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Nowadays, several Internet of Things (IoT) deployments use publish-subscribe paradigms to disseminate IoT data to a pool of
interested consumers. At the moment, the most widespread standard for such scenarios is MQTT. We also register an increasing
interest in IoT-enabled Location-Based Services, where data must be disseminated over a target area and its spatial relevance
as well as the current positions of the consumers must be taken into account. Unfortunately, the MQTT protocol does not
support location-awareness, hence it may result in notifying consumers that are geographically far from the data source, causing
increased network overhead and poor Quality of Service (QoS). We address the issue by proposing LA-MQTT, an extension to
standard MQTT supporting spatial-aware publish-subscribe communications on IoT scenarios. LA-MQTT is broker-agnostic
and fully backward compatible with standard MQTT. As monitoring the position of subscribers over time may cause privacy
concerns, LA-MQTT carefully supports location privacy preservation, for which the optimal trade-off with the QoS of the spatial
notifications is addressed via a learning-based algorithm. We demonstrate the effectiveness of LA-MQTT by experimentally
evaluating its features via large-scale hybrid simulations, including real and virtual components. Finally, we provide a Proof of
Concept real implementation of a LA-MQTT scenario.

CCS Concepts: • Networks → Location based services; Middle boxes / network appliances; • Security and privacy →

Privacy-preserving protocols; Pseudonymity, anonymity and untraceability.

Additional Key Words and Phrases: MQTT, Location Based Services, Reinforcement Learning, Privacy

1 INTRODUCTION

The Internet of Things (IoT) is now a primary element in our everyday life and connects billions of heterogeneous
devices together to form machine- and human-driven interactions [2]. Indeed, predictions for years to come confirm
a steep growth of devices connected to the internet, estimating around 30 billion devices with an IP address by
2023, which is more than three times the world’s population [13]. Many industrial, social, and public contexts
benefit from this growth, as the need for instantaneous data is fulfilled more and more on a real-time basis, rather
than having to rely on historical reports. As, now, data can be generated from any kind of device, from wearables to
industrial installments, a rapid deployment of off-the-shelf services that are relevant to the potential consumer is of
paramount importance [49][35]. An important criterion for relevance is location, in fact, several IoT-based services
are strongly context-aware in terms of location suitability for consumers: examples include IoT-enabled parking
systems [1], mobile crowdsensing [39], and location-aware alerting and notification systems in indoor environments
such as residential buildings [41] or museums [3], just to name a few. These are called Location-Based Services

Authors’ addresses: Federico Montori, federico.montori2@unibo.it, University of Bologna, Bologna, Italy; Lorenzo Gigli,
lorenzo.gigli@unibo.it, University of Bologna, Bologna, Italy; Luca Sciullo, luca.scullo@unibo.it, University of Bologna,
Bologna, Italy; Marco Di Felice, marco.difelice3@unibo.it, University of Bologna, Bologna, Italy.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
2577-6207/2022/4-ART $15.00
https://doi.org/10.1145/3529978

ACM Trans. Internet Things

HTTPS://ORCID.ORG/000-0002-9943-4209
https://orcid.org/000-0002-9943-4209
https://doi.org/10.1145/3529978


2 • Montori, et al.

(LBS) and are a major pillar in the context of Smart Cities of the future [46].

Because IoT data is typically stored in a common point of access, such as a Cloud, it is indispensable to provide
on-demand access means to potential clients via a configurable and flexible approach which ensures that data
reaches the correct destination. A common paradigm that accomplishes these requirements for shared resources is
the publish-subscribe, where common resources are updated by service producers and service consumers automati-
cally get updates about the resources they subscribed to [44]. A service broker enables such a communication and
acts as a middleware in such a scenario, by guaranteeing the complete temporal and communication decoupling
between the data producers and the data consumers. Although various standards exist in such a direction, MQTT
(Message Queuing Telemetry Transport) is by far the most used publish-subscribe application protocol for IoT.
It is an OASIS and ISO standard since 2013 [23] and it has been used in a variety of IoT-based contexts [32].
MQTT is lightweight, which makes it suitable for machine-to-machine ecosystems where messages are tiny and
computational capabilities are limited, and it includes Quality of Service (QoS) and reliability mechanisms to
guarantee message delivery. At the same time, some features of MQTT make it hardly suitable for wide and novel
IoT deployments, such as IoT-based LBS. Indeed, in its original state, the topic string is the only mechanism
offered by the protocol to filter the relevant messages on the broker and to disseminate them to the subscribers.
Vice versa, in location-aware IoT applications, the service providers are the LBSs, therefore they are geolocated
and the information they produce is likely to be relevant only in their neighborhood. If the MQTT broker covers a
wide area, this may introduce significant network overheads and affect the QoS experienced by service consumers,
since they may get data that is spatially irrelevant to them, even though the type of data (i.e. the MQTT topic) is
exactly the one they subscribed to. As an example, let us think about a city-wide Smart Parking infrastructure,
where each parking lot is equipped with a sensor that determines whether the spot is free or occupied. In such case,
each sensor would broadcast their parking data to the MQTT broker, which would then notify every driver that
subscribed to parking data. However, drivers that are moving far from the parking area will unlikely be interested
to such information and, on the other hand, a massive amount of useless network traffic will be generated.

In order to cope with such issues, in this paper we propose LA-MQTT (Location-Aware MQTT), an extension to
the traditional MQTT protocol for spatial-aware communications. LA-MQTT routes the data generated by service
producers only to consumers for which such data is relevant in terms of both topic and location; in other words, it
limits the amount of consumers to be notified to only the ones that are geographically inside the area of competence
defined by the service producer. This is not the first scientific proposal towards location awareness in MQTT (e.g.
[21]), however, our solution is both unique and complete, in that (i) it is the first broker-agnostic solution, and (ii) it
also carefully considers the privacy implications of adding location awareness to a preexisting scheme. Regarding
the first aspect, our solution is implemented around a common MQTT broker, without altering its implementation,
while geo-processing capabilities are provided by a separate service relying on standard MQTT publish-subscribe
facilities. Secondly, notifying users on top of their location involves somehow knowing their position. This is
unavoidable, yet it causes privacy concerns, as user location is clearly a source of private information that, if
acquired by malicious entities, can lead to harmful consequences. For this reason, the paper also proposes privacy-
preserving schemes that are under the control of the clients and allows to capture the trade-off between QoS of
the notifications and preservation of the client’s location. More in details, three main scientific contributions are
proposed in this study:

• We describe the software architecture and the implementation of LA-MQTT, as a broker-agnostic and MQTT-
compliant solution to support the dissemination of messages on geofences of arbitrary shapes. The architecture
includes a client library, running on the mobile IoT device and adding location-based publish-subscribe
primitives, and a backend service providing the message geo-filtering functionalities.
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• We design proper privacy preservation mechanisms integrated within the client library, and combining
well-known techniques of GPS perturbation and dummy routes. In addition, we propose a Reinforcement
Learning (RL)-based algorithm to tune the privacy parameters in an autonomic and adaptive way, so that
each client is able to achieve the desired trade-off between Spatial Precision (SP) and Privacy Preservation
(PP) metrics. The privacy preservation mechanism is designed as an integral part of LA-MQTT and allows
for integration any other privacy-aware techniques in the framework. In this sense, GPS perturbation and
dummy routes are used as specimens.
• We evaluate LA-MQTT through a twofold evaluation study. The effectiveness of the spatial filtering mecha-

nism and the privacy solutions, including the convergence of the learning-based algorithm, are investigated
through a hybrid simulation environment in which the real software agents of LA-MQTT are fed by simulated
entities of Mobile Clients (MCs) on an urban scenario. Moreover, we provide a Proof-of-Concept (PoC)
implementation in a small-testbed involving an IoT board as data producer and an Android application as
data consumer, and analyze the average delay of the geo-dissemination process.

The paper is organized as follows. Section 2 outlines related works in the fields of MQTT extension and
location-based privacy. Section 3 presents the system model, Section 4 describes in detail the software architecture
and all the entities involved. Section 5 deals with privacy concerns, introduces our privacy-preserving solutions and
presents the proposed reinforcement learning algorithm. Section 6 shows the evaluation results in a large-scale
simulated deployment. Section 7 presents the PoC implementation and, finally, Section 8 concludes the paper.

2 RELATED WORK

This paper lays its foundations over three main pillars of research: the MQTT protocol, privacy preservation
in Location-Based Services (LBS) and location awareness in publish-subscribe systems. In this section we will
address the backgrounds and related literature that touch upon these three themes, with a particular focus on their
merge points.

