solutions computed by themethods
we tested are very closed to each other. This means that for this example, also the
invariant subspace methods are able to compute a very accurate approximation to the
actual minimal nonnegative solution.

In Fig. 1we report the eigenvalue distribution of thematrix pencilα(z) = A−BX+
z(DT − BT X) for n = 100, where X is the solution computed by the PQZ method,
and we can see that the spectrum of α(z) is outside the unit circle. This happens for
all the values of n we tested. Therefore, for this example, the solution we compute can
be characterized in two different ways: on one hand, it can be viewed as the unique
minimal nonnegative solution as shown in [3]; on the other hand, by Theorem 2, it
is also the unique solution such that the eigenvalues of α(z) are all outside the unit
circle.
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Fig. 1 Example 1. Eigenvalue distribution of the pencil α(z) = A − BX + z(DT − BT X) where X is
the solution computed by the PQZ method for n = 100. The black solid line indicates (a portion of) the
boundary of the unit disk

Table 2 Example 1.
Computational time in seconds
achieved by PQZ, QZ, DA, and
Newton’s scheme from [3]

n PQZ QZ DA Newton

100 0.161 0.167 0.032 (7) 1.25 (3)

300 3.44 4.28 0.22 (7) 6.25 (3)

500 18.70 22.80 2.34 (7) 20.00 (3)

For DA and Newton’s method we report in brackets also the number
of iterations needed to achieve the prescribed accuracy

To conclude, inTable 2we report the running times of the PQZmethod,QZ,DA, and
Newton’s procedure.We notice that theDAalgorithm turns out to be the fastestmethod
we tested. Even though this scheme needs more iterations than Newton’s method to
converge, each of these iterations is quite cheap as it involves only inversions and linear
combinations of matrices of size n. On the other hand, the solution of a T -Sylvester
equation needed at each step of Newton’s method is rather expensive increasing the
computational cost of the overall scheme. The most demanding step of the PQZ and
QZ methods is the computation of the unitary matrices Q and Z for the pencil ϕ(z).
However, for this example, both the latter algorithms are slightly faster than Newton’s
scheme.

Example 2 We consider Example 4.2 in [3] where the matrices A, D ∈ R
n×n come

from the finite difference discretization on the unit square of 2-dimensional differential
operators equipped with homogeneous Dirichlet boundary conditions, while B,C ∈
R
n×n are full random matrices.
As before, we solve the related T -NARE by means of the PQZ method, QZ, DA,

and Newton’s method and in Table 3 we report the results.
Wewish to point out that, for this example, the properties of the coefficient matrices

do not guarantee the existence of a uniqueminimal nonnegative solution.Nevertheless,
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Table 3 Example 2. “Rel. Res.”
denotes the relative residual
norm achieved by PQZ, QZ, DA,
and Newton’s scheme from [3];
“Rel. Dist.” the relative distance
between the solutions computed
by the invariant subspace
methods and the one obtained by
Newton’s scheme

n = 324 n = 784

Rel. Res. Rel. Dist. Rel. Res. Rel. Dist.

PQZ 7.01e−13 5.35e−14 1.00e−12 4.52e−14

QZ 6.41e−13 5.23e−14 1.14e−12 4.35e−14

DA 7.51e−14 4.95e−14 2.71e−11 4.87e−14

Newton 1.67e−12 – 7.98e−13 –

Table 4 Example 2.
Computational time in seconds
achieved by PQZ, QZ, DA, and
Newton’s scheme from [3]

n PQZ QZ DA Newton

324 3.62 4.51 0.24 (8) 16.6 (5)

784 69.4 90.1 3.11 (10) 175.0 (8)

For DA and Newton’s method, we report in brackets also the number
of iterations needed to achieve the prescribed accuracy

in [3] it is shown that Newton’s method is able to compute an accurate numerical
solution in terms of relative residual norm.

From the results in Table 3 we can notice that also for this example the invariant
subspace methods and Newton’s scheme compute the same numerical solution. In
particular, for both the values of n we tested, this solution is the unique solution such
that the spectrum of α(z) is outside the unit circle. Therefore, even though we cannot
characterize the computed solution in terms ofminimality, its uniqueness is guaranteed
by Theorem 2.

We compare the PQZ method, QZ, DA, and Newton’s procedure also from a com-
putational perspective and in Table 4 we report the results. Conclusions similar to
the ones illustrated in Example 1 can be drawn. The DA algorithm is still the fastest
method we tested while Newton’s method suffers whenever a sizable number of itera-
tions is needed to converge. The PQZ and QZ methods perform better than Newton’s
method but are one order of magnitude slower than DA.

Example 3 In this example we compare only the results achieved by the PQZ method
and Newton’s scheme. We consider the following 2 × 2 problem

D =
[

1 0
−0.1 2

]
, A =

[
1 −0.2

−0.1 2

]
, B =

[
0.2 0.1
0.3 0.4

]
, C =

[−0.1 −0.1
−0.1 −0.1

]
.

