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Abstract
Quantifying how far the output of a learning algorithm is from its target is an essential task in
machine learning. However, in quantum settings, the loss landscapes of commonly used distance
metrics often produce undesirable outcomes such as poor local minima and exponentially
decaying gradients. To overcome these obstacles, we consider here the recently proposed quantum
earth mover’s (EM) or Wasserstein-1 distance as a quantum analog to the classical EM distance.
We show that the quantum EM distance possesses unique properties, not found in other
commonly used quantum distance metrics, that make quantum learning more stable and efficient.
We propose a quantum Wasserstein generative adversarial network (qWGAN) which takes
advantage of the quantum EM distance and provides an efficient means of performing learning on
quantum data. We provide examples where our qWGAN is capable of learning a diverse set of
quantum data with only resources polynomial in the number of qubits.

1. Introduction

A fundamental task in quantum machine learning is designing efficient algorithms for learning quantum
states [1–10], transformations [10–17], and classical data stored as or generated by quantum states [18–20].
In the general setup, one is given a target quantum object, say a target quantum state, and aims to generate
or approximate that target object by efficiently learning parameters in a quantum circuit. For example,
quantum generative adversarial networks (qGAN) are parameterized sets of quantum circuits and quantum
operators designed to learn target states or transformations via optimization over the parameters of a
quantum generator and discriminator [7, 9].

A crucial component of a quantum machine learning algorithm is an objective function (often a
distance metric) which determines how close a generated object is to its target. This choice of metric is
important not only as a measure of performance but also as a means for optimization. For example, certain
metrics lead to efficient algorithms for calculating gradients with respect to that metric, allowing algorithms
to perform optimization via gradient based optimizers (e.g., gradient descent). Naturally, for learning pure
states, a common choice for the distance metric is a function of the inner product between quantum states.
Similarly, for learning density matrices, researchers commonly choose distance metrics which simplify to a
function of the inner product when measuring the distance between pure states.

Previous approaches to learning quantum data have typically suffered from the presence of vanishing
gradients [21–23] and poor local minima [24–26] in the loss landscape induced by the choice of distance
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metric. Intuitively, these ‘barren plateaus’ and traps arise due to the fact that random quantum states have
inner product that diminishes exponentially with the number of qubits. Our approach helps surmount
these challenges by formulating an algorithm which provides an efficient means for learning pure and
mixed states using the recently proposed quantum earth mover’s (EM) distance, also known as the
quantum Wasserstein distance of order 1 [27]. As we will demonstrate, the quantum EM distance is a
natural distance metric for optimization over local operations and avoids common pitfalls faced by other
distance metrics which reduce to functions of the inner product. This is in agreement with results in
classical machine learning, where algorithms employing the EM distance are often more stable and avoid
issues with vanishing or exploding gradients [28–32] (see appendix A for a more complete discussion of the
literature and appendix B for a presentation of the classical EM distance). Intuitively, the quantum EM
distance can be interpreted as a continuous version of a quantum ‘hamming distance’, which allows local
gates to optimize over the few qubits on which they act instead of over some global distance metric which
often decays exponentially in the number of qubits.

In this work, we study the quantum EM distance from an applied setting and make the following
contributions. First, we overview the construction of the quantum EM distance and analyze the properties
of different quantum distance metrics and the loss landscapes they produce in quantum machine learning
settings. Here, we show that the quantum EM distance has unique advantages over other common distance
metrics. Then, to operationalize the quantum EM distance, we devise a new heuristic method to
approximate the quantum EM distance efficiently given copies of quantum states. In learning settings, this
leads to our development of a quantum Wasserstein generative adversarial network (qWGAN) which is a
quantum analog to the classical Wasserstein generative adversarial network (GAN) [28] (see also [9]).
Importantly, like its classical analog, our qWGAN employs an EM distance in its cost function. Numerical
results show that our qWGAN is efficient at learning quantum data with shallow circuits in various settings.
Finally, we discuss near term applications of our qWGAN for both classical and quantum problems.

2. Quantum distance metrics and quantum EM distance

To approximate or reconstruct a target probability distribution with a machine learning algorithm, the
choice of distance metric, measuring how well the approximating distribution matches the target
distribution, is crucial to the performance of the algorithm. Classically, GAN provide a neural network
approach for learning a target probability distribution and generating new samples from the approximate
distribution [28, 33]. The choice of loss metric for a GAN is a distance or divergence metric which is
minimized when the target and generated distributions coincide.

In the quantum setting, distance metrics between states or density matrices are employed in the
implementation of qGAN [7, 9, 26, 34]. As in the classical setting, the choice of distance metric is crucial to
the runtime and performance of the quantum machine learning algorithm. Here, we consider common
distance metrics and show that the quantum EM distance recently defined in [27] possesses desirable
properties that are not found in the other metrics.

For a brief overview of the notation used in quantum mechanics, we refer the reader to appendix C. Let
ρ,σ ∈ CN×N be the density matrices corresponding to two quantum states, e.g., ρ can be the quantum state
generated by a GAN and σ is the target state. Until now, common distance metrics employed to train
quantum GANs have been unitarily invariant, i.e., invariant with respect to the conjugation of both
quantum states with the same unitary matrix and reducing to a function of the inner product for pure
states (i.e., orthogonal projectors with rank one). Commonly used distance metrics in prior works include:

• Trace distance: the simplest and most common choice (e.g., see [1, 34]) is the trace distance:

D1(ρ,σ) =
1

2
‖ρ− σ‖1, (1)

where ‖ · ‖1 denotes the trace norm, i.e., the sum of the singular values.

• Quantum fidelity: another common choice (e.g., see [10]) is the maximum absolute value squared of
the inner product between purifications of ρ and σ:

F(ρ,σ) = ‖√ρ
√
σ‖2

1. (2)

F(ρ,σ) is often modified to arccos
√

F(ρ,σ) to construct a proper distance metric.

• Quantum Wasserstein semimetric: introduced in [9] as a quantum generalization of the Wasserstein
distance, this distance, denoted qW(ρ,σ), is calculated by forming a coupling between quantum states

ρ and σ in CN×N . The coupling is a quantum state in
(
CN×N

)⊗2
whose marginal states are equal to ρ

and σ, respectively. The quantum Wasserstein semimetric is the minimum of the expectation value of

2



Quantum Sci. Technol. 7 (2022) 045002 B T Kiani et al

the projector onto the symmetric subspace of
(
CN
)⊗2

. qW does not satisfy the triangle inequality,
hence the name semimetric. Importantly, qW is unitarily invariant, and for pure states, it reduces to a
function of their inner product: for any |u〉, |v〉 unit vectors in CN ,
qW(|u〉〈u|, |v〉〈v|) = (1 − |〈v|u〉|2)/2. Further details can be found in appendix D.

The quantum EM distance. In this paper we consider the case of n qubits, where N = 2n, and employ
the quantum generalization of the Wasserstein distance of order 1 to the states of n qubits recently proposed
in [27] and also known as the EM distance. We adopt the latter terminology as it is more prevalent in the
machine learning community, hereby denoting the quantum EM distance with DEM. Unlike all the
previously employed distances, the quantum EM distance is not unitarily invariant. We will show that,
similar to its classical counterpart [28], DEM possesses several properties that are desirable when learning
quantum data.

The quantum EM distance of [27] is based on the notion of neighboring states. Two quantum states of n
qubits are neighboring if they differ in only one qubit, i.e., if they coincide after one qubit is discarded. The
quantum EM distance is the distance that is induced by the maximum norm that assigns distance at most
one to any couple of neighboring states. We denote with ‖ · ‖EM the corresponding norm, whose analytical
expression can be found below. This definition enforces the continuity of the distance with respect to local
operations, i.e., any quantum operation acting on a single qubit can displace a state by at most one unit
with respect to the quantum EM distance. Indeed, for the quantum states of the computational basis the
quantum EM distance recovers the classical Hamming distance (equal to the number of elements that differ
between two strings), i.e., for any two strings of n bits x and y we have DEM(|x〉〈x|, |y〉〈y|) = h(x, y). More
generally, for quantum states diagonal in the computational basis, the quantum EM distance recovers the
classical EM distance. The quantum EM distance admits a dual formulation [27], based on the quantum
generalization of the Lipschitz constant, which is more suitable for implementation of quantum GANs.

We denote with On the set of n-qubit observables, i.e., the set of the 2n × 2n Hermitian matrices. The
quantum Lipschitz constant of the observable H ∈ On is

‖H‖L = 2 max
i=1, ..., n

min
{
‖H − H̃ī‖∞ : H̃ī ∈ On acts as identity on the i th qubit

}
. (3)

The quantum Lipschitz constant defined above is a generalization of the Lipschitz constant for the functions
on strings of n bits, and coincides with the classical Lipschitz constant for the observables that are diagonal
in the computational basis [27]. The quantum EM distance between the quantum states ρ and σ is equal to
the maximum difference between the expectation values on ρ and σ of a quantum observable with Lipschitz
constant at most one:

DEM(ρ,σ) = max {Tr [(ρ− σ) H] : H ∈ On, ‖H‖L � 1} . (4)

When the quantum EM distance plays the role of a cost function in a machine learning algorithm, it can be
considered as an energy associated to the parameter configuration. For this reason, we may refer to the
observables H in (4) as Hamiltonians.

Equivalently, the quantum EM distance can be also defined by its primal formulation [27, definition 6]:

DEM(ρ,σ) =
1

2
min

{
n∑

i=1

‖Xi‖1 : Xi ∈ On, TriXi = 0 ∀ i = 1, . . . , n,
n∑

i=1

Xi = ρ− σ

}
. (5)

To show why DEM possesses desirable properties, we first consider the case where both the target σ and
the generated ρ are pure states in a simple toy model. Here, as we will show, undesirable critical points are
clearly present and endemic to the loss landscapes for metrics which are a function of the inner product
between two pure states. In contrast, the quantum EM distance DEM avoids these undesirable critical points.
Finally, we generalize the findings of this toy model to a larger class of quantum machine learning settings.

2.1. A simple toy model
In this section, we consider an intuitive example which shows the advantages of using the quantum EM
distance when the learning is performed over local quantum gates. Namely, we show that the commonly
used distance metrics which are a function of the inner product between states feature two key issues in
learning via local gates. First, the inner product between a generated and target state fails to show
improvement when gates are optimized one by one or layer-wise [35]. Second, when parameters are
initialized randomly, gradients in this example decay exponentially when the distance metric is a function of
the inner product. The quantum EM distance avoids both of these drawbacks and allows for efficient
learning in this scenario.