2.1 MQTT-related research

The MQTT (Message Queuing Telemetry Transport) is an IoT client-server publish-subscribe messaging protocol,
proposed for the first time in 1999 and now OASIS and ISO standard [23]. It has found a wide applicability in
constrained environments such as for communication in Machine to Machine (M2M) and IoT contexts where a
small code footprint is required and/or network bandwidth is at a premium [21]; this is thanks to its features of being
lightweight, open, easy to implement. Version 5 has been released in 2018; by default it uses IANA registered port
number 8883 for SSL/TSL connections and 1883 port number for Non-TLS connections [23]. MQTT offers three
different Quality of Service (QoS) for message delivery: “at most once”, when it does not matter if the connection
to the application is interrupted for a while and message loss is tolerated, “at least once”, where message loss is not
an option and duplicates are instead tolerated to cope with it, and “exactly once”, where both message loss and
redundancy may lead to severe faults. A typical MQTT scenario features three main components:

(1) The MQTT Consumers (or Subscribers).
(2) The MQTT Producers (or Publishers).
(3) The MQTT Broker (or Server).

Both Consumers and Producers are classified as MQTT Clients and they can issue requests to the MQTT Server
once the connection is established: such requests include publishing messages that may be of interest to other
clients (carried out by the producers) and subscribing for updates (carried out by the consumers). The published
messages are delivered to the consumers based on the MQTT Topic they refer to; i.e. if the consumer subscribes
to a certain topic, it will receive only the updates, published by the producers, that pertain to such topic. The
message exchange is mediated by the MQTT Broker, which accepts connections from the clients and keeps track

ACM Trans. Internet Things



4 • Montori, et al.

of active subscriptions, in order to deliver messages to the interested recipients upon their publish [23]. MQTT
is indubitably one of the best and most widespread application protocols for IoT applications. It has several
advantages such as being lightweight and energy efficient, granting many-to-many communication and relieving
IoT devices from instantiating a continuously running service [32]. A multitude of MQTT Broker and libraries
implementations have been proposed and the protocol itself is being actively discussed in the research community
[32]. Performance comparison of MQTT against other IoT messaging protocols like CoAP or AMQP has been
discussed, among others, in [31], [29] and [45]. Similarly, some protocol extensions have been proposed to tackle
real-time communications [17] or the current lack of security, although enabling encryption as a separate feature
causes performance overhead [15]. The security problem has been dealt with extensively in literature. One such
solution was proposed in [30], where authors envision a security add-on to legacy MQTT to provide authorization,
authentication and cryptography. This work builds on preexisting MQTT deployments and includes special actors
(such as the Revocation Authority) in order to make it fully backward compatible.

2.2 Privacy in Location-Based Services

In order to maximize the QoS of Location-Based Services (LBS), it is usually required to know the position of
potential clients a priori, as to match each of them with the most suitable and spatially relevant service. However,
this obviously causes privacy concerns as the service provider would be aware at any time of where the users
are and eventually be able to discover their habits and other sensitive information. As a matter of fact, privacy in
mobile scenarios is a long-studied problem [7], with an incredible amount of works suitable for different scenarios.
However, we restrict our research on geographical information and online and distributed privacy countermeasures.
More in detail, these imply mobile users to implement their privacy mechanism on the fly and on the edge, therefore
independently from the full knowledge base [42]. This excludes most of the offline strategies such as k-anonymity
[18] and differential privacy [5], which aim to minimize the distinguishability of an individual among a group, as
such a group is unknown to the mobile user. In fact, such kind of optimization is performed either in a central
aggregator or, in case the central aggregator is untrusted, a set of intermediate agents is typically envisioned.
This poses a delay and additional steps in information sharing and, therefore, it is not viable in our scenarios.
In LBS, a common online strategy is location cloaking [12], which blurs the location of the user to a cloaked
area before being sent over. However, again, the majority of the research works assumes an infrastructured or a
peer-to-peer environment where users have, at least, a partial knowledge of the position of other users [10][38].
This enables them to optimize the cloaking procedure by producing the smallest perturbation that yields a target
anonymity. Much less research is conducted towards producing a per-user perturbation with no knowledge about
the others and, most of the times, this involves contextual information [40]. Another class of applicable online
privacy mechanisms is that based on dummies techniques. Instead of perturbing their true location, users produce a
set of dummy locations to confuse a potential attacker [26]. Further studies have been focusing on filtering out
improbable dummies by taking into account temporal reachability and direction similarity [28], by maximizing
the query entropy [36] and by caching wireless access points to store historical queries, preventing the user from
submitting the location-aware queries frequently [37]. In other cases it is preferable to do the opposite, i.e sending
over only a subset of the information, provided that the internal correlation is below a certain threshold, as in [34].

2.3 Location in Publish-Subscribe Systems

The issue of scalability, which is not taken into account by the MQTT standard itself, calls out for a consistent
reduction of the messages in scenarios where the density of producers and consumers is high. A key observation
here is that clustering messages spatially both reduces the burden at the broker level and provides more fine-grained
information to subscribers, potentially increasing the QoS. Many studies propose their own solution to dense
scenarios via distributed approaches on top of legacy MQTT, while some others propose their own publish-subscribe
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method to tackle the problem. The work in [24] discusses a distributed architecture that divides the geographical
area hierarchically into squares and places a dedicated broker for each of them. Routing is achieved by gateways
that redirect subscribers to the pertinent broker. As no communication is actually required between brokers, the
solution also supports heterogeneity. However, while being efficient at deployment time, the solution cannot adapt
to localized increases of demand at run-time and requires several brokers to be deployed. A similar work is proposed
in [25], where the communication between brokers is required, as they are organized in clusters. This allows to
accommodate clients that connect to a broker that is not responsible for handling their publish and subscription
operations. The previous works can be considered location-aware in the way the authors address the optimal
placement of the MQTT brokers; however, they do not consider location-awareness for the publish-subscribe
communications, which is the main goal of this paper. The most similar work to ours is [8] (and the related Android
implementation in [16]), where the authors propose MQTT-g, a location-aware extension of MQTT that handles
location-based relevance of topics for subscribers by encoding such information in the unused fields of MQTT
messages. Subscribers need to periodically notify the broker about their position and a dedicated matching function
will notify them only if they are located in the area pertinent to the information published by the producer. A
similar work has been proposed in [22], where an extension of MQTT – in particular MQTT5, which carries along
several enhancements, including the acceptance of additional properties according to the client’s specific needs –
for geolocation is presented. This proposal relies on the definition of the GLP payload, a special payload in which
information about the geographically-based subscriptions is encoded in JSON. The proposal is very detailed in
the definition of such payload and the area encoding, however being it still an initial stage, it does not come with
validation nor implementation yet. Although the goal of [8] and [22] is similar, both solutions are quite different
from ours, since they require to extend the broker functionalities: this implies a different implementation for each
broker as well as requiring it to be open-source, leaving out the heterogeneity factor. Conversely, the proposed
LA-MQTT does not manipulate the MQTT protocol by making use of unused bits and requiring a dedicated broker,
instead it relies fully on legacy MQTT deployments by adding a component transparently. Also, the privacy for
subscribers is not considered in [8] and [22]. MQTT has also been used as a location discoverer in more technology-
and application-specific scenarios such as in [47], where a location-aware mechanism similar to ours is used to
trigger BLE scan processes. Being it an application-specific approach, the actions to take on top of the location
disseminated by the publishers is completely left to the subscribers, without any paradigm for generalized LBSs,
nor the possibility of conveying arbitrary data together with the location. Besides these studies, other non-MQTT
location-aware publish-subscribe solutions have been proposed. For instance, in [11] and [50] authors focus on
data including text and geo-tagging (such as Twitter posts) and operate a spatial filtering on subscriptions based
on grid cells. Subsequently, they rank the results according to their popularity score. These solutions, however,
are not specifically made for IoT. Conversely, authors in [6] describe CUPUS, a publish-subscribe framework
specifically tailored to Mobile Crowdsensing (MCS) scenarios, both to acquire data from sensors and to notify
mobile users of nearby information of interest. In [19] authors propose Elaps, a publish-subscribe framework that
aims to overcome the location deficiency of current solutions by delivering dedicated messages on top of consumer
geofences attached to subscriptions. Similarly, GeoBroker, recently proposed in [20], is a novel Pub/Sub system
that uses a geofence for both consumers and producers, in fact letting consumers decide how far data sources
are meaningful to them and vice-versa. A similar solution is adopted in [9], where, again, both producers and
consumers can specify their areas of influence and interest, respectively. Nevertheless, none of these solutions is
compatible with existing standard deployments, plus they do not consider location privacy. Table 1 compares the
major features of location-aware publish-subscribe solutions explored in this Section. More in detail, we report (i)
whether the solution uses the MQTT standard or not (MQTT Compliance), (ii) whether it is fully compatible with
existing brokers or it requires modifications to the broker implementation (Broker Compliance – requires MQTT
Compliance), (iii) whether it uses the concept of geofencing [27] (Geofencing) and (iv) whether it does not strictly
require multiple brokers to be deployed (Standalone).
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Reference MQTT Compliance Broker Compliance Geofencing Standalone

Guo et al. [19] ✗ ✗ ✓ ✓

Antonić et al. [6] ✗ ✗ ✗ ✓

Chapuis et al. [9] ✗ ✗ ✓ ✓

Venanzi et al. [47] ✓ ✓ ✗ ✓

Bryce et al. [8] ✓ ✗ ✓ ✓

Kawaguchi and Bandai [24] ✓ ✗ ✗ ✗

Hasenburg and Bermbach [20] ✗ ✗ ✓ ✓

LA-MQTT ✓ ✓ ✓ ✓

Table 1. Review of related location-aware publish-subscribe solutions explored in Section 2.3.