PQZ with no reordering computes the following solution

Xout ≈
[
20.1028 −25.4499

−11.5037 14.6980

]
,

which is the unique solution such that the spectrum of

αout (z) = A − BXout + z(DT − BT Xout ),
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is given approximately by {−1.09484,−1.05880} and lies outside the unit circle.
Thanks to the strategy presented at the end of Sect. 5.3, we are also able to construct
the matrix

Xin ≈
[
2.6923 3.6756
1.9569 2.6749

]
,

which approximates the unique solution such that the eigenvalues of αin(z) = A −
BXin+z(DT −BT Xin) are inside the unit circle. The spectrumofαin is approximately
given by {−0.91338,−0.94447}. Both Xout and Xin achieve a relative residual norm
of the order of 10−12.

It is interesting to notice that Newton’s method applied to this example computes
neither Xout nor Xin . The solution

XNewt ≈
[
0.0490 0.1541

−0.0220 0.0385

]
,

computed by Newton’s method with zero initial guess is such that the spectrum of
αNewt (z) is approximately given by {−0.94447,−1.09484}. The latter is a reciprocal-
free set but does not lie inside/outside the unit circle. This example shows that the zero
initial value does not implies the convergence of Newton’s method to the unique
solution X related to a pencil α(z) whose eigenvalues are all inside/outside the unit
circle.

Example 4 In the last example we compare the accuracy in terms of forward error
achieved by PQZ, QZ and DAwith respect to a reference solution computed with high
precision arithmetic.

Even though the numerical results reported in the previous examples show that
the DA algorithm is very competitive in terms of running time, this method does not
exploit the palindromic structure of the problem with a possible loss of accuracy. Also
the (plain) QZ method shares this drawback.

For a given n, we start by defining the matrix M̃ ∈ R
2n×2n entry-wise as follows

M̃ :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M̃i,2n−i+1 = i + 1, i = 1, . . . , n − 1,
M̃2n−i+1,i = 1/(i + 1), i = 1, . . . , n − 1,
M̃n+1,n = σ + 1,
M̃n,n+1 = 1/(σ + 1),
M̃i, j = 0, i < j,
M̃i, j = 1/5, i > j,

where σ > 0 is given.
Then the matrix M in (4) is defined as M = N M̃NT where

N =

⎡
⎢⎢⎣

1 1 · · · 1
−1 1 · · · 1
...

. . .
. . .

...

−1 · · · −1 1

⎤
⎥⎥⎦ .
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Table 5 Example 4. Relative
forward error achieved by PQZ,
QZ, and DA

n PQZ QZ DA

3 2.72e−16 9.29e−7 7.41e−6

4 4.95e−15 4.02e−5 1.02e−5

The reference solution is computed by DA equipped by vpa

Finally, we partition M as in (4) and choose the coefficient matrices A, B, C , and D
defining Eq. (1) accordingly.

Observe that the eigenvalues of the pencil ϕ(z) are λi , λ
−1
i , i = 1, . . . , n, where

λ1 = 1/(1 + σ)2, and λi = 1/i2 for i = 2, . . . , n. Therefore, the smaller σ , the
narrower the separation of the eigenvalues with respect to the unit circle.

We choose σ = 10−10 and we construct the matrix M by making use of MAT-
LAB’s variable precision arithmetic (vpa). In particular, we employ 100 decimal
digit accuracy.

We first solve the equation by DA equipped with vpa. The computed solution
rounded to double precision is denoted by XExact and is considered as reference
solution. Notice that the DA algorithm is very well-suited for the use of vpa as it only
involves linear combinations and inversions of matrices.

We then solve the same equation by PQZ, QZ, and DA, all equipped with double
precision arithmetic.

In Table 5, we report the relative forward error achieved by the aforementioned
schemes, namely ‖XExact − X‖F/‖XExact‖F .

We can notice that, for this example, the PQZmethod is able to achieve a very small
relative forward error by relying on the full exploitation of the palindromic structure
of the problem. On the other hand, QZ and DA completely neglect this property and
they end up constructing less accurate solutions.

7 Conclusions

The main result of this paper relates the solution of T -NAREs to deflating subspaces
of a specific matrix pencil. Such a novel relation allowed us to design methods to solve
T -NAREs based on invariant subspace algorithms. In particular, the PQZ, QZ and DA
schemes have been proposed and tested.

We showed that DA is the fastest algorithm. Indeed, DA has a quadratic conver-
gence, like Newton’s method proposed in [3], but it has lower computational cost
per step and does not require the choice of an initial approximation. In the applica-
tion of DA we have not exploited the palindromic structure of the pencil ϕ(z). The
exploitation of such structure might be useful for large scale problems, as in [8].

The PQZ scheme is the most accurate algorithm, in terms of forward error, thanks
to its fully exploitation of the palindromic structure of the underlying eigenvalue
problem. Concerning accuracy, we have not exploited possible nonnegative properties
of the coefficients, to design an accurate implementation of DA, as for instance in [23]
and [21] for NAREs. This investigation might be the subject of a future research.
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As an alternative to the inexact Newton method proposed in [3], we envision the
designof projectionmethods for the solutionof large-scaleT -NAREs, e.g., by adapting
the approach proposed in [13] for T -Sylvester equations. The numerical routines
analyzed in this paper can then successfully serve as inner solver for the reduced
equations stemming from the adopted projection technique.
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