3
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Figure 1. (a) Simple quantum circuit which can generate the GHZ state when parameter values are appropriately chosen. (b) In
learning settings, this circuit presents challenges for loss metrics that are a function of the inner product between target and
initial states. Simulations show that, with a loss function such as fidelity (blue line), gradient based optimizers eventually fail to
find global optimum in virtually all instances when circuit contains many qubits, instead converging to the state |0n〉. In contrast,
the use of the quantum EM distance (orange line) results in convergence to the global optimum in virtually all instances tested.
Here, optimization is performed for up to 105 steps using the Adam optimizer (simulations with EM distance generally achieved
convergence within about 1000 steps). Experiments are repeated 1000 times for each n to estimate success probability. See
appendix E for full details of experiments.

In this toy model, the task at hand is to learn the correct values of parameters in the circuit in figure 1(a)
to generate the GHZ state of n qubits |GHZn〉 =

(
|0n〉+ |1n〉

)
/
√

2. This circuit consists of a parameterized
Pauli X rotation on the first qubit and controlled parameterized Pauli X rotations on later qubits (see
appendix C for description of Pauli operators). When n is a multiple of 4, setting θ1 equal to π/2 and all
other parameters equal to π will construct the target GHZ state.

Consider the case where one aims to maximize the fidelity F between the generated state |ψ(θ)〉 and the
GHZ state |GHZn〉. Given our circuit, F takes a simple form:

F = |〈GHZn|ψ(θ)〉|2 =
(

cos(θ1)√
2

+

∏n
i=1 sin(θi)√

2

)2

. (6)

The first problem associated with learning via F is that the loss landscape has undesirable local minima
associated with the state |0n〉. Note that fixing any θi = 0 will force a learning algorithm (e.g., gradient
descent) to optimize the cos(θ1) term, converging to the state |0n〉. In other words, if any algorithm aims to
optimize the gates in a layer-wise fashion (e.g., optimizing θ1, θ2, . . . in order as in [36]), that algorithm will
get stuck in the local optimum at |0n〉.

Of course, in practice, parameters θ are typically initialized randomly so it is unlikely that any θi = 0;
however, even here, we have the second issue that gradients with respect to θ2, θ3, . . . , θn all decay
exponentially with n since the product of sine functions with random parameter values decays
exponentially to zero.

∂F

∂θi
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− cos θ1 sin θ1 + cos 2 θ1

n∏
k=2

sin θk i = 1

+ sin θ1 cos θ1

(
n∏

k=2

sin θk

)2

cos θi

∏
k �=i

sin(θk)

[
cos(θ1) +

n∏
k=1

sin(θk)

]
i > 1

. (7)

Notably, ∂F
∂θi

= O( 1
2n ) for i > 1, but ∂F

∂θi
= O(1) for i = 1. For large n, ∂F

∂θ1
≈ − cos θ1 sin θ1 indicating

that gradient optimizers will converge to a poor local minimum outputting the state |0n〉 (θ1 = 0 mod 2π).
In fact, since the loss function F (equation (6)) takes a simple form, gradient descent on the parameters can
be efficiently performed classically, and results shown in figure 1(b) show that gradient descent converges to
the undesirable local optimum associated with the |0n〉 state even as more qubits are added (simulations
stopped after 100 000 steps of optimization).

4
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The challenges described above are encapsulated by the feature of the inner product that, for example,
the states |0000〉, |1000〉, and even |1110〉 are equally distant (orthogonal) to the state |1111〉—i.e., local
updates induce no change in the inner product distance metric. Using a loss function with the quantum EM
distance DEM naturally avoids these challenges. Since the quantum EM distance recovers the Hamming
distance between two computational basis states, local operations on one and two qubits can reduce DEM as
long as those operations reduce the Hamming distance between the target and generated states. For
example, unlike the inner product distance metric, |1000〉 and |1110〉 are three and one units away
respectively from the state |1111〉 in the quantum EM distance. In our toy model, local gates, even when
applied in isolation, result in changes to single qubits which either reduce or increase the quantum EM
distance.

If we set θ1 = π/2, θ2 = . . . = θk = π and θk+1 = . . . = θn = 0 in the quantum circuit of figure 1(a),
we obtain the quantum state |Ψk〉 =

(
|0k〉+ (−i)k|1k〉

)
|0n−k〉/

√
2. The following proposition 1 intuitively

explains this success and shows that the sequence of states |Ψ0〉 = |0n〉, |Ψ1〉, . . . , |Ψn〉 = |GHZn〉 gets closer
and closer to the target state |GHZn〉, with a guaranteed improvement every two steps. The proof is in
appendix F.

Proposition 1. For any k = 0, . . . , n, let Dk = DEM

(
|Ψk〉〈Ψk|, |GHZn〉〈GHZn|

)
. We have

n/2 � D0 � (n + 1)/2, Dn = 0, and (n − k)/2 � Dk �
(
n − k +

√
2
)
/2 for any k = 1, . . . , n − 1. In

particular, we have Dk+2 < Dk for any k = 0, . . . , n − 2.

Furthermore, as shown in figure 1(b), optimization using the quantum EM distance is, in virtually all
cases, successful at learning the GHZ state. In the simulations for figure 1(b), the quantum EM distance is
efficiently estimated (lower bounded) using the dual formulation by considering the expectation of the
generated state over a subset of O(n) Hermitian operators Hi all with Lipschitz constant equal to one.

D̃EM = max
Hi

|〈ψ(θ)|Hi|ψ(θ)〉 − 〈GHZn|Hi|GHZn〉|

� DEM

(
|ψ(θ)〉〈ψ(θ)|, |GHZn〉〈GHZn|

)
, (8)

where D̃EM is the approximation which lower bounds DEM by taking the maximum over the O(n) operators
Hi chosen for optimization of the circuit (see appendix E for list of operators). Using D̃EM, we can
successfully learn and generate the GHZ state regardless of the size of the system. Given the simplified form
of our circuit, calculating D̃EM can be efficiently performed using a classical computer and the methodology
is detailed in appendix E. Interestingly, though the subset of Hamiltonians considered in calculating D̃EM is
significantly less than the total space of Hamiltonians available needed to exactly calculate DEM, the
simplified form of D̃EM still suffices to completely learn the GHZ state. This perhaps surprising fact is one
motivation for our qWGAN, discussed later, which uses similar techniques to construct a general algorithm
for learning quantum data in more complex settings.

2.2. Properties of quantum EM distance in learning settings
For the EM distance over probability distributions, the classic work of [28] showed that the EM distance has
a number of properties that confer advantages in learning settings over other distance metrics such as the
total variational distance. Here, we show that our quantum EM distance offers corresponding analogous
properties when learning in quantum settings. These properties provide intuitive explanations for why
learning was so successful in the toy model analyzed earlier. First, the quantum EM distance is
super-additive with respect to the tensor product [27, proposition 4]:

Proposition 2. For any two quantum states ρ, σ of n qubits and any k = 1, . . . , n − 1,

DEM(ρ,σ) � DEM(ρ1...k,σ1...k) + DEM(ρk+1...n,σk+1...n), (9)

where ρ1...k and ρk+1...n are the marginal states of ρ over the first k and the last n − k qudits, respectively, and
analogously for σ.

In the case of product states where ρ = ρ1...k ⊗ ρk+1...n and σ = σ1...k ⊗ σk+1...n, then the above is an
equality:

DEM(ρ,σ) = DEM(ρ1...k,σ1...k) + DEM(ρk+1...n,σk+1...n), (10)

Intuitively, the proposition above implies that operations which reduce the distance between two states
over a portion of their qubits will proportionally reduce the total distance over all of the qubits. Note that
no unitarily invariant distance can have this property. For example, to learn a target state |GHZ2〉|1〉,
updating the state |000〉 to |GHZ2〉|0〉 results in a significant improvement in the quantum EM distance but,
since the updated state is still orthogonal to the target state, no unitarily invariant distance will show any

5
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improvement. As an aside, super-additivity is relevant in noisy contexts as it implies that if noise only effects
a small number of qubits, then the change in the EM distance is correspondingly bounded by the number of
qubits on which the noise acts.

A second useful property of the quantum EM distance is that it recovers the classical EM distance for
quantum states diagonal in the canonical basis, and in particular, it recovers the classical Hamming distance
for the quantum states of the computational basis [27, proposition 6]:

Proposition 3. Let p, q be probability distributions on {0, 1}n, and let

ρ =
∑

x∈{0,1}n

p(x) |x〉〈x|, σ =
∑

y∈{0,1}n

q(y) |y〉〈y|. (11)

Then, DEM(ρ,σ) = DEM(p, q). In particular, the quantum EM distance between vectors of the canonical basis
coincides with the Hamming distance: DEM(|x〉〈x|, |y〉〈y|) = h(x, y) for any x, y ∈ {0, 1}n.

The above proposition implies that advantages conferred in classical machine learning algorithms when
using the classical EM distance directly translate into quantum settings when using the quantum EM
distance. Finally, the quantum EM distance is always contained between the trace distance and n times the
trace distance [27, proposition 2]:

Proposition 4. For any two quantum states ρ,σ,

D1(ρ,σ) � DEM(ρ,σ) � n D1(ρ,σ). (12)

In particular, a small quantum EM distance guarantees that the trace distance is also small and
vice-versa. Thus, convergence in the quantum EM distance necessarily implies convergence in more
conventional quantum distance metrics such as fidelity or trace distance.

2.3. EM distance evaluation
As in the classical Wasserstein GAN [28], approximations to the EM distance are required to construct
learning algorithms that have efficient runtimes. Note, the quantum EM distance can be exactly evaluated
using algorithms for semidefinite programs [37, 38] which run in time polynomial in the dimension of the
quantum state and the number of constraints. Such an exact approach would require algorithmic runtimes
that are exponential in the number of qubits and furthermore, do not lead to obvious methods for
calculating the gradient of the quantum EM distance. Instead, we provide a procedure below to estimate the
quantum EM distance between two distributions of quantum states using its dual formulation (4). To avoid
cumbersome computation of Lipschitz constants, we construct a parameterized family of functions which
preserve a quantum Lipschitz constraint upon optimization. Let

H =
∑

I⊆{1, ..., n}
HI , (13)

where each HI acts non-trivially only on the qubits in the corresponding set I. Then, proposition 10 of [27]
provides an upper bound to the quantum Lipschitz constant of a Hamiltonian in terms of its local
structure.