Fig. 1. The reference IoT scenario, with the actors involved (MCs, LDSs and the SC).

3 SYSTEM MODEL

Without loss of generality, our study addresses the generic IoT scenario depicted in Figure 1 and composed
of two main actors, i.e. the Mobile IoT Clients (MCs), which play the role of service/data consumers and the
Location-based Data Sources (LDSs), which play the role of service/data providers. More in detail, MCs are
smartphones or IoT devices embedding a GPS sensor. Let M and N be the number of active MCs and LDSs,
respectively. Let also Pi = ⟨lati , loni ⟩ be the current position, in terms of latitude and longitude, of MCi . Similarly
to many IoT environments, we assume that the communication between the MCs and the LDSs occurs through a
publish-subscribe paradigm, i.e. a MC registers its interest for a specific data channel and it is notified each time a
new data instance belonging to such channel is produced by any of the LDSs. Each channel is identified by a unique
topic name (a string) describing the service type. LetTi be the list of topics of interest for MCi . However, differently
from existing solutions, we consider spatial constraints for the dissemination of IoT data, i.e. the identification
of target MCs takes into account the topics of interest to which they subscribed as well as their current locations.
An example of applicability can be the smart mobility application mentioned in the Introduction, through which a
driver receives real-time notifications about spare parking spots in his whereabouts. To support this feature, we
assume that an LDSs is associated with a topic ts that specifies both the data type (e.g. parking data) and a region
of interest – defined here as a “geofence” – дs , which defines the geographic region over which its data is of
interest and must be delivered. Despite the common understanding about a geofence [33], we do not introduce
any assumption regarding its shape, which can be circular or polygonal according to the LDS administrators’
preferences. Let us define cs to be the content to be delivered relative to ts . In particular, LDSs generates a new
content cs every fs seconds. In Figure 1, the static magnetometer is part of LDSpark that notifies MCs that are both
subscribed to its topic tpark and located within the rectangular geofence дpark about the presence of a spare parking
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spot. According to our notation above, LDSpark produces the availability data cpark of the parking spot every fpark
seconds. The communication between MUs and LDSs occurs through a third-party infrastructure generically called
as the Service Core (SC); thanks to the logical decoupling between the data producers and the data consumers
offered by the SC, the MCs can focus on the topic of interests rather than on the network addresses of the data
sources. However, to implement the publish-subscribe communication, the MC must periodically notify the remote
SC about its own GPS position Pi . Let fi be the time interval between two consecutive GPS publishing events for
MCi . We then define a message generated by LDSs to be relevant for MCi whether: (i) ts ∈ Ti , i.e. the topic of the
LDSs is of interest for MCi ; (ii) Pi ⊏ дs , i.e. MCi is within the geofence region of LDSs , where the operator ⊏ is
used here to denote the spatial inclusion of a 2D point within a 2D region.

Moreover, since MCs are continuously sharing their GPS position with the SC, they might be exposed to privacy
leaks, as the SC might be able to associate a user identity to its current location and/or to track the trajectories of
a user over time. For this reason, it is necessary to investigate privacy mechanisms through which a MC is able
to alter its GPS position before transmitting it to the SC, without causing a major performance drawback. Let
P̃i be the GPS position of MCi estimated by the SC. We denote as Privacy Preservation of MCi (PPi in short)
the average geographical distance between P̃i and Pi , i.e. between the real position of MCi and the estimation
performed by the SC. As in the vast majority of location-based scenarios, the PP metric is in a trade-off with the
accurate performance of the system [4]. Here, we represent such accuracy with the Spatial Precision metric (SPi
in brief), defined as the ratio of relevant notifications over the total ones received by MCi . The SP metric can be
considered as a proxy for the quality of data as perceived by the MC. Clearly, the higher the PPi , the lower the SPi .
The aim of the study is then to design a proper location-aware publish-subscribe mechanism able to efficiently
address the aforementioned trade-off.

4 LA-MQTT: SOFTWARE ARCHITECTURE

In order to tackle the challenge presented in the previous section, we propose a new publish-subscribe protocol
called LA-MQTT, a seamless extension of the popular MQTT protocol that aims at supporting location-aware IoT
communications. Specifically, LA-MQTT has been designed according to these principles: (i) standard compatibility,
i.e. no changes to message formats of the MQTT protocol have been introduced; (ii) broker compatibility, i.e.

LA-MQTT is implemented as an external add-on and hence does not require any specific support from the broker;
(iii) fine-grained geofencing support, i.e. our architecture allows to define geofence regions of any shape and not
only circular as in [8]; (iv) privacy-awareness, i.e. we propose client-side mechanisms and algorithms aimed at
guaranteeing the best trade-off between the SP and PP metrics mentioned in the previous section. The LA-MQTT
software architecture is shown in Figure 2. It includes three main components: a legacy MQTT broker, the
LA-MQTT client library, and the LA-MQTT backend. Regarding the first, we tested the operations of LA-MQTT
with Eclipse Mosquitto1, due to its widespread usage among the IoT research communities and its open-source
license; however, we remark that LA-MQTT is broker-agnostic, and hence it can be seamlessly integrated with other
tools available on the market. The LA-MQTT client library is a tiny software layer that supports geo-communication
facilities for both MCs and LDSs, such as publishing a new geofence (for the LDSs) or subscribing to it (for
the MCs). The backend is in charge of processing the LA-MQTT messages and triggering spatial notifications
associated to an entry event within a specific geofence. It may be deployed on the same host of the MQTT broker,
or on a different host. In the following, we detail the internal structure and the operations of each component.
Figure 2 is also described in detail with the help of an example in Section 4.3.

1Eclipse Mosquitto, an open-source MQTT broker (https://mosquitto.org/)
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Fig. 2. The LA-MQTT software architecture [figure best viewed in colors].

API Subject MQTT OP Topic Payload

Position publish MC Publish GPS_DATA {position: Pi }
Topic subscription MC Subscribe C (i, ts ) *

MC Publish MC_SUB { mc: i , topic: ts }
Geofence publish LDS Publish GEOFENCE_DATA {topic: ts , content: cs , region: дs , event: es }
Content publish Backend Publish C (i, ts ) {content: cs }

Table 2. The LA-MQTT publish-subscribe operations.

4.1 The LA-MQTT client library

The LA-MQTT client library is used by both MC and LDS devices, as it enables location-aware publish-subscribe
operations against the remote MQTT broker. The underlying data transfer is managed by the legacy MQTT protocol:
no changes to the MQTT messages’ formats or to the messages’ sequence have been made. However, the LA-MQTT
client library introduces a new API for location-based communications over the MQTT publish-subscribe primitives.
This has been implemented by defining, for the LA-MQTT messages only, the following: (i) a reference naming
convention for the MQTT topics and (ii) a uniform payload structure, encoded through the JSON language. Table 2
summarizes the list of topic names and payload formats for each of the three main functionalities offered by the
LA-MQTT client library:

• Position Publish. The API allows the MC to transmit its current GPS position to the MQTT broker. The
operation is mapped to a basic MQTT publish action, where the topic is constrained to a predefined string
(GPS_DATA), and the latitude and longitude values are embedded within the payload. Before performing
this action, the client activates the privacy mechanisms described later in Section 5.
• Topic Subscription. The API allows the MC to subscribe to a topic. As a result, the MC is notified each time

any LDS generates a new content of that topic, provided that the location constraints are met. The operation is
inherently mapped to two actions. The first one is basic MQTT subscribe action: the topic of interest is built
as a concatenation of the topic provided by the user, an identifier of the MC, and a predefined prefix. In this
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way, LA-MQTT manages private subscriptions for each MC and topic of interest; this choice is justified by
the need of providing filtered dissemination of IoT messages towards those MCs that meet the location-based
requirements explained later in this Section. We indicate with C (i, ts ) the newly created topic for MCi and
LDSs . The second action, beside the MQTT subscription, is a MQTT publish request issued by MCi . Such a
request is issued with default topic MC_SUB and payload ⟨ts , i⟩: the purpose is to notify the backend about
the subscription performed by MCi , as better detailed in Section 4.2.
• Geofence Publish. The API allows the LDS to publish messages that must be delivered to all the in-

terested MCs located within a target geofence. The MQTT topic is constrained to a predefined string
(GEOFENCE_DATA), while the payload is composed of four fields: the LDS topic ts , the advertised content
cs , the target geofence дs , and a mobility event es . The advertised content is the application-dependent content
(cs ) that must be ultimately received by the MCs (e.g. parking spot availability report with respect to the
example in Figure 1, including also the position of the parking spot). The geofence дs must be encoded
through the GEOJSON RFC 7946 format23. Even though we claimed that a topic is relevantfor a MC when
the latter is located inside the relative geofence, we may envision more complex spatial relation. To reflect
this, we add the mobility event es , that captures the condition under which the notification must be fired. At
present, two basic options are supported, es ∈ {IN | OUT}, according to whether the MC is inside or outside
the geofence region. We plan to extend the list of mobility events as future work, for instance including the
event of dwelling in the geofence for more than a certain time period.

4.2 The Backend library

The LA-MQTT backend is executed as a background process either on the same host of the MQTT broker or on a
separate host. At the system startup, the backend library subscribes to the GPS_DATA topic: hence, it is notified
every time a new GPS position update is sent by any MCi . The entry ⟨i, Pi ⟩ is stored on a MongoDB database.
Similarly, it subscribes to the GEOFENCE_DATA topic, thus it is also notified every time a new message is sent by
any LDSs . In this case the entry ⟨ts ,дs , cs , es ⟩ is stored on a MongoDB database. To determine the list of potential
receivers for each message generated by LDSs , the backend needs to know Ti , i.e. the list of subscriptions of each
MCi ; however, the MQTT broker might not expose such information through an API. For this reason, the backend
subscribes to the MC_SUB channel, being notified each time MCi registers to topic ts . The backend includes a
geoprocessing module that is activated every time a new GPS_DATA is published by any MCi and verifies whether
the event spatial constraint is satisfied (e.g. Pi ⊏ дs if es=IN) and ts ∈ Ti . If both conditions are met, the backend
publishes a new message on the private MQTT topic C (i, ts ), setting cs as MQTT payload. In addition, a similar
process is executed when a LDSs publishes a new content cs : in this case, the module loops over all the MCj with
0 < j ≤ M , as they might miss the notification otherwise, and publishes a new message with payload cs on all the
channels C (j, ts ) for which ts ∈ Tj and the es condition holds. Finally, we notice that a MC might move within a
geofence дs , however it should be notified only once for each content cs produced by LDSs . For this reason, the
backend includes a caching module that keeps track of the history of notifications delivered by LDSs to MCi ; this is
implemented by storing (i) a sequence number Ns that counts the GEOFENCE_DATA messages produced by LDSs ,
and (ii) a cache data structure ⟨Ns (i ), i⟩, where Ns (i ) is the sequence number of the latest message produced by
LDSs that was delivered to MCi . When processing a GPS update from MCi , the module verifies that Ns (i ) < Ns ;
only in that case, provided that ts ∈ Ti and Pi ⊏ дs , the message is published on the MQTT broker, with topic
C (i, ts ) and payload cs .

2https://geojson.org/
3Polygon geometry is the only supported at present, for circles we needed to add a custom encoding.
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4.3 Workflow Example

In order to better ease the understanding of the workflow presented in Figure 2, we go over the whole procedure
with the aid of an exemplary scenario. In particular, we make use of the smart parking example, also mentioned
in Figure 1. The scenario is under the control of a deployed Legacy MQTT Broker, together with the LA-MQTT
backend. The latter performs three subscriptions at deployment stage: one for GEOFENCE_DATA (coming from
LDSs), one for GPS_DATA and one for MC_SUB (both coming from MCs). Now, let us assume to deploy a smart
parking system, in which each parking spot is an independent LDS equipped with the LA-MQTT client library,
while each driver looking for a parking spot is a MC, also equipped with the LA-MQTT client library. As soon as
the MC starts looking for a parking spot, it performs two operations. First it subscribes to the topicC (i, ts ), obtained
by concatenating its unique id i and the generic topic “Parking” ts . Second, it publishes its interest in parking
spots using the topic MC_SUB and i and ts as a payload. This is captured by the LA-MQTT backend, which is then
aware that MCi is looking for a parking spot. MCi starts then to periodically advertise its GPS position through a
publish operation with the topic GPS_DATA. Meanwhile, the LDS periodically broadcasts the availability of the
parking spot through a publish operation with topic GEOFENCE_DATA. This contains the generic topic “Parking”
ts , an area of interest that physically surrounds the LDS (дs ) and the actual availability of the parking spot (cs ).
Since we assume that the parking spot is of interest for whom is located within the area of interest, we set es to IN.
Both GPS_DATA and GEOFENCE_DATA are captured by the backend, which checks if the position of MCi from
its GPS_DATA is located within the geofence contained in GEOFENCE_DATA. If so, then the backend forwards
the notification to MCi by publishing on the topic C (i, ts ) the availability of the parking spot. This message gets
received by MCi only.

5 LA-MQTT: PRIVACY MANAGEMENT

The privacy module is implemented within the client library, as it only affects the MCs during the position publish
operation. The module takes in input the real position Pi of MCi , and produces in output a new position P̃i ,
generated in a way to address the PP-SP trade-off introduced in Section 3. In Section 2, we reviewed several privacy
techniques for geolocation tracking applications. We note again that only a few of them fit the characteristics
of our scenarios, such as the absence of cooperation among the MCs and the limited computational resources
of some IoT/mobile devices. For this reason, we propose a modular, cost-effective, probabilistic algorithm that
combines the two strategies explained below, by leveraging their advantages and hindering their drawbacks. It is
worth mentioning that we do not force the choice of such strategies, as others could fit our framework. In this sense,
they are used here with the purpose of validating the framework.

• Strategy 1: Random Perturbation. Let D indicate the total numbers of digits after the comma for a GPS
latitude/longitude sample. Let 0 ≤ d ≤ D be the perturbation index. Given Pi , we generate P̃i by keeping the
integer part of Pi and the first d digits of the real part; the remaining D − d digits are replaced with random
values. It is easy to see that the corner case d = D produces no perturbation. The d parameter controls then
the amount of perturbation and, consequentially, the trade-off between the PP and SP metrics. In Section 6,
we investigate the impact of such a parameter on the system performance.
• Strategy 2: Dummy Updates. Let us consider sequences of b + 1 consecutive position publish operations

by MCi . In this strategy, the MC publishes its true GPS position (Pi ) in only one of such operations, while
in the other b cases, a random perturbed position with index d is generated and published on the MQTT
broker. The index of Pi within the sequence is also randomly determined for each new sequence. Let then
S li = {P̃

l
i,1, P̃ l i,2, ..., P̃ l i,b+1} be the l-th sequence of dummy updates, where ∃ 1 ≤ j ≤ b+1 such as P̃ l i, j = Pi .

We refine the PP metric by computing it over each sequence S li , as follows:

ACM Trans. Internet Things
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PPi (S
l
i ) =

∑b+1
j=1 dist (P̃

l
i, j , Pi )

b + 1
(1)

where dist (·, ·) is the function returning the geographic distance between two GPS locations. Large values
of b adversely impact the system responsiveness since the MC may be notified with a certain delay (or even
not be notified at all) when entering a geofence, depending on the publish frequency fi . Conversely, we
recall that the PP metric empirically tends to increase for larger values of b, as one of the b + 1 distances at
the numerator in Equation 1 refers to the real position itself, therefore is always 0. This is not a monotonic
behavior, however it is reasonable to expect such an increase because it is unlikely that b would assume
values high enough to compromise this assumption. For these reasons the optimal tuning of the b parameter
is critical; in Section 6 we investigate its impact on the system performance.