‖H‖L � 2 max
i=1, ..., n

∥∥∥∥∥∥
∑

i∈I⊆{1, ..., n}
HI

∥∥∥∥∥∥
∞

, (14)

where the maximum is taken over the qubits. The notation i ∈ I ⊆ {1, . . . , n} indicates that the sum is
taken only over the set of operators which act non-trivially (i.e., not the identity) on qubit i. Intuitively,
since the Lipschitz constant bounds the change in a Hamiltonian induced by changes to a single qubit, the
bound above can be viewed as a bound on the maximum singular value of nontrivial operators thus also
bounding the corresponding Lipschitz constant. A natural choice for the operators HI are a subset of the
Pauli operators which we explore in our construction of a qGAN next.

3. qWGAN algorithm

Our quantum Wasserstein generative adversarial net (qWGAN) consists of a discriminator and generator
which approximates a target distribution over states ρtar by ‘playing’ a min-max game. Here, the generator
sets its parameters θ outputting a state G(θ), and the discriminator H(W) is a parameterized sum of
Hermitian operators with weights W. In each iteration of optimization, the discriminator first sets its
operator weights, outputting a Hamiltonian Hmax which is the Hamiltonian maximizing our dual

6
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formulation estimate of DEM(G(θ), ρtar). Then, a gradient update is performed on the parameters of the
generator θ. This iterative process is repeated either until convergence in the generator parameters θ or until
a stopping criterion is reached. We detail the forms of the discriminator and generator as well as the steps of
the algorithm in this section.

3.1. Form of the discriminator
In an optimal scenario, a discriminator explores the complete set of Hamiltonians which have Lipschitz
constant less than or equal to one. However, this ideal case does not lend itself to efficient algorithms, and
we instead construct a discriminator which efficiently estimates (lower bounds) the quantum EM distance.
The discriminator we choose is a parameterized sum of strings of Pauli operators:

H(W) =
∑

P1, ..., Pn∈{I,X,Y ,Z}
wP1 ...Pn σ

(1)
P1

⊗ σ(2)
P2

⊗ . . .⊗ σ(n)
Pn

, (15)

where σI is the 2 × 2 identity matrix, σX, σY and σZ are the Pauli matrices, superscripts specify the qubit on
which the corresponding Pauli matrix acts and each wP1 ...Pn is the trainable parameter for the corresponding
Pauli string σ(1)

P1
⊗ σ(2)

P2
⊗ . . .⊗ σ(n)

Pn
. To simplify notation, we denote the set of all trainable parameters as

W. Finding the exact Lipschitz constant of the Hamiltonian (15) can be computationally expensive.
However, noting that Pauli operators have infinity norm of 1 and applying the triangle equality, (14)
provides an easily computable upper bound to ‖H(W)‖L, which we denote with ‖H(W)‖L̃:

‖H(W)‖L̃ = 2 max
i=1, ..., n

∑
P1, ..., Pn∈{I,X,Y ,Z}:Pi �=I

|wP1 ...Pn | � ‖H(W)‖L. (16)

The Hamiltonian (15) has 4n parameters and is impractical to train. For this reason, we restrict
optimization to operators that contain only terms acting on few qubits. One option is to choose the set of
k-local (i.e., acting on k qubits and not necessarily geometrically local) Pauli operators as the discriminator.
We denote with O(k)

n the linear span of such operators. For example, the most general element of O(2)
n is

H(W) = wI +

n∑
i=1

∑
P∈{X,Y ,Z}

w(i)
P σ(i)

P +

n−1∑
i=1

n∑
j=i+1

∑
P, Q∈{X,Y ,Z}

w
(i,j)
P,Q σ(i)

P ⊗ σ
(j)
Q , (17)

where each wI, w
(i)
P and w

(i,j)
P, Q is the trainable parameter for the corresponding Pauli operator. For k � n,

there are O(nk) total terms in the above summation, polynomial in the number of qubits.
We can now define an approximated EM distance by restricting the optimization in (4) to k-local

Hamiltonians and replacing the exact Lipschitz constant with the approximated Lipschitz constant (16):

D(k)
EM(ρ,σ) = max

{
Tr [(ρ− σ) H] : H ∈ O(k)

n , ‖H‖L̃ � 1
}
. (18)

The approximated quantum EM distance is increasing with respect to k and provides a lower bound to the
exact quantum EM distance, i.e., for any two quantum states ρ and σ,

D(1)
EM(ρ,σ) � D(2)

EM(ρ,σ) . . . � D(n)
EM(ρ,σ) � DEM(ρ,σ). (19)

The order k of Pauli operators can be tuned to the complexity of a given problem. To learn truly random
states, access to the full set of Hamiltonian operators is needed, but in many cases, especially when learning
data generated by shallow circuits or data that can be discriminated via reduced density matrices, learning
using only lower order Pauli operators can be effective.

The approximated EM distance (18) can be computed with the following linear program, which can be
efficiently solved. To simplify notation, we assume all parameters are enumerated in a list
W = {w1,w2, . . . ,w|W|}. For each parameter wi, we let Ii be equal to the set of qubits which the
corresponding Pauli string acts on. Thus, with |W| parameters and n qubits, one maximizes the following
linear program:

maximize

|W |∑
j=1

cjwj

subject to
∑
j:i∈Ij

|wj| � 1, i = 1, . . . , n
(20)

where cj is the trace of the product between the jth Pauli string and G(θ) − ρtar. i.e., assuming wj is

associated to Pauli string σ(a)
Pa
σ(b)

Pb
. . . σ(k)

Pk
, then cj = Tr

[
(G − ρtar)σ

(a)
Pa

σ(b)
Pb

. . . σ(k)
Pk

]
. In the above
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formulation, there exists a constraint for each qubit i limiting the sum of magnitudes of operators acting on
that qubit to less than or equal to one.

The linear program in (20) can be transformed into a standard form linear program with n constraints
(one for each qubit), which outputs a sparse set of at most n non-zero weights [39] (the number of
non-zero variables in linear programs in standard form is at most the number of constraints). Specifically,
the linear program will output nactive � n operators with non-zero weights, called active operators,
constructing a Hamiltonian Hmax which is passed onto the generator for optimization:

Hmax =

nactive∑
i=0

w∗
i H∗

i , (21)

where w∗
i and H∗

i are the weights and active operators respectively. As an example, we show in appendix H
that for single qubit states, the linear program outputs an optimal Hamiltonian composed of single qubit
Pauli terms chosen by selecting the single qubit Pauli term which has the greatest contribution on each
qubit (thus nactive = n in this setting). Since nactive � n, gradient updates on the generator which aims to
minimize the expectation of Hmax can be performed. However, this efficiency comes at the cost of
potentially missing certain active operators in the optimal Hamiltonian. Equation (21) is naturally biased
towards including low order operators in its set of active operators. Especially for problems where the
optimization needs to access higher order operators, this methodology may fail to perform effectively.

Appendix H compares values of the estimated distance D(2)
EM with the actual distance DEM for random

states generated by shallow circuits showing that there is a correlation between the two measures, although
the approximation may introduce an unwanted bias. As we show in appendix G, restricting the
optimization over operators to terms acting on few qubits does not affect the value of the distance, since the
optimal unconstrained Hamiltonian for the maximization problem (20) contains only these terms
whenever the coefficients cj associated to single Pauli operators are all Ω(1). Furthermore, since operators
only act on few qubits, efficient algorithms from [40, 41] can be applied to calculate the expectations of |W|
Pauli operators in (17) using O(log |W|) copies of the generated and target states. If a large number of
higher order Pauli terms are included in the decomposition above, such logarithmic dependence may no
longer hold.

We stress that the approximation employed here is the central limitation in successfully applying our
qWGAN model. Improving this approximation is crucial to expanding the scope of application of our
qWGAN beyond the assorted examples provided in section 4. Generally, there are two paths by which one
can improve the approximation. The first path consists of identifying a more optimal relaxation to the
semidefinite program in comparison to the linear relaxation of equation (20). Existing quantum algorithms
for solving semidefinite programs [37, 38] may help in realizing this goal. The second path consists of
finding methods to more optimally choose the subset of Hamiltonians or Pauli operators included in the
approximation. In some cases, higher order Pauli operators are needed to distinguish states and avoiding
these altogether may produce sub-optimal results. In light of this, we describe below one technique that
empirically helps in finding a good subset of Pauli operators.

Optional cycling of operators. Over a small number of steps of optimization, changes to the
expectations of operators cj are expected to be very small. Therefore, if the expectation of a given operator
in the discriminator is small, it is unlikely that the operator will be chosen as an active operator over the
course of optimization. Therefore, one has the option of removing these ‘bad’ operators and including new
operators (here, we choose the new operators uniformly randomly from the set of all Pauli operators) into
the set of operators over which the discriminator optimizes. Many choices exist for cycling operators; here,
we opt for a simple choice where operators are cycled out when the expectation of an operator is below a
threshold equal to P(minic∗i ) (i.e., minimum taken over all active operators) where 0 < P � 1. When an
operator is cycled out, a random Pauli operator is then included in the discriminator’s set of operators
including potentially Pauli operators that were removed in earlier cycles. Cycling operators may, of course,
be detrimental if operators are cycled out that end up being useful during later phases of training.
Nevertheless, in our experiments, we often find that the amount of cycling can serve as another tunable
hyperparameter for improving the performance of our qWGAN.

3.2. Form of the generator
In its most general form, a generator is an object or function, that when given an input (potentially a
sample from a random variable), outputs a state which approximates or produces a sample drawn from a
distribution close to the target distribution. Similar to classical machine learning where neural networks are
customized to given settings—e.g., convolutional neural networks optimized for image analysis [42–44]
and transformer networks optimized for text analysis [45–47]—the form of the generator in our quantum
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Algorithm 1. qWGAN with quantum earth mover’s distance.

Require: initial discriminator operators: H[0]
i � e.g., set of two-local Paulis

Require: initialization of generator parameters: p[0]
i and θ[0]

i

Require: hyperparameters for generator optimizer (e.g., learning rate α)
1: While θ, p have not converged do � Alternatively, stop after T steps

� discriminator optimization:
2: measure operator expectations: ci ← Tr [Hi(G(θ) − ρtar)]
3: find w∗

i , H∗
i (linear program, equation (20)) � Hmax =

∑
i w

∗
i H∗

i

4: optional: cycle operators

� generator optimization:
5: find gradients gp, gθ of Tr[G(θ)Hmax] � See appendix I
6: perform gradient update on θ and p � e.g., θ ← θ − αgθ

algorithm can and should be customized to the specific problem setting. Many options exist for
constructing a generator including parameterized quantum circuits [48, 49] and quantum neural networks
[50–53]. The form of the generator determines the space of functions which a generator can access, and
ideally this space should overlap with the function of the target object. Given we can only cover a limited
class of generators in our analysis, we focus here on a single, though generic, form for the generator,
encouraging future research to construct and analyze generators customized to specific applications in
quantum machine learning.

In this generic formulation, the generator G(θ) is a function which maps a starting state |ψ0〉〈ψ0| to a
density matrix ρ representing the distribution over quantum states that one aims to reconstruct. As in [9],
our generator is constructed by a set of probabilities and associated parameterized unitaries
{(p1, U1), . . . , (pr, Ur)}:

G(θ) =
r∑

i=1

piUi|ψ0〉〈ψ0|U†
i , (22)

where we use θ to denote the set of all parameters for the generator which includes the probabilities pi and
parameters for each unitary Ui. r is the maximum rank of the output density matrix which can be tuned as
a hyperparameter. Later, we consider Ui constructed by parameterized quantum circuits with one and two
qubit gates. The choice of these parameterized circuits depends on the nature of the problem (see section 4
for examples).

3.3. qWGAN optimization procedure
The algorithm for the qWGAN detailed in algorithm 1 iteratively optimizes parameters of the generator and
discriminator, consistent with methods used in classical GANs [28]. The following two steps are repeated
until convergence in the parameters of the generator θ. First, the parameters w are updated using the linear
program (20) to maximize the quantum EM distance DEM in equation (4). Then, a gradient update is
performed on the parameters of the generator θ.

3.4. Properties of the gradient
As stated earlier, one can calculate the gradients with respect to the parameters of the unitary operator
implemented by the circuit (step 4 in algorithm 1) via the parameter shift rule [54]. As an example, let G(θ)
be generated by the quantum circuit that implements the unitary operator

U(θ) =
∏

k

Uk e−iθkPk , (23)

where each Uk is a unitary operator that does not contain any parameter and each Pk is a generalized Pauli
operator. Then, given an optimal Hamiltonian Hmax, one can calculate the gradient as follows for a given
parameter θk:

∂

∂θk
Tr[G(θ)Hmax] = Tr[G(θ+)Hmax] − Tr[G(θ−)Hmax], (24)

where θ+ and θ− are the values of the parameters shifted by π
4 in either direction for the entry

corresponding to θk [54]. This parameter-shift rule has the benefit that the equation for the gradient is in
fact exact (not an approximation). Gradients for each individual parameter must be calculated using
separate circuit evaluations.

Prior work has shown that local cost functions avoid barren plateaus up to poly-logarithmic depth in
the circuit [23]. Due to the super-additivity property of the quantum EM distance and the construction of
the linear relaxation in (20), the optimal Hamiltonian is heavily biased towards local terms and thus fits into
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this regime. We formalize this below by showing that high order Pauli strings acting nontrivially on k qubits
must have magnitude greater than k times the smallest single qubit Pauli contribution to the optimal
Hamiltonian Hmax.

Proposition 5. Let w∗ : {I, X, Y , Z}n → R be the set of parameters that achieve the maximum in (20), and let

a = min
i=1, ..., n

max
P=X,Y ,Z

∣∣∣Tr
[

(G(θ) − ρtar) σ
(i)
P

]∣∣∣ . (25)

Then, w∗
P1 ...Pn

= 0 for any P1, . . . , Pn ∈ {I, X, Y, Z} such that

|cP1 ...Pn | < a |{i = 1, . . . , n : Pi �= I}| . (26)

In particular, w∗
P1 ...Pn

= 0 for any Pauli string that acts nontrivially on more than 2/a qubits.

The proof of the above is deferred to appendix G. As a corollary of the above, any global k-qubit Pauli
term that appears in the optimal Hamiltonian must exceed the sums of the maximum single qubit Pauli
terms on the k qubits on which it acts. Thus, the optimal Hamiltonian Hmax will be at most 2/a-local which
is constant when the expectation of single qubit Paulis is Ω(1). In these settings, the qWGAN will avoid
barren plateaus whenever the generator has depth that does not grow faster than logarithmically in the
number of qubits (see theorem 2 of [23]).

4. Experiments

Our qWGAN can efficiently learn quantum data of various forms. Here, we apply the qWGAN directly to
the toy model of subsection 2.1 and also consider a more general scenario where the qWGAN learns states
generated by a mixing circuit previously known to suffer from barren plateaus [21, 23, 55]. In appendix J,
we include results for the qWGAN in two other scenarios: one where the generator is a circuit formed by a
quantum alternating operator ansatz (QAOA) [56–58] and one where the qWGAN is tasked with learning
mixed states. The Adam optimizer with a default learning rate of 0.01 was used to train the qWGAN [59].
Details on the structure of the quantum circuits and on how the simulations were performed are provided
in appendices K and L, respectively.

Learning the GHZ state. The n-qubit GHZ state is an entangled state which requires a simple circuit of
depth n to construct. However, as noted in subsection 2.1, the correct parameters of this circuit are hard to
learn when using cost metrics that are a function of the inner product between the generated and target
GHZ state. Continuing our analysis, we show that our qWGAN is especially efficient and effective at
learning the correct parameters of a circuit to generate the GHZ state.

As shown in figure 2 for 10 random simulations, our qWGAN efficiently generates the n = 8 qubit GHZ
state in around 500 steps of optimization—results for circuits of different size are also consistent with this
analysis and detailed in appendix J. The generator circuit has n + 2 parameters and depth n. Simulations are
repeated 50 times across random initializations. The discriminator starts with access to k = 2 local Pauli
operators, cycling out ‘bad’ operators every five steps. Estimated EM loss is also plotted in figure 2
(normalized by dividing by the number of qubits), which is equal to the quantum EM distance as measured
by the active operators in the discriminator (lower bounding the actual quantum EM distance). Jumps in
the estimated EM loss can be observed when operators are cycled and later become active, highlighting the
importance of randomly cycling operators in these simulations. It is interesting to note that during the early
phases of learning, the qWGAN often optimizes the EM distance while temporarily decreasing the fidelity.
This learning profile is typically associated with transitions from the state |0n〉 to the GHZ state. As our toy
model indicated, this transition characterized by a temporary decrease in the fidelity is needed to reach the
global optimum.

Teacher–student learning. To analyze our qWGAN in a more general setting, we consider a
‘teacher–student’ setup where the circuit used to generate the target state and perform learning are both of
the form shown in figure 3(a). This circuit is a generic mixing circuit also studied in [21, 23, 55] where
barren plateaus in the loss landscape are observed. For our simulations, the target state φtar is generated by a
depth 2 circuit (i.e. gates shown in figure 3(a) repeated twice) with parameters drawn i.i.d. from the
standard normal distribution. As a point of comparison, we compare our qWGAN to a quantum GAN
equipped with the loss function F = 1 − |〈φtar|φ(θ)〉|2 which is a function of the inner product between the
target and generated state. Figure 3(b) shows that when a circuit of the same form is used to learn the target
state, gradients of F (function of the inner product) decay exponentially with more qubits whereas gradients
of the quantum EM loss function remain constant. Note that the exponentially decaying gradients for the
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Figure 2. The qWGAN consistently generates the eight qubit GHZ state. Estimated EM loss (quantum EM distance estimated by
active operators) is plotted in grey alongside the fidelity in blue. EM distance is normalized to a maximum of one by dividing by
the number of qubits. Percentiles are calculated across 50 simulations. Individual simulations are plotted as transparent lines.

Figure 3. (a) Single layer of mixing circuit consisting of alternating layers of parameterized Pauli Y rotations and parameterized
Pauli Z –Z rotations applied to pairwise qubits. Here, the form of the circuit is shown for six qubits. (b) Learning using two layers
of mixing circuit (shallow, constant depth) results in exponentially decaying gradients for conventional loss metrics. Gradients of
the qWGAN remain constant while gradients with respect to a loss metric as a function of the inner product decay exponentially
in the number of qubits. Gradients are calculated at first step of optimization and 
1 norm is divided by n to normalize to the
number of parameters in the circuit. Findings are consistent when the average is taken for the 
2 norm or of individual gradient
entries as shown in appendix J. Results are averaged across 100 simulations for each data point.

inner product loss metrics are observed here for constant depth shallow circuits. This result further
confirms that loss landscapes for the quantum EM distance avoid common pitfalls faced by conventional
distance metrics including the Wasserstein semi-metric proposed in [9].

Furthermore, as shown in figure 4, the qWGAN successfully learns the states constructed by n = 8 qubit
teacher circuits using student circuits of depth 4. This circuit has 96 trainable parameters. Simulations are
repeated 50 times across random initializations in figure 4. Target states are generated by drawing the
parameters of the teacher circuit i.i.d. from the standard normal distribution. Learning is typically achieved
within a few hundred steps of optimization. In these simulations, the discriminator for the qWGAN
contains all order 2 Pauli operators and no cycling of the operators was performed. We find that, in general,
learning in the teacher–student setting is best achieved when the student circuit is deeper than the teacher
circuit. Furthermore, due to the approximations made in calculating the quantum EM distance, we find that
our algorithm struggles to learn especially deep eight-qubit teacher circuits which are four layers or more in
depth. For these deeper target circuits, we suspect that higher order Paulis are needed to efficiently estimate
the quantum EM distance, and further improvements to the optimization must be made to incorporate
these higher order Paulis in the estimation procedure. Additional simulations for different circuit sizes are
shown in appendix J.
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Figure 4. The student circuit is able to approximate well the state generated by the teacher circuit. Here, the target is constructed
by randomly setting the parameters of a depth 2 mixing circuit (teacher circuit). The qWGAN, equipped with a depth 4 generator
circuit, successfully learns the target state by optimizing over the quantum EM distance. Estimated EM loss (quantum EM
distance estimated by active operators) is plotted in grey alongside the fidelity in blue. EM distance is normalized to a maximum
of one by dividing by the number of qubits. Percentiles are calculated across 50 simulations. Individual simulations are plotted as
transparent lines.

5. Discussion

As interest in quantum machine learning algorithms has flourished, recent research has highlighted the
challenges associated with learning using quantum computers. At the root of these challenges are adverse
properties of loss landscapes in quantum machine learning settings, perhaps most notably that loss
landscapes have poor local minima and exponentially decaying gradients. In this work, we show that the
loss landscape induced by the quantum EM distance can potentially confer advantages in machine learning
settings, especially when optimization is performed over local gates in shallow circuits. Our results provide a
new approach to constructing loss landscapes which can avoid common quantum machine learning
roadblocks.