It is clear that the two methods above, if considered individually, present significant drawbacks. The random
perturbation mechanism introduces a GPS noise that is scenario-dependent: clearly, for d = 0, the PP metric is
maximized; however, the consequential reduction of SP might be significant, and adversely impact the user’s
experience. The dummy updates mechanism blurs the average position of the MCs; however, the broker might
still be able to distinguish the true GPS updates from the dummy ones, e.g. by discarding the updates that are too
far from the previous ones. We face these issue by introducing spatial correlation on the dummy updates and also
taking advantage of the random perturbation. To this end, let Psi be the true initial position of MCi . We construct
b different trajectories: the starting points are computed by applying b times a random perturbation with index d

to Psi , while the destinations are randomly generated within the scenario. Let δ li = dist (P li − P
l+1
i ) be the spatial

distance covered by MCi between two consecutive positions publish. For each fake update, the P̃ l+1i, j value is built by

applying a δ li movement on the j-th trajectory, starting from the previous position P̃ l i, j . The term l is thus defined
as the progressive step of each trajectory and it is the same across all the trajectories as they are generated along the
real one. Figure 3 shows the three stages of the proposed privacy algorithm in action. The system performance, as
well as the ability to cope with the PP-SP trade-off introduced in Section 3, depends on the proper tuning of the d
and b operational parameters for each MCi , as investigated in details in Section 6.3. In turn, the optimal tuning
is affected by scenario-specific conditions, such as shape of the geofence, frequency of content updates from the
LDSs, scenario geography, and many others that are mostly unknown by the MCs. Vice versa, for realism purposes
we assume that MCs have only local knowledge of the environment, without any sort of cooperation among them.
Given these constraints, the only way for the MC to determine the proper configuration of the privacy parameters is
by dynamically learning it from the environment. For this reason, we propose an online learning algorithm that is
executed by each MC in isolation, and that allows to configure the d and b parameters so that the PP-SP trade-off is
dynamically addressed.

5.1 Learning-based Parameter tuning algorithm

We propose the application of Reinforcement Learning (RL) techniques to the problem of LA-MQTT parameter
tuning. In brief, the RL framework addresses a wide category of situations where an agent must determine the
optimal policies (i.e. sequences of actions) to complete a given task; to this aim, the agent interacts with the
environment and receives a numeric reward after each action [43]. More formally, the RL framework can be
represented as a Markov Discrete Process (MDP) ⟨S,A,R,TR⟩ where S is the set of States, A is the set of Actions,
R : {S,A} → IR is the Reward function, expressing a numeric reward received by the agent when executing action
aj ∈ A in state si ∈ S , and TR : {S,A} → S is the transition function, expressing the next state sj after performing
action ak from state si (a deterministic environment is assumed). The goal of the RL agent is to determine the
optimal policy function τ : S → A that indicates the optimal action to execute at each state, so that the long-term
reward is maximized. In our problem, the MDP is modeled as follows:
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Fig. 3. The privacy mechanisms adopted by the LA-MQTT client.

• The set of States S = {s1, s2, ..., s |S | } describes the discrete position of the MC within the scenario. For
this purpose, we assume a grid decomposition of the environment; let |S | be the total number of cells, and
0 ≤ sj < |S | be the current cell containing the real position of MCi .
• The set of Actions A = {a1,a2, ...,a |A | } describes the current privacy configuration of the MC. To this aim, let
ai be the couple < bj ,dk > where 0 ≤ bj < Bmax is the current number of dummy updates and 1 ≤ dk < D

is the current configuration of the perturbation index. It is easy to see that |A| = D · Bmax , where Bmax is the
maximum amount of dummy routes allowed.
• The Reward function R takes into account both the SP and PP metrics, and is computed as follows:

Ri = γ · ¯PPi + (1 − γ ) · SPi (2)

where γ is a parameter tuned by the MC, and controlling the wanted trade-off between PP and SP ; for
instance, by setting γ = 1, the system will maximally reward the actions that preserve the privacy, while
for γ = 0 the system will give maximal priority to the quality of notifications received by the MC. In the
previous Equation, the PP metric is normalized into the interval [0 : 1], i.e.:

¯PPi =

(

PPi

PPmax

)α

(3)

where 0 < α ≤ 1 is a parameter governing the sharpness of the curve – the lower the value of α , the faster
¯PPi increases for low values of PPi –, and PPmax is a normalization factor.

For each state sj and action ak , each MCi stores a Q-table that quantifies the average reward received by the agent
while being in state sj and executing action ak . However, since the action is not correlated with the state update, we
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consider a simplified version of the popular Q-learning algorithm [48], in which the Q-table at epoch t is updated
as follows:

Qt
i (sj ,ak ) = (1 − η) ·Qt−1

i (sj ,ak ) + η · R
t
i (4)

where 0 ≤ η ≤ 1 is a learning factor. Each Q-value is mapped into a probability value according to the well-known
Boltzmann formula [43], which returns the probability of selecting action ak when the MCi is in state sj :

PRti (sj ,ak ) =
e
Qt
i
(sj ,ak )

T

∑

a∈A e
Qt
i
(sj ,a )

T

(5)

where T is known as the temperature parameter, and controls the trade-off between exploration and exploitation
phases.

Algorithm 1: The LA-MQTT RL-algorithm.

1 upon event Position Publish for MCi : (every fi intervals)
2 if new_step then

3 Set index of the true update K = random (1, b + 1)

4 Update step number l = l + 1
5 Reset counter within step c = 0

6 Set new_step = false
7 end

8 if K == c then

9 Publish real GPS Position Pi

10 else

11 Publish dummy GPS Position P̃ li,c
12 end

13 Update counter within sequence c = c + 1
14 if c == b + 1 then

15 Set new_step = true
16 update ¯PPi according to Equation 3

17 Update the P̃ l+1i values on each of the Bmax trajectories
18 end

19

20 upon event MQTT notification received:

21 Update SPi metric for epoch t
22

23 upon event epoch t completed:

24 get sj ∈ S from current position Pi

25 update Ri according to Equation 2
26 update Q t

i (sj , ak ) according to Equation 4
27 update PRti (sj , ak )∀sj ∈ S, ak ∈ A according to Equation 5
28 randomly select next action a∗ to be executed based on PRti (sj , ak ) values
29 if T > Tmin then

30 Decrease T by a ζ quantity according to Equation 6
31 end

32 Reset SPi and PPi metric values;
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The pseudo-code of the overall procedure executed by the MCs is described by Algorithm 1, in which we assume
the time to be divided into epochs of fixed length te . The algorithm is described as a reaction to three possible
events: the position publish event, the reception of the MQTT notification and the completion of an epoch. Upon
each position publish event, the MC checks whether it is about to generate a new step (line 2), as all the b dummy
positions for step l , plus the real one, have been published. In such case, it determines randomly the index of the
next true update among the b + 1 to be performed for step l + 1 (line 3). Then, the position publish takes place, by
publishing the real one in case the index matches with the current iteration (line 9) or by publishing a pre-calculated
position of the c-th dummy route (line 11). Once all the updates have been generated for step l + 1, the PPi metric
is updated (line 16) and the dummy positions for the next step are generated (line 17). Upon the reception of an
MQTT update, MCi updates its SPi metric. Finally, at the end of each epoch, MCi evaluates the reward function
(Equation 2, line 25) and updates the Q-table and the P ti (sj ,ak ) values ∀sj ∈ S , ak ∈ A through Equations 4 and 5
(lines 26-27), respectively. In addition, the algorithm selects the action a∗ to be executed during the next epoch: the
action selection is performed probabilistically, according to the distribution given by Equation 5 (line 28). Finally,
the T temperature, initialized with Tmax > 1 is discounted by a fixed quantity ζ till reaching a minimum value
0 < Tmin < 1 (lines 29-31). The optimal tuning of the ζ parameter is critical since it determines the speed of
moving from the exploration to the exploitation phase, in which the actions associated with higher Q-values are
executed most of the time. In our system, we set ζ as follows:

ζ =
Tmax −Tmin

|A| · ∆
(6)

|A| is the number of configurations to test, while ∆ > 0 indicates the average number of times in which a
configuration should be selected. We evaluate the impact of ∆ parameter on system performance in Section 6.

6 PERFORMANCE EVALUATION

In this section, we address scalability, spatial accuracy, and privacy management of LA-MQTT on a large-scale,
immersive simulated environment. The characteristics of the latter are presented in Section 6.1. The geoprocessing
capabilities of LA-MQTT are evaluated in Section 6.2. The impact of privacy parameters such as the number of
dummy updates and perturbation index on the SP-PP metrics is shown in Section 6.3. Finally, in Section 6.4 we
evaluate the performance of the learning-based parameter tuning algorithm described in Section 5.1.