For the specific application of learning quantum data, we have proposed a qWGAN which leverages the
quantum EM distance to produce an efficient learning algorithm. In accord with its classical counterpart
[28], we show that our qWGAN can potentially improve convergence and stability in learning quantum
data. Nevertheless, the qWGAN struggles in learning more ‘random’ data or data generated from deep
circuits. These challenges stem from two approximations made in the learning procedure. First, to ensure
runtime efficiency, the discriminator was restricted to measuring a subset of local Pauli operators. Second,
the optimization statement to calculate the quantum EM distance was relaxed into a linear program to
ensure it can be efficiently calculated classically. Though this estimated distance is well correlated to the true
distance when learning certain structured states like the GHZ state or states generated by shallow circuits, it
failed to tightly bound the quantum EM distance in more challenging settings. Looking forward, improving
the bounds given by relaxations of the quantum EM distance can potentially allow for application of our
qWGAN in these more challenging settings.

Beyond the test cases studied here, the qWGAN has many potential applications. In quantum controls,
one can use it to search for robust or optimal control parameters [60, 61]. For unsupervised learning, the
qWGAN provides a framework and approach to quantum circuit compression, data encoding, and
sampling [62–64]. For quantum error correction, one can use a qWGAN to develop new techniques for
constructing quantum error codes or assisting error correction procedures [65–68].
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Appendix A. Related works

A.1. Loss landscape in quantum machine learning
Prior research has theoretically and numerically analyzed the typical properties of loss landscapes in
quantum machine learning and control settings. Notably, for commonly used cost functions, prior work has
proved and numerically shown the existence of ‘barren plateaus’ characterized by exponentially decaying
gradients for large depth quantum parameterized circuits [21, 69, 70], cost functions with global
observables [23], and noisy circuits [22]. Furthermore, research in quantum control theory has identified
the presence of traps when the control landscape is constrained [24, 25, 71].

Various attempts have been made to potentially avoid these roadblocks. These include methods for
initializing circuit parameters [72, 73], algorithms for layer-wise training [36], and choosing ansatzes that
can avoid decaying gradients [74, 75]. Despite these efforts, prior work [23] has shown that barren plateaus
are unavoidable unless cost functions are appropriately chosen to be local. Thus more pertinent to our work
are prior studies that have specifically designed loss metrics or gradient-based algorithms that help avoid
issues with barren plateaus. This includes reference [23], which considers local operator loss functions, but
not necessarily distance metrics. The quantum EM distance, when used as a cost function, is biased towards
local operators, gaining the benefits of using local cost functions outlined in [23]. Beyond direct changes to
the cost functions, reference [55] includes second order derivatives in optimizing the loss function to better
navigate flat loss landscapes, and reference [76] constructs an algorithm to optimize over the Fubini-study
metric tensor. Though not analyzed here, these methods can be used in tandem with our qWGAN to
improve optimization of circuit parameters and increase rates of convergence.

A.2. Classical and quantum generative adversarial networks
Generative models, as their name indicates, aim to generate a target object or produce samples from a target
distribution by approximating the given target through a learning procedure. In the quantum setting, one
popular variant for generative models are Born machines whose cost function is measured by comparing a
target classical distribution to the sample distribution of a measurement from a variational quantum circuit
[18–20]. Reference [18] considers the classical EM distance in their evaluation of the cost function which
compares the sampled distribution of the quantum computer to the target distribution.

One commonly used generative algorithm is the GAN, a classical algorithm first introduced in [33].
Most relevant to the current work, reference [28] constructed the first classical Wasserstein GAN employing
an EM distance. Later work improved upon the stability and training of the original Wasserstein GAN by,
for example, constructing improved discriminators and generators [32, 77, 78], progressively adding layers
during training [79], and employing various regularization techniques [80–82]. In the classical literature,
GANs have been extensively used in many real-world applications [83–87].

In the quantum setting, quantum GANs were first proposed by references [2, 7]. Simple experiments
were performed showing the power of quantum GANs in learning quantum data for relatively small systems
that can be simulated or experimentally analyzed [1, 34, 88–90]. Hybrid classical-quantum GANs, fully
classical in the discriminator, generator, and/or loss function, were proposed in references [91–94].
Reference [9] proposed a version of a quantum Wasserstein GAN (qWGAN), though the employed EM
distance is unitarily invariant (see appendix D for details). Reference [95] also proposed a qWGAN
structure with a classical discriminator and the classical EM distance as their loss function. Our work differs
from both of these prior qWGAN papers in that it implements the first qWGAN with a quantum EM
distance. Some early experimental demonstrations of quantum GANs have also been performed on various
different systems [34, 88, 96, 97].
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A.3. Applications of quantum machine learning
Most of the work in quantum machine learning has focused on finding useful applications for quantum
machine learning. These include applications in finance [97, 98], chemistry [96], and post-processing
quantum outputs [99–101]. Beyond quantum GANs, there has been a focus in recent years on developing
near term quantum algorithms potentially implementable on quantum computers with around 100 qubits.
Among the most promising candidates include the quantum approximate optimization algorithm
[58, 102, 103], the variational quantum eigensolver [104, 105], and quantum GANs discussed earlier.

Appendix B. The classical earth mover’s distance

The classical EM distance, also called Monge–Kantorovich distance, is a distance between probability
distributions on a metric space which dates back to Monge [106] and has its roots in the theory of optimal
mass transport. Let p, q be probability distributions on the metric space X , which for simplicity we will
assume to be finite, and let d be the distance on X . Following the Kantorovich’s formulation of the EM
distance [107], we define the set of the couplings between p and q as the set of the probability distributions
on two copies of X with marginals equal to p and q, respectively. In the interpretation of mass transport, p
and q are considered as distributions of a unit amount of mass, and any coupling π prescribes a plan to
transform the distribution p into the distribution q, in the sense that π(x, y) is the amount of mass that is
moved from x to y. Assuming that the cost of moving a unit of mass from x to y is equal to d(x, y), the cost
of the coupling π is equal to

∑
x, y∈X π(x, y) d(x, y), i.e., to the expectation value of the distance with respect

to π. The EM distance between p and q is given by the minimum cost among all the couplings between p
and q. The EM distance has been generalized to a transport cost equal to a power of d, leading to the family
of the Wasserstein distances of order α, of which the α = 1 case recovers the EM distance. The exploration
of the Wasserstein distances has led to the creation of an extremely fruitful field in mathematical analysis,
with applications ranging from differential geometry and partial differential equations to machine
learning [31, 108–110].

The EM distance can be considered as a generalization of the total variation distance. Indeed, the EM
distance recovers the total variation distance when the distance d on X is the trivial distance for which all
the elements of X are equivalent, i.e., d(x, y) = 1 for any x �= y ∈ X .

When X is a set of the strings of n bits, the natural choice for d is the Hamming distance, given by the
number of different bits. In this case, the EM distance is also known as Ornstein’s d̄ distance [111].

Appendix C. Quantum mechanics and qubits

Any quantum system has an associated Hilbert space. If the Hilbert space has finite dimension N, it is
always isomorphic to CN . For the sake of simplicity, we restrict our discussion to this case.

We denote a column vector in CN with |·〉, where · is a label for the vector. We will mostly consider
vectors with unit norm. For any |ψ〉 ∈ CN , we denote with 〈ψ| ∈

(
CN
)∗

the row vector whose entries are
the complex conjugates of the entries of |ψ〉. Following the usual rule for matrix multiplication, 〈·|·〉
denotes the canonical Hermitian inner product of CN , defined to be antilinear in the first entry and linear
in the second.

A quantum state is the quantum counterpart of a probability distribution on a set of N elements, and is a
positive semidefinite Hermitian matrix in CN×N with unit trace. A quantum state is pure if it cannot be
expressed as a nontrivial convex combination of quantum states. This is the case iff the quantum state is an
orthogonal projector with rank one, i.e., if it can be expressed as |ψ〉〈ψ| for some unit vector |ψ〉 ∈ C

N .
With some abuse of notation, we call also the unit vectors in CN quantum states, formally meaning the
associated orthogonal projectors. Similarly, we call the inner product between two pure quantum states the
inner product between the associated unit vectors. A quantum state is called mixed if it is not pure. Two
quantum states are called orthogonal if the corresponding supports are orthogonal. Any mixed quantum
state can be expressed as a convex combination of mutually orthogonal pure quantum states.

An observable is the quantum counterpart of a real-valued function on a set of N elements, and is given
by an N × N Hermitian matrix. The expectation value of the observable H on the quantum state ρ is given
by Tr [ρH].

The Hilbert space associated to a composite quantum system is the tensor product of the Hilbert spaces
associated to each subsystem. Let ρ be a quantum state of the composite quantum system with Hilbert space
CN1 ⊗ CN2 , i.e., a Hermitian matrix in CN1×N1 ⊗ CN2×N2 . We denote with ρ1 the marginal state of ρ on the
first subsystem, i.e., the quantum state in CN1×N1 such that Tr [ρ1 H] = Tr

[
ρ
(
H ⊗ IN2

)]
for any quantum

observable H of CN1 . ρ1 is equal to the partial trace of ρ over the second subsystem: ρ1 = Tr2ρ.
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In this paper, we focus on a quantum system composed of n qubits. A qubit is the quantum system
associated to the Hilbert space C2. We denote with |0〉, |1〉 the vectors of its canonical basis, which is also
called the computational basis. The Hilbert space of n qubits is

(
C2
)⊗n

, and is isomorphic to CN with

N = 2n. The computational basis of
(
C2
)⊗n

is {|x1〉 ⊗ . . .⊗ |xn〉 : x ∈ {0, 1}n}. By the sake of a simpler
notation, we denote each vector |x1〉 ⊗ . . .⊗ |xn〉 with |x〉, and we set |0〉⊗n = |0n〉, |1〉⊗n = |1n〉. We denote
with On the set of the observables of

(
C2
)⊗n

. We say that a linear operator on
(
C2
)⊗n

acts on the ith qubit
if it is equal to a 2 × 2 matrix acting on the ith qubit tensored with the identity operator acting on the
remaining n − 1 qubits. The definition of a linear operator acting on a subset of qubits is analogous.

Perhaps the most important observables used and studied in quantum computation are the Pauli
matrices. Together with the identity matrix, the Pauli matrices shown below form a basis for the observables
on C2 (i.e., one qubit).

σX =

(
0 1
1 0

)
(27)

σY =

(
0 −i
i 0

)
(28)

σZ =

(
1 0
0 −1

)
(29)

A single Pauli observable can act as a measurement on one qubit; however, multiple qubits can be measured
by a ‘Pauli string’ represented by a set of Pauli matrices placed in tensor product form (e.g.,
σX ⊗ σY ⊗ I ⊗ σX or equivalently the string ’XYIX’).