The LA-MQTT Backend library, the LA-MQTT client library and the simulation environment used for evaluation
in the present paper is open source and available online at https://github.com/UniBO-PRISMLab/la-
mqtt.

6.1 Simulation environment

We consider the hybrid simulation environment shown in Figure 4 and composed of both real and virtual components.
The real components are constituted by the elements of the LA-MQTT architecture previously presented, i.e. the
client library and the backend, which are both coded in Typescript, and the MQTT broker, for which we used the
Mosquitto tool. The virtual components are simulated MCs and LDSs entities which feed the LA-MQTT platform
with synthetic data. More in detail, we deploy a tool to simulate the mobility of M MCs over an urban scenario;
each MC moves according to a random waypoint model, with random speed in the range [vmin ,vmax ]. When
reaching the destination, the MC stays still for an interval (again randomly selected between [pmin ,pmax ]) and
then picks a new destination within the scenario. The custom mobility simulator was developed in Typescript. Each
simulated MC publishes its GPS position on the MQTT Mosquitto broker via a private instance of the LA-MQTT
client library at a constant, unique rate (i.e. ∀i ∈ [1,M]. fi = fMC ); in addition, each MC randomly subscribes to
one topic among theT available ones. Similarly, we simulate the operations of N LDSs, randomly assigned to theT
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Fig. 4. The hybrid simulation environment.

Parameter Description Value

M Number of MCs {10,20,50,100,200,500}
N Number of LDSs 20
· Scenario size Bologna downtown (8,120km2)
R Geofence radius {100,200,300,400,500,600}
T Number of topics 3

fLDS Frequency of updates (from the LDSs) 60s
fMC Frequency of GPS sampling (from the MC) 10s

[vmin, vmax ] MC Min/max speed [2, 5]m/s

Table 3. Default parameters’ values used in the simulations.

topics: each LDS generates new data with the same constant frequency (i.e. ∀s ∈ [1,N ]. fs = fLDS ) and pertaining
to one topic. We abstract from the physical meaning of the IoT data produced by each LDS; we will address the
issue in Section 7, where an IoT use case with real-world sensor data is discussed. Although our solution supports
geofences of any polygonal shape, the analysis is restricted to the case of circular geofences. In this way, we can
investigate the system performance as a function of a single parameter, i.e. the geofence radius, denoted as R in the
following and assumed equal for all the N LDSs. As for the MCs, each simulated LDS is connected to its private
instance of the LA-MQTT client library, through which it can publish its data on the MQTT broker. The MQTT
broker and the integrated simulation framework are installed on separate servers, communicating via a Gigabit
Internet connection; as a result, the latency introduced by the communication channel, by the MQTT protocol and
by the processing of spatial data are taken into account. The LA-MQTT backend library is installed on the same
server hosting the simulation platform.
Unless stated otherwise, we simulate the LA-MQTT operations over the urban city center of Bologna (8,120km2),
by tuning the operational parameters as reported in Table 3. We consider real-time simulation: the duration of each
run is equal to 30min. For each result shown in this section, we averaged the values over 5 runs.

6.2 Geofiltering Analysis

As preliminary analysis, we investigate the ability of LA-MQTT to support location-based dissemination of IoT
data over the scenario. Specifically, we focus on the performance of the geo-filtering mechanism, i.e. on the proper
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(a) Varying the number of MCs (b) Avg CPU usage of the MQTT broker

Fig. 5. The RN and SP metrics for the LA-MQTT and Legacy MQTT protocols when varying the number of MCs (M)

are shown in Figure 5(a). The average CPU usage of the MQTT broker is shown in Figure 5(b).

(a) Varying the geofence radius (b) Varying the number of geofences

Fig. 6. The RN and SP metrics for the LA-MQTT and Legacy MQTT protocols when varying the geofence radius

size (R) and the number of LDSs (N ) are shown respectively in Figures 6(a) and 6(b).

identification of target MCs for each new data published by a LDS. To this end, we compare the performance of
LA-MQTT against a legacy MQTT deployment, where the standard MQTT protocol is used without any support
for location awareness at both client/backend. In such case, each MC subscribes to one topic among theT available,
however no spatial filtering is applied; hence, each MC receives all content published on the topic for which it
subscribed, regardless of its actual position and of the geofence region. We denominate this solution as Legacy

MQTT in the following. Figure 5(a) shows the performance of both LA-MQTT and Legacy MQTT when varying the
number of MCs in the simulation.The y-axis reports the total number of Received MQTT Notifications (shortened
to RN in the Figure) from the MCs during the whole simulation. The y2-axis reports the SP metric, i.e. the ratio of
received relevant notifications, according to the definition provided in Section 3. Clearly, for both protocols, the RN
values increase with the number of MCs subscribing to topics of interest; however, without any filtering mechanism
on the backend, the traffic load increases exponentially while the relevance of data – reflected by the SP line – is
quite poor. Vice versa, in LA-MQTT, only relevant messages are delivered to the MCs; this produces a considerable
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(a) (b)

Fig. 7. The SP and SR metrics as a function of the perturbation index d and for three configurations of R are shown in

Figures 7(a) and 7(b), respectively.

reduction of the network load for the notification process, while the SP is near 100%, even considering a relevant
number of active users (10000). Figure 5(b) further investigates the scalability of our solution by comparing the
average computational load of the LA-MQTT and Legacy MQTT protocols when varying the number of MCs. The
load is expressed as the average CPU utilization of the MQTT broker. We remark that LA-MQTT does not affect the
broker implementation, and hence can be supported by any legacy broker; however, the number of publish-subscribe
differs for the LA-MQTT and Legacy MQTT protocols. More in details, the LA-MQTT incurs in higher number
of spatial notifications, as already shown in Figure 5(a); vice versa, Legacy MQTT introduces additional private
subscriptions for each MC and topic of interest, as previously illustrated in Section 4.1. Figure 5(b) shows that the
resource utilization increases significantly for M=10000, however the performance of LA-MQTT is comparable
with Legacy MQTT, hence our solution does not introduce significant performance bottleneck compared to the
standard. Clearly, on large-scale scenarios, geo-spatial distributed MQTT solutions may be considered to share
the load while avoiding the presence of a Single Point of Failure (SPOF); the issue is left as future work and
discussed in Section 8. Figure 6(a), which shows the RN and SP metrics as a function of the geofence radius (R),
while M is fixed to 100. For the MQTT Legacy, the RN metric is not affected by R for the same reason discussed
above, whereas in LA-MQTT, the RN metric slightly increases with R, since a larger geofence region involves
a higher number of potential receivers; however, the SP value equals almost 100% for all the configurations of
R. Finally, Figure 6(b) shows the RN and SP metrics for the LA-MQTT and Legacy MQTT protocols, when we
vary the number of IoT data sources, in our cases constituted by the number of LDSs (N ). We set R=300 and
M=500. Clearly, the number of geospatial messages to deliver to the MCs grows with N . However, the Figure
provides similar insights than the case with varying data receivers (Figure 5(a)), i.e.: (i) in absence of spatial
filtering mechanisms, the number of notifications grows exponentially for the Legacy MQTT; (ii) however, only
few of these notifications are spatially relevant for the MC; (iii) vice versa, the SP of LA-MQTT is always close to
100% even in dense scenarios with N=2000.

6.3 Impact of Privacy Parameters

In this Section, we evaluate the performance of the privacy mechanisms detailed in Section 5 and, specifically, the
impact of parameters d (i.e. perturbation index) and b (i.e. number of dummy updates) as well as the gain produced
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(a) (b)

Fig. 8. The SP and SR metrics when varying the number of dummy updates (on the x-axis) and for three configurations

of the GPS sampling frequency are shown in Figures 8(a) and 8(b), respectively.

by correlated trajectories (dummy routes). To this end, we consider an incremental evaluation, through which the
impact of these three aspects is discussed separately.