Pauli operators are often used as parameterized quantum gates. In their parameterized form:

RP(t) = e−itσP/2 = cos
( t

2

)
I − i sin

( t

2

)
σP (30)

where subscript P ∈ {X, Y, Z} indicates the specific Pauli operator chosen.
In our exposition, we outline the computations performed on a quantum computer as quantum circuits,

which are models representing a computation as a sequence of reversible quantum gates and measurement
operators. Quantum circuits contain n-bit registers and the sequence of gates are applied accordingly to the
qubits in the register. For further details on how to read quantum circuits, the reader is referred to the
book [112].

Appendix D. Quantum generalizations of Wasserstein distances

Several quantum generalizations of optimal transport distances have been proposed. One line of research by
Carlen, Maas, Datta and Rouzé [113–118] defines a quantum Wasserstein distance of order 2 from a
Riemannian metric on the space of quantum states based on a quantum analog of a differential structure.
This quantum Wasserstein distance is intimately linked to both entropy and Fisher information [117], and
has led to determine the rate of convergence of the quantum Ornstein–Uhlenbeck semigroup [114, 119].
Exploiting their quantum differential structure, references [115, 116, 120] also define a quantum
generalization of the Lipschitz constant and of the EM distance. Alternative definitions of quantum EM
distances based on a quantum differential structure are proposed in references [121–124]. References
[125–127] propose quantum EM distances based on a distance between the vectors of the canonical basis.

Another line of research by Golse, Mouhot, Paul and Caglioti [128–133] arose in the context of the
study of the semiclassical limit of quantum mechanics and defines a family of quantum Wasserstein
distances of order 2 built on the notion of couplings. A coupling between the quantum states ρ and σ of CN

is a quantum state Π of
(
C

N
)⊗2

whose marginal states on the first and on the second subsystems are equal
to ρ and σ, respectively. The transport cost of the coupling Π is Tr [ΠC], where C is a suitable positive
semidefinite N2 × N2 cost matrix. Different choices of C will lead to different distances. The square distance
between ρ and σ is defined as the minimum cost among all the couplings between ρ and σ. References
[128–133] consider the case of a quantum harmonic oscillator, which is actually infinite dimensional, and
choose as cost matrix the quantum analog of the square Euclidean distance:

C = (Q1 − Q2)2 + (P1 − P2)2, (31)

where Q1,2 and P1,2 are the position and momentum operators of the two subsystems, respectively. However,
the resulting distance has the undesirable property that the distance between a quantum state and itself may
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not be zero. Reference [9] notices that the distance between any quantum state and itself is zero whenever
the support of the cost matrix C is contained in the antisymmetric subspace with respect to the swap of the

two subsystems of
(
CN
)⊗2

. Therefore, reference [9] chooses the orthogonal projector onto the
antisymmetric subspace as cost matrix, and employs the resulting distance as a cost function for quantum
GANs. We stress that this distance is unitarily invariant. Indeed, for any N × N unitary matrix U, if Π is a
coupling between the quantum states ρ and σ, then U⊗2Π U†⊗2 is a coupling between U ρ U† and U σ U†,
and these two couplings have the same cost since the projector onto the antisymmetric subspace commutes
with U⊗2. Moreover, the only coupling between the pure quantum states |ψ〉 and |φ〉 is the product state
Π = |ψ〉〈ψ| ⊗ |φ〉〈φ|, whose cost is equal to

(
1 − |〈φ|ψ〉|2

)
/2. Therefore, the distance between pure

quantum states is a function of their overlap.
Reference [134] proposes another quantum Wasserstein distance of order 2 based on couplings, with the

property that each quantum coupling is associated to a quantum channel. The relation between quantum
couplings and quantum channels in the framework of von Neumann algebras has been explored in [135].
The problem of defining a quantum EM distance through quantum couplings has been explored in
reference [136].

The quantum Wasserstein distance between two quantum states can be defined as the classical
Wasserstein distance between the probability distributions of the outcomes of an informationally complete
measurement performed on the states, which is a measurement whose probability distribution completely
determines the state. This definition has been explored for Gaussian quantum systems with the heterodyne
measurement in references [137–139].

Appendix E. Toy model details

Our toy model (subsection 2.1) analyzes the learnability of the GHZ state when using a loss function either
corresponding to fidelity (function of inner product between target GHZ state and generated state) or the
quantum EM distance. For optimizing over the fidelity, we have a loss function, copied below, that is easily
evaluated as a function of θ.

F = |〈GHZn|ψ(θ)〉|2 =
(

cos(θ1)√
2

+

∏n
i=1 sin(θi)√

2

)2

(32)

Here, to perform optimization, we simply perform gradient based updates on the parameters θi in the
equation above. For all experiments, the Adam optimizer was used to perform gradient updates with a
learning rate of 0.2 [59]. For each simulation, 100 000 steps of optimization were performed before
stopping. Learning is considered successful if 1 − F < 0.02.

In our toy model, to efficiently approximate the quantum EM distance, we construct a loss function
D̃EM ≈ DEM

(
|ψ(θ)〉〈ψ(θ)|, |GHZn〉〈GHZn|

)
which takes the maximum over O(n) expectations of Pauli

operators. We first note that the state |ψ(θ)〉 is spanned by up to n + 1 computational basis states.

|ψ(θ)〉 = cos θ1|0n〉+ i sin θ1 cos θ2|1〉|0n−1〉 − sin θ1 sin θ2 cos θ3|12〉|0n−2〉+ . . .

= cos θ1|0n〉+
n−1∑
k=1

ik

⎡
⎣ k∏

j=1

sin θj

⎤
⎦ cos θk+1|1k〉|0n−k〉+ in

⎡
⎣ n∏

j=1

sin θj

⎤
⎦ |1n〉 (33)

We can write the state above in a vector of length n + 1 only including the terms in the above span:

|ψ(θ)〉 =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos θ1

i sin θ1 cos θ2

...

in
n∏

j=1

sin θj

⎤
⎥⎥⎥⎥⎥⎥⎦

, (34)

where the above vector can be easily stored in the memory of a classical computer.
To calculate D̃EM, we first measure the expectation of |ψ(θ)〉 with respect to the following 2n Pauli

operators Pi:

Pi ∈ {σ(1)
Z , σ(2)

Z , . . . , σ(n)
Z ,σ(1)

Y , σ(1)
X ⊗ σ(2)

X , σ(1)
X ⊗ σ(2)

X ⊗ σ(3)
Y , . . . , σ(1)

X ⊗ σ(2)
X ⊗ . . .⊗ σ(n)

X }, (35)

which is equivalent to the complete set of single qubit Pauli Z operators combined with a multi-qubit Pauli
operator for each qubit k consisting of the Pauli X operator or Pauli Y operator acting on qubit k if k is even
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or odd respectively (to handle relative phases) and Pauli X operators acting on all qubits j < k. In the above,
we use the notation σ(i)

L to indicate Pauli L ∈ {X, Y, Z} acting on qubit i.
Since as mentioned earlier, |ψ(θ)〉 is written compactly in vector form, expectations for each of the

above operators can be efficiently evaluated using a classical computer. As discussed in subsection 2.3, an
optimal Hamiltonian whose expectation approximates the quantum EM distance can be efficiently
constructed as a parameterized sum of the above operators. Since all Pauli Z operators act on individual
qubits, D̃EM can be calculated as the maximum amongst the following n + 1 parameterized sums of
expectations of operators:

D̃EM = max
{∣∣∣E[σ(1)

Z ]
∣∣∣+ ∣∣∣E[σ(2)

Z ]
∣∣∣+ · · ·+

∣∣∣E[σ(n)
Z ]
∣∣∣ ,
∣∣∣E[σ(1)

Y ]
∣∣∣+ ∣∣∣E[σ(2)

Z ]
∣∣∣+ · · ·+

∣∣∣E[σ(n)
Z ]

∣∣∣ ,∣∣∣E[σ(1)
X ⊗ σ(2)

Y ]
∣∣∣+ ∣∣∣E[σ(3)

Z ]
∣∣∣+ · · ·+

∣∣∣E[σ(n)
Z ]

∣∣∣ ,

. . . ,∣∣∣E[σ(1)
X ⊗ σ(2)

X ⊗ . . .⊗ σn
X]
∣∣∣} , (36)

where E[·] indicates the difference in expectation of the operator · on the generated state versus the target
GHZ state. For faster simulation, we actually consider the maximum over a simpler set of operators that is
equally effective at learning the GHZ state:

D̃EM = max
{∣∣∣E[σ(1)

Z ]
∣∣∣+ ∣∣∣E[σ(2)

Z ]
∣∣∣+ · · ·+

∣∣∣E[σ(n)
Z ]

∣∣∣ ,∣∣∣E[σ(1)
Y ]
∣∣∣ ,∣∣∣E[σ(1)

X ⊗ σ(2)
Y ]
∣∣∣ ,

. . . ,∣∣∣E[σ(1)
X ⊗ σ(2)

X ⊗ . . .⊗ σn
X]
∣∣∣} . (37)

Using the equation for D̃EM above, gradient updates can efficiently be performed on the parameters of
the circuit. As with the fidelity loss function, we perform optimization with the Adam optimizer at a
learning rate of 0.2 [59]. Only up to 10 000 steps of optimization were performed since convergence was
almost always achieved within about 1000 steps. Learning is considered successful if |〈GHZn|ψ(θ)〉|2 > 0.98
after the optimization. Success was achieved in virtually all instances when using D̃EM.

Appendix F. Proof of proposition 1

For any k = 0, . . . , n − 1, let
Δk = |Ψk〉〈Ψk| − |GHZn〉〈GHZn|, (38)

and let D1 be the completely dephasing channel acting on the first qubit. From [27, proposition 3], the
quantum EM distance is contractive with respect to a quantum channel acting on a single qubit. We then
have on the one hand

‖Δk‖EM � ‖D1(Δk)‖EM =

∥∥∥∥|1k〉〈1k| ⊗
|0n−k〉〈0n−k| − |1n−k〉〈1n−k|

2

∥∥∥∥
EM

=
n − k

2
. (39)

On the other hand, we have

‖Δk‖EM � ‖D1(Δk)‖EM + ‖Δk −D1(Δk)‖EM =
n − k

2
+

1

2
‖Δk −D1(Δk)‖1

=
n − k

2
+

1

2

⎧⎨
⎩ 1 k = 0

√
2 k = 1, . . . , n − 1

, (40)

where the first equality follows from [27, proposition 2], stating that ‖X‖EM = ‖X‖1/2 for any X ∈ On with
Tr1X = 0. The claim follows.
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Appendix G. Bias towards local operators

Consider the maximization problem (20) copied below:

maximize

|W |∑
j=1

cjwj

subject to
∑
j:i∈Ij

|wj| � 1, i = 1, . . . , n

Here we prove that the optimal Hamiltonian for the maximization problem contains only terms with
few qubits whenever all the coefficients cj associated to single Pauli operators are Ω(1).