Impact of Random Perturbation. We set up a scenario with M = 50 and N = 20; after sampling its GPS position
Pi , each MCi computes a new position P̃i (d ) by applying exclusively the Strategy 1 of the procedure detailed in
Section 5. Figure 7(a) shows the impact of different values of the perturbation index d on the SP metric: for each
value of d , we consider three configurations of R, respectively equal to 100, 200 and 500 meters. On the same figure,
we also depict (on the y2-axis) the PP metric, computed as E[dist (Pi , P̃i (d ))], i.e. the average distance between
the Pi and P̃i (d ). It is easy to notice the trade-off between the SP and PP metrics: for d = 1, the average PP value
almost exceeds the scenario size, while the quality of notifications sent to the MCs is poor. For d ≥ 4, the random
noise has a negligible impact (in the order of few meters), hence we get similar performance than Section 6.2,
where privacy mechanisms are disabled. Figure 7(b) depicts the Spatial Recall (SR) over d, again for the three
different configurations of R. The SR is computed as the average ratio of cases in which MCi is within the geofence
of a LDS of interest s and receives the corresponding notification, over the total number of cases where Pi ⊏ дs ;
hence, differently from the SP metric, it filters out the non-relevantnotifications received by the MCi . We highlight
that both SR and SP metrics reflect the quality of notifications from the MC perspective, although with different
meanings; the first metric quantifies the effectiveness of the dissemination process, while the second one takes
into account the effort of the dissemination, in terms of network communication overhead and eventual additional
geoprocessing required by the MC in order to filter the data. The SR metric follows a similar trend than Figure 7(a),
although it increases more sharply for d ≥ 2, and is more affected by R. The results above further justify the need
for a proper tuning of the d parameter.

Impact of Dummy Updates. Next, we evaluate the impact of Strategy 2, defined in Section 5. We consider the
same scenario of the previous analysis: each MCi publishes its position every fMC seconds; however, it transmits
its real position Pi once every b + 1 updates, while in the other b cases it applies the Random Perturbation to Pi ,
with index equal to d. Figure 8(a) depicts the SP metric when varying the b value on the x-axis, and for three
different values of fMC (indicated by the bar color). It is easy to notice that the dummy update mechanism reduces
the QoS perceived by the MCs, which might receive spatial notifications not related to their actual position. More
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(a) d = 1 (b) d = 2

Fig. 9. The entropy and PP metrics as a function of the number of dummy updates in a random Dummy Updates

scheme and a trajectory-based one.

in detail, the SP metric decreases as b decreases and/or as fMC decreases. Figure 8(b) shows the impact of b on the
SR metric, again for three configurations of fMC . On the y2-axis of the same Figure, we depict the Notification
Delay (ND), defined as the average time elapsed from the entrance of MCi in the geofence of a LDS of interest
until the reception of the corresponding notification. We can easily notice that: (i) with fMC fixed, the SR decreases
as b increases, since a MC might enter and exit a geofence without having the opportunity to publish its true
position; (ii) the ND curve increases together with b for all values of fMC , confirming the previous point; (iii) the
SR performance worsens when increasing fMC .

Impact of the Dummy Routes. We conclude the analysis by evaluating the usage of correlated trajectories, the
ultimate strategy defined in Section 5, on the privacy performance. For the latter, we quantify the risk that the SC iden-
tifies the true update from the other b synthetic updates composing a single step. Let S li = {P̃

l
i,1, P̃ l i,2, ..., P̃ l i,b+1}

be the l-th sequence of dummy updates. The privacy risk for MCi is expressed through the well-known entropy
function [36]:

H (S li ) =

b+1
∑

j=1

PR (P̃ l i, j ) · loд2
(

PR (P̃ l i, j )
)

(7)

where PR (P̃ l i, j ) denotes the SC’s belief that the true position of MCi in the j-th value of the sequence. In the

optimal case, the dummy values are all equally probable, i.e. PR (P̃ l i, j ) = 1
b+1
∀1 ≤ j ≤ b. We compute the

PR (P̃ l i, j ) value by considering the likelihood of the distance covered between two consecutive sequences, i.e.

PR (P̃ l i, j ) = max1≤k≤bPR (dist
∗ (P̃ l i, j ,

˜P l−1i,k )), assuming that the distance function dist∗ () follows a Gaussian
distribution with mean ϕ · v̄, where ϕ is the interval between two consecutive samples of the same route (at two
different steps, therefore ϕ ∼ fi · (b + 1)) and v̄ the average speed of the MCs. Figure 9(a) depicts the entropy
values when varying the b parameter, and using the maximum perturbation index (d = 1); we compare the previous
random Dummy Updates scheme, where b updates of the step are generated by applying a random perturbation to
the true position (Strategy 2 of Section 5), against the trajectory-based solution evaluated in this paragraph. On
the y2-axis we show the average PP metric over b, computed according to Equation 1. It is easy to notice that the
entropy of the random solution is low, i.e. it is quite easy for the SC to identify the true position of the MC within
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(a) (b)

Fig. 10. The impact of ∆ parameter on the exploration-exploitation process is shown in Figure 10(a). The average

values of P̄P and SP for different settings of γ parameters are depicted in Figure 10(b).

the sequence of dummy updates generated within a step; this is due to the fact that the average distance among fake
updates of two different steps may greatly exceed the expected value ϕ · v̄. Vice versa, for the trajectory-based
solution, the entropy function is maximized by construction, and is not affected by the d parameter. The latter
is demonstrated by Figure 9(b) which shows entropy and PP values for d = 2. The Figure reveals that entropy
performance of the trajectory-based solution does not change significantly, while the performance of the random
scheme improves since the random updates are getting closer to the true position; this is a consequence of the
reduced amount of perturbation. However, lower values of d determine a reduction of the PP metric, as shown by
the red lines in Figures 9(a) and 9(b). The results presented so far demonstrate that the d and b parameters may
have a significant impact on SP and PP performance. The optimal tuning of those parameters clearly depend on
the desired trade-off, reflected by the γ parameter in Equation 2 but also by scenario-specific conditions such as
number and positions of the LDSs. For this reason, in the next section we evaluate the performance of Algorithm 1
enabling the self-tuning of the privacy parameters.

6.4 Performance of the Learning-based Algorithm

In this section we evaluate the performance of the learning-based algorithm described in Section 5.1. Unless stated
otherwise, we set the parameters of the simulation environment and of Algorithm 1 as follows: N = 50, M = 50,
R =300m, Tmax = 10, Tmin = 0.1, η = 0.5, α = 2. The simulation time is divided into epochs of length te =180s;
during an epoch, each MCi is not allowed to modify its configuration of the privacy parameters (bi and di ). In
Figure 10(a) we investigate the impact of the parameter controlling the extent of the exploration phase, i.e. ∆ in
Equation 6. To this purpose, the y-axis shows the per-MC value of the instantaneous reward (Equation 2) over the
simulation time; the three curves refer to three different configurations of ∆, respectively equal to 0.5, 2 and 4. We
set γ = 0.6. The curves are mostly overlapped till t = 7500. When t > 7500, the performance of the Algorithm with
∆ = 0.5 sharply decreases due to the fact that MCs start exploiting a largely sub-optimal configuration, a clue that
the exploration phase has been too short. In opposite way, for ∆ = 4, the reward function does not show significant
changes over time since the exploration phase exceeds the simulation length, and hence the system never enters the
exploitation phase. For ∆ = 2, the learning process is effective since the average reward increases at t > 10000, i.e.

when the system starts reinforcing the optimal solution found so far; for this reason, we use ∆ = 2 for the further
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(a) Maximizing the PP (γ=1) (b) Maximizing the SP (γ=0)

Fig. 11. The average probabilities of privacy configuration selection (b on the row, d on the column) during the

exploitation phase are depicted for γ=1 (on the left) and γ=0 (on the right).

analysis. Figure 10(b) depicts the two components of the reward function of Equation 2, i.e. the normalized PP

(P̄P) on the y-axis and the SP on the y2-axis, when varying the γ coefficient4; we recall that γ must be tuned by the
end-users and controls the desired trade-off between the quality of the notifications and location privacy. For γ = 1,
the system goal is to maximize the P̄P only, regardless of the SP ; the opposite occurs for γ = 0. We can notice that
the two lines follow the expected behavior hence we can conclude that Algorithm 1 is able to capture the PP-SP
trade-off in an effective manner. In Figures 11(a) and 11(b) we provide further evidence of the ability of Algorithm 1
to adapt the client configuration according to the MC requirement, i.e. the γ value. The two heatmaps show the
experimental probability (i.e. the usage frequency) for each configuration of the privacy parameters, computed as
proportion of epochs, again during the exploitation phase, in which each configuration has been adopted by the
MCs. For the dummy updates, we considered 4 configurations of parameter b on the x-axis, i.e. 0 (no dummy), 1,
3, 7. Similarly, we considered 3 configurations of parameter d on the y-axis, i.e. 1, 2, 4. The heatmap of Figure
11(a) refers to γ = 1, i.e. privacy maximization. In accordance with the analysis presented in Section 6.3, we can
notice that the MCs mostly employ configurations with maximum number of dummy updates (b ≥ 4) and maximal
perturbation of the GPS position (d = 1). On the contrary, the heatmap of Figure 11(b) refers to γ = 0, i.e. quality
of notification maximization. In this case, the MCs mostly rely on configurations with dummy update mechanism
disabled (b = 0, while d is not effective in this case). Although the distributions are not uniform over the available
configurations, we can notice that sub-optimal configurations may be still selected with probability greater than
zero, for both γ = 0 and γ = 1; this is a joint effect of the probabilistic selection mechanism and of the exploration
phase, which is progressively discounted over time but not below a minimal threshold Tmin > 0, in order to ensure
system adaptivity to environmental changes.

7 USE-CASE

In order to test the functionalities and the efficiency of our proposal, we implemented a Proof-of-Concept (PoC)
prototype that features all the components presented throughout the paper. More in detail, the architecture of the
PoC is presented in Figure 12, where the main entities are highlighted. In particular, we deployed an instance of the

4We considered the average metric values during the exploitation phase only, i.e. t >50000.

ACM Trans. Internet Things



22 • Montori, et al.

Fig. 12. Architecture of our PoC implementation of a LA-MQTT scenario with a MC and a LBS.

Mosquitto MQTT broker into a server as well as our implementation of the LA-MQTT backend. Once the backend
attaches to Mosquitto, these two server instances are considered a single entity, as made clear in the previous
sections. Furthermore, we used our implementation of the LA-MQTT client library to develop two entities: a LBS
and a MC. Both the library and the backend are the same as the one used in Section 6 and are a final release version,
therefore they should not be considered a PoC, neither a prototype.

In our PoC scenario, the LBS is represented by an IoT device that periodically published temperature values.
The picture of the prototype can be found within Figure 12. In particular, it is composed by a microcontroller,
in this case we used an Espressif ESP32 board5 with an ESP-12 WiFi module, and a DHT-11 temperature and
humidity sensor. The IoT Module is flashed with a C sketch via the Arduino IDE, is deployed at the Department
of Computer Science and Engineering of the University of Bologna, and it has access to the internet via its WiFi
module. The IoT device uses the LA-MQTT client library to perform the “Geofence publish” outlined in Section 4
instead of the normal MQTT publish, and performs such operation with a frequency ftemp =5s. On the other
hand, the MC is represented by a Mobile app for Temperature monitoring that interacts with the MQTT Broker
via the LA-MQTT Client Library. The Mobile app is a hybrid Ionic Angular app6 written in Typescript and built
natively via Capacitor7. In particular, as instructed in Section 4, it periodically publishes its position (which may be
blurred via our privacy preserving techniques) and performs the “Topic subscription” operation, where ts is our
use-case-defined temperature topic. Ideally, upon entering the geofence of the LBS, the application starts receiving
temperature updates and notifies the user via a system notification, as its screenshot within Figure 12 suggests.

An overview of the mobile application is shown in Figure 13 via screenshots. In particular, the app consists of
three main screens, accessible through the bottom navigation bar. The first screen, shown in Figure 13(a), displays

5https://www.espressif.com/en/products/socs/esp32
6https://ionicframework.com/
7https://capacitorjs.com/
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(a) Map (b) Statistics (c) Settings

Fig. 13. The three main screens of the mobile application that acts as a MCs in our PoC scenario.

the position of the user itself (green marker) and any other LBS (orange marker, in our case only one is represented).
In our case, the LBS has a circular geofence with radius 300m, which means that the MC is close enough to get
notifications. The third screen, shown in Figure 13(c), displays the settings and all the parameters that the user
of the app can change manually. Specifically, the application envisions a login, where MCs uniquely identify
themselves against the MQTT broker. With respect to the privacy mechanisms illustrated in Section 5, the final
user can choose to activate the privacy preservation through a switch. If privacy is enabled, then the user may
choose to let the system tune the parameters through reinforcement learning, as in Section 5.1, by toggling on the
“Self-tuning” switch. Conversely, if the switch is off, then the user can manually define the spatial perturbation
and the number of dummy routes (disabled otherwise). Other configurable parameters include the position publish
interval fMC and the trade-off parameter γ presented in Equation 2. The second screen shows the statistics in terms
of LA-MQTT messages sent and received as well as the estimated SP and PP metrics. In particular, the example in
Figure 13(b) shows the number of position publish sent and the number of notifications received. In this case, the
privacy preservation relies on top of the reinforcement learning algorithm, which leads the Spatial Precision to be
72% and the Privacy Preservation to be 29%.

Furthermore, we conducted an experiment in order to evaluate the real delay occurring in our PoC scenario. In
detail, the mobile app detects locally when entering the geofence of the LBS and, from then, it measures the time
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Fig. 14. Delay measured by the mobile app for different values of fMC from the time the user enters the geofence

until the notification is received.

taken to receive the relative notification. Figure 14 shows the results of the tests we have conducted, in which each
bar corresponds to such delay. We set five different values of the position publish interval fMC . More specifically,
we split the delay in the figure into two phases: the blue bottom bar is the “notification delay”, i.e. the delay
occurring from the position publish operation till the reception of the notification, while the red top bar is the
difference between the total delay and the notification delay. The results are averaged over multiple measurements
for each value of fMC . It is easy to see that the notification delay is unaffected by fMC , as it is entirely due to the
network connection quality. On the other hand, the total delay increases linearly with fMC , which is the dominating
factor.

8 CONCLUSIONS

In this paper, we have proposed LA-MQTT, an extension of MQTT to support location-aware communications
for IoT scenarios. The extension has been demonstrated to be effective and easily pluggable into a preexisting
MQTT-driven scenario, being broker-agnostic and not requiring any modification to the standard protocol. Through
LA-MQTT we showed how Publishers can specify an area of influence and how Subscribers can be notified
only when certain conditions against such area are met (e.g. being physically inside it). We have shown how
this implies that the LA-MQTT Subscribers publish periodically their position, which could result in a privacy
concern. Consequentially, we proposed a simple yet effective privacy-preserving paradigm that is based on dummy
routes and multiple basic privacy self-assessment schemes. The trade-off between privacy preservation and spatial
precision metrics has been addressed through a novel reinforcement learning algorithm. Finally, we have shown the
efficiency and soundness of the proposal via extensive hybrid simulations feeding the LA-MQTT architecture with
synthetic data. Furthermore, we implemented a real Proof-of-Concept prototype to showcase the feasibility of our
proposal in a real-world IoT scenario.
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8.1 Future Works

The work presented in this paper has the potential of being expanded in several directions. We list the main current
and future activities below.

Evaluation via IoT datasets. The current evaluation methodology of LA-MQTT is based on hybrid simulation,
with the front-end and backend components being fed with synthetic data produced by a mobility simulator.
At the same time, many open datasets are publicly available for the IoT domain, including mobility traces and
location-based environmental datasets. As a future work, we aim to validate LA-MQTT operations by considering
a restricted number of IoT datasets to setup the scenario and to model the behaviours of the MCs and LDSs.
The choice might not affect the performance of LA-MQTT but it may contribute to increase the realism of the
evaluation.

Beyond MQTT. LA-MQTT is highly based on legacy MQTT in order to maximize its ease of use and to speed up
its adoption by a legacy environment. In fact, LA-MQTT can be adopted without redesigning a preexisting scenario
from scratch, rather, it can be on-boarded at runtime. Nonetheless, we observe that the LA-MQTT workflow can be
adopted by any technology with publish-subscribe primitives. In the short run, we aim to evaluate its adaptability
by taking into account a generic definition of the pub/sub paradigm.

Enhance the Privacy Protection. In order to add the privacy preservation into the LA-MQTT framework, we
presented in this paper two privacy-aware mechanisms that have been consistently used in the past. However, the
algorithms themselves are not the primary focus of the paper, rather, they display the inclusion of privacy as a
main pillar of LA-MQTT. In fact, as a future work, we aim to validate LA-MQTT by taking into account a grater
pool of privacy-aware mechanisms, as well as enhancing further the ones that we presented here. For instance,
Dummy Updates could be perfected by adding background information in the route generation phase in order to
make dummies more realistic.

Support for distributed architectures of brokers. The centralized MQTT architecture may pose scalability
issues in massive IoT scenarios where all devices connect to a single broker. For this reason, distributed multi-
broker solutions are under investigations to increase system reliability and availability. In addition, proper load
balancing policies are needed to avoid performance bottlenecks and to minimize inter-broker traffic overhead
[14]. The LA-MQTT solution may benefit of such distributed architectures in order to support IoT applications
related to smart-cities, such as the environmental monitoring use-case described in Section 7. Moreover, implicit
characteristics of the LA-MQTT scenario, such as the knowledge of the positions of clients and the locality of
geofencing communications, can be exploited to design spatial-aware balancing techniques among the brokers.
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