Proposition 6. Let w∗ : {I, X, Y , Z}n → R be the set of parameters that achieve the maximum in (20), and let

a = min
i=1, ..., n

max
P=X,Y ,Z

∣∣∣Tr
[

(G − ρtar) σ
(i)
P

]∣∣∣ . (41)

Then, w∗
P1 ...Pn

= 0 for any P1, . . . , Pn ∈ {I, X, Y, Z} such that

|cP1 ...Pn | < a |{i = 1, . . . , n : Pi �= I}| . (42)

In particular, w∗
P1 ...Pn

= 0 for any Pauli string that acts nontrivially on more than 2/a qubits.

Proof. The maximization problem (20) is a linear program with dual

min
z∈Rn

�0

n∑
i=1

zi : |cP1 ...Pn | �
∑

i∈[n]:Pi �=I

zi ∀ P1, . . . , Pn ∈ {I, X, Y , Z}. (43)

Let z∗ ∈ Rn
�0 achieve the minimum in (43). For any P1, . . . , Pn ∈ {I, X, Y, Z}n such that w∗

P1 ...Pn
�= 0 we have

|cP1...Pn | =
∑

i∈[n]:Pi �=I

z∗i . (44)

From (43) we have a � z∗i for any i = 1, . . . , n. Let P1, . . . , Pn ∈ {I, X, Y, Z} satisfy (42), and let us assume
that w∗

P1 ...Pn
�= 0. We get from (44)

|cP1 ...Pn | =
∑

i∈[n]:Pi �=I

z∗i � a |{i ∈ [n] : Pi �= I}| , (45)

which contradicts (42), and the claim follows. �

Appendix H. Supplementary details of estimated EM distance

Linear relaxation example over product states. To help aid intuition for the linear relaxation, consider the
simple setting of estimating the quantum EM distance between two n-qubit product states |ψ1〉 and |ψ2〉
using only single qubit Pauli terms in the linear relaxation of (20) copied below:

maximize

|W |∑
j=1

cjwj

subject to
∑
j:i∈Ij

|wj| � 1, i = 1, . . . , n
(46)

where cj = 〈ψ1|Pj|ψ1〉 − 〈ψ2|Pj|ψ2〉 and Pj is one of the single qubit Pauli terms that we use in estimating
the EM distance. Solving the above outputs an optimal Hamiltonian that takes the form

Hmax =

nactive∑
i=0

w∗
i H∗

i , (47)

where w∗
i and H∗

i are the weights and active operators respectively.
In this setting, for each qubit i, the linear program above will set w∗

j = sign(cj) for the cj with largest
magnitude in the set {j : i ∈ Ij} and w∗

j = 0 for all other elements in the set. Thus, the linear program will
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Figure 5. Randomly drawn values of the exact distance DEM and estimated distance D(2)
EM (calculated from linear program over

two-local Pauli operators) are highly correlated. Individual points are drawn from (a) random product states and (b) states
drawn from randomly parameterizing three layers of the barren plateau mixing circuit (figure 12). All simulations are for a
system of five qubits where exact calculations of the quantum EM distance can be performed efficiently on a classical computer.
Each plot contains 1000 randomly drawn data points. A linear fit is plotted over the data as a dotted line.

select the Pauli terms that makes the largest contribution in the difference in expectations between the two
states. For example, if |ψ1〉 = |+〉|+〉 and |ψ2〉 = |−〉|−〉, where |+〉 and |−〉 are the +1 and −1
eigenvectors of the X basis respectively, then the optimal Hamiltonian unsurprisingly equals
Hmax = X ⊗ I + I ⊗ X since these are the single qubit Pauli terms that differ between the two states. Note,
that Hmax = X ⊗ I + I ⊗ X also has a Lipschitz constant of one since any single qubit change can only
change the value of the Hamiltonian by at most one.

As an aside, adding higher order Pauli terms in the above linear program makes no difference in the
outcome. Note, that for any higher order Pauli term, the magnitude of the difference between expectations
of the two states |ψ1〉 and |ψ2〉 will only be captured by differences in their individual qubits. Since the
difference in expectation for this higher order Pauli term cannot exceed that of the single qubit Pauli terms
within it, these terms will never appear in the optimal Hamiltonian calculated above (see appendix G for
further details).

Correlation of estimated and actual quantum EM distance. Exact calculations of the quantum EM
distance would require computational resources that grow exponentially with the number of qubits.
However, as discussed in the main text, efficient estimates that lower bound the quantum EM distance can
be obtained by formulating a new metric D(k)

EM optimizing over Hamiltonians of local operators (also see
prior section for further motivation for this formalism). This estimated distance can be efficiently calculated
as a linear program that requires computational resources that grow polynomially with the number of
qubits.

Figure 5 shows that the exact distance DEM and estimated distance D(2)
EM are well correlated for a system

of five qubits where calculation of exact distances is possible on a classical computer. In figure 5, exact and
estimated distances are compared for random product states (figure 5(a)) and states drawn randomly from
a depth 3 circuit (figure 5(b)). Though correlations are strong for random product states (figure 5(a)), the
estimated distance is not as strong of an approximator for the depth 3 circuit (figure 5(b)) where the slope
of the correlation is slightly below one. This situation is one where many of the qubits have interacted with
each other and we do not expect learning with the estimated distance to perform well at all times since the
approximation is clearly not optimal (i.e., higher order Pauli operators may be needed to approximate the
distance better). Nevertheless, the results here lend further support to the proof in the prior section showing
that the optimal Hamiltonian in the quantum EM distance is biased towards local operators.

Appendix I. Gradients of qWGAN

For the generic version of our generator (equation (22)), optimization is performed over probability
parameters pi and gate parameters in each unitary Ui. The generator optimizes the parameters θ to
minimize Tr [G(θ) H], where H is the Hamiltonian provided by the discriminator. The following
proposition 7 proves that the gradient of Tr [G(θ) H] coincides with the gradient of the EM distance
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between G(θ) and ρtar if H is the optimal Hamiltonian that achieves the EM distance in (4). Therefore, our
learning algorithm decreases the EM distance between G(θ) and ρtar. The proof is in subsection I.1.

Proposition 7. For any target quantum state σ, any parametric family of quantum states ρ(t), 0 � t � T that
is differentiable in t = 0 and any k = 1, . . . , n,

d

dt
DEM(ρ(t),σ)

∣∣∣∣
t=0

= max
(
Tr
[
ρ′(0) H

]
: H ∈ On, ‖H‖L � 1, Tr [(ρ(0) − σ) H] = DEM(ρ(0),σ)

)
,

d

dt
D(k)

EM(ρ(t),σ)

∣∣∣∣
t=0

= max
(

Tr
[
ρ′(0) H

]
: H ∈ O(k)

n , ‖H‖L̃ � 1, Tr [(ρ(0) − σ) H] = D(k)
EM(ρ(0),σ)

)
.

(48)

If ρ(t) admits a differentiable extension to negative values of t, (48) provides the right derivative of
DEM(ρ(t) − σ), which can be different from the left derivative if the max in (48) is nontrivial.

For parameters pi, the gradient of Tr [G(θ) H] can be evaluated using Ui:

∂DEM

∂pi
= Tr(Uiρ0U†

i Hmax), (49)

where Hmax is the optimal Hamiltonian outputted by the discriminator (equation (21)). Note, that the
above is simply the average measured value of Hmax for the quantum state Uiρ0U†

i . For gate parameters, we
can use standard techniques [54] for evaluating gradients with respect to gate parameters.

I.1. Proof of proposition 7
We prove the claim for the exact quantum EM distance. The proof for the approximated quantum EM
distance is completely analogous.

On the one hand, we have for any H as in (48)

lim inf
t→0+

‖ρ(t) − σ‖EM − ‖ρ(0) − σ‖EM

t
� lim inf

t→0+
Tr

[
ρ(t) − ρ(0)

t
H

]
= Tr

[
ρ′(0) H

]
. (50)

On the other hand, for any 0 < t < T, let H(t) ∈ On be traceless and such that ‖H(t)‖L � 1 and
Tr [(ρ(t) − σ) H(t)] = ‖ρ(t) − σ‖EM. We have

lim sup
t→0+

‖ρ(t) − σ‖EM − ‖ρ(0) − σ‖EM

t
� lim sup

t→0+
Tr

[
ρ(t) − ρ(0)

t
H(t)

]
. (51)

Let tk ↓ 0 be a sequence that achieves the lim sup in the right-hand side of (51) and such that

lim
k→∞

H(tk) = H0 ∈ On. (52)

We have

‖H0‖L = lim
k→∞

‖H(tk)‖L � 1,

Tr [(ρ(0) − σ) H0] = lim
k→∞

Tr [(ρ(tk) − σ) H(tk)] = lim
k→∞

‖ρ(tk) − σ‖EM = ‖ρ(0) − σ‖EM, (53)

and

lim sup
t→0+

‖ρ(t) − σ‖EM − ‖ρ(0) − σ‖EM

t
� lim

k→∞
Tr

[
ρ(tk) − ρ(0)

tk
H(tk)

]
= Tr

[
ρ′(0) H0

]
, (54)

and the claim follows.

Appendix J. Additional simulations and figures

J.1. Learning the GHZ state
The analysis in section 4 showed that the qWGAN is especially effective at learning the GHZ state. In
addition to the results shown in section 4, figure 6 shows the typical dynamics of learning the GHZ state of
4, 8, and 12 qubits. In all cases, the GHZ state is learned within 1000 steps of optimization.
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Figure 6. The qWGAN consistently generates the GHZ state in simulations with circuits of 4, 8, and 12 qubits. Estimated EM
loss (quantum EM distance estimated by active operators) is also plotted in above chart, normalized by dividing by the number
of qubits. Plots contain one line for each of 10 simulations for each circuit size.

Figure 7. The student circuit is able to approximate well the state generated by the teacher circuit. Here, the target is constructed
by randomly setting the parameters of a depth 2 mixing circuit (teacher circuit). The qWGAN, equipped with a generator circuit
of depth 4, successfully learns the target state generated by the teacher circuit. For each plot, 5 simulations are performed.

Figure 8. Comparison of gradients between the quantum EM loss metric and a conventional loss metric that is a function of the
inner product. Here the average L1 norm (left), L2 norm (center), and the absolute value of the gradient of the first parameter
(right) are shown. Decaying gradients observed in the inner product loss metric. In contrast, regardless of the number of qubits,
the gradients of the qWGAN remain stable. Gradients are calculated at first step of optimization. L1 norm and L2 norm are
divided by n and

√
n respectively to normalize based on the number of parameters in the circuit. Results are averaged across 100

simulations for each data point.

J.2. Teacher–student learning
Supplementary to the results in section 4, we include figure 7 which shows the typical profile of learning in
the teacher–student setup. In almost all instances, learning of the state generated by the teacher circuit was
achieved.

J.3. Gradients of qWGAN vs. conventional GANs
Supplementary to figure 3(b), we include further details of the gradients of the quantum EM loss metric
and its comparison to a inner product loss metric in figure 8. As a reminder, the inner product loss metric
is F = 1 − |〈φtar|φ(θ)〉|2.

J.4. Butterfly circuit learning
In this section, we consider learning the parameters of a ‘butterfly’ circuit which constructs interactions
between all qubits in O(log2n) layers. The general form of this circuit is shown in appendix K and is
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Figure 9. The qWGAN is also able to generate mixed states that approximate well their given target (also a mixed state) in both
trace distance and quantum EM distance. Here, the generator circuit takes the form of a butterfly circuit of 4 qubits
(see appendix K), and the target is constructed by randomly setting the parameters of the generator circuit. The qWGAN aims to
learn the target density matrix of rank rtar with either rgen = rtar or rgen = 2rtar parameterized circuits of the same form. For each
plot, five simulations are performed.

motivated by prior work in classical machine learning and photonics where similar parameterizations of
unitary transformations produced interesting results [140–144]. Here, the generator takes the form of rgen

copies of the parameterized butterfly circuit. The generator aims to learn a target density matrix ρtar of rank
rtar which is generated from a circuit of the same form as the generator but with randomly chosen
parameters. In other words,

ρtar =
1

rtar

rtar∑
i=1

Ub(θ(i)
ran)ρ0Ub(θ(i)

ran)† (55)

where Ub(θ(i)
ran) is the unitary transformation associated to the butterfly circuit with parameters θ(i)

ran chosen
randomly (we choose each parameter uniformly from [0, 2π)).

Figure 9 shows that the qWGAN is effective at learning mixed states of 4 qubits, though learning is
clearly more challenging as the rank of the target density matrix increases. We recognize that the form of the
generator (22) may not be well suited to optimization over mixed states. For example, it is often the case
that different circuits in the generator optimize to the same critical point in the loss landscape, thus
outputting the same state. Future improvements to the design of generators can improve the results shown
here.

J.5. QAOA learning
The quantum approximate optimization algorithm and its related extension to the QAOA, both given the
acronym QAOA, are promising candidates for achieving quantum speedups in classical optimization
problems [56–58]. Recent work has shown that QAOA is computationally universal [102] and potentially
an effective algorithm in a wide range of quantum machine learning settings [11, 103, 145–148].

Here, we use a QAOA circuit as the generator for our qWGAN to learn the ground state of a simple
translationally invariant Ising Hamiltonian cost function C:

C = B
N∑

i=1

σ(i)
Z σ(i+1)

Z , (56)

where B is a constant assumed to be positive and σ(i)
Z is the Pauli Z operator acting on qubit i. Given the

simple translationally invariant form of C, its ground state is spanned by the states |01〉⊗ 1
2 n and |10〉⊗ 1

2 n.
Note that this setting is different from more traditional QAOA settings since here we do not aim to find the
ground state but instead are given the ground state and aim to construct that state from a parameterized
circuit.

For our experiments, we attempt to learn the ground state of C: 1√
2

(
|01〉⊗ 1

2 n + |10〉⊗ 1
2 n
)

. We use a

QAOA circuit which applies, repeating for a depth of L times, a mixing Hamiltonian e−iαlHmix and the cost
Hamiltonian e−iβlHC where l ∈ {1, . . . , L} indicates the layer of the QAOA circuit. In total, the circuit has 2L
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Figure 10. The qWGAN is effective at learning the ground state of a translationally invariant Ising Hamiltonian. Here, the
generator is a QAOA circuit (see appendix K) of depth L = 4. Estimated W1 loss (quantum EM distance estimated by active
operators) is also plotted in above chart, normalized by dividing by the number of qubits. For each plot, 5 simulations are
performed.

Figure 11. Circuit for generator in GHZ simulations (section 4).

Figure 12. Single layer of mixing circuit used to perform learning and generate targets in section 4. This circuit consists of
alternating layers of parameterized Pauli Y rotations and parameterized Pauli Z –Z rotations. The circuit above may be repeated
to construct deeper circuits for simulations.

trainable parameters αl and βl (see appendix K for details of circuit).

Hmix =

N∑
i=1

σ(i)
X HC =

N∑
i=1

σ(i)
Z σ(i+1)

Z (57)

Figure 10 shows that our qWGAN is very effective at learning the ground state using the QAOA circuit
as the generator. Convergence to the ground state is achieved within a few hundred steps of optimization.
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Figure 13. (a) Butterfly pattern of interactions, here shown for a system of 16 qubits. (b) Circuit for generator in butterfly circuit
simulations (subsection J.4) here shown for 4 qubits.

Figure 14. (a) General form for QAOA circuit. (b) QAOA circuit for 4 qubits and L = 1.

Appendix K. Circuits used in experiments

In all our experiments, the generators are parameterized circuits. The form of those circuits are listed below.

• GHZ circuit (section 4): circuit is shown in figure 11. This circuit differs from that used in the toy
model (figure 1(a)) only in the first qubit. Here, three parameterized Pauli rotations are applied to the
first qubit to allow for complete control over the relative phase of the first qubit.
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• Mixing circuit (section 4): circuit is shown in figure 12. This circuit is commonly used in prior
literature to show the existence of barren plateaus in the loss landscape [21, 23]. This circuit contains
alternating layers of parameterized Pauli Y rotations and pairwise Pauli Z–Z rotations.

• Butterfly circuit (subsection J.4): the butterfly circuit takes the form of alternating layers of single
qubit Pauli X rotations followed by controlled Pauli X rotations applied in the order of the butterfly
pattern (figure 13(a)). The form of the circuit for 4 qubits shown in figure 13(b).

• QAOA circuit (subsection J.5): general form of circuit is shown in figure 14(a) consisting of
alternating applications of a mixing Hamiltonian Hmix and cost Hamiltonian HC. An initial layer of
Hadamard gates is also included. At a given layer l, Trotterized time evolution circuits are used to
apply Hmix and HC for times αl and βl respectively [149]. The form of the circuit for 4 qubits and a
single QAOA layer (L = 1) is shown in figure 14(b).

Appendix L. Computational details

All code used for this paper is available here: https://github.com/bkiani/Quantum-EM-distance-and-
qWGAN.

Quantum circuit simulations were performed using PennyLane [149] with a backend of Tensorflow
[150] or Pytorch [151]. Unless specified otherwise, the Adam optimizer is used for performing
gradient-based updates on a generator [59]. The default Adam optimizer was set to a learning rate of 0.01.
In some cases, learning was performed in two phases, first with a learning rate of 0.02 decreased to 0.007 for
a second phase.

All parameters of the generator are initialized according to a standard normal distribution unless
otherwise stated. In its default setting, we cycle the operators of the discriminator every ten optimization
steps. When operators are cycled, a cycling threshold of P = 0.8 is used (see section 3.1). Discriminators are
initialized with the set of two-local Pauli operators.
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[117] Datta N and Rouźe C 2020 Relating relative entropy, optimal transport and Fisher information: a quantum HWI inequality Ann.
Henri Poincare 21 2115–50

[118] Van Vu T and Hasegawa Y 2020 Geometrical bounds of the irreversibility in Markovian systems (arXiv:2005.02871)
[119] De Palma G and Huber S 2018 The conditional entropy power inequality for quantum additive noise channels J. Math. Phys. 59

122201
[120] Gao L, Junge M and LaRacuente N 2020 Fisher information and logarithmic sobolev inequality for matrix-valued functions

Ann. Henri Poincare 21 3409–78
[121] Chen Y, Georgiou T T, Ning L and Tannenbaum A 2017 Matricial Wasserstein-1 distance IEEE Control Syst. Lett. 1 14–9
[122] Ryu E K, Chen Y, Li W and Osher S 2018 Vector and matrix optimal mass transport: theory, algorithm, and applications SIAM J.

Sci. Comput. 40 A3675–98
[123] Chen Y, Georgiou T T and Tannenbaum A 2018 Matrix optimal mass transport: a quantum mechanical approach IEEE Trans.

Autom. Control 63 2612–9
[124] Chen Y, Georgiou T T and Tannenbaum A 2018 Wasserstein geometry of quantum states and optimal transport of

matrix-valued measures Emerging Applications of Control and Systems Theory (Berlin: Springer) pp 139–50
[125] Agredo J 2013 A Wasserstein-type distance to measure deviation from equilibrium of quantum Markov semigroups Open Syst.

Inf. Dyn. 20 1350009
[126] Agredo J 2016 On exponential convergence of generic quantum Markov semigroups in a Wasserstein-type distance Int. J. Pure

Appl. Math. 107 909–25
[127] Ikeda K 2020 Foundation of quantum optimal transport and applications Quantum Inf. Process. 19 25
[128] Golse F, Mouhot C and Paul T 2016 On the mean field and classical limits of quantum mechanics Commun. Math. Phys. 343

165–205
[129] Caglioti E, Golse F and Paul T 2021 Towards optimal transport for quantum densities (arXiv: 2101.03256)
[130] Golse F 2018 The quantum N-body problem in the mean-field and semiclassical regime Phil. Trans. R. Soc. A 376 20170229
[131] Golse F and Paul T 2017 The Schrödinger equation in the mean-field and semiclassical regime Arch. Ration. Mech. Anal. 223

57–94
[132] Golse F and Paul T 2018 Wave packets and the quadratic Monge–Kantorovich distance in quantum mechanics C. R. Math. 356

177–97
[133] Caglioti E, Golse F and Paul T 2020 Quantum optimal transport is cheaper J. Stat. Phys. 181 149–62
[134] De Palma G and Trevisan D 2021 Quantum optimal transport with quantum channels Ann. Henri Poincare 22 3199–234
[135] Duvenhage R and Snyman M 2018 Balance between quantum Markov semigroups Ann. Henri Poincare 19 1747–86
[136] Agredo J and Fagnola F 2017 On quantum versions of the classical Wasserstein distance Stochastics 89 910–22
[137] Zyczkowski K and Slomczynski W 1998 The Monge distance between quantum states J. Phys. A: Math. Gen. 31 9095
[138] Zyczkowski K and Slomczynski W 2001 The Monge metric on the sphere and geometry of quantum states J. Phys. A: Math. Gen.

34 6689
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